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ABSTRACT
In many network applications, it may be desirable to conceal cer-

tain target nodes from detection by a data collector, who is using a

crawling algorithm to explore a network. For example, in a com-

puter network, the network administrator may wish to protect

those computers (target nodes) with sensitive information from

discovery by a hacker who has exploited vulnerable machines and

entered the network. These networks are often protected by hiding

the machines (nodes) from external access, and allow only fixed

entry points into the system (protection against external attacks).

However, in this protection scheme, once one of the entry points is

breached, the safety of all internal machines is jeopardized (i.e., the

external attack turns into an internal attack). In this paper, we view

this problem from the perspective of the data protector. We propose

the Node Protection Problem: given a network with known entry

points, which edges should be removed/added so as to protect as

many target nodes from the data collector as possible? A trivial

way to solve this problem would be to simply disconnect either the

entry points or the target nodes – but that would make the network

non-functional. Accordingly, we impose certain constraints: for

each node, only (1−r ) fraction of its edges can be removed, and the

resulting network must not be disconnected. We propose two novel

scoring mechanisms - the Frequent Path Score and the Shortest
Path Score. Using these scores, we propose NetProtect, an al-

gorithm that selects edges to be removed or added so as to best

impede the progress of the data collector. We show experimentally

that NetProtect outperforms baseline node protection algorithms

across several real-world networks. In some datasets, With 1% of

the edges removed by NetProtect, we found that the data collector
requires up to 6 (4) times the budget compared to the next best

baseline in order to discover 5 (50) nodes.
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1 INTRODUCTION
In many network applications, an agent maywish to prevent certain

nodes in the network from being detected in a network crawl. For

example, a computer network administrator may want to reduce

the probability of hackers locating certain machines that contain

confidential or sensitive information [11]. A popular protection

scheme in such networks is to restrict the entry points to the system

through jump servers (or jump boxes) [15]. This type of protection

provides two separate security zones (external and internal) and

jump servers act as intermediaries between these zones. Although

these jump servers do not store sensitive data, they store creden-

tials that allow access to the machines inside the protected zone.

Accordingly, these entry points are popular targets for attackers

breaching into the network [17]. In this scenario, it is of crucial

importance to protect nodes that are vital to the stability of the

network against the internal attackers (attackers from breached

entry points) [16].

In this paper, we ask the question: How can one best modify the
network so as to preserve its functionality while also protecting target
nodes from detection in a crawl-based attack? This general problem
can be viewed from two perspectives: that of the data collector, who
wishes to crawl a network and locate so-called target nodes; and
that of the data protector, who can perform small modifications to

the network to lower the chances of target nodes’ discovery by the

data collector.
While the network crawling (data collection) and vulnerable

nodes identification problems are well-studied [2, 5, 10–13], to the

best of our knowledge, the existing literature has not considered

the perspective of the data protector in considering the attacks on

vulnerable nodes. Thus, in this paper, we assume the role of the data
protector, and consider the following problem: Given a network with
a set of known target nodes, a set of entry points to the system, and a
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protection budget bp , which bp edges can we add or remove to most
hinder the data collector’s access to the target nodes? Note that this
problem could be trivially solved by removing all edges adjacent to

the target nodes or entry points. But in practice, the data protector
would wish to ensure the modified network is still functional as a

network. We thus impose connectivity-related constraints: (1) The

network must remain connected after the modification; and (2) The

number of neighbors of a node that are removed/added is at most

r ·d(u,G), where d(u,G) is the original degree of the node in graph

G, for some specified r .
We propose two node-level scores which are intended to identify

those nodes that are most important to the data collector in reaching
its target(s): (1) the Frequent Path Score (FPS) which measures

the likelihood that a node will appear in an absorbing random

walk, and is thus intended to protect against random-walk-based

crawlers; (2) the Shortest Path Score (SPS), which incorporates

the number and length of shortest paths passing through a node

with the length of those paths, and is suited for protection against

expansion-type crawlers like breadth first search. Our proposed

algorithm, NetProtect, uses these scores to make modifications to

the network. We perform a variety of experiments on real-world

networks with different budgets, pitted against popular network

crawling algorithms. Our results show if a data protector removes

1% of edges based on NetProtect, the data collector must increase

its budget up to 6 (4) times than the next best baseline in order to

discover 5 (50) nodes respectively. (e.g., see NetProtect-, Degree
based Target for musae-facebook in Table 1).

The contributions of this paper are:

• We consider the Node Protection Problem of protecting target

nodes in a network from being discovered in an entry-point

attack. We formalize this problem with respect to the goals

of the data collector and the data protector.
• We propose the FPS and SPS for nodes based on their impor-

tance in random walk and expansion-based searches origi-

nating from a set of entry points before hitting the targets.

We use these scores to propose NetProtect, an algorithm

for determining which edges to add or remove to best protect

the target nodes.

• We compare the performance of NetProtect to a variety of

baseline protection schemes on networks, including ROAM

which is the state of the art node protection algorithm [18].

Our experiments show that, in comparison with baselines,

the deletion or addition of edges by NetProtect makes it

considerably harder for the data collector to find the target

nodes.

In 2, we describe previous work that addresses similar prob-

lems. Next, in 3, we describe the problem statement in more detail,

including roles of the data collector and data protector. Our pro-
posed scoring measures are discussed in 4. Finally, we present our

experimental evaluations on real-world networks in 5.

2 RELATEDWORK
Our work mainly relates to two bodies of research: (1) node protec-

tion in social networks, and (2) graph crawling algorithms.

2.1 Node Protection in Social Networks
The main idea behind hiding (protecting) certain nodes in the graph

is to decrease the importance of the target node through local graph

manipulations. These methods do not consider entry-point attacks,

nor the different crawling algorithms. Themostwell-knownmethod

in locally manipulating graph structure is ROAM, the algorithm

proposed by [18]. ROAM (Remove One, Add Many) decreases the

degree centrality of the target node by removing a neighbor and

connecting it to other immediate neighbors of the target node. [1]

expands the same idea to decrease the eigenvector centrality of the

target node. The problem with this approach is the costly compu-

tation of the eigenvector centrality after each iteration. Moreover,

although ROAM decreases the degree centrality of the target node,

it increases the centrality of the final immediate neighbors of the

target. A degree-based crawling algorithm can easily access this

immediate neighbor which is only 1-hop away from the target. As

the number of iterations increases, ROAM is also biased towards

creating star-shaped subgraphs that can be detected by an anomaly-

detection-based algorithm. In a different approach, [8] uses greedy

edge removal to decrease the closeness centrality of a target node.

Their approach is prone to transforming the target into an isolated

node and is not effective in practical setting. Our proposed method

preserves the connectivity of the graph (no isolated nodes created)

and is not biased towards creating anomalous subgraphs. As ROAM

shows better performance than eigenvector-based ROAM and does

not produce isolated nodes, we benchmark our proposed algorithm

against ROAM in Section 5.

These studies often focus on minimizing some centrality of the

node without considering the perspective of the data collector. In

our study, we define scoring schemes that consider not only the

centrality of the target node, but also the centrality of the nodes

that contribute the most to guiding the crawler to the target. The

current methods, as explained above, do not disturb the crawler’s

path to the neighborhood of the target node. As such, a crawler

can still find its way easily to the vicinity of the target node, and

depending on the density of the target’s neighborhood, they can

find the target through a few trial and error steps. Our approach,

on the other hand, helps us to diverge the crawler’s path from the

target in early stages of the crawling by manipulating the paths

that lead to the target, rather than the target node itself.

2.2 Graph Crawling Algorithms
There have been numerous studies on graph crawling algorithms.

Common graph crawling algorithms include classical techniques

such as random walk (RW), breadth first search (BFS), depth first

search (DFS), and their variants such as selective BFS/DFS [14]

and Metropolis-Hasting RW [6]. We encourage the reader to refer

to [3, 9, 19] for a more comprehensive review of various graph

crawling algorithms and their applications. Our problem specifically

deals with aggressive crawling in contrast to innocent sampling

attempts, as discussed in [14]. According to this study, aggressive

crawlers generally use expansion-based methods that allows them

to travel as far as possible from the starting node (e.g., DFS), whereas

innocent crawlers stay in the vicinity of the starting node gathering

as many neighbors as possible (e.g., BFS). As expansion-based and
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random-walk-based methods are the core of all these methods, we

choose BFS, DFS, and RW in this study.

3 PROBLEM
To formalize the Node Protection Problem, consider a graph G =
⟨V ,E⟩, where V and E denote the nodes and edges respectively. In

this study, we focus on undirected graphs; however, our proposed

method can trivially be extended to directed graphs as well (see

Section 5.1). We assume that G has limited entry points to reduce

external accessibility (e.g., it uses jump servers to monitor the in-

going traffic and build a controlled security zone). As such, only

Vs ∈ V nodes have connections to outside of G and are vulnerable

to external attacks. Among the internal nodes in G, there are Vt ∈
V \Vs sensitive nodes (target nodes) that are to be protected against
internal attacks initiated from either of nodes in Vs . There are two
agents that operate on the graph: (1) the data collector who seeks to
observe the network and find sensitive information; and (2) the data
protector who tries to hide nodes containing sensitive information

from the data collector. In this paper, we address the problem from

the data protector’s perspective: that is,which edges from the network
should the data protector add or remove to protect the target nodes?
Next, we discuss each of these agents in details.

3.1 Data Collector
Initially, the data collector knows the identity of the nodes in set

Vs ⊂ V and can explore (i.e., crawl) the graphG beginning from any

of the nodes in Vs . To explore the graph, the data collector queries
for the neighbors of a node it has seen, and adds the neighbors

and edges found to its observed subgraph. We assume that a query

accurately returns all neighbors of the queried node, and once a

node is discovered by the collector, all its information is accessible

(i.e., the collector knows it has found a target node). There are many

algorithms a data collector could use to crawl the network, such as

a random walk, snowball sampling, or more sophisticated methods

(see Section 2.2). In most cases, there is a limit to the number of

unique nodes that can be queried (due to time or budget resources).

We will use G̃ = ⟨Ṽ , Ẽ⟩ to denote the subgraph observed by the

data collector after bc unique nodes have been queried, where bc
is the collector budget. Given a collector budget bc and an initial

set entry points Vs , the task of the data collector is to (1) collect

the subgraph G̃, and (2) identify the target nodes (Vt ⊂ V \Vs ) in
Ṽ . The goal is to identify as many target nodes as possible. More

formally, let πC(v,G,bc ,Vs ) be the probability of node v ∈ V being

included in Ṽ through some data collection algorithm C on graph

G. When the context is clear, we will abbreviate this term with

πC(v,G). The objective of the data collector is to find a crawling

algorithm that maximizes this probability for nodes in the target

set, i.e., C∗ = argmax

C

∑
v ∈Vt πC(v,G).

3.2 Data Protector
The data protector has global knowledge of the graph (e.g., as the

admin of the network). In particular, it is aware of (1) external gate-

ways to the network (Vs ) where intruders can potentially access

internal network, and (2) target nodes that have to be protected.

Given a protector budget bp , the goal of the data protector is to add

or remove bp edges from the network such that the performance of

the data collector is degraded by the greatest amount possible while

still respecting network connectivity-related constraints. It is worth

noting that we consider a data protector that either deletes or adds
edges, but not both. This is for two reasons: (1) Our experiments

showed that edge deletion alone is far more effective than combin-

ing the two operations, and (2) The relative costs of edge addition

and deletion are very application dependent, and there is no obvious

relationship between the two. As such, we only include the separate

edge addition and deletion analysis in our experiments (Section 5).

Formally, the data protector wishes to find the set of edges for graph
G ′ = ⟨V ,E ′⟩ such that G∗ = argmin

G′

∑
v ∈Vt πC(v,G

′), subject to

the following constraints:

• Because adding/removing an edge may have an associated

cost (for example if too many edges are added/removed, it

may affect other properties of the network), the data protector
may only add/remove a total of bp edges (|E ′ \ E | = bp for

edge addition and |E \ E ′ | = bp for edge deletion).

• There is a limit to edge modifications on a single node

(otherwise there may be undesirable side effects such as

isolated nodes or shifted centralities). So, we require that

∀v ∈ V , |d (v,G′)−d (v,G) |d (v,G) ≤ r , where d(v,G) is the degree of

node v in G.
• The number of connected components in G∗ must be the

same as that in G.

These constraints exist because in real applications, the data
protector would likely wish to ensure that the network as a whole

demonstrates the same functionality (e.g., the nodes should still be

able to communicate effectively with one another and resources

should still be able to flow efficiently between nodes).

4 METHOD
As discussed in 3, the problem we are addressing is to add/remove

edges fromG to obtain a graphG ′ so that
∑
v ∈Vt πC(v,G

′) is mini-

mized. To achieve this, there are a number of challenges that the

data protector faces, including:
Unknown data collection strategy. The data protector does

not know, a priori, the collector budget bc or the precise data col-
lector algorithm C. Although the data protector can observe the

data collector to get a sense of the kind of strategy it is using – e.g.,

expansion-type sampling or random-walk-based – the exact work-

ings of the data collector are not known. There are many crawling

algorithms that a data protector can use [2], including techniques

built in-house and tailored for a particular domain. However, in the

literature, most real-world crawling techniques are based on ran-

dom walk or expansion (e.g., breadth first search). We thus consider

scores based on these two algorithms for the data collector. Sepa-
rately, to account for the unknown collector budget, we maximize

the walk length required to find the target nodes.

Computational efficiency. The data protector has
( |E |
bp

)
possi-

ble combinations of edges that can be deleted, and, in a sparse graph,

nearly

( |V |2
bp

)
possible edges that can be added. It is clearly not com-

putationally efficient to measure the effect of adding/deleting each
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a c

TS

b

e d

(a) edge deletion

a c

TS

b

e d

(b) edge addition

Figure 1: Edge deletion/addition for protecting T from a
crawler C with budget bc starting at node S is not submodu-
lar. (a) and (b) are counterexamples for the edge deletion and
edge addition scenarios. The budgets bc for (a) and (b) are 3
and 4, respectively. The crawling algorithm used in both ex-
amples is Pick Maximum Degree Next. The dashed edges in
(a) are originally included in the graph, whereas in (b) they
initially are not in the graph.

of these sets. Moreover, this problem is not submodular: for exam-

ple, it may be the case that there are two edges whose individual

removal is not very useful in protecting the target nodes, but whose

joint removal might seriously hinder data collection. Formally,

Claim: The problem of deleting/adding edges from/to a graph for

increasing the data collector’s path-length from starting node S to

target nodes T , using crawling algorithm C with budget bc , is not
submodular.

Proof: Consider the toy graphs in Figure 1. In both figures, we try

to hinder the discovery of target node T by a crawler algorithm C

that starts at node S and has a limited budget bc (i.e., the crawler
can only visit bc unique nodes). Suppose that the budgets bc for 1a

and 1b are 3 and 4, respectively. The crawling algorithm used in

both examples is Pick Maximum Degree Next (i.e., at each node, the

crawler picks the neighboring node with the highest degree as the

next node to visit). In Figure 1a, consider the dashed edges eT and

ed originally existing in the graph. Deleting any of these two edges

alone does not hinder the crawler to get from S to T . However,
deleting both eT and ed together, makes the shortest path from S to

T longer than bC = 3 and, thus,T is protected. Similarly in Figure 1b

in which the two dashed edges ed and ec are not part of the graph, if
we add any of the two edges separately, the chances of S reaching to
T is high. However, if we add the two edges simultaneously, crawler

will not be able to reach T (note that in this scenario, crawler in

node c will pick node e as the next target due to Pick Maximum
Degree Next strategy that it follows). ■

For these reasons, we take the approach of assigning each edge

a score corresponding to how much its deletion/addition would

hinder the data collector.
Connectivity-related constraints. If the only goal of the data

protector was to prevent the data collector from reaching the tar-

get nodes, the protector could simply remove all edges adjacent

to those nodes. However, the data protector must obey network

connectivity-related constraints in order to ensure that the network

is still functional.

4.1 Frequent Path Score
We propose the Frequent Path Score (FPS) to specifically handle

the case of random walk based data collector. Note that we are not
assuming any knowledge on the crawler that collector would use.

Indeed, as shown in Section 5 (Figure 3), we provide evidence that

this score gives satisfactory results for expansion-based crawling as

well. To elaborate on FPS, let the mean walk length to node v ∈ Vt ,
given equal probability p0 = 1/|Vs | of starting at any of the nodes

in Vs , be L(v,p0,G). We will denote this with L(v) where p0 and
G are clear from the context. Then, we have,

L(v) =
∞∑
i=1

i · π̂C(v,G, i) =

j∑
i=1

i · π̂C(v,G, i) +
∞∑

i=j+1
i · π̂C(v,G, i),

(1)

where π̂C(v,G, i) is the probability of landing on v with a walk of

length i (and not before), and 0 ≤ j < ∞. For any j,

j∑
i=0

π̂C(v,G, i) +
∞∑

i=j+1
π̂C(v,G, i) = 1, (2)

because we assume that the graph is connected. That is, if we

minimize

∑j
i=0 π̂C(v,G, i),

∑∞
i=j+1 π̂C(v,G, i) will increase by the

same amount.

Theorem 1. If we have a subgraph ofG ,G ′, such that
∑j
i=0 π̂C(v,G, i) >∑j

i=0 π̂C(v,G
′, i), then, L(v,G) < L(v,G ′).

Proof. Since the graph is finite, for a sufficiently large k , we
have π̂ (v,G, l) = 0 and π̂ (v,G ′, l) = 0, where l ≥ k . Then, we can
write L(v,G) and L(v,G ′) as,

L(v,G) =

j∑
i=1

i · π̂ (v,G, i) +
k∑

i=j+1
i · π̂ (v,G, i)

≤ j ·

j∑
i=1

π̂ (v,G, i) + k ·
k∑

i=j+1
π̂ (v,G, i) (3)

L(v,G ′) ≤ j ·

j∑
i=1

π̂ (v,G ′, i) + k ·
k∑

i=j+1
π̂ (v,G ′, i) (4)

L(v,G) − L(v,G ′) ≤ j ·

( j∑
i=1

π̂ (v,G, i) −

j∑
i=1

π̂ (v,G ′, i)

)
+

k ·
©«

k∑
i=j+1

π̂ (v,G, i) −
k∑

i=j+1
π̂ (v,G ′, i)

ª®¬ ≤ j ·

( j∑
i=1

π̂ (v,G, i) −

j∑
i=1

π̂ (v,G ′, i)

)
+ k ·

(
1 −

j∑
i=1

π̂ (v,G, i) − 1 +

j∑
i=1

π̂ (v,G ′, i)

)
≤

(j − k) ·

( j∑
i=1

π̂ (v,G, i) −

j∑
i=1

π̂ (v,G ′, i)

)
(5)

We are given that

∑j
i=0 π̂C(v,G, i) >

∑j
i=0 π̂C(v,G

′, i), and by

construction k > j. Therefore, L(v,G) < L(v,G ′). □

From Theorem 1, we can see that the problem of maximizing

L(v,G) is equivalent to minimizing πC(v,G, j) =
∑j
i=1 π̂C(v,G, i).

When we have multiple target nodes, the paths to discovering them

may not be independent. So, we restate the goal of the data protector
to find G ′ such that argmax

G′
min

v ∈Vt
L(v,G ′).

We model the random walk using an absorbing Markov chain.

The first step is to merge all the nodes in Vt ∪ N (Vt ,G
′) into one
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node, and consider this node as the absorption state. The rest of the

nodes are the transient states (including the source nodes). LetQ be

the sub-matrices representing the transition between the transient

states. Then the fundamental matrix is given by F = (I − Q)−1.
The expected number of steps before hitting an absorption state

starting from v is given by the tv , where t = F1. Then, we can

show that min

v ∈Vt
E(v,G ′) =

∑
u ∈Vs π0(u) · tu . If Fd is the diagonal

matrix of F , transient probabilities are given by H = (F − I ) · F−1d .

That is, Hi, j is the probability of visiting node j in a walk starting

from node i before being absorbed. Our goal is to assign scores to

nodes based on their importance in a random walk starting from

Vs before hitting a node in Vt . So, we define the Frequent Path
Score (FPS) of node u as,

Sf (u) =
∑
v ∈Vs

p0(v) ·
Hv,u

d(u,G ′)
. (6)

Running Time. Calculating the FPS for all the candidate edges

requires inverting the matrix (I−Q). This can be done inO(|V |3). To
scale up, we developed an efficient approximation that is described

in Section 4.5.

4.2 Shortest Path Score
In an expansion-based crawling algorithm, the length of the shortest

path from the source node determines if a node v ∈ Vt will be

reached. That is, in contrast to the frequent path score used above,

what matters here is the shortest path score: if l is the shortest path
length ofv ∈ Vt from the source nodes, πC (v,G

′,bc ) decreases with
increasing l and for l > bc , πC (v,G

′,bc ) = 0. Let P(u,v) be the set
of all shortest paths between nodes u and v . For a path p ∈ P(u,v),
let δ (w,p) be such that δ (w,p) = 1 ifw ∈ p and 0 otherwise. Then,

we define the Shortest Path Score (SPS) for node u as,

Sp (u) =
1

d(u,G ′)

∑
v ∈Vs

p0(v)
∑
v ∈Vt

1

|P(v,u)|

∑
p∈P (v,u)

δ (u,p)

|p |
(7)

The idea behind the Shortest Path Score (SPS) is that if

an edge appears in multiple shortest paths then it is important.

It is weighted by: (1)
1

|p | : The inverse of the shortest path length

since nodes on longer paths are less important; (2)
1

|P (u,v) | : The

inverse number of possible paths between the source and target

because, if there are a lot of possible paths, it dilutes the importance

of the paths; (3)
1

d (u,G′) . The inverse of the node’s degree because,

if a node has a lot of neighbors, it is more likely that the crawler

will follow other paths. SPS is different from existing measures

such as betweenness centrality because it considers the importance

with respect to source nodes Vs and target nodes Vt . The length
and number of shortest paths is also important in SPS, unlike in
betweenness centrality. As with FPS, we show that SPS can be used

for random-walk-based crawling as well.

Running Time. Computing the SPS for all the candidate edges

can be done in O(|Vs | |E |). In general |Vs | ≪ |V |. So, the running
time is O(|V |).

4.3 Edge Importance
SPS and FPS give us measures of the importance for the nodes in

the network with respect to finding the target nodes. Since our

Algorithm 1: NetProtect-()
Input: G , Vt , Vs , bp
∀u ∈ V , calculate S∗(u);
∀(u, v) ∈ E , calculate S−∗ (u, v);
R ← Sort (u, v) ∈ E by decreasing order of S−∗ (u, v);
counter ← 0;

while couter < bp do
(u, v) ← R .pop(0);
Remove (u, v) from G ;

if ConstraintsSatisfied(G) then
counter ← counter + 1;

else
Add (u, v) to G ;

end
if IsEmpty(R) then

return G
end

end
return G

Algorithm 2: NetProtect+()
Input: G , Vt , Vs , bp
∀u ∈ V , calculate S∗(u);
X ← Sort u ∈ V by decreasing order of S∗(u);
counter ← 0;

i ← 0;

j ← |V | − 1;
while i < |V | − 1 do

while j > 0 do
if (X [i], X [j]) < E then

Add (X [i], X [j]) to G ;

if ConstraintsSatisfied(G) then
counter ← counter + 1;
if counter ≥ bp then

return G
end

else
Remove (X [i], X [j]) from G ;

end
end

end
end
return G

goal is to remove/add edges from/to the network, we need to assign

scores to existing and non-existing edges. That is, in the case of edge

removal, we need to identify the important edges and remove them

(while obeying the constraints), and for edge addition, we need to

assign scores to node pairs that do not have an edge between them.

EdgeDeletion The candidates for edge deletion are all the edges

that exist in the network and are allowed by the constraints. Let

us consider SPS. For an edge (u,v) ∈ E, the Edge Deletion Shortest
Path Score (ED-SPS) is defined as S−s (u,v) = Ss (u) + Ss (v). That
is, edges with important nodes as endpoints are more important.

Similarly, we can define Edge Deletion Frequent Path Score (ED-FPS).
Edge Addition For edge addition, the goal is to add enough

edges to the important nodes so that we ‘mislead’ the data crawler,
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and send it to a less-important part of the network. This means we

have to connect important nodes with unimportant ones. So, we

define the Edge Addition Shortest Path Score (EA-SPS) of (u,v) < E,
u,v ∈ V as S+s (u,v) = |Ss (u) − Ss (v)|. We can define the Edge
Addition Frequent Path Score (EA-FPS) similarly.

4.4 NetProtect: Data Protector Algorithm
In this section, we describe the NetProtect algorithm. Depending

on whether we are dealing with edge deletion or addition, we can

pick one of the two algorithms NetProtect- and NetProtect+
respectively. If protector has the knowledge on the type of crawler

used by data collector, we can use either FPS or SPS. However, in
a general setting, we can use either of these scores as they both

surpass benchmarks, regardless of the crawling algorithm. The

first step in NetProtect is to calculate the node importance (FPS
or SPS) for all nodes in the network. Then, the edge scores are

calculated depending on whether we are dealing with edge deletion

or addition. Finally, the top bp edges with the highest scores are

removed/added from/to the network. Algorithm 1 and 2 describe

the NetProtect- and NetProtect+ algorithms in detail. Although

recomputing the scores after each edge perturbation yields a more

accurate result, it also increases the computation cost and does

not scale for larger graphs. Our experiments showed that using the

initial scores as the estimated score in each step yields a satisfactory

trade-off between the performance and time.

4.5 Speeding Up the Computation of FPS
As described, the time required to compute the FPS for all nodes

is O(|V |3). Thus, in many applications, it may not be feasible to

compute FPS. In this section, we describe a sampling method to

calculate approximate FPS values. Recall that the idea behind FPS is
that nodes that are traversed frequently during a randomwalk from

Vs to Vt should be given more importance. This means that nodes

that are very far away fromVs andVt will not be important. Before

we begin, the data protector sets a sample size for approximating the

scores, denoted by s . A larger sample size results in a more accurate

approximation of FPS but, obviously, increases the running time.

The first step is to find all the shortest paths from all nodes inVs to
all nodes in Vt , as is done during the SPS computation. Let V ′ be
the set of all nodes that lie in at least one shortest path that does not

begin or end at that node. The set of all nodes in the original graph

that have a neighbor in V ′ but are not themselves in V ′ is given
by N (V ′,G) \v ′. A random node is selected from this set of nodes

and added to V ′. This process repeats until |V ′ | = s . Then, FPS is
calculated for the nodes inV ′ using the induced subgraph. The FPS
for the nodes that are not included in the sample is assigned as 0.

The time complexity of this approach is O(|V |2).

5 EXPERIMENTS & RESULTS
In this section, we perform an experimental evaluation of the pro-

posed versions of NetProtect algorithm across several real-world

networks. In these experiments, we consider various types of tar-

get nodes, data collection strategies, and baseline data protection

algorithms.
1

1
Our code is publicly available at https://github.com/rlaishra/NetProtect.

Datasets.We consider five real-world networks: lastfm-asia,
musae-twitch, deezer-europe, musae-facebook, and musae-github.
All datasets are available from SNAP repository

2
. 1 shows basic

statistics of these networks.

Baseline Algorithms. As mentioned in Section 2.1, we bench-

mark NetProtect against the state-of-the-art node hiding algo-

rithm, ROAM, which uses both edge deletion and addition. We also

benchmark against two protection algorithms with the objectives

of minimizing betweenness centrality and Personalized PageRank

of the target nodes, respectively. Finally, we include Random edge

deletion/addition as a naïve baseline. In

• ROAM:We use the same algorithm as in [18] and iteratively

remove the neighbor with highest degree from a target node

and add b new edges from this node to neighbors of the

target (we set b = 3 as in the original paper). To adapt

this algorithm to our experimental setup, we enforce the

same connectivity constraint that we have considered for

NetProtect: we can decrease the degree of a node by at most

r .d(v,G). We also treat the cost and budget of node deletion

and addition to be the same, and choose a total budget equal

to the protector budget in NetProtect. In each iteration, we

choose one target node uniformly at random and perform

ROAM (remove one, add many) if the connectivity constraint

holds. The iteration is continued until either the budget is

exhausted, or no target nodes can be manipulated without

violating the connectivity constraint.

• Random Edge deletion/addition: A random edge satisfy-

ing the connectivity constraint is selected for deletion. Edges

are deleted until the required number is reached. Similarly,

for random edge addition, a random pair of nodes that are

not already connected is selected and the corresponding edge

is added as long as the constraints are not violated.

• BetweennessCentrality deletion/addition:As explained
in Section 4.2, SPS is different from Betweenness centrality,

despite both grounding their intuition on the shortest paths.

To empirically emphasize this difference, we assign each

node a score based on their betweenness centrality [4]. Then,

the edges to delete/add are selected as described in 4.3.

• Personalized PageRank deletion/addition: It is similar

to Betweenness Centrality, but uses the average Personalized

PageRank [7] calculated from the target nodes.

Data Collection Algorithms. As described in 2.2, the litera-

ture contains numerous graph crawling algorithms. Many of these

algorithms have been designed for specific data collection goals

and domains, but a large number are based on random walk or

expansion-based strategies. Thus, we consider Random Walk, BFS,

and DFS crawlers as they are the foundations for many other, pos-

sibly more sophisticated, methods. Note that, in our experiment

results in Table 1, DFS results are not reported due to both the lack

of space and the similarity of results to that of BFS.

Experimental Setup. For each network, we consider two types

of target nodes (Vt ): random target nodes and degree-based target

nodes. As the name suggests, in the first case, the target nodes

are selected uniformly at random. The degree-based target nodes

are selected randomly with the selection probability proportional

2
https://snap.stanford.edu/data/index.html
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Table 1: The fraction of nodes queried (data collector budget) to find 5 and 50 target nodes of various types after perturbations
implemented by different data protector algorithms. Higher numbers indicate better performance by the data protector.

Networks Data Protector Random Target Degree based Target
BFS RW BFS RW

5 50 5 50 5 50 5 50

lastfm-asia

|V | = 7, 624

|E | = 27, 806

Addition

NetProtect 0.15 0.56 0.14 0.79 0.04 0.08 0.08 0.12
Betweenness 0.12 0.51 0.09 0.61 0.02 0.05 0.04 0.09

P PageRank 0.10 0.52 0.10 0.63 0.02 0.08 0.05 0.08

Random 0.05 0.41 0.08 0.53 0.02 0.04 0.04 0.06

Deletion

NetProtect 0.18 0.78 0.19 0.74 0.24 0.40 0.17 0.27
Betweenness 0.10 0.60 0.12 0.65 0.08 0.12 0.07 0.13

P PageRank 0.07 0.65 0.10 0.62 0.06 0.14 0.09 0.15

Random 0.07 0.58 0.08 0.52 0.01 0.04 0.02 0.05

Both ROAM 0.05 0.55 0.05 0.53 0.03 0.31 0.02 0.22

musae-twitch

|V | = 7, 126

|E | = 35, 324

Addition

NetProtect 0.09 0.56 0.12 0.68 0.07 0.10 0.11 0.16
Betweenness 0.03 0.42 0.07 0.45 0.02 0.05 0.03 0.05

P PageRank 0.03 0.41 0.07 0.57 0.02 0.05 0.02 0.05

Random 0.04 0.47 0.04 0.51 0.01 0.05 0.02 0.04

Deletion

NetProtect 0.13 0.80 0.17 0.74 0.14 0.20 0.12 0.18
Betweenness 0.08 0.60 0.08 0.62 0.01 0.04 0.02 0.05

P PageRank 0.07 0.65 0.07 0.59 0.02 0.03 0.02 0.04

Random 0.06 0.55 0.10 0.53 0.01 0.03 0.02 0.03

Both ROAM 0.07 0.59 0.05 0.53 0.01 0.10 0.00 0.06

deezer-europe

|V | = 28, 281

|E | = 92, 752

Addition

NetProtect 0.12 0.32 0.11 0.38 0.02 0.05 0.04 0.09
Betweenness 0.10 0.25 0.13 0.25 0.01 0.04 0.01 0.06

P PageRank 0.10 0.24 0.12 0.20 0.01 0.04 0.02 0.07

Random 0.07 0.22 0.12 0.18 0.01 0.02 0.02 0.06

Deletion

NetProtect 0.20 0.66 0.20 0.81 0.12 0.24 0.09 0.19
Betweenness 0.10 0.60 0.08 0.52 0.02 0.05 0.04 0.09

P PageRank 0.07 0.61 0.12 0.59 0.02 0.04 0.05 0.10

Random 0.07 0.58 0.08 0.52 0.01 0.03 0.02 0.04

Both ROAM 0.10 0.61 0.07 0.60 0.03 0.40 0.02 0.30

musae-facebook

|V | = 22, 470

|E | = 171, 002

Addition

NetProtect 0.18 0.59 0.11 0.66 0.09 0.12 0.08 0.10
Betweenness 0.07 0.52 0.06 0.51 0.02 0.07 0.01 0.08

P PageRank 0.06 0.51 0.10 0.53 0.02 0.07 0.06 0.09

Random 0.04 0.47 0.05 0.48 0.01 0.05 0.01 0.06

Deletion

NetProtect 0.16 0.62 0.17 0.64 0.23 0.33 0.07 0.11
Betweenness 0.06 0.59 0.07 0.53 0.02 0.05 0.01 0.06

P PageRank 0.08 0.55 0.10 0.53 0.04 0.05 0.04 0.08

Random 0.05 0.51 0.05 0.50 0.01 0.05 0.01 0.04

Both ROAM 0.10 0.68 0.07 0.61 0.01 0.08 0.00 0.04

musae-github

|V | = 37, 700

|E | = 289, 003

Addition

NetProtect 0.14 0.55 0.15 0.61 0.11 0.17 0.03 0.05

Betweenness 0.06 0.51 0.05 0.49 0.01 0.08 0.02 0.06

P PageRank 0.08 0.47 0.12 0.52 0.02 0.06 0.02 0.07
Random 0.05 0.45 0.04 0.42 0.01 0.04 0.01 0.06

Deletion

NetProtect 0.17 0.70 0.11 0.67 0.03 0.17 0.05 0.14
Betweenness 0.08 0.52 0.07 0.56 0.02 0.07 0.02 0.06

P PageRank 0.06 0.49 0.06 0.49 0.02 0.06 0.03 0.06

Random 0.05 0.45 0.05 0.49 0.01 0.05 0.01 0.05

Both ROAM 0.39 0.79 0.11 0.64 0.02 0.16 0.00 0.01

to the node degree. For each network, we consider five sets of

source (Vs ) and target nodes (Vt ). In all cases, the source nodes

are selected randomly from the set of non-target nodes. We set

|Vs | = 10, |Vt | = 100, andp0(v) = 0.1 for allv ∈ Vs . For each (Vs ,Vt )
pair, we perform 30 trials, and set r = 0.5. We select protector

budgets (number of edges that can be deleted/added) ranging from

0.2% − 1.00% of the edges in the entire network.

Performance Metric. To measure the performance of a data

protector algorithm, we compute the number of queries the data

collector has to make to find a fixed number of target nodes. If the

data protector is effective, the data collector will have to perform a

large number of queries before finding target nodes. As the goal is

to maximize the number of queries required by the data collector

to find the target nodes, higher values indicate better performance.
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Figure 2: NetProtect- performance for different values of r.
For smaller set of target nodes, the performance is almost
independent from r . As the target set grows and protector
budget shrinks, increasing r improves the performance.
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Figure 3: Using SPS and FPS for random walk crawler. The
similar performance of the two scores against the same
crawling algorithm shows that they can be used interchange-
ably, regardless of the crawling algorithm.
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5.1 Performance Comparison against Baseline
Methods

Table 1 shows the amount of budget the collector has to invest in

order to find 5 and 50 target nodes (the best values in each batch

are indicated in bold). The protector budget in these experiments is

set to 1% of the edges. We have run the experiments with different

budgets as well (see Figure 3) and chose this value as it resulted in

a decent trade-off between performance and computation cost. We

also performed experiments using a DFS crawler, which gave results

similar to BFS which are not shown here to reduce space. In almost

all cases, NetProtect offers better performance than Betweenness,

Personalized PageRank, and Random edge perturbations. Note that

Personalized PageRank and Betweenness Centrality are skewed

towards low degree nodes that are acting as bridges. However,

tampering with the connectivity of these bridge nodes leads to

changing the connectivity of the graph. As such, the nodes detected

by these two centrality measures are often useless and result in a

performance close to Random edge perturbation, as seen in Table 1.

Indeed, the superiority of Netprotect in comparison is in finding

the nodes that are not crucial in maintaining the connectivity of

the graph, but crucial in reaching the target nodes.

NetProtect generally outperforms ROAM for all datasets. In

fact, in many cases, ROAM does not even surpass the three other

benchmarks in hindering the collector. The only instances in which

ROAM offers a better performance are for random target nodes in

musae-github and degree-based targets in deezer-europe. This
interesting observation hints at the fact that ROAM for certain sets

of target nodes can offer a competitive performance. Consider a

randomly chosen target set that contains one target node with high

degree and the rest of the targets with degree 1. In this case, our

implementation of ROAM focuses on that one high degree node,

as pruning the other target nodes would violate the connectivity

constraint (creating isolated nodes). As a result, the high degree

node will use up all the budget and lose its degree centrality rapidly.

The final network will have target nodes that are in the fringe

of the network, i.e., accessible through only one or two nodes. In

this case, a BFS crawler will have a hard time finding the targets.

However, once we use random walk crawler or change the struc-

ture of target nodes (for example, degree-based targets), ROAM

immediately loses this advantage and lags behind NetProtect, as
seen in muse-github results. Now consider a similar setup with

many target nodes in fringe of the network, but this time with more

than one high-degree target node. In this scenario, due to budget

constraint, ROAM cannot turn all target nodes to fringe nodes. In

this scenario, ROAM gives a poor performance for protecting a

handful of target nodes (e.g., 5), but does better as the tolerance

for number of discovered target nodes increases (see degree-based

target for deezer-europe).
Another interesting observation from Table 1 is the superior-

ity of edge deletion over edge addition for NetProtect and other

benchmarks, which is consistent with previous observations [8].

Note that we also tested a variation of NetProtect that combines

edge addition and removal by deleting from high score region and

adding to low score regions (not shown due to space constraint).

We found the edge deletion to be still superior.

5.2 Tuning r
The main connectivity constraint that we imposed in all of our

experiments depends on parameter r (the allowed fraction of change
in a node’s degree). To study the impact of r on our results, we

repeated our experiments with different values of r . Figure 2 shows
the result for NetProtect- and a random-walk-based collector on

musae-facebook. The different colors represent different protector
budgets. As we see, for discovering 5 target nodes, the performance

is almost independent from r . As the number of target nodes and

protector budget increase, higher value of r makes the task harder

for data collector.

5.3 Scores and Different Crawling Algorithms
We initially proposed FPS and SPS to target random-walk-based

and expansion-based crawlers, respectively. However, as we as-

sumed that the protector does not have prior knowledge on the
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Table 2: Average time (in seconds) to find SPS and FPS for all
the nodes

Network SPS FPS (Approximate) FPS (Exact)

musae-twitch 3.9 × 101 4.1 × 102 8.7 × 104

musae-facebook 2.5 × 102 6.5 × 103 9.1 × 105

musae-github 4.1 × 102 1.1 × 104 -

crawling algorithm that collector uses, we need to confirm that

both of these scores are indeed successful with respect to both

random walk or expansion-based crawling. To achieve this, we

repeated our experiments using SPS for random walk and FPS for
expansion-based crawling. The result for NetProtect- with ran-

dom walk crawler on musae-facebook is shown in Figure 3. As we

see, their performances are similar and we can use these two scores

interchangeably. In general, SPS has a lower computation cost (our

experiments for SPS were 10 times faster than FPS, see Table 2).
However, for random walk crawlers, as we reduce the protector

budget, FPS gives a better performance than SPS.

5.4 Running Times
Table 2 shows the time it takes to calculate FPS and SPS for all

nodes in three graphs. In the case of FPS, we use the approximate

method described in Section 4.5. The values presented are the av-

erage over 50 trials (except for FPS exact). Although computation

of FPS without the approximation is not feasible for some of the

networks we consider, it is much faster with the approximation.

5.5 Limitation
The focus of this study has been on increasing the robustness of

the network against external attacks while maintaining the func-

tionality of the network through connectivity criterion. However,

there are other criteria that might be of interest depending on the

application of the network. For example, if latency is of crucial

importance, increasing the shortest path length between targets

and certain nodes might not be desirable. In this case, we need

to define a tolerance threshold for the maximum latency that the

network can handle and include it in ConstraintsSatisfied in

Algorithms 1 and 2. The overall latency of the network is tune-able

by using the right value for parameter r (see Section 5.2).

6 CONCLUSION
In this study, we formulated the problem of modifying a network

so as to best hide target nodes from an entry-point attack. We pro-

posed two node-level scores: FPS and SPS. FPS assigns importance

to nodes to prevent a random-walk-based crawler from discovering

the target nodes within their budget limit; and SPS is designed for

expansion-type crawlers. We proposed the NetProtect algorithm

to remove or add edges to hinder a data collector from finding the

target nodes. NetProtect uses FPS and SPS to identify the candi-

date edges for removal or addition. Our experiments on multiple

real-world networks show that NetProtect outperforms all consid-

ered baseline algorithms, including the state-of-the-art protection

algorithm, ROAM. In some networks, with 1% of edges removed

by NetProtect, the data collector, compared to the best baseline

method, requires up to 6 times the query budget in order to find

the same number of target nodes. We also show that our proposed

scores can maintain their superior performance even for crawlers

that they are not optimized for (i.e., SPS and FPS can be used for

random walk and expansion-based crawlers as well).
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