This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2021.3102945, IEEE Internet of

Things Journal

Automated Ensemble for Deep Learning Inference
on Edge Computing Platforms

Yang Bai, Lixing Chen, Mohamed Abdel-Mottaleb, Fellow, IEEE, Jie Xu, Senior Member, IEEE,

Abstract—Advances in deep learning (DL) have triggered an
explosion of mobile intelligence, posing a soaring demand for
computing resources that cannot be satisfied by mobile devices.
In this paper, we employ Edge Computing to deliver better DL
inference services to end-users. The key is to leverage deep neural
network (DNN) ensemble techniques that provide state-of-the-art
performance for many machine learning applications in terms
of inference accuracy and robustness. Compared to end-devices,
the edge computing platform is endowed with more powerful
computing resources, making it feasible to implement DNN
ensembles for DL inferences. However, due to the constrained
computing capacity of edge servers and the possible service
response deadline, an edge server can only use a limited number
of DNNs to construct DNN ensembles. This poses a unique prob-
lem, namely DNN ensemble selection, for identifying the best-fit
DNN ensembles. We propose a novel algorithm called Automated
DNN Ensemble (AES) algorithm to solve this problem. Because
DNNs exhibit performance variations over different distributions
of input data, AES adaptively determines a DNN ensemble
according to the features of admitted inference tasks. AES is an
online learning algorithm that learns DNNs’ in-use performance
over time. An ensemble selection rule is further designed as a
subroutine of AES to recruit members into the DNN ensemble
based on the accuracy and diversity of DNNs. In particular, we
theoretically prove that AES can achieve asymptotic optimality.
We carry out experiments on real-world datasets. The results
show that using the DNN ensemble technique on edge computing
platforms dramatically improves the DL inference quality, and
AES outperforms other benchmark schemes.

Index Terms—Edge computing, multi-armed bandit, deep neu-
ral network ensemble

I. INTRODUCTION

There is a growing trend to bring deep learning (DL)
intelligence to mobile devices. Smartphones and hand-held
devices are tied to DL in many of their functionalities. This
trend is continuously driving the advance of DL techniques for
mobile devices. New-generation mobile hardware, e.g., Apple
neural engine [1], is designed to accelerate neural network
processing. Lightweight DL libraries, e.g., Tensorflow Lite
[2] and Core ML [3] are released for on-device DL infer-
ence. Novel algorithms, e.g., Deep Neural Network (DNN)
compression [4], [5], help compress large-scale DNNs into
compact models that fit the size of on-chip RAM. While these
techniques enable mobile devices to run the DL inference,
they are unlikely to be a universal solution for delivering DL
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services due heterogeneous computing capacities of mobile
devices. A recent study by Facebook [6] shows that over 50%
mobile devices are using processors at least six years old,
limiting what is possible of DL services. Besides, frequently
running DL services also drains the battery fast [7]. Therefore,
external boosters become necessary to realize the full potential
of DL services for mobile devices. The recently emerged Edge
Computing [8] is envisioned to be a promising alternative
for delivering high-quality DL service [9], [10] to end-users.
Being physically close to users and leveraging fast network
technologies such as 5G, edge computing promises several
benefits compared to traditional Cloud Computing, including
lower latency, higher energy efficiency, and reduced bandwidth
consumption [11]. With the assistance of computation offload-
ing techniques [12], the edge computing platform becomes
an optimal site for providing DL inference service to mobile
devices — a DL service provider can deploy its DNNs on
edge servers and users can send their tasks (i.e., input data to
DNN5s) to edge servers to complete DL inferences.

This paper aims to take full advantage of edge computing
platforms and enhance the service quality of DL inference by
employing the DNN ensemble technique. The DNN ensemble
technique is well recognized in DL communities for its ability
of reducing prediction variances and improving inference
accuracy [13], [14]. It has been providing state-of-the-art
performances for many learning problems. For example, the
winning teams of ILSVRC (ImageNet Large-Scale Visual
Recognition Challenge) in the latest four consecutive years all
incorporate the DNN ensemble technique in their method [15].
Recent years also see a revitalization of the DNN ensemble
technique due to its robustness to adversarial attacks [16], [17].
All these advantages make the DNN ensemble technique a
natural choice for improving DL inference quality. Using DNN
ensembles is originally unfavorable to resource-constrained
mobile devices because running multiple DNNs can be costly,
e.g., large computation complexity, rapid battery drain, high
resource occupation rate. The deployment of edge computing
platforms makes the DNN ensemble technique a feasible
paradigm for mobile devices. Powerful computing resources at
edge servers allow the DL service provider to trade computing
resources for better DL inference quality using DNN ensemble
techniques. To be specific, a DL service provider will form a
committee of DNNs (hereinafter referred to as EdgeCmte)
at an edge server. Each DNN in EdgeCmte will be used
to process users’ inference tasks, and then the outputs of
individual DNNs are combined to generate final inference
results which will be returned to users. This general framework
seems straightforward, however, there are several challenges to
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be addressed before the DNN ensemble technique can deliver
what it is capable of.

1) The first challenge is the limited computing resources
at edge servers. Although the computing capacity of edge
servers is much larger than mobile devices, it is still limited
[18] compared to a cloud-scale datacenter. Besides, DL service
providers may operate under budget constraints that only allow
them to rent a limited amount of computing resources for
deploying their services. Therefore, an edge server may not be
able to run all available DNNs simultaneously for ensemble
prediction. Running DNN5s sequentially tends to incur a large
inference delay that is unfriendly to latency-critical services.
This requires the DL service provider to judiciously decide
how many and which DNNs to include in EdgeCmte, namely
a DNN ensemble selection problem. While the DNN ensemble
technique is often used in the DL community, the DNN
ensemble selection is still an under-investigated problem in
the current literature.

2) The second challenge is the heterogeneity of DNNs.
Available DNNs collected by the service provider may come
from different sources. This is a natural assumption because
the data collected by a single institution is often limited. While
data sharing is desirable, it can lead to severe privacy issues,
especially for clinical, financial, and social data. By contrast,
the trained DNN is a generalization of structured knowledge
that contains less privacy-sensitive information. Therefore,
sharing DNNs is more welcomed than directly sharing the
source data. For example, Facebook has disclosed the open-
source release of its Deep Learning Recommendation Model
[19] but veils the source data due to privacy concerns. As
a result, DNNs collected by a DL service provider can be
trained/validated on different data sources with different DNN
architectures by different institutions, and hence achieving
different performances. These four “different’s characterize the
heterogeneity of DNNs and make it necessary to perform the
DNN ensemble selection.

3) The third challenge is the unknown in-use performance
of DNNs. While the DNN performance can be evaluated
on standard test data, one cannot guarantee that the input
data from users in practice has the same distribution as the
standard test data. Therefore, the actual performance delivered
by DNNS is revealed only during implementation and needs
to be learned over time.

4) The fourth challenge is the variability of user inference
tasks. The features of inference tasks vary due to many exter-
nal factors. For example, consider images as DNN input, the
device camera determines the resolution and noise of captured
images; the time and location affect the image brightness.
Different DNNs have different sensitivities to these feature
variations, and hence their inference performance also varies
across inference tasks. In other words, there is no “master
key” for all inference tasks, and the discrimination of the “right
key” for certain inference tasks is crucial. This requires the DL
service provider to adaptively change its EdgeCmte according
to the features of admitted inference tasks.

We perform DNN ensemble selection to deal with above
challenges. A novel online learning method is proposed to au-
tomate the construction of EdgeCmtes in a way that optimizes

the inference accuracy for user tasks. The key contributions of
this paper are summarized as follows:

o We design a framework for the edge computing platform
to implement DNN ensemble techniques and deliver
DL inference services. A unique problem called DNN
ensemble selection is formulated to optimize the DL
inference quality. The goal of DNN ensemble selection
is to adaptively form an EdgeCmte that is best-fit for
the currently received inference tasks, meanwhile satisfies
constraints posed by the limited computing resources and
service response deadline.

« We propose an online algorithm, Automated Ensemble
Selection (AES), to provide a solution to the DNN en-
semble selection problem. AES leverages the framework
of multi-armed bandit. It learns the impact of task features
on DNNs’ performance and judiciously balances explo-
ration (i.e., learning DNN performances) and exploitation
(i.e., maximizing inference quality) to achieve asymptotic
optimality. A novel ensemble selection rule is designed
as a subroutine of AES to identify best-fit EdgeCmtes
based on the learned knowledge. It jointly considers
the accuracy and diversity of DNNs in EdgeCmte, and
dramatically improves the accuracy and robustness of DL
inference services.

« We run experiments on two real-world datasets, Cal-
tech101 [20] and MASATI-v2 [21], to evaluate the pro-
posed algorithm. The experimental results show that AES
improves inference accuracy by 24.0% compared to the
best single DNN. AES also provides higher learning
efficiency compared to benchmark learning schemes.

The rest of this paper is organized as follows. Section II
reviews related works. Section III introduces the system model
and defines the DNN ensemble selection problem. Section IV
designs the AES algorithm. Section V shows experimental
results, followed by conclusions in Section VI.

II. RELATED WORK
A. Deep Learning on Edge System

Recent efforts on bringing DL techniques to edge computing
platforms have introduced a new research area [11], [22]. The
existing works in this area can be categorized into three types.
The first type of works is to enable DL training over a network
of edge servers, e.g., authors in [23] use distributed DL to
build a video surveillance system on edge systems. The second
type of works exploits DL for designing better control policies
for edge computing platforms, e.g. the work [24] designs a
DL-based offloading policy. The third type of work provides
DL inference service on the edge platform, and our work
belongs to this category. Several recent works have studied to
improve the efficiency of DL inference using edge computing.
For example, authors in [25], [26] use the DNN partitioning
technique to design a collaborative DL inference framework
leveraging both end-devices and edge computing platforms;
the work [27] provides machine learning inference service
on the edge computing platform and improves the inference
quality by considering the uncertainty of inference workload;
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recently, Microsoft’s Data Box edge [28] releases a new func-
tionality that allows users to deploy machine learning model
on its edge devices and deliver machine learning inference
service. In stark contrast, our work investigated the possibility
of using the DNN ensemble technique, which provides state-
of-the-art performance to many DL applications [15], on edge
computing platforms. This is a new topic that has not been
studied by existing works.

B. DNN Ensemble Prediction and Ensemble Selection

The ensemble prediction/forecasting is a longstanding ma-
chine learning strategy and the earliest work can be traced
back to 1979 [29]. The key is to combine several base models
strategically to produce a better predictive model. This strategy
reduces the variance of predictions and therefore gives more
robust and accurate prediction results [30]. The ensemble
prediction technique has also contributed to the development
of DL in recent years. For example, authors in [14] create a
DNN ensemble by averaging the output of multiple individual
DNNs, which far outperforms existing benchmarks in terms
of inference accuracy. Because averaging outputs of individ-
ual DNNs is probably sub-optimal, more advanced ensem-
ble/fusion rules are further investigated. For example, the work
[31] uses weighted averaging to combine outputs of individual
DNNs and proposes a learning scheme to determine the weight
of DNNs. Authors in [32] use meta-learning and train a neural
network to combine the outputs of individual DNNs. Besides
higher inference accuracy, recent works [17] further show
that using the DNN ensemble technique effectively defends
adversarial attacks and therefore provides more robust and
secure DL inference services. Note that our work is not simply
applying the DNN ensemble technique on edge computing
platforms, but involves a unique DNN ensemble selection
problem due to the limited computing capacity of edge servers
and the response deadline of DL inference services.

While predicting with DNN ensembles is widely used,
DNN ensemble selection is still an under-investigated topic in
the existing literature. DNN ensemble selection is somehow
related to the model selection problem which aims to identify
one single DNN model that provides the best inference per-
formance. Several works have been done on model selection
for on-device DL inferences. For example, the work [33]
shows that different DNNs have different accuracy and delay
performances, and a model selector is trained to choose the
best-fit DNN. The authors in [34] design a big/little DNN
framework where a little DNN is used whenever possible and
a big DNN is used only when the confidence of the little DNN
is less than a predefined threshold. However, selecting DNN
ensembles is much more complicated than selecting one DNN
model because it is difficult to analytically capture the inter-
dependency among multiple models in the DNN ensemble.
There is still no consensus in the community on how to
build an optimal DNN ensemble, and the performance of a
DNN ensemble depends heavily on the test data [35]. This
paper designs a novel ensemble selection rule. It considers
the accuracy of individual DNNs and the diversity of DNN
members in the ensemble, which are empirically recognized as

two key factors for constructing high-quality DNN ensembles
[36], [37]. Because the DNN accuracy is unknown for user
inference tasks, our work also uses online learning methods
to learn the inference accuracy of DNNs.

III. SYSTEM MODELS
A. Edge Computing Platforms

Our DL inference framework is compatible with most edge
computing platforms. Let us consider a typical multi-access
edge computing (MEC) system [8], [38]. A set of edge servers
are deployed in a service area, and each edge server is co-
located with a wireless access point. Users can offload their DL
inference tasks to reachable edge servers via wireless connec-
tions. The edge system operator manages computing resources
on edge servers with virtualization techniques, e.g., virtual ma-
chines (VMs) and containers. To provide DL inference service,
a DL service provider rents computing resources (e.g., VMs)
from edge servers using certain rental mechanisms [39]. With
allocated computing resources, the DL service provider can
configure its DNNs and application programming interfaces on
the edge server for processing user inference tasks. In addition,
the edge computing platform is able to accommodate multiple
DL service providers. Different DL service providers will be
allocated with isolated computing resources for deploying their
own DL services. The resource scheduling for multiple DL
service providers [40] is a problem orthogonal to the theme
of this paper. Our goal is to enhance DL inference performance
with DNN ensemble techniques. This problem is independent
for a DL service provider once the computing resources on an
edge server have been allocated. Without loss of generality,
we present our method for one DL service provider on one
edge server. Fig. 1 illustrates the implementation scenario.

B. DNN Ensemble Selection and Implementation Constraints

The DL service provider collects a set of DNNs, indexed
by M = {1,2,..,M} at the edge server. We assume that
all available DNNs can be stored on the edge server since
the storage is less likely to be a constraint due to its low
price nowadays. The operational timeline for the DL service
provider is discretized into time slots + = 1,2,...,T (e.g.,
a few seconds per slot). We let X' = {x],x},.. .,x;(,} be
the set of inference tasks received from users in time slot
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t, where K’ is the total number of received tasks. Note that
we consider our problem for one DL service provider, and
therefore the received inference tasks request the same type
of DL service, and the data size of tasks is a predetermined
constant. As aforementioned, the user inference tasks exhibit
different features due to the impact of external environment,
which affects the performance of DNNs in different ways
(we validate this claim via a simple trial in the experiment
setup Section V-A). Therefore, instead of using a constant
EdgeCmte, we adaptively change EdgeCmte based on the
features of received tasks X'. We let 8 C M denote the
EdgeCmte selected by the DL service provider in time slot 7.
DNNs in the selected EdgeCmte will be loaded into the edge
server RAM to process inference tasks.

While EdgeCmte improves inference accuracy and robust-
ness, it also increases the space and time complexity. The
resource usage and delay for running an EdgeCmte depend
on the implementation scheme. For example, if DNNs in
EdgeCmte are run in parallel, then a large amount of com-
puting resources are required to load all DNNs in RAM at
the same time. If DNNs are run sequentially (e.g., one by
one), then less computing resource is required because only
one DNN is loaded in RAM at a time. But using sequential
execution will need more time to complete the inference of all
DNNs. Besides these two basic schemes, other implementation
schemes can also be applied and most of them are compatible
with our framework. Given a certain implementation scheme,
we let ¢(S) and be the computing resource usage and d*(S)
be the inference delay for running EdgeCmte S. It is intuitive
to see that ¢(-) and d¥(-) are non-decreasing functions of the
ensemble size |S| (i.e., the number of DNNs in the EdgeCmte).
Due to the limited computing resources at edge servers and the
potential requirement on the service response time, EdgeCmte
may not able to include all available DNNs.

1) Computing Resource Constraint: Let ¢ be the amount of
computing resources available at the edge server. Therefore,
for a feasible EdgeCmte S, its resource usage should not
exceed the computing resource constraint ¢, i.e., ¢(S) < €.

2) Response Deadline Constraint: We let d'(S?) = d™' +
d®'(S?) denote the service delay given the selected EdgeCmte
S?. The service delay consists of transmission delay d™' and
inference delay d¥'(S’). As discussed above, the inference
delay is determined by the selected EdgeCmte S’. The trans-
mission delay is incurred due to task offloading and result
return over the wireless network. Because the decision for
DNN ensemble selection is made after the offloading process
is completed. At that time, tasks have been received at the
edge server, and therefore the task offloading delay can be
directly obtained by observing timestamps of the data packets
that record when they are sent and received. However, we
cannot get delays for result return using timestamps because
the result return has not happened when we perform DNN
ensemble selection. Therefore, we use the expected downlink
rate to calculate its expected value. Because the data size of
inference results is usually small, the transmission delay is
dominated by the task offloading delay, and using the expected
delay for result return will not cause large errors. In this case,
the transmission delay d™’ is actually a known value when

solving the DNN ensemble selection problem. Let d denote
the service response deadline, the constraint for the inference
delay is d¥(S") < d — d™'.

C. Utility Definition and Problem Formulation

Running inference with EdgeCmtes, we need a fusion
rule to combine individual outputs of DNNs to generate a
final inference result. The fusion rules are often different for
different service applications (e.g., image classification, object
detection, and regression) because their output formats are
different. In Appendix A, we give several examples of fusion
processes for different application services. Without loss of
generality, we will take classification-related applications as
an example to define the utility function and present our
algorithm. However, our method can be easily extended to
other application services with very slight modifications (see
Appendix A for more discussions). Let y’ P be the output of
DNN m for task x,’(. If an EdgeCmte contains only DNN m,
then the final inference result y; for task xj is yI « j/ﬁmk.
However, if an EdgeCmte contains more than one DNN, we
will need a fusion rule to combine outputs of multiple DNNS.
There exist various fusion rules for classification problems,
e.g., majority voting and confidence averaging [31], and we
do not want to confine our method to a specific fusion rule.
Therefore, we generalize the fusion process into a general
function F. It takes the outputs of DNNs in the selected
EdgeCmte, i.e., {9;1’,(},"65:, as input and gives the final
inference result §; for task x;, i.e., §; < T({f}fn’k}mest).

The DL service provider derives rewards by serving users’
inference requests. We define the reward of processing a task
as the correctness of its inference result. Mathematically, for
tasks x]’(, its reward is defined by

u(xl, S F)=1 {T’({y:ﬂ»k}mest) = y,i}, (1)
where y! is the ground truth of task x/ and 1{-} is an indicator

function. Given the set of admitted tasks X’, the total reward
in time slot ¢ is

UX', S5 F) = u(xt, 8" F). )

xp €X?

Our goal to maximize the cumulative reward in a total of
T time slots by choosing a sequence of EdgeCmtes {St}zT:r
This gives our DNN ensemble selection problem:

. r rQt.
P1: max D UXLS5F) (3a)
st (S <Vt (3b)
d¥ (8" <d—-d™' vt (3¢)
S c M, Vi (3d)

Recall that (3b) is the constraint posed by the comput-
ing capacity of edge servers and (3c) is the constraint on
the response deadline. The key difficulty in solving Z1 is
the obscured process of ensemble prediction. The perfor-
mance of EdgeCmte is jointly determined by its constituting
DNNs, and can be affected by various factors, e.g., the
accuracy of individual DNNs, diversity among DNNs, and
orthogonality\complementary of DNNs’ training data [41].

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /gublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 21,2021 at 15:

9:01 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2021.3102945, IEEE Internet of

Things Journal

Some of these factors are difficult to be characterized ana-
lytically, and some of them, e.g., DNNs’ training data, are
probably unknown in our problem. What’s more thorny is
that the impact of these factors is not entirely understood. As a
result, it is extremely difficult to provide an analytical solution
to Z1. Fortunately, the existing literature [17], [35], [42] has
provided valuable empirical experiences on constructing good
DNN ensembles, which inspire us to design effective heuristic
solutions for DNN ensemble selection.

D. Heuristic Rules for DNN Ensemble Selection

Previous works [17], [35], [42] show that the accuracy
and diversity of base models are two vital factors for con-
structing high-quality ensemble predictors. The accuracy of
individual models determines the worst-case performance of
the constructed ensemble predictor, and therefore including
models with the highest accuracy in ensemble predictors
often produces good performances [35]. Besides, it is widely
accepted that an ensemble predictor generalizes better with
diverse members. Therefore, we propose a heuristic rule for
solving problem Z?1. The core idea of our heuristic rule is
to construct EdgeCmtes with DNNs that have the highest
accuracy and exhibit large diversity for received tasks.

We first decouple the &1 into subproblems, one for each
time slot ¢ as follows:

thex, u(xl, 8" F) s.t. (3b),(3¢),(3d). (4)

max

Sl
Next, we give the heuristic rule for the above per-slot problem.
Let a,,(x) denote the accuracy of DNN m for task x}, our
heuristic rule can be written as:

1 &

FZ Z Ay (X3)
k=1 meS?
s.t. (3b), (3¢), (3d).

max + k- O(S, XY,

na (52)

(5b)

where the first term in (5a) considers the accuracy of individual
DNNs in EdgeCmte, and the second term is the diversity
of DNNs in EdgeCmte given the received tasks X’. The
objective is to maximize a weighted sum of two terms with
their importances adjusted by weight x. Note that the diversity
measure ®(-, -) in (5a) is for now given in a general form. We
will give a detailed definition of ®(-,-) later.

The heuristic rule provides us a way to identify best-fit
EdgeCmtes, however, it cannot be directly applied in practice
because the DNN accuracy, i.e., afﬂ(x,i), for user tasks is
unknown. Although it is possible to measure DNN accuracy
on standard test data, one cannot guarantee that the distribution
of user tasks is the same as that of standard data. The actual
DNN accuracy is revealed during implementation and needs
to be learned over time. In the next section, we cast the DNN
ensemble selection into an online learning problem and use
Multi-armed Bandit (MAB) techniques to provide a solution.

IV. AUTOMATED EDGECMTE SELECTION VIA
CONTEXTUAL COMBINATORIAL MULTI-ARMED BANDIT

We use the framework of Contextual and Combinatorial
Multi-armed Bandit (CC-MAB) [43] to design our Automated

DNN Ensemble Selection (AES) algorithm. AES is “contex-
tual” because it leverages the side-information (i.e., context)
associated with inference tasks to learn the DNN accuracy,
and it is “combinatorial” because it selects multiple DNNs to
form an EdgeCmte. To show our algorithm, we first introduce
context-parameterized accuracy.

Our method uses context of inference tasks to facilitate the
learning of DNNs’ accuracy. We consider simple contexts that
can be directly observed without processing tasks (e.g., with
images as inputs, the context can be image resolution, contrast,
and noise). Using these simple context will not incur much
extra computation burdens to edge servers. We let w,’( e Q
denote the context of task x,i, where Q is the context space. We
slightly abuse the notation of DNN accuracy {a,(x})}mem by
defining the context-parameterized accuracy {am(ou,i)}m€ Mo
i.e., the accuracy of DNN m for task x; depends on context
wy. We let py(w)) = E[a,(w])] be the expected accuracy of
DNN m for inference tasks with the context w;.

A. Oracle Solution

Before presenting our method, we first show the oracle
solution for DNN ensemble selection by assuming existence
of an oracle that knows the expected accuracy /Jm(w,’() of an
arbitrary DNN m for an arbitrary task x,’C with an arbitrary
context wli. Given the oracle, we replace am(x,’() in (5) with
the expected context-parameterized accuracy f,(w}).

max
St

&
DI um(w,i>) +x- DS, XY, (6a)
k=1 meS?

s.t. (3b), (3c), (3d). (6b)

Based on the context-parameterized accuracy, we define
the diversity function ®(.,-). The diversity among DNNs is
measured by how DNNs serve differently for tasks with
different context. Mathematically, the diversity is defined by:

2
i

oS XY = D [ (@) 11 oy e0)|

{mn}e()

where u,,(w'") = {,u,,,(w]’()}][j:t1 collects the expected context-
parameterized accuracy of DNN m for tasks in X7, (‘Z)
denotes all 2-element combinations of DNNs in S*, and LI(-)
is a normalization process to eliminate the impact of DNN
accuracy which has already been considered in the first term
of (6a). The ensemble diversity is a distance-based measure
that calculates the Euclidean distance between any two DNNs’
normalized context-parameterized accuracy for received tasks.
This value reflects how DNNs work differently for tasks with
different contexts. Therefore, the Euclidean distance is very
suitable for measuring the diversity of DNNs in our problem.
The ensemble selection rule in (6) is a combinatorial opti-
mization problem. When the number of available DNNs | M|
is small, we can use brutal force to find the optimal solution.
When |M] is large, greedy algorithms can be used to derive
a 1/2-approximate solution in polynomial time. We let 8™’
denote the EdgeCmte selected by the oracle in time slot 7.
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B. Online Learning with CC-MAB

In the previous subsection, we have already presented our
DNN ensemble selection rule with oracle information on
the context-parameterized accuracy ym(wl’c). However, such
information is unknown in practice, and therefore a learning
algorithm is needed. Next, we design our online learning
algorithm, Automated EdgeCmte Selection (AES). AES uses
the framework of contextual combinatorial MAB (CC-MAB).
In each time slot ¢, AES operates as follows: (i) the edge
server observes the context w} of each admitted task x; € X'.
(ii)) An EdgeCmte S’ is determined based on the observed
context and DNN accuracy learned in previous time slots. (iii)
Inference tasks are forwarded into each DNN in EdgeCmte,
and the outputs of individual DNNs are fused to final results
that are returned to end-users. (iv) At the end of the time slot,
the ground-truths of inference tasks are observed, and then
AES updates the estimated accuracy for DNNs in the selected
EdgeCmte. Fig. 2 gives a block diagram of AES.

Intuitively, we want to select the best-fit EdgeCmte in each
time slot using the DNN ensemble selection rule in (5). How-
ever, an underlying pre-condition for the selected EdgeCmte
to deliver its expected performance is that the accuracy esti-
mation for DNNs is accurate enough. To precisely estimate the
context-parameterized accuracy for DNNs, the learner needs
to collect an adequate amount of DNN5s’ inference correctness
for tasks with various contexts. Note that the inference result
of a DNN can be collected only when it is selected in
EdgeCmte for processing admitted tasks. Therefore, instead of
selecting the best-fit EdgeCmte, the learner sometimes needs
to select a non-optimal DNN in order to collect its inference
results for better accuracy estimation. Considering this, our
AES algorithm has two phases, exploration and exploitation,
with each phase targeting its own purpose. In exploration, the
learner selects a DNN in order to collect its inference results
and learn its accuracy for a particular context. In exploitation,
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Fig. 3: Illustration of context partition and counter update.

the learner aims to select the best-fit EdgeCmte using the
ensemble selection rule in (5) based on the learned accuracy.
An important designing goal of AES is to balance exploration
and exploitation.

The pseudocode of AES is presented in Algorithm 1.
Without loss of generality, we assume the context of inference
tasks is from a bounded context space that can be written
as Q £ [0,1]P, where D is the dimension of context space.
Due to the continuous context space, it is impossible to
collect inference results of DNNs for each possible context
w € Q. To make the problem tractable, we consider the
natural phenomena that DNNs will have similar performance
for inference tasks with similar context, which is formalized
by the Holder condition:

Definition 1 (Holder Condition). There exists L > 0, > 0
such that for any DNN m € M and any context w, w’ € €, it
holds that |, (w) — pm(w’)| < L||lw—-w’||?, where ||-|| denotes
the Euclidean norm in RP.

With Holder condition, we can learn DNN accuracy for a
group of inference tasks with similar context, which signifi-
cantly improves the learning efficiency. AES starts by creating
a partition A on the context space Q, which splits Q into 4P
hypercubes 1 € A with identical size of ; X --- X +. The
hypercubes can be understood as groups of similar context.
The parameter # is an important algorithm parameter to
be designed for determining the number of hypercubes in
the partition. For each admitted task x!, AES determines a
hypercube 4; that context w; belongs to, i.e., w; € A} holds.
For each DNN m € M and hypercube 1 € A, AES keeps two
counters, counter C! (1) and counter E’ (2). C! (A1) records
the number of tasks processed by DNN m up to time slot ¢
whose context belong to hypercube A; and E! (1) records the
number of tasks correctly classified by DNN m up to time
slot + whose context belongs hypercube A. Fig. 3 illustrates
the context partition and the update process of counters.

In time slot ¢, the estimated accuracy of DNN m for tasks
with context in hypercube A is calculated by:

ay, (1) = E;,(1)/Cy(2) (7)

For example, consider a tasks xli with context wI’C € /l]’{, the

estimated accuracy of DNN m for x; is dm(li).
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Algorithm 1 Automated EdgeCmte Selection

1: Input: time horizon T, algorithm parameters h, V(¢);

2: Initialization create partition A; set C,, (1) = 0, E,;,(1) =
0,V e Ar,m e M;

3: fort=1,...,7T do

4: Observe context w; of each task x; € X' and find

context hypercube A7 such that w € 4; holds;

5 Identify M"®! as defined in (9);

6: if M">! # () then > Exploration

7 if c((M"?) < ¢ and d* (M'®) < d — d™' then

8: Get S”' by solving the problem in (11);

9: S — 8" u MU,

10: else

11: Get S’ using the rule in (12);

12: else > Exploitation
13: Get S’ by solving the problem in (10);

14: Observe the ground truth of the inference tasks;

15:  for each m € 8" and 1 € {1}, 15:11 do > Updates
16: Update counter C/, (1) and E?,(1);

17: Update estimation: d,,(1) = E!, (1)/CL,(A);

In each time slot, AES is either in exploration or exploita-
tion. To determine the correct phase, AES first checks whether
the context hypercubes have been sufficiently explored to give
a precise accuracy estimation. For DNN m, its under-explored
hypercubes are identified based on the counter C,,(1):

At ={a1eA|CL) <V} (8)

where V(¢) is a control function to determine whether the
hypercube has been sufficiently explored, and it needs to be
appropriately designed to balance exploration and exploitation.
Based on the under-explored hypercubes of DNNs Au’, Vi,
we define under-explored DNNs in time slot ¢ as:

M ={me M| 3 x| e X', 2} € Alg'} 9)

This definition indicates that the estimated accuracy of an
under-explored DNN is not precise enough for at least one
of the admitted tasks. The phase of AES in time slot ¢ is
determined based on the under-explored DNNs MU&!,
Exploitation: If the set of under-explored DNNs is empty,
MU? = (), it means that all DNNs are sufficiently explored
to give precise accuracy estimation. Then, AES uses the
estimated accuracy in (5):

Kt
max (%Z Z am(ﬂ,g)) +x- DS, XY (10a)
k=1 meS!?

s.t. (3b), (3c), (3d). (10b)

Note that the estimated accuracy &m(/l]i) is used in (10) instead
of the oracle information w,,(w; ), and (., ) is the diversity
measure based on the estimated accuracy.

cb(Sf,Xf):% >, I(@n@)) - @),
tmn}e(3)

where @,,(1") := {&m(/ll’c)}f:tl collects the estimated accuracy
for all received tasks.

7

Exploration: When the set of under-explored DNNs is non-
empty, i.e., M"“" # @, AES enters exploration and tries to
select DNNs in MY’ for acquiring more precise accuracy
estimation. If ¢c(M"") < ¢ and d(M">") < d, then all the
under-explored DNNs can be included in EdgeCmte. It is
possible that the computing resource of the edge server is
not fully used, and therefore we can include more DNNs in
addition to the under-explored DNNs:

Kt
—1 4 e /,
MAX ] ZS: ;afn(a,g) Fr- DS XY ()
meS»t k=
st ¢ (S UM <q, (11b)
dF (Sl,t U Mue,t) < d‘_ dT’t, (11C)
S"C MM, (11d)

In this case, the selected EdgeCmte is S = S U M"!,
If c((M¥?) > ¢ or d°(M"') > d — d™', we will randomly
remove DNNs from MUS! until the reduced set satisfies the
constraints of computing capacity and response deadline. The
EdgeCmte S’, in this case, is determined by

Initial: S" « M"’ (12a)
Repeat: S’ « S'\ {s & S’} (12b)
Until: ¢(S") < ¢ and d°(S") < d — d*™* (12¢)

C. Algorithm Parameter Design and Performance Analysis

Now, we design two important parameters i and V(¢)
in AES. The parameter design affects the algorithm perfor-
mance which is measured by the reward loss compared to
oracle (termed as regrer). Let {S™'}]_ and {S'}]_, be the
EdgeCmtes selected by oracle and AES, respectively. The
regret is defined as:

T
R(T)=E Z

t=1 k=1

The goal of AES is to achieve a sublinear regret R(T') = O(T”)
with v < 1, which means that AES is asymptotically optimal
since limy_,o R(T)/T — 0. Because the impact of DNN
diversity on the inference correctness is difficult to characterize
analytically, we simplify the diversity term to a constant, i.e.,
for any EdgeCmte S with |S| > 2, we assume O(S, X) = ©°.
Based on this, the theorem below gives the design of 4 and
V(t), and the regret upper bound of AES.

Kt

u (x,t{, S F)—u (x,i,St; F)|.

Theorem 1 (Bound for Regret R(T)). Let V(1) = 17 log(t)
and h = [Tﬁ]. If AES is run with these parameters, Holder
condition holds true, and ®(S, X) = ®°, VS with |S| > 2, then
the leading order of regret E[R(T)] is O (T% log(T)).

Proof. See Appendix C in the supplemental file. o

Theorem 1 indicates that the regret of AES is sublinear in
the time horizon T. Moreover, the theorem provides a bound
on the performance loss for any finite time slot. This can be
used to characterize the convergence speed of AES. Although
our analytical results rely on the simplification of ensemble

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or{ /gublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 21,2021 at 15:

9:01 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2021.3102945, IEEE Internet of

Things Journal

diversity, we show in the experiment that AES can still provide
sublinear regret in practice when ®(S, X) = ®° does not hold.

Complexity analysis: Next, we analyze the space and time
complexity of the proposed algorithm. The space complexity
of AES is determined by the number of hypercubes in the
partitioned context space. According to the algorithm design
in Theorem 1, parameter /4 for context space partition is set
to [TﬁL which means that the number of hypercubes
in the context partition is #2 = [T5#5]P. Each context
hypercube maintains an accuracy estimation. Because there are
M candidate DNNS, the total number of accuracy estimations
maintained by AES is M[T35]P. However, the actual
memory usage can be smaller because an accuracy estimation
is created for a context hypercube only after contexts of some
received tasks fall in that context hypercube.

The time complexity of AES mainly lies in updating
accuracy estimation for context hypercubes. The proposed
algorithm uses recursive averaging for accuracy estimation,
and we let O(1) denote the time complexity of one recursive
averaging operation. Note that the accuracy estimation of
a DNN is updated only when it is selected in EdgeCmte,
and the update is performed for the context hypercubes to
which the contexts of received tasks belong (see Fig. 3 for
illustration). Therefore, at most Ky.xM accuracy estimations
will be updated, where Kp,x is the maximum number of
inference tasks received in one time slot. This indicates that
the time complexity is O(KpaxM). The actual time complexity
can be smaller in practice because not all DNNs are selected
in the EdgeCmte and contexts of certain inference tasks may
fall into the same context hypercube.

V. EXPERIMENTS
A. Experiment Setup

1) Edge Computing Testbed: A DELL workstation is used
as an edge server. It is equipped with a 64-bit 8 Intel 17-4770
CPU cores running at 3.40GHz, and one NVIDIA Geforce
GTX 1080 Ti GPU. The experiment is run on Ubuntu 16.04
LTS system with Pytorch v1.1.0, CUDA v9.0, cuDNN v7.0. In
each time slot, tasks are sent to the edge server in a batch-wise
manner. The average size of task batches is 10.

2) Data Sources and DNN Models: Two datasets are used
in our experiment: Caltech101 [20] and MASATI-v2 [21]. The
Caltech dataset has 101 categories. A category can contain
40 to 800 images, and the size of images is roughly 300 x
200 pixels. The MASATT dataset collects images of maritime
scenes under different weather and illumination conditions.
It contains 7,389 satellite images which are categorized into
seven classes: land, coast, sea, ship, multi, coast-ship, and
detail. We conduct experiments separately on each dataset. To
run our algorithm, we first need to generate a set of available
DNNs and store them on the edge server. DNNs differ from
each other in two aspects: 1) the training data, and 2) the DNN
architecture. We three DNN architectures, Googlenet [49],
Resnet50 [14], and Mobilenet-v2 [50], respectively. These
DNNSs have been pre-trained by the ImageNet repository [51]
and will be further retrained with Caltech101 and MASATI-
v2 datasets. Each dataset (Caltech101 or MASATI-v2) will

be pre-processed in different ways to generate different data
sources. To be specific, the pre-processing modifies the noise
and resolution of images in the dataset. The original dataset is
denoted as ORI. We create two noisy data sources by adding
white Gaussian noise with variance 0.1 (referred to as NOS-1)
and 0.2 (referred to as NOS-2), respectively. We also create
two data sources with different image resolutions by down-
sampling original images to the resolution of 40 x 80 (referred
to as RES-1) and 80x 150 (referred to as RES-2), respectively.
Each data source is separated into two parts, training data and
test data. The training data contains 60% of the images, and the
rest 40% are used as test data to evaluate our method. We leave
a considerable amount of data for testing because our method
involves an online learning process. We retrain Mobilenet-
v2, Googlenet, and Resnet50 using the training data of each
data source. This imitates the scenario that collected DNNs
are trained by different data sources. Given this experimental
setting, AES uses the noise and resolution of images as context
information. This setting is very realistic because the noise
and resolution of images depends heavily on user devices,
e.g., smartphones, surveillance cameras, and etc. Table I lists
system and algorithm parameters used in the experiment.

TABLE I: Experimental setup.

Parameters Settings
Caltech101, MASATI-v2

Googlenet, Resnet50, Mobilenetv2

Datasets
DNN architecture

# of available DNNs IM|=9
Average size of task batch 10
« of Holder condition 0.3
Context dimension D 2

Context information Image noise, Image resolution

Time horizon T 900 (MASATTI), 1100 (Caltech)

GPU memory capacity 200MB
Response deadline 300ms
Average wireless transmission rate 20Mbps

3) Property of Individual DNNs: We next show some
properties of individual DNNs. Fig. 4 illustrates a simple
trial where three DNNs with the architecture of Googlenet,
Resnet50, and Mobilenet-v2, are trained by the training data
of Caltech/MASATI ORI, Caltech/MASATI NOS-1, and Cal-
tech/MASATI NOS-2, respectively. Each trained DNN is
evaluated on the test data of Caltech/MASATI ORI, Cal-
tech/MASATI NOS-1, and Caltech/MASATI NOS-2. Table
II and Table III shows the accuracy of individual DNNs
generated on the Caltech and MASATI dataset, respectively.
There is a clear trend that a DNN achieves higher accuracy
on the test data that comes from the same data source as its
training data. We can also see that DNNs tend to perform better
on the test dataset that is similar to its training data, e.g., DNN
trained on ORI has higher accuracy on NOS-1 (low noise) than
that on NOS-2 (high noise). We train available DNNs on ORI,
RES-1, and RES-2 datasets in the same way, and give their
accuracy performance in Appendix B in the supplementary
file. Similar trends can also be observed.

B. Results and Evaluations of AES

We compare AES with four benchmarks:
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TABLE II: Accuracy of individual DNNs (Caltech dateset).  _** et 8001 [ e ues =
Test on | Caltech | Caltech | Caltech g o 3¢ - 5’
Train on ORI NOS-1 | NOS-2 20| o
Caltech | Cooglenct | 0.828 | 02755 | 0.048 [foo-o-omoememoemeree®
ORI Resnet50 0.930 0.303 0.052 0 200 400 600 800 200 400 600 800 1000
Mobilenetv2 0.898 0.263 0.035 Time slot index Time slot index
Goolenet 0.470 0.655 0.308 Fig. 6: Comparison of algorithm regret.
Gt | ResnetS0 | 0222 | 0806 | 0.386 £ P £ &
Mobilenetv2 0.294 0.709 0.294 .
(0} oloféfe: 0.056 0338 0434 (Section V-A). AES and other benchmarks run on the test data
Caltech Resnet50 0.014 0.418 0.584 of ORI, NOS-1, and NOS-2. Later in this section, we will show
NOS-2 1 NMobilenetv2 0.017 0.361 0.433 the results when running with two-dimension context space.

TABLE III: Accuracy of individual DNNs (MASATI dataset).

Test on | MASATT | MASATT | MASATI

Train on ORI NOS-1 NOS-2
Googlenet 0.8244 0.5618 0.3221

Mgi?ﬂ Resnet50 | 09029 | 05036 | 0.1916
Mobilenetv?2 0.8084 0.4196 0.1499

Goolenet 0.6564 0.7442 0.6264

MO Resnets0 | 03609 | 08388 | 0.6990
Mobilenetv2 | 03550 | 0.7349 | 04373

Goolenet | 03512 | 05103 | 0.6843

VAT Resnetso | 01524 | 02410 | 07108
Mobilenetv2 | 0.1292 | 02786 | 0.5741

1) Oracle: Oracle knows the context-parameterized accuracy
of DNNs a priori. In each time slot, it selects an EdgeCmte
using the DNN ensemble selection rule in (5).

2) UCBI: UCBI is a classic MAB algorithm that selects
one action in each time slot. We create super-actions, i.e., all
feasible DNN ensemble decisions, and use UCBI1 to learn the
reward of each super-arm.

3) Best-single: It selects one single DNN that delivers the
highest accuracy for admitted tasks in each time slot. This
method is used as a baseline to validate the efficacy of DNN
ensemble technique.

4) Random: It randomly selects B DNNs to construct an
EdgeCmte in each time slot, where B is the maximum number
of DNNs that can be included in an EdgeCmte given the
computing capacity and response deadline.

The a value in Holder Condition is set to 0.3. The comput-
ing capacity is 200MB. The response deadline is set to 300ms.
We use accuracy-weighted confidence as the fusion rule to
combine outputs of individual DNNs. Detailed descriptions for
accuracy-weighted confidence can be found in Appendix A-A.
We first run the experiment with one-dimension context space,
where AES only observes the noise of images as context.
(Caltech or MASATI) ORI, NOS-1, and NOS-2 datasets are
used to generate 9 DNNs as described in the experiment setup

1) Comparison of Inference Accuracy: Fig. 5 compares the
accuracy achieved by AES and the other four benchmarks
on the Caltech and MASATI dataset. As expected, Oracle
achieves the highest accuracy for both datasets. Among the
others, AES outperforms other benchmarks, and achieves
close-to-oracle accuracy. We see on the Caltech dataset that the
accuracy of Best-single converges to 48.0%, by contrast, AES
is able to achieve 72.0% accuracy which is a 24.0% accuracy
increase compared to Best-single. Also, it can be observed on
both datasets that using Random can provide higher accuracy
than Best-single, indicating that using the DNN ensemble
technique can effectively improve the DL inference accuracy.

2) Regret Analysis: Fig. 6 compares the regret of two online
learning algorithms, AES and UCB. It can be clearly observed
that the regret of UCB increases linearly over time, which
means that UCB cannot identify the optimal EdgeCmte as the
learning proceeds. By contrast, AES gives a sublinear regret,
which means that the performance of AES is asymptotically
optimal compared to Oracle. It should be noted that the
assumption ®(S,X) = @° is not guaranteed when running
the experiment on these two real-world datasets, but AES can
still provide a sublinear regret.

3) Benefit of Ensemble Diversity: In Fig. 7, we evaluate
the benefit of considering ensemble diversity during DNN
ensemble selection. For the benchmark AES w/o Diversity,
we set weight « in (6) to O such that ensemble diversity @
will not affect DNN ensemble selection. In this case, AES
w/o Diversity selects DNNs that have the highest accuracy for
received tasks. We can see from Fig. 7 that AES improves
the accuracy by 78.5% — 73.8% = 4.7% for MASATI and
72.8% — 68.9% = 3.9% for Caltech compared to AES w/o
Diversity. This indicates that promoting diversity of DNNs in
EdgeCmte improves DL inference accuracy.

4) Impact of Computing Capacity: Fig. 8 evaluates the
impact of computing capacity. The resource constraint in this
experiment is GPU RAM (VRAM). We vary VRAM from
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50MB to 300MB and Fig. 8 shows the accuracy achieved by
Oracle, AES, and Random on the Caltech dataset. In general,
we see that all three methods achieve higher accuracy with
more computing resources available at the edge server. This
is because the DL service provider can recruit more DNNs in
the EdgeCmte, which tends to produce more robust inference
results. It is also worth noticing that the gap between AES and
Random decreases with the increase in computing resources.
For example, when the computing capacity is 50MB, the
accuracy improvement provided by AES over Random is 14%;
when the computing capacity becomes 300MB, the accuracy
improvement provided by AES over Random decreases to
6%. This means that learning is more necessary when the
computing resource is limited.

5) Performance of Fusion Rules: Besides the accuracy-
weighted confidence, we also applied our method with other
commonly used fusion rules, e.g., confidence averaging and
majority voting. Fig. 9 compares accuracy achieved by AES
when applied with accuracy-weighted confidence, confidence
averaging [31], and majority voting. We see that accuracy-
weighted confidence achieves the highest accuracy among the
applied fusion rules. While the performance of confidence
averaging and majority voting is worse than that of accuracy-
weighted confidence, it still provides noticeable performance
improvement compared with the non-ensemble scheme. We
also see that the performance of fusion rules depends on the
applied datasets, e.g., majority voting is better than confidence
averaging on MASATI, but is worse on Caltech.

6) Estimation of Context-parameterized Accuracy: Fig. 10
shows the estimation of context-parameterized accuracy for all
9 available DNNs. The y-axis is the partition created on the
context normalized noise, the x-axis is model index, and each
color cube denotes the accuracy value. We depict the oracle
accuracy and the accuracy value estimated by AES at ¢ = 50,
t =500, r = 1000. We can see that AES can effectively learn
the accuracy of DNNs for tasks with different contexts. The
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Fig. 11: Estimation errors.

estimated accuracy is almost the same with oracle accuracy at
t = 1000. Fig. 11 shows the average accuracy estimation error
for context hypercubes when running AES. We see that the
estimation error diminishes over time.
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7) Ensemble Loading Delay, Inference Delay, and Task
Offloading delay: Fig. 12 shows the DNN ensemble load-
ing delay and per-task inference delay. The DNN ensemble
loading delay is the time consumed for loading DNNs to
GPU RAM for processing the received tasks. The figure on
the left side shows that the average DNN ensemble loading
delay varies from 15ms to 82ms depending on the computing
capacity. An EdgeCmte often recruits more DNNs when the
computing capacity is large and as a result, it takes more
time to load the EdgeCmte. The task inference delay is the
delay between feeding tasks to an EdgeCmte and generating
of inference results. The figure on the right side shows that the
per-task inference delay can be as low as 3ms and the highest
per-task inference delay is 12.2ms.

8) Higher Context Space Dimension: We next increase the
dimension of context space. To be specific, AES observes
the noise and resolution of images as two pieces of context
information. In this experiment, we generate two DNNs (with
the architecture of Googlenet and Resnet50) on each of
(Caltech or MASATTI) ORI, NOS-1, NOS-2, RES-1, and RES-
2 datasets. Therefore, there is a total of 10 available DNNs.
The « value in Holder Condition is set to 0.3. In Fig. 13, we
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Fig. 13: Comparison of accuracy with 2-dimension context.

give a comparison of accuracy achieved by AES and other
benchmarks. The general trend in Fig. 13 is similar to that in
Fig. 5, where AES achieves close-to-oracle performances. It
is worth noticing is that Best-single performs much worse in
this case. This is because the feature of inference tasks may
vary across more contexts, and it becomes difficult for one
DNN to work well for inference tasks with diverse features.

VI. CONCLUSIONS

In this paper, we investigated the possibility of using the
DNN ensemble technique on edge computing platforms to
enhance the performance of DL inference services. A unique
problem, DNN ensemble selection, was defined and studied.
The goal of DNN ensemble selection is to identify a subset
of DNNs for constructing a DNN ensemble that works the
best for user inference tasks subject to the limited computing
capacity of edge servers and the possible deadline of response
time. An online learning algorithm called Automated Ensem-
ble Selection (AES) was proposed to solve the DNN ensemble
selection problem. It uses the context information associated
with inference tasks to learn the DNN accuracy and selects
the best-fit DNN ensemble based on the learned knowledge.
The proposed algorithm is practical and easy to implement. It
also guarantees asymptotic optimality.
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