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Abstract—The ever growing demand of Internet of Things
(IoT) imposes great challenges in the existing cellular systems
and calls for novel approaches for wireless network design.
In this paper, we develop a joint energy and computation
optimization paradigm in an IoT network. The tasks collected
at local IoT devices can be computed at hierarchical mobile
edge computing facilities. Both non-orthogonal multiple access
(NOMA) and frequency division multiple access (FDMA) are
used for computation offloading. The system model considers
both long-term and short-term system behaviors and makes the
best decision for energy consumption and computation efficiency.
The Long Short Term Memory (LSTM) network is applied to
predict the long-term workload, based on which the number
of active process units in the edge layer is optimized. In the
short-term model, resource optimization problem is formulated.
Due to the dynamic arrival workload and non-convex features of
the problem, the Lyapunov optimization approach and SCALE
method are applied to solve this problem. Simulation results show
that the proposed scheme can significantly improve the delay and
energy consumption performance.

Index Terms—IoT, Mobile Edge Computing, NOMA, Long
Short Term Memory, Machine Learning, Offloading Optimiza-
tion, Hierarchical Edge Computing, Energy Efficiency.

I. INTRODUCTION

Ultra-dense Internet of Things (IoT) has been greatly facil-
itating the smart environments (e.g. smart city, smart home,
etc.) and diverse new applications such as AR/VR and au-
tonomous driving. An IoT network normally connects billions
of resource-limited sensor devices (e.g. mobile devices, sen-
sors, and wearable computing devices) via cellular networks
[1]. These small IoT sensor devices can collect computation-
intensive and delay-sensitive tasks that need to be processed
timely [2]. Mobile Cloud Computing (MCC) can help local
IoT tasks to process computation-intensive tasks, which are
offloaded from local IoT devices to the MCC [4]. However, the
communication bandwidth consumption and time delay caused
by transferring data to the remote cloud server can hamper
the quality delivery for latency-sensitive mission-critical tasks.
Towards that end, mobile edge computing (MEC) moves the
processing/storage units from the cloud to the nearby edge
nodes so that IoT collected tasks can be offloaded to edge
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nodes that are much closer. By doing so, both energy con-
sumption and delay performance can be improved [5]-[9]. In
this paper, a flexible hierarchical edge computing architecture
is used, in which edge nodes and cloud servers with diverse
power and computation capabilities form two tiers to best serve
the end user needs. In reality, User Equipments (UEs) can
serve as edge nodes for the nearby IoT devices, which may
have limited power and computation capabilities [10]-[13].
In this new paradigm, it is of crucial importance to design
efficient resource allocation and task offloading schemes to
realize the desired performance gains.

Orthogonal multiple access (OMA) based resource alloca-
tion and task offloading schemes have been extensively studied
in mobile edge computing [16]-[20]. In [16], a weighted
sum user computation efficiency optimization based on time
division multiple access (TDMA) was proposed by combining
local computing and data offloading. In [17], the maximal
delay of the mobile devices was minimized by jointly op-
timizing sub-carrier and power allocation in MEC networks
with orthogonal frequency division multiple access (OFDMA).
Kim et al. [18] proposed a single-leader-multi-user Stackelberg
game model to optimize the energy efficiency and computation
capacity of both the mobile users and the edge cloud. In
OFDMA-enabled cloud radio access network (C-RAN) with
an integrated MEC server, the joint sub-carrier power alloca-
tion and tasks partition problem were studied to minimize the
user delay in [19]. In [20], the resource allocation for TDMA
and OFDMA based multiuser MEC systems has been studied
to minimize the weighted sum of mobile energy consumption.
It shows that the power allocation has a threshold-based
structure with respect to a derived offloading priority. All these
works showed that the combination of offloading and local
computation outperforms the model that only considers the
offloading process.

As an effective scheme to enhance user connectivity and
spectral efficiency, non-orthogonal multiple access (NOMA)
technique has received much research attention lately. Ap-
plying NOMA in MEC can further improve the computa-
tional performance and user connectivity in ultra-dense IoT
networks [21]-[24]. The successive interference cancellation
(SIC) order and computation resource allocation have been
jointly optimized in [21], which can minimize the maximum
task execution latency for IoT devices under the limitation of
computational resources. Sun et al. [22] proposed the NOMA
communication method with the wireless energy supply for the
IoT system. To maximize the harvesting power, the NOMA
cognitive radio network with simultaneous wireless informa-



tion and power transfer was considered in [23]. Pan et al
[24] studied the MEC system, which exploits the NOMA for
the computational task uploading and results downloading. By
optimizing the transmit powers, transmission time allocation,
and task offloading partitions, the minimization of total energy
consumption was achieved by this work. It was demonstrated
that NOMA method can significantly improve energy effi-
ciency compared with OMA method.

In real applications, the users’ behavior and environment
conditions change dynamically. Moreover, from the measure-
ments in [25], the user traffic behavior changes with some
predictable patterns, for example, the number of network
activities during night is reduced significantly. The dynamic
resource allocation method is needed to capture the dynamics
in the networks. Mao et al. [26] developed an online joint radio
and computational management algorithm for multi user MEC
systems, which aims for minimizing the long-term average
weighted sum power consumption of the mobile devices and
the MEC server. Lyu et al. [27] designed a perturbed Lyapunov
function to stochastically maximize a network utility balancing
throughput and fairness.

In this paper, a hierarchical communication and computation
framework for jointly optimizing energy consumption and
computation rate is proposed. The hierarchical framework
consists of three layers, i.e. sensor layer, edge layer, and cloud
server layer. The contributions of this paper are multi-fold.

e The accumulated computing power minimization and
computing rate maximization trade-off optimization prob-
lem is formulated in this paper. We develop a prediction-
based edge node turning on/off algorithm based on the
long-term data dynamics to reduce the system operating
cost, while we devise the dynamic resource allocation
algorithm based on shot-term data dynamics.

o The LSTM network [28] for arrival tasks prediction mode
is applied in long-term process unit status decision oper-
ation. Furthermore, the real-life user data are employed
to test and to validate our proposed algorithms.

o The optimization of offloading transmit power and local
processing speed is determined based on Lyapunov op-
timization method. The close form of solutions are also
given.

o Finally, extensive numerical results are presented for
characterizing the performance of the proposed algo-
rithms and the cost reduction by using the optimal param-
eter configuration, which is found for the computational
allocations at each edge node.

The paper is organized as follows. In Section II, the system
model and the formulated problem are presented. Section III
describes the hierarchical framework for jointly optimizing
energy consumption and communication delay. Section IV
discusses the workload prediction based on LSTM method.
Section V presents the optimization of the local process speed
and offloading transmit power for different cases. Section VI
shows the performance results, followed by the concluding
remarks in Section VII.
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Fig. 1. System model for the three-layer IoT network.

TABLE I

LIST OF SYMBOLS
Symbol | Definition
An(t) The workload arriving at edge node.
Qn(t) The buffer size.
RIOT(t) | The total processing rate of edge node n.
E°t(t) | The total energy cost of edge node n.
Cm,n The number of computation cycles to compute 1 bit of data.
Fm,n(t) | The computing rate (cycles per second).
gn (t) The channel gain of edge node n.
pn(t) The transmit power of edge node n.
¢ The amplifier coefficient.
pn(t) The transmission power consumption.
Pr The constant circuit power.

II. SYSTEM MODEL

We consider a three-layer IoT network as described in
Fig. 1. The first layer is IoT senor layer, which consists of
different IoT sensor devices such as smartphones, environmen-
tal sensors, and wearable devices. The second layer is edge
layer consisting of mobile edge nodes, while the third layer is
the server layer consisting of centralized or cloud servers. All
the sensor devices are deployed around randomly distributed
edge nodes. 10T sensor devices keep collecting and uploading
the data to their associated edge nodes for data processing.
There are N edge nodes in the system, which provide the
data processing service for the IoT devices. After the massive
raw data is received, each edge node can choose to process the
data locally, or to offload the data to the more powerful cloud
server, or a combination of both. We furthermore assume that
each edge node has M processing units (PUs), which can be



turned on or turned off individually based on needs.

Let A, (t) denote the workload arriving at edge node n at
time t. Note that the computing workload at each edge node
dynamically changes from time to time but with a predictable
pattern in many cases. We allow each edge node adaptively
turn on/turn off a subset or all of its PUs to save energy. The
operation is done based on the prediction of traffic patterns in
a relatively long-term scale.

At t, A, (t) bits arrive at edge node n from the connected
IoT sensor devices. The size of the buffered data at edge node
n becomes

Qn(t+1) =max{Q,(t) + A, (t) — R’ (t)7,0}, (1)

where @, (t) is the buffer size at ¢, RI°*(t) is the total
processing rate of edge node n at time ¢, which include both
local processing rate and the cloud processing rate achieved
through offloading. We consider a partial offloading for each
edge node so it can decide how to partition workload between
itself and the cloud server. Table I lists the symbols and their
definitions.

A. Local Processing Mode

At t, edge node n computes the workload at the buffer.
In particular, the workload for local processing at node n is
furthermore divided into M parts. Let C), ,, be the number
of computation cycles needed to compute one bit of data
at PU(m,n). Each PU can compute the data in the entire
transmission duration. Let f,, ,(¢) be the computing rate
(cycles per second) at ¢ for PU(m,n) and s,, ,, represent the
status of PU(m,n), where s,,, = 1 if PU(m,n) is active
and s, , = 0 otherwise. Therefore, the local computing rate
of edge node n is calculated as

o~ ()
rilocal(t) = Z g,n Sm,n(t)- 2)
m=1 m,n
The energy consumption of local computing is expressed as
M
encl(t) = Z [Em,nf?n,n () S ()T er;gffzsm,n(t)ﬂa 3
m=1

where ¢, ,, is the energy efficiency coefficient for an active
PU(m,n) and pid'c is the energy consumption of an idle

PU(m,n). 7 is the duration of each time slot.

B. Data Offloading Mode

In the partial offloading, part of the data in each edge node
can be offloaded to the cloud server. Two different offloading
schemes are considered, i.e. FDMA and NOMA.

1) FDMA based offloading: Assume the total channel band-
width between edge nodes and the cloud server is W, which
is equally partitioned among N edge nodes by using FDMA.
So the bandwidth of each channel is B = %-. Let g,(t) and
pr(t) represent the channel gain and transmit power for edge
node n, respectively. The offloading rate for node n under the
FDMA method can be expressed as

P(GE(1),

rﬁff(t) = Blog,(1 + 5
Un

“4)

The corresponding energy consumption is

el (t) = (Cpult) + pr)T, (5)

where ( is the amplifier coefficient. p,(¢) is the transmission
power consumption and p, is the constant circuit power.

2) NOMA based offloading: In NOMA, each edge node
pairs with another edge node for transmission. For that, at
time ¢, all the edge nodes are firstly ranked by their channel
quality, i.e. g1(t) < g2(t) < -+ < gn(t). Then, NOMA
groups are formed according to the following rules. Node
1 pairs with node K + 1, node 2 pairs with node K + 2,

-+, node K pairs with node N, where K = N/2. The two
nodes in the same NOMA group can offload workload to
the cloud server simultaneously on the same radio resource.
Successive interference cancellation (SIC) technique is applied
at the cloud server to decode the signals for each node
[29]. Specifically, let g,, (t), g% (t), pn (t), and pg (t) respectively
represent the channel gains and transmit powers for both
strong node n and weak node k in the same group, where
gn(t) > gi(t). The cloud server first decodes the signal of
the strong node n, then subtracts the decoded signal of node
n from the composite received signal and proceeds to decode
the signal of the weak node k. When decoding the signal from
node n, the signal from node k stays as interference. Compared
with FDMA, the bandwidth allocated for each NOMA group
is 2B. Correspondingly, the offloading rates (r2//(t),r} )
for the strong and weak nodes (n, k) can be expressed as

0 Pu(t)gn(t)
o7 (t) = 2Blog,(1 + W), strong node, (6)
t)gr(t
127 (1) = 2Blog, (1 + MZ’“()), weak node, (7)

k

where o2 and a,% are the noise powers at the strong and
weak nodes, respectively. The corresponding total energy
consumption for nodes (n, k) using NOMA method is given
as

X (1) = (Capn(t) + Gepr(t) +2p,) 7, )

where ((,,(x) are the amplifier coefficients. The first two
terms represent the transmission power consumption, while the
third is the constant circuit power consumption. Moreover, p,
is assumed to be the same for all the edge nodes.

III. PROBLEM FORMULATION

We aim to jointly design the data offloading and local
computing in this work. The total computational throughput
R (t) and the total energy consumption E'°(¢) for node n
at ¢ are expressed as

Ry () = re!(t) + 0 (), ©)
Ei(t) = e (t) + et T (1). (10)

n

Our goal is to achieve a high computational throughput as
well as a high energy efficiency by minimizing the power
consumption and maximizing the computed bits. These two
performance metrics are normally two conflicting goals to



optimize. We exploit the weighted sum to tackle this multi-
objective problem and define the system cost as follows [30]:

F(x(t),8(t) = ¢reBrot(x(t),8(t)) — b5 Rior (x(1), 5(t)),
1D
where x(t) =1 {fma(t),pn(D)}, Eior(x(t),s(t) =
SV Ef°(t) is the overall energy cost by all the edge
nodes at Edge layer, while Ry (x(¢), s(t)) = Zgzl RIH(t),
is the overall system computation throughput. Furthermore,
(¢fe, dfs) are the energy and rate coefficients. The problem

is formulated as

=
L 0t ) e ZE{F x(0).s(0)}
= N
st. Cl: hmsup— Z ZE{Qn )} < o0,

t=0 n=1

C2: fi < fran(t) < frsd,Ym,n,

C3: 0<p,(t) <P Vn,

C4: $pmn(T) €{0,1},YVm,n.

12)

The first constraint C'1 is the queue stability constraint.
Constraints C'2 and C'3 represent the ranges of edge node
processing frequency and transmission power, while constraint
C4 denotes active or de-active state for each PU. Each PU of
an edge node can be turned on or turned off depending on the
demands. In the following, we will use the system cost and
system efficiency alternately, since minimizing the system cost
defined in P1 is the same as maximizing the system efficiency.

Firstly, the problem P1 is an NP-Hard mixed integer
nonlinear programming problem, which normally has a very
high computational complexity and is very challenging to
solve in a real-time manner. On the other hand, the PU turn-
on/turn-off operation may not need to be made in real-time
for most systems due to on-off overhead concerns and hard-
ware constraints. To address both real time need to allocate
computing and communication resources as well as non-real-
time need to turn on/off processing units, we propose a two-
timescale algorithm to solve this optimization problem. The
small timescale problem is executed every time slot ¢, while
the large timescale problem is executed every epoch with the
duration of 7" time slots. Correspondingly, the original problem
P1 can be decomposed into two sub-problems. The first sub-
problem at large timescale decides how many PUs are needed
for each edge node, while the second one at small timescale
is the computing/communication resource allocation problem.
To solve the first sub-problem, we design the large timescale
prediction scheme to estimate the arriving workload, based on
which turn-on/turn-off decisions for the PUs at each edge node
are made. As a result, the number of active PUs changes from
one epoch to another. For the second sub-problem, we aim for
minimizing the total cost of both the energy consumption and
the delay by using efficient resource allocation.

A. Large Timescale Optimization Model

This sub-problem aims for minimizing the energy con-
sumption from large timescale perspective. The status of PU

Algorithm 1 DYNAMIC TURNING-ON/OFF CONFIGURA-
TION ALGORITHM
1: Initialization: Set s(t) = 1;
2: Optimization:
3: while t < T do
4:  Predict the arriving workload for each edge node at the
beginning of each epoch 7.
5: At every epoch T', we perform the following jobs according
to the estimated workload:
6:  if workload increases then
7: Turn on the PUs from de-active set until the available
resources can serve the arriving workload.
8:  else if workload decreases then
9: Turn off the PUs from the active set of the edge nodes until
reaching the balance of demand and resources.
10:  end if
11: end while
12: Output: Set the processing unit status s(7) =

s*(T).

Sman(T), m=1,2,--- M, at node n is determined in every
T time slots. The sub-problem can be formulated as

P2: min Iy (x* s
{smm}; '

st. sma(T) €{0,1},Vm,n,

13)

where  Fy(x*,s(T)) = OreEior(x*,8(T)) —
GrsRiot(x*,8(T)). x(t) is firstly set to x(T" — 1)* in
the objective function, which is the optimal resource
allocation in the previous epoch. The decision is made based
on both the prediction of the arriving workloads and also
the efficiency of turn-on/off. The main idea for deciding
turn-on/off of a PU is presented as follows.

The decision to turn on the inactive units depends on the
workload state. If the arriving workload to an edge node
keeps increasing, this edge node needs to turn on more PUs
to support the arising workload. The turning-on operation is
also performed at the beginning of each epoch. This operation
is the coarse control in the long-term timescale model to
protect the negotiated service level agreement (SLA). The finer
control is implemented at the short timescale model to regulate
the network parameters for the workload processing. This
cooperative long-term and short-term timescale models would
not only reduce the operating cost but also ensure the system’s
stability. Therefore, the proposed two-timescale framework is
more efficient and flexible. The turning-on/off algorithm at
each epoch is summarized in Alg. 1. The remaining task is
how to estimate the arriving workloads, which is presented in
the sections IV.

B. Small Timescale Optimization Model

In this subsection, we aim for minimizing the system cost
at each time slot, given that the optimal value of the status
vector s; = s*(7T) is obtained in the large timescale model.
The small timescale model directly uses s*(7") to seek the
optimal value for x(¢). Thus, we formulate the second sub-



problem as follows:

to+T—1
P3: min Fy(x(t),s*(T
by 3 RKOSD)
s.t. Cl1-C3,

where ty is the starting point of the current epoch
and  Fo(x(t),s"(T)) =  ¢reBron(x(t).s"(T)) —
s Riot(x(t),s*(T)). The Lyapunov optimization method
and SCALE method are used to make the resource allocation
decision in every time slot, which will be presented in Section
V.

IV. LARGE TIMESCALE WORKLOAD PREDICTION

In this section, we firstly present the overview of machine
learning, which is applied to the prediction method. Next, we
provide some constraints of this method. We then present
the long short term memory network to overcome these
constraints.

A. Overview of Machine Learning Based Prediction Method

Many stochastic mechanisms have been exploited to ef-
fectively predict the workload flows. These methods can
be generally classified into two categories, linear prediction
methods and nonlinear prediction methods. For the linear pre-
diction methods, one of the best prediction mechanisms in the
correlated time series category is the autoregressive—moving-
average (ARMA) model [31], [32], while the most commonly
used non-linear mechanism is neural network. ARMA is a
typical parametric regression model, which assumes that the
traffic condition is a stationary process. It implies that the
mean, variance and auto-correlation all stay constant. How-
ever, the ARMA method cannot capture the rapid variational
process underlying the traffic data due to it concentrates on
the mean value of the past series data.

The neural network technique is able to model more com-
plicated data by using the distributed and hierarchical feature
representation. Recently, many deep learning models that can
extract multilevel features have been developed. To train the
network parameters, they employ the machine learning such
as supervised/unsupervised/semi-supervised learning methods,
reinforcement learning schemes and nature-inspired algorithms
[12]-[15], [33]. Workload prediction accuracy can be greatly
improved. One of the common methods in deep neural net-
work forecast is based on recurrent neural network (RNN)
[15], [33], which is used in this paper. In particular, RNN
works efficiently with time series and sequence modeling
tasks, because it contains a self-recurrent loop that facilitates
transporting information from one time slot to another. Note
that the traditional neural network cannot achieve the same
level performance in the temporal-spatial problems as it does
not have the interconnection between nodes in the same layer.
RNN introduces hidden units that allows the current state to
receive feedback from the previous state.
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B. Long Short Term Memory Network

The original RNN only has one state, i.e. h. Therefore
it is very sensitive to the short timescale input and has the
gradient vanishing problem for large timescale forecasting. To
tackle this issue, we use the long short term memory (LSTM)
model, which is one of the specially designed RNN models.
LSTM [28] does the advanced time series prediction with
long temporal dependency. It can learn information with long
time spans and determine the optimal time lags autonomously.
The key component that makes LSTM work for the long-term
dependencies is called memory block. Fig. 2 shows a typical
LSTM network, which usually consists of one input layer,
one output layer, and one recurrent hidden layer containing
the memory block.

The memory block integrated in the LSTM network is
illustrated in Fig. 3. Here, the memory block is the recurrently
connected subnet, which contains functional modules such
as memory cells and gates. The memory cells are used for
memorizing the temporal states of the network while the gates
are composed of sigmoid layers, which are responsible for
controlling the amount of information flows. According to
the corresponding functions, gates can be classified into input
gates, output gates, and forget gates. The input gate controls
how much new information flows into the memory cell and



its weight matrix is defined as U,. The forget gate controls
how much information remains in the current memory cell
through a recurrent connection and its corresponding weight
matrix is Uy. An output gate controls how much information
is used to compute the output activation of the memory block
and how much information furthermore flows into the rest of
the network. Its weight matrix is denoted by U,.

Detailed relationships of the entities in the LSTM network
can be presented as follows. Recall that the input vector at the
input layer at time ¢ is A, the hidden state vector at time t
is h;, and the memory cell at time ¢ is c;. Let the operations
of dot product and summation of two vectors be denoted by
- and +, respectively. Let o(-) and %(-) denote the sigmoid
function and the hyperbolic tangent function, respectively. So
we have the definitions of these functions as

1
U(x ) - 1 + e_ma
Y(x) =20(2z) — 1.

15)
(16)

Based on the above definitions, the output of the forget gate f;
can be written as f; = (U sphy_1+Uf, Af+by), where Uy,
and Uy, are the weight matrices of A{ and h;_1, respectively.
Furthermore, by is the bias of f;, while o is a sigmoid function.

Similar to the input gate, the output vector i; of the input
gate can be given by i; = 0(U;,hy—1 + U;,A? + b;), where
U,, and Uy, are the weight matrix for A? and h;_;, while
b; is the corresponding bias. The input activation vector ¢’y
of the memory cell can be calculated as ¢’y = ¥(U.phi—1 +
U.,A? + b.), where U,, and U, are the weight matrix
for A9 and h;_;, U, = [Up, Ugy), b, is the corresponding
bias. Here, the memory cell state vector c; can be calculated
as ¢, = f; - ¢, + i; - ¢’4, which is the combination of the
input activation vector ¢’y and the long memory c;_1.

Now we consider the last gate, i.e. the output gate. We
have the calculation of the vector o, of the output gate as
o: = 0(UyA? + Uyphi—y + by,), where U, and U,y are
the weight matrix for A¢ and h,_; respectively, and b, is the
corresponding bias. The output vector h; of the hidden layer
can be expressed as h; = o, - ¥(c;). So the output vector A,
of the output layer is calculated as

A; = g(Upnhy), (17)

where Uy is the weight matrix of the output layer, g(-) is
active function.

Now, we obtain the predicted workload A; for the large
timescale operation. In Section VI-A, we provide detailed
operations of LSTM networks, the configuration for the inputs
and the networks as well as the performance evaluations. In
particular, our predicted mechanism outperforms the bench-
mark of ARMA. In the next section, based on the large
timescale optimization results, we further determine the small
timescale resource allocation optimization for each edge node.

V. SMALL TIMESCALE OPTIMIZATION AND
CONFIGURATION MODEL

In this section, we aim to minimize the system cost at each
time slot. Recall that the large timescale model is proposed to
solve problem P2, where the optimal value of the status vector

s(T) = s*(T) is determined. Given the solution of s*(7T),
the small timescale model seeks the optimal value x(t) for
problem P3. Note that problem P3 is an NP-hard problem,
so we develop the Lyapunov optimization method to solve this
problem in the following.

A. Overview of Lyapunov Optimization

We firstly provide the brief description of Lyapunov op-
timization, interested readers can find detailed information
in [34]. The dynamic change of the arrival workload in
constraint C1 of problem P3 makes the objective function
Fy(x(t),s*(T)) hard to be solved. However, Lyapunov opti-
mization method [34] can be used to deal with the dynamic
resource allocation problem. In particular, the optimal solution
would be obtained by solving a deterministic per-time slot
problem with a much lower complexity.

We now formulate the Lyapunov function L(t) as follow:

|
_1 2
L(t) = 5 ; Qn(t). (18)
The Lyapunov drift A(t) can be written as
L
A(t)=L(t+1) = L(t) = 5 Y _[Qu(t+1) = Qa(v)]. (19)
n=1

Accordingly, the Lyapunov drift-plus-penalty function can be
expressed as

Ay (t) = At) + VEy(t), (20)

where V is a control parameter, while Fy(t) =
Fy(xz(t), s*(T)) is the objective function of P3.

Based on the definition of @, (t), we have
Qn(t+1) < [Qn(t) + An(t) — R (t)7]?
< QA0 + AL + R (07 4 2Q0(1) An()

= 2(Qn(t) + An() R ()T
2D
Combining (19) and (21) and furthermore employing some
mathematical manipulations, we have

N

A0 < D050 + R0~ MORE O

+ Qn(t)(An(t) — B (t)7)-

Substituting RL!(t) from (9). Since log,(1 + #) < %5 and
loga(1+z) < (137‘5)2, we have
N M
A(t) < Z[( AmaT 2 m,n n 2
=3 Gl + (3 T By
Aman (S IRET BT
n — Cmn In2
m= (23)

N
+ Y Qu(t)(An(t) — R (D)7)

n=1

N
SDl + Z Qn(t)(An(t) - RZOt(t)T))a

n=1



where A7"** is the maximum arrival workload at edge node
n, while v,*** is the maximum SINR for the edge node n. So

D1 is defined as

max

iy al r o Bymerr\
_ mazx\2 m,n n
Di=D 5| ™) +<Z Coon | (n2) )

n=1 m=1 m,n
M max max
— Amar m,n T + B’Yn T
n .
me—1 Cm,n In2

(24)
By adding V F5(t) to both sides of the above inequality
(23), we obtain

N

Ay (t) < Dy+VFy(t)+ Y Qu(t)(An(t) — R (t)7). (25)
n=1

The proposed resource allocation algorithm for the small

timescale model mainly focuses on minimizing the upper

bound of Ay (t) on the right side of (25) at each time slot

t.

B. Problem Formulation for Computation and Communication

We now formulate the problem for both communication and
computation in the small timescale model. In particular, we
aim for performing the following goals: the workload at buffer
queue Q,(t) can be kept at a stable level, while the system
cost can also be minimized for each edge node and the cloud
server. Using derivations in section V-A, problem P3 can be
transformed to

P4 Ig?(ltr)l Dy + Vs Erot(2(t)) — dps Riot(x(t))]

N
+ D Qu(t)(An(t) = Ry (2(t)7)
n=1

s.t. C2,C3.

It is worth mentioning that the objective function of P4 is
from the right-hand side of (25) and all the constraints in P3
except the task buffer constraint C1 are retained in P4. We can
observe that it is still difficult to determine the optimal solution
for P4, where we must seek the optimal edge node local
computation frequency and the optimal transmit power for
offloading. Therefore, the problem P4 can be further divided
into two sub-problems, i.e. problem for local process speed
optimization and problem for offloading power optimization.
1) Local Process Speed Optimization: In this subsection,
we determine the optimal solution for the processing rates of
PUs at each edge node. To obtain the optimal local process
frequency, we would solve the following sub-problem

(26)

to+T—1
P4.1: min Fs(t
iny 2 PO @7)
st fat < fan(t) < FR5T

N ocal oca
where F3(t) = VY, [dreel(t)r — ¢poriocal(t)r] +
SN Qn(t)(A,(t) — rlovel(t)7). Problem P4.1 is a convex
problem as the objective function is convex and the constraints

are linear. The optimal solution is given as

o (t) = min(

max

et max(f,, (1), fr), (28)

where f,, () = W%
We have the following observations of the relation between
m.n(t) and the network parameters. In (28), it is readily
observed that fy, ,(t) is a strictly increasing function with
respect to @, (t). It means that when @, (¢) increases, the
computational frequency f;, ,(t) increases to keep the local
computing buffer queue at the certain acceptable level. On the
other hand, f, ,,(t) decreases with the increases of C, 5, €m.n
and ¢y.. In particular, when C,, ,, and € increase, the system
needs a higher computational frequency and/or more energy
consumption to process one bit of data. Thus, the processing
unit m at edge node n must reduce its computational frequency
to consume less power. With the increase of ¢f., we have
a higher priority on the energy consumption and therefore,
the computational frequency fy, ,, () must be decreased. Of
course, we also observe that fr, | (t) is a strictly increasing
function of ¢y,

Let us consider the homogeneous scenario, where we have
the same computational energy efficiency coefficient €,
and the same number of computation cycles C, ,, needed to
process one bit of data for each processing unit m at node n.
In this scenario, we have the same computational rate for all
the units at each node. So the workload is equally assigned to
each unit at node n.

2) FDMA Based Offloading Power Optimization: The task
offloading can employ two methods, i.e. FDMA and NOMA.
The optimization sub-problem of the FDMA based offloading
is formulated in this subsection, while NOMA based offload-
ing is presented in the next section. So the optimization sub-
problem under the FDMA setting is given as

to+T—1
Pl 2 1O @
s.t. 0 < p,(t) < pra,
where F(t) is defined as
N
F4(t) =V Z [¢feezf'f(t)7 - ¢fsrsz(t)7_]
e (30)

N
3 Qult) [Anlt) — 1 (0)7]

Recall that e2//(t) and r9//(t) are calculated at (4) and (5).
By substituting €%/ () and r9/7(t) into the above equation,
Fy(t) can be rewritten as

N ()95 (1)
F4(t) = VTZ(bfe(Cpn(t) +p7”) _¢f5B 10%2(1""_%)

N
Pa(t)gn(t)
#3200 An(0) - Brloga(1+ 220
(31
The problem P4.2 is a convex function as its objective
function is a linear function of convex terms and the constraint

is also linear. We can derive its optimal solution as

Py (t) = min(p;***, max(p,,(t),0)), 32)

_ Vés+Qn(t)B H
where pn(t) = ( ﬁQVQqu(pg) - Q—g(t)'




We have the following observations on the optimal trans-
mit power p’(t). The optimal transmit power pJ(¢) is non-
decreasing with respect to queue size @, (t). This indicates
that when the queue size of node n increases, the offloading
power increases in order to achieve a higher offloading rate.
As a result, the workload accumulated in the queue is reduced.
The transmit power p7 (t) also increases with the increase of
bandwidth B. Thus, the offloading rate is increased and we can
offload more workloads. The transmit power is a decreasing
function of the energy weight ¢ .. In particular, when ¢y, is
higher, we set the higher priority for optimizing the energy
consumption, i.e. energy consumption would be reduced.

3) Offloading Power Optimization for NOMA Method:
With NOMA based offloading, the problem P4.2 is reformu-
lated to P4.3. The detailed procedure is presented as follows.
Under the NOMA setting, the optimization problem P4.3 can
be further divided to K optimization problems with each one
denoted as P4.3.k for each NOMA group k. So problem
P4.3.k is expressed as

to+T—1
P43k: min Fr(t
Pk, i(t) Z;O > () (33)

st 0 < pri(t) <ppoti=1,2

where F¥(t) is the objective function, which is given as

V§re(Crra(t) + Cpr2(t) + 2p)7
Pr(t)gk 1 (t)

Pr2(t)gi o(t) + 07

Pr.2(t)gk o (t)

=) Qe () Ak (1)

log,(1
+ gz( + 0_]%’2
Pra(t)gi 1 (1)
Pr2(t)gi o (t) + 0% 4

Fy(t) =

~ Vo.2Brlog,(1+ )

— 2BT1logy(1 +

)]

o(H)a? . (t
+ Qu2(D)[Ar2(t) - 2B7 10g2(1+%”.
BEY

Here, we have two kinds of nodes in a NOMA group, i.e.
the strong node and the weak node, which are denoted by
the subscripts ;1 and j o, respectively. Recall that we use the
calculations of the offloading rates and the energy consumption
for both strong and weak nodes from (6), (7) and (8).

It is observed that the objective function FY¥(¢) is not a
convex function, therefore the optimization problem is a non-
convex problem. We exploit the convex relaxation method
called SCALE (Successive Convex Approximation for Low
Complexity) [35]. In the SCALE method, we use the following
observation

alogy(2) + 8 < logy(1 + 2). (35)

This is tight at = = Z > 0, when the approximation coefficients
are given as

.
147z’
B =logy(1+7%)—

o =

(36)

Z
lo .
Z g2 (z)

We now apply the SCALE method, where we use a logarithmic
change of variables py ;(t) = In(pk;(t)). Furthermore, the
terms (o1, Bk,1) and (o 2, Bk,2) calculated by (36) are used
for both the strong and weak nodes. After using some simple
manipulations, we have the approximation of the F¥(t) as

FE(W) = Voyel¢(expl(pra(t) + exp(pra(®)) + 2p.lr
+ Q1 (1) Ag,1(t) + Qu2(t) Ak 2(t) + 2BT(Vys
+ Qualt)fak logsfexp(—pra(8) 7

91% »(t)

+ 9;%71(75) (exp(pr,2(t) = pr,a(t))] — Br,a}

+ 2BT(V¢fs + Qr,2(t)){ k2 logy[exp(—pr 2(t))

So the problem P4.3.k can be transformed into
P4.4k: min FF(t)

Pi,i(t)
st pri(t) < In(pp®).

(37)

(38)

Lemma 1. The problem P4.4.k is a convex problem with the
given ay i, Br,i-

Proof. The first part of the objective function F¥(t) is evi-
dently convex. The last two terms of the objective function
are also convex as they are the log-sum-exp functions. The
remaining parts are constant. Therefore, the objective function
F¥(t) is the summation of all convex terms, which is also
convex. Furthermore, the constraint is convex. As a result, the
problem considered is convex. O

In the following, we utilize the Lagrangian duality technique
to solve the problem P4.4.k. We define the Lagrangian
function L(p) as L(p) = F¥(t). We firstly solve the stationary
condition, ie. dL(p)/Opr1 = 0, where OL(p)/Opy1 1is
calculated as

IL(p) _ 2B
Bprr) VorerCexp(pr,1) — ln20<k,17(V¢fs + Qk,l(g)g-)

Then, we transform the result back to the original solution
space after solving the fixed-point equation. So the optimal
solution for the strong node in group k at time slot ¢ is given
as

Pk (t) = min(p,"*", max(py, 1(t),0)), (40)

where Py, 4 (t) = i 1151‘/2?/f<;t?k 20D,

We have the following observatlons for the optimal solution
as follows. The optimal transmit power pj ,(t) for strong
node increases with the increase of the rate coefficient Dts
and the buffer queue Q) 1(¢). This confirms that 1) when the
weight of data process rate becomes higher, the edge node
increases its offloading power to achieve a higher rate; 2)
when the buffer queue Q) 1(¢) becomes larger, the edge node
also needs to improve its offloading rate to reduce the buffer
queue by increasing the transmit power. The optimal transmit
power pj (t) decreases with the increase of the weight of




Algorithm 2 THE SCALE ITERATIVE ALGORITHM FOR

P4.4k

1: Input settlngs the error tolerance £ > 0, p > 0 and
Gresbrss oy = Lags = 1, By = 0, Bz = 0 and the
maximum iteration number I. ‘

2: Initialization: i = 0, pj, ; (t) and py, 5(t).

3: Optimization:

4: fori=1:1do ) )

5:  obtain the solution py, ; (t) by (40) and solve py, 5(t) by (41).

6.

7

8

9

max

if p.1 (1) — P (F) < €& &pi (1) — pji, () < & then
the optimal pj, ; (t) and pj, »(t) are obtained.
else
: update o} ', o), B and B by (36) and i =i+ 1.
10:  end if
11: end for

12: Output: {PZJ (1), PZ,Q )}

transmission power consumption. When ( becomes larger, i.e.
the system consumes more energy for offloading tasks, it needs
to reduce the transmit power and allocate more tasks to the
local processing than to offloading.

Similarly, we can determine the optimal solution for the
weak node in the same manner. We firstly set OL(p)/0pg,2 =
0 and then use some manipulations to obtain the optimal
transmit power. The calculations and derivations of the optimal
solution are omitted because they can be done in the simple
steps. Finally, the optimal transmit power for the weak node
in group k at time slot ¢ can be given as

Pr2(t) = min(pp"**, max(py 2 (t), 0)), (41)
where . o (t) = 5 (ds — \/d3 + 4dy), d3 = ”k(l) +

2
ds = pyrtie i = Zara(Vége + Qua(t)) and dy =
%akg(‘/qbfs + Qg 2(t)). We summarize the procedures of
solving problem P4.4.k in Alg. 2.

4) Algorithm complexity analysis: For Alg. 1, the complex-
ity comes from two parts. The firstpart comes from estimating
the workload at each E-node, while the second part comes
from the turn on/off operation performed at each PU. Let NV
and M denote the number of users and the number of PUs
of each user, respectively. Then, based on workload estimation
and turn on/off operation, the complexity of Alg. 1 is O(MN).

For Alg. 2, the complexity also comes from two parts. The
first part comes from updating the parameters o and 3, while
the second part comes from calculating the offloading power
for each edge node. Let L be the number of iterations required
to update the approximation parameters o and 3 and let N be
the number of edge nodes. Then, the complexity of Alg. 2 is
O(LN).

VI. NUMERICAL RESULTS
A. Long-Short Term Memory Workload Prediction

The LSTM model performance on traffic prediction is first
evaluated using the real traffic dataset [36], which records a
total of 91065 user activities and their behaviors between Jan.
2006 and Jan. 2009. These data are widely used in different
cloud communication studies and used as the arrival workload
in this study [39]- [41]. The original data contains many
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Fig. 4. Comparison between LSTM model and ARMA model in training.

features such as user ID, user class, sequence number, etc.
Here, the number of active users is used as the number of
arrived workloads. Therefore, the raw data is transformed to
the number of users arriving in every time slot. We assume
that each user represents a workload with 1000-bit data that
needs to be processed [26] [30].

For the efficient learning of LSTM, the original data first is
normalized based on min-max normalization as follows:

—o A — A2 .
A= St Cmin 42)
A2 A2
max min
where A? . and A? - are the minimum and maximum values

of the original data [42]. The LSTM network adopted has
one input layer with one input, one hidden layer with 4
LSTM blocks, and one output layer that makes a single-value
prediction. We use the LSTM method to predict the data
arriving at the edge nodes. Each dataset is divided into two
parts, where 67% of the dataset are used for training the LSTM
model, and the remaining 37% data are used for testing. We
also compare the proposed method with ARMA(2, 1) model
[37]. The mean absolute performance error (MAPE) is used in
this paper for evaluating the prediction errors [43]. The MAPE
is the ratio of the error and the true value, which is defined
as .
1 A — 4]
MAPE = - Z = (43)
Figs. 4 and 5 illustrate the training outcomes with different
methods. For a better observation, we shift the results of the
ARMA model [31], [32] and the LSTM model with 1 time
slot from the original data. From Fig. 4, both ARMA model
and LSTM model can well capture the overall trend of the
original data. However, Fig. 5 with finer granularity indicates
that ARMA method does not follow the rapid change of the
workload flow as well as LSTM. Thus, the ARMA method
has larger prediction errors when comparing to the LSTM
mechanism. Figs. 6 and 7 show the testing results for the
different prediction method, where the LSTM method outper-
forms the ARMA(2,1) method. The MAPE performances for
both training part and testing part of the two methods are
presented in Figs. 8 and 9, respectively. We can see that
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LSTM can achieve a lower error result. Therefore, the LSTM
method is used for the prediction of workload flows in the
following experiments.

B. System Cost Optimization

Based on the prediction results, this section gives the
performance of the proposed methods. The simulation settings
are based on the work in [16], [38]. All the parameters are

10
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Fig. 8. Comparison of the performance of the mean absolute performance
error for training part.
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Fig. 9. Comparison of the performance of mean absolute error for testing
part.

chosen as follows unless stated otherwise. There are N = 2
edge nodes and one centralized server, where each edge node
has M = 10 processing units. Since the mobility is not
considered in this paper, the location for each edge node is
fixed during the entire simulation. The offloading transmission
power for the communication link between each edge node and
the sever is in the range of [p", p7e”], where p™ = 0

W and p;*** = 2.5 W. The channel bandwidth for FDMA
is B = 2MHz, the local processing capacity for one bit
is Copn = 1 x 103 cycles/bit. The computational energy
efficiency coefficient is € = 1x 10727, the power weight = 2.
The channel between the edge node and the server is modeled
as the joint effect of large-scale and small-scale fading, where
the channel parameters are given as g /0% = Gyhg, G1 =7
and G2 = 3. Note that hy is the unitary Gaussian random
variable [16]. The computational capacity of each edge node is
set equally in the range of [f7n, fmar] where fy%" = 107
Hz and f™" = 103 Hz. The circuit power is p, = 1 dBm. To
balance the value of throughput and energy, the weights are
selected as ¢, = 10° and ¢ ts = 0.1. The results are obtained
in different random channel realizations.

The study considers four cases: (1) the proposed PU on/off
scheme with FDMA offloading. In this scheme, the data
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Fig. 10. Normalized system cost and average queue length per edge node vs
the control parameter V.

offloading from the edge node to the cloud server adopts the
FDMA method based on problem P4.2, thus, it marked as
“On/Off + FDMA offloading”. (2) The proposed method PU
on/off with NOMA offloading “On/Off + NOMA offloading”,
where the offloading scheme between the edge node and the
cloud server is the NOMA method based on the problem
P4.3. (3) The benchmark scheme without PU on/off based
on FDMA offloading. All the PUs keep in “on” status. The
scheme is marked as “FDMA offloading” in the figure. (4)
The benchmark scheme without the cloud server assistance.
So the system can only process the data locally at edge nodes
but allows PUs to turn on/off. The method is marked as
“On/Off + local computing only”. We set the epoch duration
at T' = 507. All the simulation results are averaged based on
100 independent runs. We note that only the last scheme is the
local processing, while the first three schemes have both local
processing and cloud processing. To avoid any confusion, we
firstly confirm that the term “offloading” does not mean that
all the tasks must be offloaded to the cloud. It only means
that we use offloading mechanisms, like NOMA or FDMA,
to offload partial, or complete, or no tasks to the cloud, while
the remaining tasks can be still processed at the local PUs.
So we always keep the PUs in “on” status in the third case
of “without PU on/off” due to the following reason. In this
case, we do not use the large timescale model to predict the
workload flow as well as use the turning-on/off algorithm. So
we keep the PUs “on” to serve the high demand of workload
as we consider the dynamic change of the workload flow.
The relationship between the system cost/average queue
length of the task buffers and the control parameter V is
presented in Fig. 10 for the proposed “On/Off + NOMA
offloading” scheme. For a better illustration, the values of
both system cost and queue length are normalized. The system
cost firstly maintains at a high level when V < 104, it then
decreases with the increase of V. When V > 108, the system
cost keeps at a low level. On the other hand, the lengths of
buffer queues for both the strong edge node and weak edge
node are small when the system cost is high. It then increases
when the system cost drops down. The reason is that the
parameter V' controls the tradeoff between the original cost
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function F'(t) and the buffer queue stability in the Lyapunov
drift-plus-penalty function in (20). Therefore, by increasing
the value of V, the system gives more priority to reduce the
system cost and less priority to serve the buffered data. The
optimal solution of V' to achieve a good tradeoff between the
system cost and buffer queue stability is around V = 107
based on the simulation setting. Thus, we choose the control



parameter as V' = 107 in the following simulation results.

We proceed to show the performance of different schemes
by using the predicted workloads and parameters setting found
above. Fig. 11 shows the system cost for four different
schemes defined above. By properly turning on/off processing
units, the proposed scheme achieves a much lower total
system cost than all other schemes by integrating NOMA,
computation offloading and PU On/Off altogether. The only
scheme “FDMA offloading” that does not use PU On/Off has
a significantly higher system cost than others. Furthermore,
computation offloading considerably reduces the system cost.
We also observe that all the schemes converge after 500 time
slots. This observation confirms the stability and convergence
of the proposed methods. Although the workload flows dy-
namically change over time, all the edge nodes effectively
allocate the transmit power for communication and also adjust
the processing unit frequency for computation. Therefore, the
model can adaptively achieve the optimal and stable system
efficiency even with the dynamic traffic behaviors.

We further compare the performance for the two best
schemes, namely “On/Off + NOMA offloading” and “On/Off
+ FDMA offloading” in Fig. 12. Fig. 12(a) shows that the
NOMA offloading based scheme achieves a higher computa-
tion throughput than the FDMA offloading based scheme. Fur-
ther in Fig. 12(b), the NOMA offloading based scheme con-
sumes less power than the FDMA offloading based scheme.
Combining the two figures, it demonstrates that NOMA based
scheme attains a much higher efficiency in energy usage by
consuming less energy but gaining a higher computation rate.
A higher computation throughput leads to less queued data in
the buffer, which is verified in Fig. 12(c).

Another thing worth noticing is that the curves of the total
computation throughput, the power consumption and the buffer
queue length for the FDMA method in Fig. 12 first go up and
then decline in the main observation. However, we would see
the fluctuations at the very beginning. This transient behavior
is explained as follows. The initial value is high based on the
initial parameter setting so that the system can achieve high
throughput and low power consumption. There are not too
many workloads needed to be processed at the beginning of
large timescale. Thus, the system only adjusts parameters for
the throughput and power, which can help to keep the higher
efficiency. We now explain the system behavior in the main
observation. At the beginning of each epoch, the workload is
firstly buffered in the queue due to insufficient computation
throughput of each node. Due to the increase of the queue
length, the system adjusts both the offloading rate and local
process speed so that the queued data can be served. At the end
of the epoch, with the small queue length, the system can keep
the computation throughput stabilized at a lower optimal level
and maintains the minimum system cost. On the other hand,
we observe that the curves of the NOMA based scheme keep
decreasing. At the beginning of the epoch, the computation
throughput is high enough to sufficiently serve the arrival and
queued data so that queue size does not build up. Ultimately
the NOMA and FDMA based schemes converge to the similar
queue level and similar power consumption level.

The performance of the strong node and weak node for
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the NOMA based scheme is provided in Fig. 13. The weak
edge node in the NOMA method has a lower throughput and
also a lower energy consumption than the strong node. The
proposed method aims to minimize the overall system cost.
The transmit power for the nodes with different channel quality
is adjusted by slightly increasing the power of the strong
node and decreasing the weak one. We also have the transient
duration at the beginning, which is similar to the observation
in Fig. 12. Thus, the system can achieve an overall low
system cost but still guarantee the weak node’s performance.
Therefore, the proposed method can dynamically adjust the
resource allocated to each node to achieve the optimal overall
system efficiency and meet the performance requirements of
each node.

VII. CONCLUSIONS

This paper considers a hierarchical architecture that consists
of IoT sensor layer, edge computing layer, and cloud server
layer. A twin-timescale optimization model was developed to
manage the workload offloading in the system to optimize
the trade off between the power consumption and overall
computation throughput. In the large timescale model, based
on predicted workload, the scheme decides how to turn on
or turn off processing unit in order to save energy. In the
small timescale model, a Lyapunov optimization method was
designed to allocate the offloading power and to determine
the local process speed for each processing unit. Simulation
results reveal that the proposed method can greatly improve
system performance by saving energy costs and achieving a
high processing rate.
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