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Abstract—This paper focuses on error-correcting codes that
can handle a predefined set of specific error patterns. The need
for such codes arises in many settings of practical interest, includ-
ing wireless communication and flash memory systems. In many
such settings, a smaller field size is achievable than that offered
by MDS and other standard codes. We establish a connection
between the minimum alphabet size for this generalized setting
and the combinatorial properties of a hypergraph that represents
the prespecified collection of error patterns. We also show a
connection between error and erasure correcting codes in this
specialized setting. This allows us to establish bounds on the
minimum alphabet size and show an advantage of non-linear
codes over linear codes in a generalized setting. We also consider
a variation of the problem which allows a small probability of
decoding error and relate it to an approximate version of the
hypergraph coloring problem.

I. INTRODUCTION

In many practical settings, there is a need to design error-
correcting codes that can handle specific error patterns. For ex-
ample, in wireless communications, magnetic recording, flash
memory systems, and Dynamic Random-Access Memories
(DRAMs) the errors can appear in correlated locations such as
bursts, single-row errors, or crisscrosss errors, e.g., [1]–[6].
These settings benefit from customized error correcting codes,
that may improve on the best known parameters of standard er-
ror correcting codes. For example, the optimal error-correcting
capabilities of the classical (n, k) Maximum Distance Sepa-
rable (MDS) code, such as the Reed-Solomon code, come at
the price of a significant alphabet size of q ≥ n − k + 1, [7].1

As we show in this paper, in many settings with specific error
patters, a much smaller alphabet size is needed.

In this work, we present a general framework for code
design that can handle any possible collection of predefined
error patterns. Our framework applies to both linear and non-
linear codes. For an error-correcting code of length n, we use
an n-vertex hypergraph G to represent the given collection of
error sets. Specifically, nodes of G represent the coordinates
(symbols) of the codewords, while the hyperedges of G
represent possible locations for errors, i.e., each hyperedge
e represents the set of coordinates that can be corrupted in
the specific scenario represented by e. For each collection of
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1The minimum alphabet size of an (n, k) MDS code is unknown, see
Conjectures 1 and 2 in the paper.

error sets represented by G, we are interested in finding the
minimum alphabet size over which there exists a code that can
correct all error sets specified by edges in G. In our setting,
(n, k)-MDS codes can correct error patterns corresponding to
the complete (n − k)/2-uniform n-vertex hypergraph.

In this work, we relate the minimum alphabet size of
error-correcting codes with predefined error patterns to certain
variants of hypergraph coloring. Through reductive arguments
to erasure codes, and in particular to our prior work [8] in
the context of erasure codes with generalized decoding sets,
we propose code design for the error setting at hand, and
show that non-linear error-correcting codes outperform linear
ones. We then turn to study a variation of the problem which
allows a small probability of decoding error and relate it to
an approximate version of hypergraph coloring.

Our work is structured as follows. In Section II, we give
some preliminaries and, in particular, we introduce our model
for generalized erasure and error patterns. We also review our
previous study on erasure codes in the generalized setting of
a predefined collection of decoding sets [8]. In Section III,
we present bounds on the minimum alphabet size of the
corresponding codes through hypergraph coloring. In Sec-
tion IV, we reduce the error-correcting setting to the erasure
setting. In Section V, we extend our studies to the problem
of error detection. Finally, in Section VI, we relax the zero-
error requirement for decoding a correct message and analyze
settings which allow small ε > 0 probability of decoding error.

II. MODEL AND PRELIMINARIES

Since our paper makes a connection between erasure and
error correction in a generalized setting, we present definitions
for both scenarios. We begin by presenting a definition and our
prior results for erasure correction scenarios.

A. Erasure Correction with predefined decoding sets.

We start by studying the design of erasure-codes in a
generalized setting in which decoding is required from a
collection of predefined decoding sets. In this setting, the
decoding sets include the set of coordinates that can be
used to decode the message. The setting is represented by
a hypergraph G = ([n], E), with the set [n] = {1, . . . , n}
of nodes representing coordinates and set of hyperedges E
representing decoding sets.

We define the qk parameter of a given hypergraph G =
([n], E) as the minimum alphabet size of a (n, k) erasure code
that enables the receiver to decode the original message from
every subset e ∈ E.



Definition 1 (The qk parameter [8]) Let G = ([n], E) be
a hypergraph on the vertex set [n] = {1, . . . , n}. Let k be
integer. Let qk(G) denote the smallest size q of an alphabet F
for which there exist an encoding function

C : Fk → Fn

and a decoding function

D : (F ∪ {⊥})n → Fk

such that for every edge e ∈ E and every message m ∈ Fk it
holds that

D(Ce(m)) = m.
Here, Ce(m) stands for the word obtained from the codeword
C(m) by replacing the symbols in the locations of [n] \ e by
the erasure symbol ⊥.

Similarly, let qk,lin(G) denote the smallest prime power q
for which there exist linear encoding and decoding functions
defined above when F is a field of size q.

In Definition 1, notice that for G that includes edges of
size less than k no such (C, D) pair exists (no matter what
the size of F is). In this case we define qk(G) and qk,lin(G)
to be ∞. Moreover, for every G with edges of size at least
k, MDS codes satisfy the requirements on (C, D) and thus
qk(G) < ∞. Specifically, observe that for the complete n-
vertex k-uniform hypergraph, denoted by κn,k, the values of
qk(κn,k) and qk,lin(κn,k) are equal to the minimum alphabet
sizes of general and linear (n, k) MDS codes, respectively. We
state below the MDS conjectures for general and for linear
codes (see, e.g., [7], [9]–[11]).

Conjecture 1 (MDS Conjecture for general codes) For
given integers k < q ̸= 6, let n(q, k) be the largest integer n
such that qk(κn,k) ≤ q. Then,

n(q, k) ≤
{︃

q + 2 if 4|q and k ∈ {3, q − 1}
q + 1 otherwise. (1)

Conjecture 2 (MDS Conjecture for linear codes) For
given integers k < q where q is a prime power, let n(q, k) be
the largest integer n such that qk,lin(κn,k) ≤ q. Then,

n(q, k) ≤
{︃

q + 2 if q is even and k ∈ {3, q − 1}
q + 1 otherwise. (2)

There are strong relations between the q parameter of
hypergraphs and certain colorings.

Definition 2 (Hypergraph strong-coloring) A valid strong-
coloring of a hypergraph G is an assignment of colors to
its vertices so that the vertices of each edge are assigned
to distinct colors. The chromatic number χ(G) of G is the
minimum number of colors that allows a valid strong-coloring
of G. At times, we refer to χ simply as the chromatic number
of G.

Definition 3 (Hypergraph k-coloring) A valid k-coloring of
a hypergraph G is an assignment of colors to its vertices so
that the vertices of each edge are assigned to at least k distinct
colors. The k-chromatic number χk(G) of G is the minimum
number of colors that allows a valid k-coloring of G. If G has
edges of size less than k, we define χk(G) = ∞.

Note that a k-coloring of a k-uniform hypergraph is exactly a
strong-coloring. Also, note that every hypergraph G for which
qk(G) < ∞ (i.e., all edges are of size at least k) satisfies
χk(G) ≤ χ(G). In particular, for k-uniform hypergraphs G,
χk(G) = χ(G).

Theorem 1 (Connecting qk(G) with χk(G), [8]) For every
hypergraph G for which qk(G) < ∞,

qk(G) ≤ qk(κχk(G),k) and qk,lin(G) ≤ qk,lin(κχk(G),k).
In particular,

qk(G) ≤ qk,lin(G) ≤ [χk(G)− 1]pp.
Here, for an integer x, [x]pp represents the smallest prime
power that is greater or equal to x.

Theorem 1 formalizes the natural intuition that for simple
collections of erasure patterns G, i.e., the setting in which
χk(G) is small, a small alphabet size q suffices for a suitable
erasure code. In particular, the theorem states that qk(G)
is upper bounded by qk(κχk(G),k), which is the minimum
alphabet size of a (χk(G), k) MDS code.

The graph family Gq,k, defined next, is helpful in analyzing
the tightness of the upper bound provided by Theorem 1.

Definition 4 (The graph family Gq,k) For integers q and k,
let Gq,k be the k-uniform hypergraph whose vertex set con-
sists of all the balanced vectors of length qk over F =

{0, 1, . . . , q − 1}, that is, the vectors u ∈ Fqk
such that

|{i ∈ [qk] | ui = j}| = qk−1 for every j ∈ F, where k vertices
u1 = (u1

1, . . . , u1
qk ), ..., uk = (uk

1, . . . , uk
qk ) form an edge if the

collection of k-tuples {(u1
i , u2

i , . . . , uk
i )}i∈[qk ] is equal to [q]k.

The following lemma identified hypergraphs G for which
the gap between qk(G) and χk(G) is maximal.

Lemma 1 (The extremal nature of Gq,k, [8]) For integers
q and k,

1) qk(Gq,k) ≤ q, and
2) χk(G) ≤ χk(Gq,k) for every graph G with qk(G) = q.

Extending results in [8], below we present (rater loose)
bounds on χ(Gq,k). Proof appears in the full version of this
work [12].

Proposition 1 (Bounds of χk(Gk,q)) For every prime power
q and k ≥ 2,

qk − 1
q − 1

≤ χk(Gq,k) ≤
(︃

qk−1 + 1
qk−2 + 1

)︃
.

Lemma 1 and Proposition 1 imply a gap between qk(Gq,k)
and χk(Gq,k) which can be extended to one between qk,lin and
the k-chromatic number of the subgraph of Gq,k induced by
vertices that correspond to normalized linear functions.

Proposition 2 (Gap between qk,lin(G) and χk(G), [8])
For every k ≥ 3 and every prime power q, there exists
a k-uniform hypergraph G with qk,lin(G) ≤ q and yet

χk(G) ≥ qk−1
q−1 .



We finally state a modest known gap between qk,lin and qk.
Identifying graphs that exhibit a larger gap than that presented
below is a problem left open in this work.

Proposition 3 (Gap between qk,lin and qk, [13]) For q = 3
and k = 2 it holds that

qk,lin(Gq,k) = [χk(Gq,k)− 1]pp = 5 > 3 ≥ qk(Gq,k).

B. Error Correction with predefined error sets.

In what follows, we extend our discussion beyond erasures
to the context of errors. As we will see, several of our results
on the q-parameter corresponding to erasures extend naturally
to the p-parameter (defined below) corresponding to codes
with restricted error sets. Similarly, to the erasure setting,
we represent the collection of error sets by using a hyper-
graph G = ([n], E), in which the set of vertices [n] represents
coordinates of a codeword. Each edge e ∈ E of G represents
an error set, i.e., the set of the coordinates that can be altered.
Note that this is different from the notation used in Definition 1
for the erasure case in which edges e represented decoding sets
(i.e., sets of uncorrupted symbols).

Definition 5 (The pk parameter) Let G = ([n], E) be a
hypergraph on the vertex set [n] = {1, . . . , n}. Let k be an
integer. Let pk(G) denote the smallest size p of an alphabet
F for which there exist an encoding function

C : Fk → Fn

and a decoding function

D : Fn → Fk

such that for every edge e ∈ E, every message m ∈ Fk, and
every error vector v = (v1, . . . , vn) ∈ Fn,

D(C(m) ⋄e v) = m.

Here, for C(m) = c1, . . . , cn, the term C(m) ⋄e v refers to
the vector y = y1, . . . , yn for which for i ∈ [n], yi = vi if
i ∈ e, and otherwise yi = ci (i.e., we overwrite C(m) with
values of v in the coordinates i ∈ e). If such codes (C, D) do
not exist we define pk(G) = ∞.

Similarly, let pk,lin(G) denote the smallest prime power p
for which there exist linear encoding and decoding functions
as above when F is a field of size p. If linear codes (C, D)
do not exist we define pk,lin(G) = ∞.

In Definition 5, the pair (C, D) corresponds to a code that
is resilient to errors on locations corresponding to an edge
e ∈ E. That is, the edge set E represents the possible error
patterns (i.e., sets of potentially corrupted symbols).

Similar to the case of erasures, when n − k is even, for
the complete hypergraph κn, n−k

2
, the values of pk(κn, n−k

2
) and

pk,lin(κn, n−k
2
) are equal to the minimum alphabet sizes of

general and linear (n, k) MDS codes, respectively. That is,
pk(κn, n−k

2
) = qk(κn,k) and pk,lin(κn, n−k

2
) = qk,lin(κn,k).

Note that Definitions 1 and 5 assume zero-error decoding.
We relax this requirement in Section VI.

III. BOUNDS ON THE ALPHABET SIZE

Proposition 4 (Analog of Theorem 1) Let k be an integer
and let G = ([n], E) be a hypergraph for which it holds that
|e| ≤

⌊︂
n−k

2

⌋︂
for all e ∈ E. Then, it holds that

pk(G) ≤ qk(κχ,k),

where χ = χ(Ḡ) and Ḡ = (V, Ē) is the hypergraph with
vertex set V = [n] and edges Ē = {V \ e|e ∈ E}.

Proof: To ease our notation, we assume that n − k is even
(minor modifications in the proof are needed otherwise). Let
G be as above and let χ = χ(Ḡ). Denoting q = qk(κχ,k), it
follows that there exists a (χ, k) MDS code C over an alphabet
F of size q. To prove that pk(G) ≤ q, we define a coding
scheme for G over the alphabet F that includes the following
two steps. First, fix a valid strong coloring g : [n] → [χ] of
Ḡ. Second, consider the encoding function ˜︁C : Fk → Fn that
given a message m ∈ Fk outputs the vector in Fn whose i’th
entry ˜︁Ci(m) is Cg(i)(m), i.e., ˜︁Ci(m) is the coordinate in the
codeword C(m) which corresponds to the color of the i’th
vertex. Here, and throughout, we use the notation Ci(m) to
denote the i’th entry in the codeword C(m).

The decoder ˜︁D : Fn → Fk for G is now defined using the
following procedure. Consider an error vector v ∈ Fn, edge
e0 ∈ E, and the corresponding received word y = ˜︁C(m) ⋄e0 v.
For each edge ē in Ē, the decoder ˜︁D considers yē consisting
of the entries of y restricted to the indices in ē, and detects
whether yē has been corrupted, i.e., whether ˜︁Cē(m) = yē. As
for at least one such edge ē0 it holds that ˜︁Cē0(m) = yē0 (e.g.
for ē0 = [n] \ e0), the decoder ˜︁D can use yē0 to decode m.
We are left to show, given ē ∈ Ē, how ˜︁D can detect whether˜︁Cē(m) = yē, and if so decode m.

To detect whether a given ē in Ē satisfies ˜︁Cē(m) = yē we
note, by the definition of ˜︁C and the fact that all vertices in
ē have distinct colors under the coloring g, that the entries
in ˜︁Cē(m) correspond to at least (n + k)/2 distinct entries in
C(m). The latter, in turn, implies that ˜︁Cē is itself a (|ē|, k)
MDS code. As such, ˜︁Cē(m) can detect up to |ē| − k ≥ n−k

2
errors and correct up to (|ē| − k) /2 ≥ n−k

4 errors. We
conclude, as all error sets e are of size at most (n − k)/2,
that given ē in Ē, the decoder ˜︁D can detect whether or not yē
has been corrupted, and if not, recover m as required.

Proposition 4 is not tight, meaning that pk(G) might be
smaller than qk(κχ,k). For k = 2, take for example G =
([6], E) to be the 6-cycle, i.e., the graph on 6 vertices in which
its edges E = {(i, i + 1)|i = 0, 1, . . . , 5} (with addition
mod 6). Then p2(G) = 2, since the binary encoding
C : F2 → F6 in which for a message m = (x, y) ∈ F2 equals
C(x, y) = (x, y, x, y, x, y) allows majority decoding for any 2
errors along an edge in G. However, χ = χ(Ḡ) = 6, since
every pair of vertices in Ḡ is included in some edge in Ē, and
by [14] it holds that q2(κχ,k) = q2(κ6,2) = 5. In the next
section, we improve on Proposition 4 by connecting the pk
and qk parameters.



IV. CONNECTING ERROR AND ERASURE CORRECTING
CODES

For parameters n and k, we say that encoder C : Fk → Fn

is good for a given hypergraph G = ([n], E) with respect to
erasures (res., errors) if there exists a decoder D satisfying
Definition 1 (res., Definition 5). The following proposition is
proven from basic principles.

Proposition 5 (From errors to erasures) Let n and k be
parameters. Consider a hypergraph Gerr = ([n], Eerr) corre-
sponding to errors. Let Gera = ([n], Eera) be the hypergraph
(corresponding to erasures) for which

Eera = {[n] \ (eerr1 ∪ eerr2 ) | eerr1 , eerr2 ∈ Eerr}.
Let C : Fk → Fn be any encoder. Then, C is good for Gerr

if and only if C is good for Gera.

Proof: First assume that C is good for Gerr. We show
that for every edge e = eera ∈ Eera, one can decode
m from Ce(m). Assume in contradiction that there are two
messages m1 ̸= m2 such that Ce(m1) = Ce(m2). Recall
that e = [n] \ (e1 ∪ e2) for e1 = eerr1 ∈ Eerr and
e2 = eerr2 ∈ Eerr. Consider the word y = (y1, . . . , yn) ∈ Fn

such that for i ∈ e = [n] \ (e1 ∪ e2): yi = Ci(m1) = Ci(m2),
for i ∈ e1 \ e2: yi = Ci(m2), and for i ∈ e2: yi = Ci(m1).
It is not hard to verify that there exist vectors v1 and v2
such that y = C(m1) ⋄e1 v1 = C(m2) ⋄e2 v2. Namely, y could
be obtained from the codeword C(m1) with error vector v1
corresponding to e1 or from the codeword C(m2) with error
vector v2 corresponding to e2, contradicting the existence of
a decoder D according to Definition 5.

For the other direction, if code C is not good for Gerr then
there exist two messages, m1 and m2, two error vectors v1
and v2, and two edges e1 and e2 in Eerr such that C(m1) ⋄e1
v1 = C(m2) ⋄e2 v2. Otherwise, it is not hard to verify the
existence of a natural decoder D according to Definition 5.
Let e = [n] \ (e1 ∪ e2) ∈ Eera. The equality C(m1) ⋄e1 v1 =
C(m2) ⋄e2 v2 now implies that Ce(m1) = Ce(m2), which in
turn implies that C is not good for Gera.

The proposition above has an operational perspective.
Namely, one can design an error-correcting code C and
decoder D for a given graph Gerr, by designing an erasure-
code for the graph Gera. The latter can be done, e.g., using
Theorem 1 to obtain the following corollary (which improves
on Proposition 4).

Corollary 2 Let k be an integer. For every hypergraph
Gerr = ([n], E) for which pk(Gerr) < ∞ it holds that

pk(Gerr) ≤ qk(Gera) ≤ qk(κχk(Gera),k) ≤ [χk(Gera)− 1]pp,
which, in turn, implies that

pk(Gerr) ≤ qk(κχ,k),
where χ = χ(Gerr) as in Proposition 4.

We now extend the connections implied by Proposition 5
to capture the pk and qk parameters.

Theorem 3 (Connecting pk with qk) Let n, k be parameters
such that n − k ≥ k. Let Gera

0 = ([n], Eera
0 ) be a hypergraph

corresponding to erasures such that qk(Gera
0 ) < ∞. Then,

for N = 2n − k there exists a hypergraph Gerr on N
vertices such that pk(Gerr) = qk(Gera

0 ) and pk,lin(Gerr) =
qk,lin(Gera

0 ).

Proof: Let Gera
0 = ([n], Eera

0 ) be as above. We define two
graphs according to Gera

0 . First consider the graph Gerr =
([n]∪U, Eerr) corresponding to errors for which U is a vertex
set of size n − k and

Eerr = {U} ∪ {[n] \ eera|eera ∈ Eera
0 }.

Here, we use the fact that edges in Eera
0 are subsets of [n].

Namely, the vertex set [n]∪U of Gerr is of size N = 2n − k
and each edge in Eerr is of size at most N−k

2 = n − k. We
refer to the edges in {[n] \ eera|eera ∈ Eera

0 } ⊂ Eerr as
ordinary edges, and to the edge U ∈ Eerr as the special
edge.

Let Gera be the graph corresponding to erasures defined by
Gerr as in Proposition 5. Namely, Gera = ([n] ∪ U, Eera)
where

Eera = {([n] ∪ U) \ (eerr1 ∪ eerr2 ) | eerr1 , eerr2 ∈ Eerr}.
Taking a closer look at the edge set Eera, if an edge eera in
Eera is defined by two ordinary edges of Eerr, then it is not
hard to verify that U ⊆ eera. If an edge eera in Eera is defined
by the special edge U and an ordinary edge e ∈ Eerr, then
eera = [n] \ e. As the ordinary edge e ∈ Eerr, by definition,
equals [n] \ eera0 for an edge eera0 ∈ Eera

0 we conclude that
eera = eera0 . Finally, if an edge e in Eera is defined solely
by U (i.e., we set e1 = e2 = U), then e = [n]. All in all, we
conclude that the edge set Eera equals the edges Eera

0 ∪ {[n]}
and an additional set of edges eera for which U ⊆ eera.

We now show that qk(Gera) = qk(Gera
0 ). We start by

studying codes for Gera
0 and Gera. For any code C0 : Fk →

Fn for Gera
0 , define the code C : Fk → Fn+(n−k) for Gera in

which for every message m it holds that C(m) = C0(m) on
the first [n] entries, that C(m) = m on entries n+ 1, . . . , n+ k
and that C(m) equals the symbol a ∈ F for the remaining
entries n + k + 1, . . . , 2n−k. Here, we use the fact that
n − k ≥ k. Similarly, for any code C : Fk → Fn+n−k for
Gera, let the code C0 : Fk → Fn for Gera

0 be the restriction
of C to the first n entries. It is now not hard to verify that
C0 is good for Gera

0 if and only if C is good for Gera. More
specifically, let C0 be a code that is good for Gera

0 , and let D0
be the corresponding decoder. For any message m and edge
e = eera0 it holds that D0((C0)e(m)) = m. To show that C is
good for Gera we define the decoder D, that for eera ∈ Eera

either runs D0 on the first n entries of C if eera ⊆ [n], or
decodes using the identity mapping from U if U ⊆ eera. For
the opposite direction, let C be good for Gera, and let D be
the corresponding decoder. To show that C0 is good for Gera

0
we define the decoder D0 as the restriction of D that takes
into account only the first n entries of C. Correctness follows
as Eera

0 ⊆ Eera and as C0 is a restriction of C to the first n
entries.

To show that pk(Gerr) = qk(Gera
0 ), let N = 2n − k and

let C : Fk → FN be any encoder. By Proposition 5, C is good
for Gerr if and only if C is good for Gera. By the discussion
above, C is good for Gera if and only if the corresponding C0



is good for Gera
0 . Thus, C0 is good for Gera

0 if and only if C is
good for Gerr. Optimizing over |F|, we conclude pk(Gerr) =
qk(Gera

0 ). As the reductions described above between C and
C0 preserves linearity, we also conclude that pk,lin(Gerr) =
qk,lin(Gera

0 ).
By Theorem 3 the gap between the qk parameter and the

qk,lin parameter for erasure codes stated in Proposition 3 im-
plies a gap between the pk parameter and the pk,lin parameter
for error correcting codes. We summarize this results in the
following corollary.

Corollary 4 (Non-linear codes outperform linear codes)
For k = 2, there exists a hypergraph G with pk,lin(G) = 5
and yet pk(G) = 3.

V. ERROR DETECTION

Similar to the case of errors and erasures, one can define
analogs of Definitions 1 and 5 for the case of error detection.
Namely, for a given hypergraph G = ([n], E) the rk parameter
defined below equals the minimum size alphabet of an (n, k)
error detection code that can detect error patters represented
by E.

Definition 6 (The rk parameter) Let G = ([n], E) be a
hypergraph on the vertex set [n] = {1, . . . , n}, and let k be
an integer. Let rk(G) denote the smallest size r of an alphabet
F for which there exist an encoding function

C : Fk → Fn

and a decoding function

D : Fn → {error, no-error}
such that for every edge e ∈ E, every message m ∈ Fk, and
every error vector v = (v1, . . . , vn) ∈ Fn,

D(C(m) ⋄e v) = “error′′ if and only if C(m) ̸= C(m) ⋄e v,
(⋄e is defined in Definition 5).

Similar to Definition 1, in Definition 6, rk(G) is defined if
and only if all edges of G are of size at most n − k, otherwise
we define rk(G) = ∞. Also, similar to Proposition 5, the
following proposition is proven from basic principles (its proof
is sketched here for completeness).

Proposition 6 (Detecting errors vs. correcting erasures)
Let n and k be parameters such that n − k ≥ k. For a
hypergraph G = ([n], E), let Ḡ = ([n], Ē) be the hypergraph
for which Ē = {[n] \ e|e ∈ E}. Then, rk(G) = qk(Ḡ).

Proof: Assume that C̄ is a good erasure code for Ḡ. The
same code can be used for detection on G. Namely, given
a received word y, to check if y is corrupted in locations
corresponding to e ∈ E, decode to m using yē (via the erasure
decoding) and compare C̄(m) to y. For the other direction,
assume that C is a good detection code for G. Use the same
code C for erasures. To decode from Cē(m), construct the
collection Y of size |F|n−|ē| of words y ∈ Fn that equal Cē(m)
on the locations of ē and otherwise equal a (distinct) word
in Fn−|ē|. As C is a detection code for errors with support
e = [n] \ ē, we can detect the unique y ∈ Y that is a codeword,
and accordingly decode m.

VI. AVERAGE ERROR ε

In what follows, we generalize the qk, pk, and rk parameters
to include a decoding error. In our prior work [8], for k = 2
in the context of erasures, we considered decoding error when
averaged over the message set Fk. We here consider a looser
notion of error that is also averaged over edges in the edge set
E of the hypergraph at hand. As shown below, allowing a slight
error in decoding will in turn allow the construction of codes
with small alphabet sizes (independent of the blocklength n).

Definition 7 (The qε,k, pε,k, and rε,k parameters) Let k be
an integer. Let G = ([n], E) be a hypergraph on the vertex
set [n] and let ε > 0. Let qε,k(G) denote the smallest size q
of an alphabet F for which there exist an encoding function
C : Fk → Fn and a decoding function D : (F ∪ {⊥})n → Fk

such that
Pr
e,m

[D(Ce(m)) = m] ≥ 1 − ε,

where m is uniformly chosen from Fk, and e is uniformly
chosen from E. One may define pε,k(G) and rε,k(G) in an
analogous manner.

We will need the following approximate version of coloring.

Definition 8 (Hypergraph (1 − ε)-k-coloring) A valid (1 −
ε)-k-coloring of a hypergraph G = (V, E) is an assignment
of colors to its vertices V so that for at least (1− ε)|E| edges
e ∈ E, the vertices of e are assigned to at least k colors.
The (1− ε)-k-chromatic number χε,k(G) of G is the minimum
number of colors that allows a valid (1 − ε)-k-coloring of G.

Theorem 5 Let G = (V, E) be a hypergraph, and ε > 0 a
parameter. Then qε,k(G) ≤ [χε,k(G)− 1]pp. In particular, for
any two integers, n and k, it holds that qε,k(κn,k) ≤ O(k2/ε).

Proof: The proof that qε,k(G) ≤ [χε,k(G)− 1]pp is almost
identical to the proof of Theorem 1 (presented in [8]) and is
obtained by replacing qk and χk by qε,k and χε,k respectively.
The second part of the theorem follows by showing that
κn,k can be (1 − ε)-k colored using k2/ε colors. Consider
partitioning [n] into k2/ε subsets, each of size εn/k2. Assign
the same color to all the vertices in the same subset, and
distinct colors to vertices in distinct subsets. We now show
that this is a (1− ε)-k coloring. The fraction of edges that are
assigned to at least k colors is

(k2/ε
k ) · (εn/k2)k

(n
k)

.

Now, for integers a and b, (a
b) =

∏b−1
j=0 (a−j)

b! , and ab ≥
∏b−1

j=0 (a − j) ≥ (a − b)b ≥ (1 − b2/a)ab, thus

(1 − b2/a)ab

b!
≤

(︃
a
b

)︃
≤ ab

b!
.

Therefore (k2/ε
k )·(εn/k2)k

(n
k)

≥ 1 − ε.
Notice that implications corresponding to those in The-

orem 5 on parameters pε,k and rε,k can be derived using
Theorem 3 and Proposition 6, respectively.
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