
24

Real-Time Approximate Routing for Smart Transit Systems

NOÉMIE PÉRIVIER, Department of Industrial Engineering and Operations Research, Columbia University,

USA

CHAMSI HSSAINE, School of Operations Research and Information Engineering, Cornell University, USA

SAMITHA SAMARANAYAKE, School of Civil and Environmental Engineering, Cornell University, USA

SIDDHARTHA BANERJEE, School of Operations Research and Information Engineering, Cornell Uni-

versity, USA

We study real-time routing policies in smart transit systems, where the platform has a combination of cars and

high-capacity vehicles (e.g., buses or shuttles) and seeks to serve a set of incoming trip requests. The platform

can use its fleet of cars as a feeder to connect passengers to its high-capacity fleet, which operates on fixed

routes. Our goal is to find the optimal set of (bus) routes and corresponding frequencies to maximize the social

welfare of the system in a given time window. This generalizes the Line Planning Problem, a widely studied

topic in the transportation literature, for which existing solutions are either heuristic (with no performance

guarantees), or require extensive computation time (and hence are impractical for real-time use). To this end,

we develop a 1 − 1

𝑒 − 𝜀 approximation algorithm for the Real-Time Line Planning Problem, using ideas from

randomized rounding and the Generalized Assignment Problem. Our guarantee holds under two assumptions:

(𝑖) no inter-bus transfers and (𝑖𝑖) access to a pre-specified set of feasible bus lines. We moreover show that

these two assumptions are crucial by proving that, if either assumption is relaxed, the Real-Time Line Planning

Problem does not admit any constant-factor approximation. Finally, we demonstrate the practicality of our

algorithm via numerical experiments on real-world and synthetic datasets, in which we show that, given a

fixed time budget, our algorithm outperforms Integer Linear Programming-based exact methods.

CCS Concepts: • Networks → Network design and planning algorithms; • Theory of computation →
Routing and network design problems; • Applied computing → Transportation.

Additional Key Words and Phrases: routing, transit systems, network design

ACM Reference Format:
Noémie Périvier, Chamsi Hssaine, Samitha Samaranayake, and Siddhartha Banerjee. 2021. Real-Time Approx-

imate Routing for Smart Transit Systems. Proc. ACM Meas. Anal. Comput. Syst. 5, 2, Article 24 (June 2021),
30 pages. https://doi.org/10.1145/3460091

1 INTRODUCTION

In the past decade, the advent of ride-hailing platforms such as Lyft and Uber has revolutionized

urban mobility. While commuter transit needs in cities were traditionally satisfied by personal

vehicles or mass transit systems, ride-hailing platforms have grown immensely in popularity and

gained a seemingly permanent footing in the landscape of mobility solutions. However, despite

Authors’ addresses: Noémie Périvier, Department of Industrial Engineering and Operations Research, Columbia University,

New York, New York, USA, np2708@columbia.edu; Chamsi Hssaine, School of Operations Research and Information

Engineering, Cornell University, Ithaca, New York, USA, ch822@cornell.edu; Samitha Samaranayake, School of Civil and

Environmental Engineering, Cornell University, Ithaca, New York, USA, samitha@cornell.edu; Siddhartha Banerjee, School

of Operations Research and Information Engineering, Cornell University, Ithaca, New York, USA, sbanerjee@cornell.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2476-1249/2021/6-ART24 $15.00

https://doi.org/10.1145/3460091

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

https://doi.org/10.1145/3460091
https://doi.org/10.1145/3460091

24:2 Noémie Périvier et al.

the increasingly important role played by Mobility-on-Demand (MoD) services in today’s society,

the intermingling of various modes of transportation has yet to make its way into the status quo:

by and large, if not for using their personal vehicles, commuters either choose to complete their

trips in a low-capacity ride-hailing vehicle, or opt for public mass transit options, each of these

options equipped with their respective benefits and disadvantages. On the one hand, ride-hailing

services have been lauded for their convenience, competitive pricing, and the creation of flexible,

gig economy jobs. On the other, these services have been associated with negative environmental

impacts, chief of which are increased emissions due to higher volumes of traffic congestion and

vehicle-miles traveled. Moreover, despite the fact that these options are often less expensive than

taxi services, they remain out of reach for lower-income populations, for whommass transit such as

bus and subway services remain the most accessible option. And, while these public transit systems

are more affordable and environmentally sustainable, they fail to adequately serve areas that are

not as densely populated. Further, due to their inability to dynamically adapt to passenger demand,

public transit vehicles are often overly packed during rush hour and significantly underfilled in

off-peak hours [20], an inefficiency from which ride-hailing options do not suffer.

In light of this, it should be clear that there exist potentially massive gains from integrating

the on-demand capabilities of ride-hailing services with mass transit options to create a smarter

transportation system. The benefits of such a synergy have been uncovered in both the academic

literature [40], as well as in the wild, with ride-hailing platforms such as Lyft experimenting with

mass transit-like options in recent years [25]. Indeed, the need for such integration has become

all the more stark in the past few months, when cities have turned to microtransit as a means

to address reduced public transit services due to the coronavirus pandemic [26]. The value of

real-time, adaptive hybrid transportation options that retain both the convenience of ride-hailing

and the sustainability of mass transit, is perhaps best evidenced by New York City’s months-long

overnight, for-hire vehicle program for essential workers, discontinued in August 2020 due to high

costs [35]. The extremes of the mobility spectrum to which the Metropolitan Transit Authority

(MTA) turned as a stopgap in this relatively short period of time typifies the potential perils of

relying of an unintegrated system: the free, late-night for-hire vehicle program was a boon to

essential workers who had been deprived of a means to get to their shifts, but the city could not

sustain this as a long-term solution; mass transit solutions, though sustainable, were not flexible

enough to appropriately serve workers living in communities historically underserved by these

services [41]. As an alternative to these two extremes, the city recently turned to the creation of

overnight bus routes that mirror workers’ most popular trips [35]. In doing so, the MTA is faced

with a number of fundamental questions upon which the success of such a system hinges: given

these essential workers’ origins and destinations, which routes should the transit agency operate?

How frequently should it operate each route? How can short, for-hire vehicle trips help to connect

passengers to these routes? This paper aims to answer these questions in order to effectively operate

such an integrated system.

Just as cities have yet to successfully operate integrated mobility services, the operations research

and transportation communities have by and large studied ride-hailing and mass transit systems

separately. On the one hand, there exists an active line of work on approximate-optimal policies

for dispatching drivers to ride requests, and rebalancing empty vehicles [2, 3, 10, 28]. On the other,

the problem of designing the optimal bus routes to serve passenger demand dates back to the

mid-1970s [31]. And, though the question of integrating mass transit and single-occupancy vehicle

solutions has attracted increasing attention in recent years, operational questions have largely been

restricted to using ride-hailing services to connect to pre-existing transit networks [29, 30]. The
joint problem of adaptively designing bus routes in near real-time, and connecting passengers to

these routes via ride-hailing services has to our knowledge yet to be explored.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:3

The key obstacle in designing real-time algorithms with provable guarantees for transit-network

design is the size of the decision space: the number of possible routes is exponential in the number

of nodes of the road network. As such, approaches have either been heuristic [9, 12, 36] (lacking

any guarantees), or exact [34] (requiring extensive computation time); the former may lead to

severe losses in efficiency, while the latter are more properly suited for designing long-term bus

routes, rather than routes that adapt to changing demand patterns.

In this paper, we show that it is possible to design efficient algorithms for line planning that both

provide passengers with the experience of near-real-time booking and service and have theoretical
guarantees. However, this is only true up to a point: as the designer expands her solution space of

feasible transit options, one runs into fundamental limits in terms of how good an approximation

one can hope to achieve via efficient algorithms. Overall, our work provides theoretically sound and
practically meaningful algorithms for real-time line planning, and also exposes the computational
limits of line planning.

1.1 Summary of our contributions

We consider a model in which a Mobility-on-Demand provider (henceforth platform) has control of

a vehicle fleet comprising both single-occupancy and high-capacity vehicles (henceforth cars and
buses respectively). The platform is faced with a number of trip requests to fill during a window

of time (e.g., one hour), and has full knowledge of passenger demands (source and destination

locations, and constraints on start and end times) prior to the beginning of the time window. This

assumption is practically motivated by scheduling services now offered by ride-hailing apps like

Lyft and Uber, and/or the use of accurate demand forecasting models. The platform can service

these trip requests via different trip options: it can send a car to transport the passenger from her

source to her destination; it can use a car for the first and last legs of the passenger’s trip, and have

her travel by bus in between; or it can use more complicated trips comprising of multiple car and

bus legs.

Each passenger matched to a trip option leads to an associated value (or reward), which reflects

both the passenger’s utility for the trip-time, comfort, transfers, etc., as well as platform costs in

terms of car-miles; in addition, the platform also incurs a cost for operating each bus route at a

given frequency. We define the combination of a route and a frequency to be a line. The goal of the
platform is to determine the optimal set of lines to operate (given a fixed budget 𝐵 for opening lines),

as well as the assignment of passengers to trip options utilizing these lines, in order to maximize

the total reward. We refer to this problem as the Real-Time Line Planning Problem (Rlpp).

As discussed earlier, though there exist exact methods for solving the Line Planning Problem

that can be adapted to the Rlpp setting (e.g., by formulating and solving an associated integer linear

program), the extensive computation time required to obtain the optimal set of lines runs counter

to our goal of computing short-term lines that adapt to demand patterns throughout the day. This

motivates studying the task of finding good approximate solutions to Rlpp. In this context, we

make two contributions:

1. We first demonstrate the computational limits of Rlpp by showing that no constant-factor

approximation is possible if we relax any one of two assumptions: (𝑖) access to a pre-specified

set of feasible bus lines, and (𝑖𝑖) no inter-line (i.e., bus-to-bus) transfers.

2. Under both above assumptions, we design an efficient algorithm for Rlpp that respects budget

constraints with high probability, while guaranteeing a welfare that is within a

(
1 − 1

𝑒
− 𝜀

)
-factor

of the optimal (where 𝜀 trades-off the quality of approximation and probability of exceeding the

budget).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:4 Noémie Périvier et al.

While assumptions (𝑖) and (𝑖𝑖) are commonly made both in practice and in the academic literature,

our work provides strong theoretical justifications for these assumptions in that if either fails to

hold, there is no hope of obtaining a constant-factor approximation. Assumption (𝑖) forms the basis

of all exact ILP-based methods; it is also practically relevant due to both constraints imposed by

cities on bus routes, as well as expert knowledge of transit designers as to which routes are useful.

Assumption (𝑖𝑖) reflects a practical constraint that, given a passenger may already incur car-bus

transfers in the first/last legs of her trip, additional bus-bus transfers could be deemed excessive.

Even when both hold, however, we show that the problem is still far from trivial: in particular, it

does not inherit the attractive combinatorial property of submodularity, and so one cannot employ

standard techniques to get the classical 1 − 1

𝑒
approximation guarantee [44]. Moreover, we also

show that the natural linear programming (LP) relaxation has a worst-case integrality gap of at

least
1

2
.

In spite of this, in our main technical contribution, we provide a

(
1 − 1

𝑒
− 𝜀

)
-factor approximation

for Real-Time Line Planning Problem. More specifically, our algorithm uses a novel LP relaxation

followed by a randomized rounding procedure, that can be tuned to guarantee that the budget

constraint is met with any desired high-probability bound, while losing an 𝜀-factor in the welfare

guarantee. Our key technical insight is that the Real-Time Line Planning Problem can be relaxed

and re-formulated as an exponential-size configuration LP, and that this formulation then allows

us to use ideas from randomized rounding for the Separable Assignment Problem [21]. We then

leverage the additional structure in Rlpp to show that the rounding step is the only source of loss

in our algorithm. Our results hold under an assumption which we term trip optimality (i.e., of all

the ways in which a passenger can join a given line via car, she must be assigned to the best such

option). However, we later show how this assumption can be relaxed, and, with slight modification

to our algorithm, we lose at most a constant factor.

Finally, we investigate the practical efficacy of our approach via numerical experiments on

real-world and synthetic datasets. We note that, although our algorithm does not guarantee a

solution that is always within budget, in practice it is easy to run multiple replications (which are

cheap, and can be run in parallel) and choose the best realization satisfying budget constraints.

Our numerical experiments simulate this procedure, and we observe that given a time budget

on computation (as would be necessary for real-time line planning), our algorithm outperforms

state-of-the-art ILP solvers for large problem instances, thereby demonstrating its practicality for

the problem of designing integrated and flexible transit networks at scale.

The rest of the paper is organized as follows. In Section 2, we survey relevant literature. We

present our model and define the Real-Time Line Planning Problem in Section 3. In Section 4, we

characterize fundamental computational limits of Rlpp, establishing the need for a candidate set

of lines and precluding bus transfers; we also show that standard techniques are inadequate for

our setting. We present our main algorithm and guarantees in Section 5, and back this up with

numerical results in Section 6 and Appendix C. Extensions to our main results can be found in

Appendix A.

2 RELATEDWORK

Line planning in public transportation. Our work falls under the large umbrella of transportation

network design; see Farahani et al. [19], Guihaire and Hao [23], Magnanti and Wong [31] for

excellent expositions. Much of this work has historically involved heuristics, including greedy

approaches based on simpler network primitives such as shortest-paths and minimum spanning

trees [16, 22], and metaheuristics [45, 46]. The largest-scale use of heuristic methods is, to our

knowledge, the work of Borndörfer et al. [9], who rely on column generation and greedy heuristics;

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:5

more importantly, the formulation requires allowing for arbitrarily many bus transfers. In practice,

it is desirable to enforce a maximum number of allowable transfers (something which we explicitly

model in our work); enforcing this however severely impacts computational performance. In

a followup work, Borndörfer and Karbstein [8] incorporate transfer penalties (a type of “soft”

constraint), but the resulting algorithms require on the order of 10 hours of computation time,

which for our setting is infeasible. More recently, exact methods based on ILP formulations have

gained in popularity [4, 33, 34, 43], though these only scale to small networks.

Ride-pooling. Our problem is also closely related to ride-pooling, where the goal is to combine

multiple trips to improve the efficiency of ride-sharing platforms. To model trade-offs between

passenger inconvenience and sharing rides, Santi et al. [37] introduced the abstraction of a share-
ability network, and showed via simulations that pairing up to two requests per vehicle could

lead to significant savings in cumulative driver miles. Their methods, however, accommodate at

most three passengers per vehicle (with heuristics). Alonso-Mora et al. [1] develop algorithms

which perform well (in simulations) for up to 10 passengers per vehicle. Their method is based

on clique decompositions of the shareablity network, which again scales poorly with increasing

vehicle capacity; it also imposes strict quality of service constraints leading to fewer feasible trip

configurations, which may greatly reduce efficiency in the setting we consider.

Multi-modal solutions to the first-mile/last-mile problem. From a practical perspective, the trans-

portation community has explored public-private partnerships to exploit both the high capacity

of public transit buses and the flexibility of MoD fleets [30, 40]. These works, however, focus not

on designing the transit network, but rather on dynamic vehicle dispatching and routing between

origin or destination and transit hubs.

Stochastic control for ride-sharing. Amore recent line of work has developed stochastic models for

ride-sharing with trip requests arriving via a random process. This has enabled the use techniques

from stochastic control for scheduling and routing [2, 3, 10, 28], as well as the study of system-level

questions such as the effect of competing platforms [38]. The algorithms developed in these papers

largely rely on assuming that under appropriate scaling (in particular, in the ‘large-market’ scaling,

where the number of cars scales with the demand), the system is well approximated via a steady-

state problem. This is practically meaningful in ride-sharing systems, which can be thought of as

being near-stationary over sufficiently small time-scales; such an assumption, however, critically

depends on the impact of a single car being “small” relative to the rest of the system. In a setting

with high-capacity vehicles, however, this ceases to be true, and it is unclear if a stochastic model of

our system would exhibit the rapid mixing property with which low-capacity ride-sharing models

are endowed, and which allows for these attractive guarantees.

Randomized rounding for resource allocation problems. Our methodological approach is inspired

by the use of configuration programs for improved approximations for a number of combinatorial

optimization problems [21, 27, 42]. At a high level, the approximation algorithms proposed in this

line of work reformulate the resource allocation problem as an exponential-size integer program that

optimizes over all feasible sets of resources; the LP relaxation of this program can be (approximately)

solved in polynomial time, and used to produce approximately optimal solutions to the original

problem via rounding. Our main result relies on the randomized rounding scheme proposed

by Fleischer et al. [21] for the Separable Assignment Problem, which comprises a set of bins and

items, with separate packing constraint on each bin, and rewards for each item-bin pair. The

objective is to pack items into bins such that the aggregate value of all packed items is maximized.

The analogy to the Real-Time Line Planning Problem is natural: items correspond to passengers,

bins correspond to lines, and the packing constraints correspond to capacity constraints for each

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:6 Noémie Périvier et al.

𝑠 𝑑
direct travel by car

hybrid travel

bus line

Fig. 1. Example transit network with a single bus route (marked in red) and a single passenger traveling

from source node 𝑠 to destination node 𝑑 (marked in green). The passenger has 2 trip options: she can travel

directly by car from 𝑠 to 𝑑 (blue arrow), or use a hybrid trip option comprising the dashed portion of the bus

route, completing the rest of the trip by car (solid black arrow).

bus. The key difference between these two problems is that, in the case of Sap, bins are provided
in advance, with no associated cost for using a bin. In contrast, the main difficulty in Rlpp is in

determining which lines to open, given costs for opening each line, and a budget constraint which

further couples all lines (bins) together.

3 PRELIMINARIES

3.1 System Model

We model the transit network as an undirected weighted graph 𝐺 = (𝑉 , 𝐸), with |𝑉 | = 𝑛 potential

origin/destination nodes, edges representing roads between these nodes, and edge weights (𝜏𝑒)𝑒∈𝐸
representing the cost (for example, travel time) required to traverse an edge. We assume that

𝜏𝑒 ≥ 𝜏min for some constant 𝜏min > 0.

The network is operated by a single Mobility-on-Demand provider (henceforth platform), which

employs a fleet comprising two types of vehicles: single-occupancy vehicles (cars), and high-capacity
vehicles (buses). The platform makes all scheduling and routing decisions in a centralized manner.

These decisions are made over a fixed time-window, wherein prior to the beginning of the window,

the platform receives a set of trip-requests (henceforth passengers), and then must decide on a set

of bus routes, and match passengers to these routes, using cars to cover ‘first-last mile’ travel. The

final trip option presented to each passenger must satisfy her travel needs, which we abstract via

the notion of feasible trip options for each passenger. The aim of the platform is to maximize some

appropriate notion of system welfare, which incorporates both utilities of passengers, and costs and

constraints of the platform.

3.1.1 Vehicle Fleet Model. As mentioned above, the platform controls both a fleet of cars (which can

serve a single passenger) and buses (which are high-capacity). Since in most ride-hailing systems,

the former fleet is much larger, and has a high density throughout the city, we primarily focus on

the routing/scheduling decisions for buses, incorporating the constraints and costs of the car fleet

in the value function of passengers.

Buses have a fixed capacity 𝐶 ∈ N, corresponding to the maximum number of passengers a bus

can simultaneously accommodate. We define a route 𝑟 to be a fixed sequence of consecutive edges of
𝐺 , and let R denote the set of all routes of cost at most 𝐷 ∈ (0,𝑇], where 𝐷 is a constant determined

by the platform (for example, the duration of the longest bus ride such that the trip is completed

within the time window). Moreover, the platform is said to serve route 𝑟 ∈ R at frequency 𝑓 ∈ N if

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:7

𝑓 buses traverse 𝑟 during the time window. A key abstraction in this paper is that of a line, which
we formally define below.

Definition 3.1 (Line). The platform is said to operate a line ℓ = (𝑟ℓ , 𝑓ℓ) if it runs high-capacity
vehicles on route 𝑟ℓ at frequency 𝑓ℓ .

We use L =
{
(𝑟, 𝑓) | (𝑟, 𝑓) ∈ R × N

}
to denote the set of all feasible lines the platform can

operate, and let 𝐿 = |L|. Note that a line can accommodate at most 𝐶 × 𝑓ℓ passengers for each

edge 𝑒 ∈ 𝑟ℓ , and as such it is without loss of generality to assume that 𝑓ℓ ∈ {1, . . . , ⌈𝑁 /𝐶⌉} ∀ ℓ ∈ L,

where 𝑁 is the total number of trip requests during the time window.

The platform has a budget 𝐵 ∈ R+ with which to open a set of lines. Let 𝑐ℓ denote the cost of

operating line ℓ . We assume that line costs are strictly increasing and subadditive in the frequencies.

That is, suppose lines ℓ1 and ℓ2 use the same route 𝑟 and have frequencies 𝑓1, 𝑓2, respectively. Then:

(𝑖) strictly increasing: 𝑓1 < 𝑓2 =⇒ 𝑐ℓ1 < 𝑐ℓ2
(𝑖𝑖) subadditive: 𝑐ℓ1 + 𝑐ℓ2 ≤ 𝑐ℓ3 , where ℓ3 = (𝑟, 𝑓1 + 𝑓2).

3.1.2 Passenger Model. We use P to denote the set of all passengers requesting a trip during the

time window, and 𝑁 = |P | the total number of all such passengers. Each passenger 𝑝 ∈ P is

associated with fixed source and destination nodes (𝑠𝑝 , 𝑑𝑝). To travel between these nodes, she can

use a combination of cars and buses: in particular, she can travel directly from 𝑠𝑝 to 𝑑𝑝 exclusively by

car; alternatively, she can travel by bus for the ‘middle leg’ of her journey, and use cars for the first

and last legs (if source/destination is not on the bus route). Figure 1 illustrates these possibilities.

In principle, a more complex trip option could also involve multiple bus segments. In this work,

however, we restrict passengers to take one of the above two trip options.

Assumption 1 (No inter-bus transfers). A trip can only comprise of a single bus leg; i.e., the
platform cannot assign any passenger to multiple lines.

From a practical perspective, this is a reasonable assumption, given that a passenger may already

incur two transfers for the first and last miles of her trip. More importantly, in Section 4 we show

that if we relax this assumption by allowing the platform to use trip options involving even just

two inter-line transfers, then we can not hope to achieve any constant-factor approximation.

Given line ℓ , let Ωℓ𝑝 denote the set of all trip options matching passenger 𝑝 to line ℓ that are

feasible, i.e., where the passenger completes her journey within the time window. Formally,

Ωℓ𝑝 =

{
(𝑠𝑝 , 𝑖, 𝑗, 𝑑𝑝) | 𝑖, 𝑗 ∈ 𝑟ℓ , 𝑝 travels 𝑠𝑝 → 𝑖 and 𝑗 → 𝑑𝑝 by car, and 𝑖 → 𝑗 by bus line ℓ

}
Let Ω𝑝 = {(𝜔, ℓ) : 𝜔 ∈ Ωℓ𝑝 , ℓ ∈ L}. For each passenger 𝑝 , there is an associated reward (or value)

function 𝑣𝑝 : Ω𝑝 → R+, representing the quality (from either the platform or the passenger’s

perspective) of a trip option using line ℓ (including potential costs incurred by the platform for the

passenger’s short car trip).We assume that 𝑣𝑝 (·) is non-decreasing in the frequency of a line. Formally,

suppose lines ℓ1 and ℓ2 use the same route 𝑟 and have frequencies 𝑓1 and 𝑓2, respectively. Since ℓ1 and

ℓ2 share the same route 𝑟 , we haveΩℓ1𝑝 = Ωℓ2𝑝 for all 𝑝 ∈ P. Then, 𝑓1 ≤ 𝑓2 =⇒ 𝑣𝑝 (𝜔, ℓ1) ≤ 𝑣𝑝 (𝜔, ℓ2)
for all 𝜔 ∈ Ωℓ1𝑝 .

The above formalism naturally covers trip options that do not involve a bus segment; in particular,

we use 𝜔 = ∅ to denote the option which consists of a passenger traveling directly from source to

destination by car (the no-line option). With slight abuse of notation, we assume that 𝑣𝑝 (∅) = 0 for

all 𝑝 ∈ P. Hence, one can think of the value associated with assigning a passenger to a trip option

as being relative to the status quo ride-hailing service.

For any passenger 𝑝 and line ℓ , we define the value associated with matching the two as follows:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:8 Noémie Périvier et al.

Definition 3.2 (Passenger-line value). We define 𝜔ℓ𝑝 and 𝑣ℓ𝑝 to respectively be the optimal trip

option, and its corresponding value, over all feasible trip options matching passenger 𝑝 to line ℓ ,

i.e.,

𝑣ℓ𝑝 = max

{
𝑣𝑝 (𝜔, ℓ) |𝜔 ∈ Ωℓ𝑝

}
, 𝜔ℓ𝑝 = argmax

{
𝑣𝑝 (𝜔, ℓ) |𝜔 ∈ Ωℓ𝑝

}
If 𝑣ℓ𝑝 > 0, we say that line ℓ covers passenger 𝑝 . Let 𝑟ℓ𝑝 denote the sub-route of 𝑟ℓ used by

passenger 𝑝 for this option. If 𝑒 ∈ 𝑟ℓ𝑝 , we say that the passenger uses edge 𝑒 . Note that computing

𝑣ℓ𝑝 can be done in polynomial time. This follows from the fact that, if 𝑟ℓ consists of 𝑛ℓ edges, there

are𝑂 (𝑛2ℓ) possible trip options to consider for passenger 𝑝 . Since the maximum cost (duration) of a

route 𝐷 is constant, and 𝜏𝑒 is lower bounded by a constant for all 𝑒 ∈ 𝐸, then 𝑛ℓ is polynomial in 𝑛.

Using the above notation, we assume throughout that if passenger 𝑝 is matched to line ℓ , she

uses trip option 𝜔ℓ𝑝 . This assumption is primarily for the sake of simplifying the presentation; in

Appendix A.1 we discuss how our algorithm can be modified to consider all possible trip options

for each line-passenger pair, and show that this only leads to an additional constant factor loss.

3.1.3 Platform Objective. The following example illustrates a natural value function for a platform

seeking to design such an integrated mobility service.

Example 3.3. Weabuse notation and assume that, for this example, a trip option can be parametrized

by the total duration of the trip 𝑇 and the duration of the portion of the trip completed by car,

denoted 𝑡 car. Consider the following piecewise linear function, representing the reduction in time

traveled by car as compared to a direct trip by car:

𝑣𝑝 (𝑇, 𝑡 car) =

𝛽𝑡★

𝑠𝑝𝑑𝑝
− 𝑡 car if 𝑇 < (1 + 𝛼)𝑡★

𝑠𝑝𝑑𝑝
, 𝑡 car < 𝛽𝑡★

𝑠𝑝𝑑𝑝

0 otherwise

(1)

where 𝑡★
𝑠𝑝𝑑𝑝

represents the time required to travel from 𝑠𝑝 to 𝑑𝑝 directly by car, 𝛼 ∈ R+ represents
passengers’ tolerance for the duration of a trip relative to the most direct route, and 𝛽 ∈ (0, 1]
controls the gains in efficiency of a trip option.

For this value function, the trip optimality assumption implies that the passenger must be picked

up and dropped off at the bus stops that are closest to 𝑠𝑝 and 𝑑𝑝 , respectively.

Finally, in line with the motivating application of the platform receiving trip requests in advance

via a scheduling service, we assume that the platform sees batch demand, and that passengers are

willing to wait for the entirety of the time window. As such, we abstract away the notions of travel

and clock times. In Appendix A.2 we show that such an assumption is without loss of generality,

and that all results hold for a more realistic model in which there are travel times, passengers are

associated with the time at which they made the request, and as a result should only be matched to

lines whose schedule lines up with the time at which they are traveling.

3.2 The Real-Time Line Planning Problem (Rlpp)

Let 𝑆 ⊆ L denote a subset of lines to be created, and x ∈ {0, 1}𝑁×𝐿
denote an assignment of

passengers to the chosen subset of lines. We first define the system welfare induced by 𝑆 and x.

Definition 3.4 (Welfare). Given 𝑆 and x, thewelfare𝑊 of the system is the sum of all passenger-line

values for the lines created under this assignment. Formally:

𝑊 =
∑
𝑝∈P

∑
ℓ∈𝑆

𝑣ℓ𝑝𝑥ℓ𝑝

We now define the Real-Time Line Planning Problem.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:9

Definition 3.5 (Real-Time Line Planning Problem). The Real-Time Line Planning Problem is

defined by a graph 𝐺 , a set of passengers P, costs {𝑐ℓ }ℓ∈L for opening lines, passenger valuations

{𝑣ℓ𝑝 }ℓ∈L,𝑝∈P for using each line, an overall budget 𝐵, and a bus capacity 𝐶 . The goal is to find a

subset of lines to open and an assignment of passengers to lines that maximize the welfare of the

system, such that:

(𝑖) the total cost of creating all lines in this subset does not exceed the platform’s budget;

(𝑖𝑖) the number of passengers assigned to line ℓ and whose trip uses edge 𝑒 ∈ 𝑟ℓ does not exceed

the capacity 𝐶 × 𝑓ℓ of the buses, for all 𝑒 ∈ 𝑟ℓ ;

(𝑖𝑖𝑖) a passenger is assigned to at most one line (which implies no inter-bus transfers).

We allow for a passenger to not be assigned to any line. In this case, we assume that the

passenger’s trip is completed exclusively by car, and yields a value of zero.

Formally, the platform’s optimization problem is given by:

(𝑃) max

y,x

∑
𝑝∈P

∑
ℓ∈L

𝑣ℓ𝑝𝑥ℓ𝑝

s.t.

∑
ℓ∈L

𝑐ℓ𝑦ℓ ≤ 𝐵 (2)∑
𝑝∈𝑃 :
𝑒∈𝑟ℓ𝑝

𝑥ℓ𝑝 ≤ 𝐶 𝑓ℓ 𝑦ℓ ∀ ℓ ∈ L, 𝑒 ∈ 𝑟ℓ (3)

∑
ℓ∈L

𝑥ℓ𝑝 ≤ 1 ∀𝑝 ∈ P (4)

𝑥ℓ𝑝 ∈ {0, 1} ∀𝑝 ∈ P, ℓ ∈ L
𝑦ℓ ∈ {0, 1} ∀ ℓ ∈ L

Let 𝑂𝑃𝑇 denote the optimal value of this optimization problem. In this formulation, the decision

variables y ∈ {0, 1}𝐿 represent the set of lines to be opened. Recall, x ∈ {0, 1}𝑁×𝐿
corresponds to

the assignment of passengers to lines. Constraints (2), (3), (4) respectively encode the constraints

on budget, capacity, and assignment to at most one line.

For any passenger 𝑝 ∈ P, in the worst case there are exponentially many routes between 𝑠𝑝 and

𝑑𝑝 , and as a result (𝑃) has exponentially many variables and constraints. For our main result, we

make the following assumption regarding the set of routes input to Rlpp.

Assumption 2 (Candidate set of routes). The platform has access to a pre-specified set of
feasible routes L, where 𝐿 = |L| is polynomial in the size of the network.

We let 𝐿 denote the size of the set of lines induced by the candidate set of routes and all possible

frequencies. Note that the candidate set of routes assumption implies that 𝐿 is polynomial in 𝑛.

The assumption of such a candidate set is practically rooted in the reality of transportation

systems, in which experts typically have knowledge of a priori “acceptable” bus routes and can

develop good heuristics. Moreover, such an assumption is in line with the approach adopted

in prior work on line planning, which typically generates the candidate set of routes via such

heuristics [12, 13, 18]. In Section 4, we show that one cannot hope to obtain a constant-factor

approximation to the Real-Time Line Planning Problem unless the platform has access to such a

candidate set.

We note that the above integer linear programming (ILP) formulation problem is the most

natural formulation of the platform’s optimization problem, as well as the formulation upon

which existing exact methods are based [4, 33, 34, 43]. In Section 5, we present an equivalent,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:10 Noémie Périvier et al.

less-immediate formulation of the platform’s optimization problem upon which our algorithm

relies. We nonetheless present this natural formulation, as we will benchmark our algorithm’s

performance against it in Section 6. Table 1 summarizes the most frequently-used notation in the

paper.

Table 1. List of frequently-used notations

Symbol Definition

𝐺 (𝑉 , 𝐸) Transit network with |𝑉 | = 𝑛 nodes

L Pre-specified set of lines, with 𝐿 = |L|
P Set of passengers, with 𝑁 = |P |
Ωℓ𝑝 Set of feasible trip options for passenger 𝑝 traveling via line ℓ

𝐶 Bus capacity

𝐵 Platform budget for opening lines

𝑣𝑝 (𝜔, ℓ) Value of trip option 𝜔 ∈ Ωℓ𝑝 for passenger 𝑝 traveling via line ℓ

𝑣ℓ𝑝 Value of optimal trip option for passenger 𝑝 on line ℓ

𝑐ℓ Cost of opening line ℓ

𝑓ℓ Frequency of line ℓ

4 FUNDAMENTAL LIMITS OF REAL-TIME ROUTING

The model in Section 3 is endowed with two assumptions: (𝑖) the existence of a pre-specified

candidate set of feasible lines L that is polynomial in the number of nodes 𝑛, and (𝑖𝑖) that trip
options can involve at most a single bus segment.

In this section, we show that these assumptions are not just practically relevant, but also have

strong theoretical justifications: if either assumption fails to hold, a constant-factor approximation

is out of reach. We moreover show that, even in the setting where these two assumptions hold,

standard approximation techniques that leverage naive LP relaxations and rely on submodularity are

inadequate, emphasizing the non-triviality of the task of designing provably good approximations

for fast, real-time routing.

For the sake of brevity, in the remainder of this section, we provide the main ideas of our

reductions, and defer proofs of all auxiliary propositions to Appendix B.1.

4.1 Necessity of a candidate set of lines

Suppose first that the platform does not have access to a candidate set of lines, and thus, for

each passenger 𝑝 ∈ P, must consider all possible walks of bounded cost between source 𝑠𝑝 and

destination 𝑑𝑝 . We show that this problem is hard to approximate even in a particularly simple

instance of Rlpp with only a single allowed line, which we term the Single Line Problem (Slp).

Definition 4.1 (Single Line Problem). In the Single Line Problem, the feasible routes are the walks

in the graph of cost at most 𝐷 . Suppose 𝑐ℓ = 𝑐 𝑓ℓ for all ℓ ∈ L, for some constant 𝑐 > 0. Moreover,

suppose 𝐵 = 𝑐 . That is, only a single line of frequency 𝑓ℓ = 1 can be opened. The goal is to find the

line that maximizes the social welfare of the system.

Using this, we get our first hardness result for Rlpp.

Theorem 4.2. Unless NP has polynomial Las Vegas algorithms, the Single Line Problem is hard to
approximate to a ratio better than Ω(log1−𝜀 𝑛).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:11

Fig. 2. Construction of graph 𝐺 ′
from an instance of OgTSP with two groups 𝑆1 and 𝑆2. The dashed lines

represent the original graph 𝐺 .

To establish this inapproximability result, we give a reduction from the Orienteering group TSP

problem (OgTSP), for which the approximation lower bound is Ω
(
log

1−𝜀 𝑛
)
[14].

Definition 4.3 (Orienteering group TSP). Given an undirected graph 𝐺 = (𝑉 , 𝐸), with edge costs

𝑤 : 𝐸 → R+, 𝑘 sets (or groups) of vertices 𝑆1, . . . , 𝑆𝑘 ⊆ 𝑉 , a root vertex 𝑟 and a budget 𝐷 > 0, the

goal is to find a walk of cost no more than 𝐷 which spans the maximum number of groups.
1

Proof of Theorem 4.2. Consider an instance of OgTSP. Recall, we’ve assumed that there exists

a constant 𝜏min > 0 such that 𝜏𝑒 > 𝜏min ∀𝑒 ∈ 𝐸. Define 𝜀 ∈ (0, 𝜏min]. We use 𝑑𝑖𝑎𝑚(𝐺) to denote the

diameter of the graph, and let 𝑡 ∈ R be such that 𝑡 > max{𝑑𝑖𝑎𝑚(𝐺) + 𝜀, 𝐷 + 𝜀}.
We construct an instance of Slp as follows. For each group 𝑆𝑖 , we add a node 𝑔𝑖 to 𝐺 , an edge

(𝑟, 𝑔𝑖) of cost 𝑡 and an edge (𝑗, 𝑔𝑖) of cost 𝑡 − 𝜀 for each node 𝑗 ∈ 𝑆𝑖 . Let 𝐺
′ = (𝑉 ′, 𝐸 ′) denote this

augmented graph, and let 𝐷 be the maximum cost of any feasible route on 𝐺 ′
. For each 𝑖 ∈ [𝑘],

create a passenger 𝑝𝑖 with 𝑠𝑝𝑖 = 𝑟 and 𝑑𝑝𝑖 = 𝑔𝑖 .

For line-passenger pair (ℓ, 𝑝𝑖), suppose trip option 𝜔 is such that passenger 𝑝𝑖 travels by car

from 𝑟 to 𝑗1 (𝜔), and from 𝑗2 (𝜔) to 𝑔𝑖 , where 𝑗1 (𝜔), 𝑗2 (𝜔) ∈ 𝑉 . We use 𝑡 car (𝜔) to denote the total

cost of the min-cost paths from 𝑟 to 𝑗1 (𝜔) and from 𝑗2 (𝜔) to 𝑔𝑖 , and let 𝑡★𝑝𝑖 denote the min-cost path

from 𝑟 to 𝑔𝑖 . If 𝑝𝑖 travels directly from 𝑟 to 𝑔𝑖 , then 𝑡 car (𝜔) = 𝑡 .

We define the value function as follows:

𝑣𝑝𝑖 (𝜔, ℓ) =
{
1 if 𝑡 car (𝜔) ≤ (1 − 𝜀

𝑡
)𝑡★𝑝𝑖

0 otherwise.

Propositions 4.4 and 4.5 and characterize the ways in which 𝑝𝑖 can feasibly travel from 𝑟 to 𝑔𝑖 .

Proposition 4.4. For all 𝜔 such that 𝑡 car (𝜔) > 𝑡 − 𝜀, 𝑣𝑝𝑖 (𝜔, ℓ) = 0.

Proposition 4.5. Passenger 𝑝𝑖 can travel from 𝑟 to 𝑔𝑖 in one of two ways:
(i) via edge (𝑟, 𝑔𝑖), in which case this must be by car.
(ii) by bus from 𝑟 to 𝑗 ∈ 𝑆𝑖 , and by car via edge (𝑗, 𝑔𝑖).

Let ℓ★ denote the optimal solution to Slp for this instance.

Proposition 4.6. To collect strictly positive value from passenger 𝑝𝑖 , ℓ★ must traverse a node 𝑗 ∈ 𝑆𝑖 .
1
We assume without loss of generality that the root does not belong to any of the groups.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:12 Noémie Périvier et al.

𝑣1

𝑣2

𝑣3

𝑠 𝑑

ℓ1

ℓ2

Fig. 3. Assignment of a passenger to a pair of lines. The passenger travels by car from 𝑠 to 𝑣1. Between 𝑣1 and

𝑣2, she travels by bus via line ℓ1. At 𝑣2 she travels via line ℓ2 until being dropped off at 𝑣3. She completes her

trip by car between 𝑣3 and 𝑑 .

Finally, observe that ℓ★ necessarily only uses edges from 𝐸. This follows from the fact that all

edges in 𝐸 ′ \ 𝐸 have cost greater than 𝐷 by construction, and thus any route using at least one such

edge is infeasible.

Putting these facts together, if line ℓ★ collects value 𝑘 ′ ≤ 𝑘 then this implies the existence of a

walk of 𝐺 of cost at most 𝐷 that has visited 𝑘 ′
groups. Thus any 𝛼-approximation algorithm for

the Single Line Problem gives an 𝛼-approximation for the OgTSP, hence the Ω(log1−𝜀 (𝑛)) lower
bound for the Single Line Problem. □

4.2 Hardness of multiple transfers

Suppose now that the platform has access to a candidate set of lines, but allows itself to assign

passengers to at most two lines. More specifically, a passenger 𝑝 can feasibly be assigned to the

following trip options:

(𝑖) Travel directly from 𝑠𝑝 to 𝑑𝑝 by car;

(𝑖𝑖) Use a single bus line ℓ ∈ L: for some 𝑣1 ∈ 𝑟ℓ , 𝑣2 ∈ 𝑟ℓ , travel from 𝑠𝑝 to 𝑣1 by car; join line ℓ at

𝑣1 and travel to 𝑣2 by bus; travel from 𝑣2 to 𝑑𝑝 by car;

(𝑖𝑖𝑖) Use two intersecting bus lines (ℓ1, ℓ2) ∈ L × L: for some 𝑣1 ∈ 𝑟ℓ1 , 𝑣2 ∈ 𝑟ℓ1
⋂
𝑟ℓ2 , 𝑣3 ∈ 𝑟ℓ2 , travel

from 𝑠𝑝 to 𝑣1 by car; join line ℓ1 at 𝑣1 and travel to 𝑣2 by bus; join line ℓ2 at 𝑣2 and travel to 𝑣3
by bus; travel from 𝑣3 to 𝑑𝑝 by car. Figure 3 illustrates such a trip. We use Ω (ℓ1,ℓ2),𝑝 to denote

the set of all such trips.

Let 𝑣 (ℓ1,ℓ2),𝑝 denote the maximum value passenger 𝑝 has for all feasible trips using lines ℓ1 and ℓ2,

where 𝑟ℓ1 and 𝑟ℓ2 intersect. That is, 𝑣 (ℓ1,ℓ2),𝑝 = max

𝜔 ∈Ω (ℓ
1
,ℓ
2
),𝑝
𝑣𝑝 (𝜔). If 𝑣 (ℓ1,ℓ2),𝑝 > 0, we say that passenger

𝑝 is covered by ℓ1 and ℓ2.

We refer to the problem of matching passengers to at most two bus lines as the Two-Transfer
Problem (Ttp), which we formally define below.

Definition 4.7 (Two-Transfer Problem). Given a budget 𝐵 and costs {𝑐ℓ }, the goal is to find a subset
𝑆 ⊆ L of budget-respecting lines to open and a feasible assignment of passengers to 𝑆 which

maximizes the social welfare of the system, given by:∑
𝑝∈P

©­«
∑
ℓ∈𝑆

𝑣ℓ𝑝𝑥ℓ𝑝 +
∑

(ℓ1,ℓ2) ∈𝑆×𝑆
𝑣 (ℓ1,ℓ2),𝑝 𝑥 (ℓ1,ℓ2),𝑝

ª®¬ .
As before, x ∈ {0, 1}𝑁×𝐿

is an indicator variable representing the assignment of passengers to lines.

Our next hardness result shows that allowing even two inter-bus transfers banishes any hope of

obtaining a constant-factor approximation for Rlpp.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:13

Theorem 4.8. Under the exponential time hypothesis, the Two-Transfer Problem is hard to approxi-
mate to a ratio better than Ω

(
𝑛1/(log log(𝑛))

𝑐
)
, where 𝑐 > 0 is a universal constant.

To prove the theorem, we give a reduction from the densest 𝑘-subgraph problem, which admits

an approximation lower bound of Ω(𝑛1/(log log𝑛)𝑐) under the exponential time hypothesis [32].

Given a graph 𝐺 = (𝑉 , 𝐸) and a subgraph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠) of 𝐺 , the density of any subgraph 𝐺𝑠 is the

ratio of number of edges to the number of nodes in𝐺𝑠 (i.e.
|𝐸𝑠 |
|𝑉𝑠 |). Now, the densest 𝑘-subgraph is as

follows:

Definition 4.9 (Densest 𝑘-subgraph). Given a graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | and 𝑘 ∈ [𝑛], the
objective is to find a subgraph 𝐺𝑠 of 𝐺 containing exactly 𝑘 vertices with maximum density.

Note that, for fixed 𝑘 , finding the subgraph of maximum density is equivalent to finding a

subgraph of size 𝑘 with the maximum number of edges.

Proof of Theorem 4.8. Given an instance of densest 𝑘-subgraph, we build an instance of Ttp

as follows. For each node 𝑖 ∈ 𝑉 , construct a line ℓ𝑖 , with 𝑐ℓ𝑖 = 1 and frequency 𝑓ℓ𝑖 large enough to

cover all passengers. For every edge (𝑖, 𝑗) ∈ 𝐸, define a passenger 𝑝𝑖 𝑗 , and suppose that 𝑝𝑖 𝑗 can only

be covered by the pair of lines (ℓ𝑖 , ℓ𝑗), with 𝑣 (ℓ𝑖 ,ℓ𝑗),𝑝𝑖 𝑗 = 1. That is, 𝑝𝑖 𝑗 has no value associated with a
single bus line. Finally, let 𝐵 = 𝑘 .

We first claim that, for any Ttp feasible solution of value 𝑘 ′
which opens 𝑘 ′′ < 𝑘 lines, one can

construct a feasible solution which opens exactly 𝑘 lines and has value at least 𝑘 ′
. This simply

follows from non-negativity of the value function and the fact that 𝑐ℓ𝑖 = 1 for all 𝑖 . Thus, the

platform can always open 𝑘 − 𝑘 ′′
more lines until hitting its budget constraint and not decrease the

objective, and it is without loss of generality to only consider feasible solutions that open exactly 𝑘

lines.

We complete the proof by noting that a feasible solution of value 𝑘 ′
corresponds exactly to a

subgraph of𝐺 containing 𝑘 ′
edges (passengers) and 𝑘 nodes (lines). Thus, if we had a constant-factor

approximation algorithm for Ttp, then we would also be able to approximate densest 𝑘-subgraph

within a constant factor. □

Henceforth, we operate under the no inter-bus transfers and candidate set of lines assumptions.

4.3 Inefficacy of standard approximation techniques

Observe that the ILP formulation of the Real-Time Line Planning Problem bears a strong resemblance

to the Capacitated Facility Location Problem (Cflp), for which Wolsey [44] provides a 1 − 1

𝑒

approximation algorithm, a guarantee relying on the underlying submodular structure of Cflp.
Our problem crucially differs from this latter problem, however, in the way capacity is accounted

for. Whereas the number of clients assigned to a location cannot exceed its capacity in Cflp, in

the Real-Time Line Planning Problem the number of passengers assigned to a bus can exceed its
capacity, as passengers may require non-overlapping subpaths of a bus route. In this section, we

show that this simple fact fundamentally alters the structure of our problem, and as such precludes

the use of standard techniques for submodular function maximization.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:14 Noémie Périvier et al.

Let𝑤 : {0, 1}𝐿 −→ R denote the social welfare induced by the optimal assignment of passengers

to lines, for a given subset of open lines, represented by y. Formally:

𝑤 (y) = max

x

∑
𝑝∈P

∑
ℓ∈L

𝑣ℓ𝑝𝑥ℓ𝑝

s.t.

∑
𝑝∈𝑃 :
𝑒∈𝑟ℓ𝑝

𝑥ℓ𝑝 ≤ 𝐶 𝑓ℓ 𝑦ℓ ∀ ℓ ∈ L, 𝑒 ∈ 𝑟ℓ

∑
ℓ∈L

𝑥ℓ𝑝 ≤ 1 ∀𝑝 ∈ P

𝑥ℓ𝑝 ∈ {0, 1} ∀𝑝 ∈ P, ℓ ∈ L
Then, we have:

𝑂𝑃𝑇 = max

y
𝑤 (y)

s.t.

∑
ℓ∈L

𝑐ℓ𝑦ℓ ≤ 𝐵

𝑦ℓ ∈ {0, 1} ∀ ℓ ∈ L

Proposition 4.10. 𝑤 is not submodular.

Another common approach is to develop an approximation algorithm based on an LP relaxation

of the ILP. Proposition 4.11 however shows that such an approach can give strictly worse bounds

than the 1 − 1

𝑒
benchmark.

Proposition 4.11. The worst-case integrality gap for (𝑃) is no better than 1

2
.

5 MAIN RESULT

In this section, we design an approximation algorithm for the Real-Time Line Planning Problem

that achieves at least 1 − 1

𝑒
− 𝜀 fraction of the optimal solution in expectation, and produces a

solution whose cost is budget-respecting with high probability, as the platform’s budget grows

large.

Our high-level approach is as follows. We first formulate the Real-Time Line Planning Problem

as a configuration ILP, and solve a conservative LP relaxation of this latter program, in the sense

that it has a stricter budget than the platform’s true budget 𝐵. We then use a variant of the rounding

scheme developed by Fleischer et al. [21] to produce an approximately feasible integer solution.

The key difficulty in such an approach is approximating the exponential-size configuration LP

without incurring too much of a loss. Our main contribution in this respect is to show that the

structure of Rlpp allows us to solve it exactly in polynomial-time by leveraging the additional

structure of our problem in the dual space. Throughout the rest of the section, we defer the proofs

of auxiliary facts to Section B.2.

5.1 An exponential-size configuration ILP

Consider line ℓ , and let Iℓ denote the family of all feasible assignments of passengers to ℓ , where

a feasible assignment is such that, for all 𝑒 ∈ 𝑟ℓ the total number of passengers using 𝑒 does not

exceed the capacity of the line. We use 𝑆 to denote any such assignment in Iℓ . 𝑋ℓ𝑆 is the indicator

variable representing whether or not the set of passengers 𝑆 is chosen for line ℓ . Formally, 𝑆 ∈ Iℓ
satisfies

∑
𝑝∈𝑆 :
𝑒∈𝑟ℓ𝑝

𝑋ℓ𝑆 ≤ 𝐶𝑓ℓ for all 𝑒 ∈ 𝐸. Example 5.1 illustrates this notation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:15

Example 5.1. Consider lines ℓ1, ℓ2 and passengers 𝑝1, 𝑝2, with 𝑝1 and 𝑝2 using the same edges of

each line. If 𝐶 = 2, then Iℓ𝑖 =
{
{𝑝1}, {𝑝2}, {𝑝1, 𝑝2}

}
for 𝑖 ∈ {1, 2}. If 𝐶 = 1, then Iℓ𝑖 =

{
{𝑝1}, {𝑝2}

}
for 𝑖 ∈ {1, 2}.

We can now represent Rlpp as the following exponential-size integer program:

𝑃 := max

{𝑋ℓ𝑆 }

∑
𝑝∈P

∑
ℓ∈L

∑
𝑆 ∈Iℓ :
𝑝∈𝑆

𝑣ℓ𝑝𝑋ℓ𝑆

s.t.

∑
ℓ∈L

𝑐ℓ
©­«
∑
𝑆 ∈Iℓ

𝑋ℓ𝑆
ª®¬ ≤ 𝐵 (5)∑

𝑆 ∈Iℓ

𝑋ℓ𝑆 ≤ 1 ∀ ℓ ∈ L (6)∑
ℓ∈L

∑
𝑆 ∈Iℓ :
𝑝∈𝑆

𝑋ℓ𝑆 ≤ 1 ∀𝑝 ∈ P (7)

𝑋ℓ𝑆 ∈ {0, 1} ∀ ℓ ∈ L, 𝑆 ∈ Iℓ

Constraint (6) requires that only one set of passengers be chosen for each line, and Constraint (7)

ensures that each passenger is only assigned to one line. If a set of passengers is assigned to line ℓ ,

that is, if

∑
𝑆 ∈Iℓ 𝑋ℓ𝑆 > 0, then ℓ is opened and the platform incurs cost 𝑐ℓ ; else, ℓ is not created and

no cost is incurred. Let 𝑂𝑃𝑇 denote the optimal value of 𝑃 .

5.2 Approximating the exponential-size ILP

For a given constant 𝜀 ∈ (0, 1
2
), Algorithm 1 makes use of the following auxiliary configuration LP,

which we denote 𝑃 (𝜀)
.

𝑃 (𝜀)
:= max

{𝑋ℓ𝑆 }

∑
𝑝∈P

∑
ℓ∈L

∑
𝑆 ∈Iℓ :
𝑝∈𝑆

𝑣ℓ𝑝𝑋ℓ𝑆

s.t.

∑
ℓ∈L

𝑐ℓ
©­«
∑
𝑆 ∈Iℓ

𝑋ℓ𝑆
ª®¬ ≤ 𝐵(1 − 𝜀) (8)∑

𝑆 ∈Iℓ

𝑋ℓ𝑆 ≤ 1 ∀ ℓ ∈ L (9)∑
ℓ∈L

∑
𝑆 ∈Iℓ :
𝑝∈𝑆

𝑋ℓ𝑆 ≤ 1 ∀𝑝 ∈ P (10)

𝑋ℓ𝑆 ∈ [0, 1] ∀ ℓ ∈ L, 𝑆 ∈ Iℓ

Let𝑂𝑃𝑇 (𝜀)
denote the optimal value of 𝑃 (𝜀)

, and

{
𝑋

(𝜀)
ℓ𝑆

}
its optimal solution. Algorithm 1 presents

a high-level description of our algorithm.

Let 𝐴𝐿𝐺 denote the expected value of the solution returned by Algorithm 1. Theorem 5.2

establishes our main result.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:16 Noémie Périvier et al.

Algorithm 1 Randomized rounding for Rlpp

Input: 𝐺 = (𝑉 , 𝐸),P,L, {Iℓ }ℓ∈L , 𝜀 ∈ (0, 1
2
)

Output: set of lines to open, passenger assignment to each line

Compute 𝑣ℓ𝑝 for all ℓ ∈ L, 𝑝 ∈ P.

Solve 𝑃 (𝜀)
.

Rounding: For all ℓ ∈ L, 𝑆 ∈ Iℓ such that 𝑋
(𝜀)
ℓ𝑆

> 0, open ℓ and, independently for each line ℓ ,

assign 𝑆 to ℓ with probability 𝑋
(𝜀)
ℓ𝑆

.

Re-assignment: If passenger 𝑝 is assigned to multiple lines, choose the line maximizing 𝑣ℓ𝑝 .

Close all lines for which no passengers are any longer assigned.

Aggregation: If there exist open lines ℓ1, ℓ2 such that 𝑟ℓ1 = 𝑟ℓ2 = 𝑟 and 𝑓ℓ1 ≠ 𝑓ℓ2 , close ℓ1 and ℓ2
and open ℓ ′ = (𝑟, 𝑓ℓ1 + 𝑓ℓ2). Assign all passengers formerly using ℓ1 or ℓ2 to ℓ

′
.

Theorem 5.2. Algorithm 1 respects the budget in expectation, and is of cost no more than 𝐵 with
probability at least 1 − 𝑒−𝜀

2𝐵/3𝑐max , where 𝑐max = maxℓ∈L 𝑐ℓ . Moreover,

𝐴𝐿𝐺 ≥
(
1 − 1

𝑒
− 𝜀

)
𝑂𝑃𝑇 .

Note that the choice of 𝜀 trades off between quality of approximation and feasibility of the

rounded solution: as 𝜀 increases, the solution is exponentially more likely to be budget-respecting;

on the other hand, we lose 𝜀-fraction of the optimum in terms of the approximation guarantee.

To prove Theorem 5.2, we establish the following facts, which characterize the loss incurred in

each step of the algorithm:

(𝑖) 𝑂𝑃𝑇 (𝜀) ≥ (1 − 𝜀)𝑂𝑃𝑇 (Proposition 5.3).

(𝑖𝑖) 𝑃 (𝜀)
can be solved in polynomial time (Theorem 4.8);

(𝑖𝑖𝑖) the loss from rounding and re-assignment is at most
1

𝑒
fraction of the optimal value of 𝑃 (𝜀)

(Proposition 5.6);

(𝑖𝑣) the aggregation step maintains a feasible assignment of passengers to lines, and neither

increases the cost of the solution nor decreases the objective (Proposition 5.7);

(𝑣) the cost of the final solution respects the platform’s budget with high probability (Corol-

lary 5.9);

We first show that the loss incurred from solving the auxiliary LP is not too large.

Proposition 5.3. For all 𝜀 ∈ [0, 1],
𝑂𝑃𝑇 (𝜀) ≥ (1 − 𝜀)𝑂𝑃𝑇 .

Proof. Let {𝑋 (0)
ℓ𝑆

} denote the optimal solution to 𝑃 (0)
. Observe that {(1 − 𝜀)𝑋 (0)

ℓ𝑆
} is feasible for

the problem 𝑃 (𝜀)
, and that the objective of 𝑃 (𝜀)

evaluated at this feasible solution is:

(1 − 𝜀)
∑
𝑝∈P

∑
ℓ∈L

∑
𝑆 ∈Iℓ :
𝑝∈𝑆

𝑣ℓ𝑝𝑋
(0)
ℓ𝑆

= (1 − 𝜀)𝑂𝑃𝑇 (0)

Observe moreover that 𝑃 (0)
corresponds to the LP relaxation of 𝑃 , and thus 𝑂𝑃𝑇 (0) ≥ 𝑂𝑃𝑇 .

Chaining these two inequalities together we obtain the fact. □

We next observe that Algorithm 1 is underdetermined as defined. In particular, it is a priori

unclear how, if at all, one can efficiently solve 𝑃 (𝜀)
in polynomial time, or if the best we can hope

for is an approximation. Our key contribution is showing that this can in fact efficiently be done,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:17

and as a result the only losses potentially incurred by the algorithm come from the rounding,

re-assignment, and aggregation steps.

Theorem 5.4. 𝑃 (𝜀) can be solved in polynomial time.

Proof. Since 𝑃 (𝜀)
has an exponential number of variables but only a polynomial number of

constraints (in the number of passengers and lines, and hence in 𝑛), its dual has polynomially many

variables, and as such can be solved in polynomial time via the ellipsoid method, assuming access to
a polynomial-time separation oracle [6]. Given this, one can obtain an optimal primal solution by

solving the primal problem with only the variables corresponding to the dual constraints present

when the ellipsoid method has terminated (of which there are polynomially many, since the ellipsoid

method only makes a polynomial number of calls to the separation oracle) [11]. Thus, it suffices to

design a separation oracle which runs in polynomial time.

Let 𝐷 (𝜀)
denote the dual of 𝑃 (𝜀)

, with 𝛼, {𝑞ℓ }, {𝜆𝑝 } the dual variables corresponding to con-

straints (8), (9) and (10), respectively. The dual is given by:

𝐷 (𝜀)
:= min

{𝑞ℓ },{𝜆𝑝 },𝛼

∑
ℓ∈L

𝑞ℓ +
∑
𝑝∈P

𝜆𝑝 + 𝐵(1 − 𝜀)𝛼

s.t. 𝑞ℓ + 𝛼𝑐ℓ ≥
∑
𝑝∈𝑆

(
𝑣ℓ𝑝 − 𝜆𝑝

)
∀ ℓ ∈ L, 𝑆 ∈ Iℓ

𝑞ℓ ≥ 0 ∀ ℓ ∈ L, 𝜆𝑝 ≥ 0 ∀𝑝 ∈ P, 𝛼 ≥ 0

For all ℓ ∈ L, let Fℓ denote the polytope defined by the set of constraints:

𝑞ℓ + 𝛼𝑐ℓ ≥
∑
𝑝∈𝑆

(𝑣ℓ𝑝 − 𝜆𝑝) ∀𝑆 ∈ Iℓ

It suffices to show that we can design a polynomial time separation algorithm for the polytope Fℓ .

That is, given 𝑞ℓ , 𝛼, and
{
𝜆𝑝

}
, the separation algorithm must be able to find a violated constraint

for Fℓ or certify that all constraints in Fℓ are satisfied.

Algorithm 2 formally describes our separation oracle.

Algorithm 2 Separation Algorithm for the Ellipsoid Method

Input: 𝑞ℓ , 𝛼, {𝜆𝑝 }, Fℓ

Output: violated constraint for Fℓ , or a certification that all constraints in Fℓ are satisfied

Solve the following LP:

max

{𝑥𝑝 }

∑
𝑝∈P

(𝑣ℓ𝑝 − 𝜆𝑝)𝑥𝑝

s.t.

∑
𝑝∈P:

𝑒∈𝑟ℓ𝑝

𝑥𝑝 ≤ 𝐶𝑓ℓ ∀𝑒 ∈ 𝑟ℓ (11)

0 ≤ 𝑥𝑝 ≤ 1 ∀𝑝 ∈ P .

Let LP-SEP denote its optimal value, and {𝑥★𝑝 } an optimal solution to this problem.

If LP-SEP ≤ 𝑞ℓ + 𝛼𝑐ℓ , then return that all constraints in Fℓ are satisfied. Else, return 𝑆★ = {𝑝 :

𝑥★𝑝 > 0}.

Our separation algorithm solves an LP with polynomially many variables and constraints,

and as such runs in polynomial time.
2
However, correctness of the algorithm is not immediate:

2
We note that, given a dual solution, one can efficiently find a primal solution, as observed by Carr and Vempala [11].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:18 Noémie Périvier et al.

the LP is a relaxation of the set problem we are interested in, and as such

∑
𝑝

(
𝑣ℓ𝑝 − 𝜆𝑝

)
𝑥★𝑝 ≥

max𝑆 ∈Iℓ
∑

𝑝∈𝑆

(
𝑣ℓ𝑝 − 𝜆𝑝

)
. If this inequality was strict, the separation algorithm would incorrectly

return that a constraint has been violated, when in fact all have been satisfied. Observe that this

would only occur if {𝑥★𝑝 } were fractional; the separation algorithm we propose, however, is a

capacitated variant of the assignment problem, for which the linear programming relaxation is

known to admit an integral solution [5]. Lemma 5.5 formalizes this high-level intuition, and thus

establishes that this inequality is in fact always tight.

This then concludes the proof of the fact that 𝑃 (𝜀)
is poly-time solvable.

Lemma 5.5. {𝑥★𝑝 } is integral. Thus,∑
𝑝

(
𝑣ℓ𝑝 − 𝜆𝑝

)
𝑥★𝑝 = max

𝑆 ∈Iℓ

∑
𝑝∈𝑆

(
𝑣ℓ𝑝 − 𝜆𝑝

)
□

Proposition 5.6 establishes the loss incurred from the rounding step, and follows from [21]. For

the sake of completeness, we include the proof in Appendix B.2.

Proposition 5.6. Let 𝐴𝐿𝐺 denote the value of the solution immediately after the re-assignment
step. Then, 𝐴𝐿𝐺 ≥ (1 − 1

𝑒
)𝑂𝑃𝑇 (𝜀) .

We next show that no additional loss is incurred in the aggregation step of our algorithm.

Proposition 5.7. The aggregation step maintains a feasible assignment of passengers to lines.
Moreover, let 𝐴𝐿𝐺 denote the value of the solution before the final aggregation step, and let {𝑌ℓ } and
{𝑌ℓ } respectively denote the indicator variables corresponding to whether or not a line was opened,
before and after the aggregation step; let 𝑐 (𝑌) and 𝑐 (𝑌) denote the costs of these respective solutions.
Then, 𝐴𝐿𝐺 ≥ 𝐴𝐿𝐺 , and 𝑐 (𝑌) ≤ 𝑐 (𝑌).

Proof. The fact that the objective weakly increases after the aggregation step follows from the

fact that ℓ1 and ℓ2 share the same route, and 𝑣𝑝 (·) is non-decreasing in the line frequency for all

𝑝 ∈ P. Moreover, 𝑐 (𝑌) ≤ 𝑐 (𝑌) follows from subadditivity of the cost function.

We now argue that a feasible assignment of passengers to lines is maintained after the aggregation

step, i.e., that the bus capacity constraint is not violated for line ℓ ′ = (𝑟, 𝑓ℓ1 + 𝑓ℓ2). Let
{
𝑋ℓ𝑝

}
and

{𝑋ℓ𝑝 } be the indicator variables respectively denoting the assignment of passengers to lines, after

and before the aggregation step. For all 𝑒 ∈ 𝑟 , we have:∑
𝑝 :𝑒∈𝑟ℓ′𝑝

𝑋ℓ′𝑝
(𝑎)
=

∑
𝑝 :𝑒∈𝑟ℓ

1
𝑝

𝑋ℓ1𝑝 +
∑

𝑝 :𝑒∈𝑟ℓ
2
𝑝

𝑋ℓ2𝑝

(𝑏)
≤ 𝐶 (𝑓ℓ1 + 𝑓ℓ2),

where (𝑎) follows from the aggregation construction and (𝑏) follows from the fact that the assign-

ment of passengers to lines before the aggregation step was feasible by construction, for both ℓ1
and ℓ2. □

To complete the proof of the theorem, we characterize the cost of the solution returned by

Algorithm 1. We defer the proof of Proposition 5.8 to Appendix B.2.

Proposition 5.8. The solution returned by Algorithm 1 satisfies the budget constraint in expectation.
Moreover, for all 𝛿 ∈ (0, 1], the cost of the solution returned by Algorithm 1 is at most 𝐵(1 − 𝜀) (1 + 𝛿)
with probability at least 1 − 𝑒−𝛿

2 (1−𝜀)𝐵/3𝑐max .

The probabilistic budget guarantee follows from taking 𝛿 = 𝜀
1−𝜀 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:19

Corollary 5.9. The cost of the solution returned by Algorithm 1 satisfies the budget constraint
with probability at least 1 − 𝑒−𝜀

2𝐵/3𝑐max .

We complete the proof of Theorem 5.2 by putting together the facts established above.

Proof of Theorem 5.2. Corollary 5.9 establishes the cost characterization.

For the approximation guarantee, putting together Theorem 5.4 with Propositions 5.6, 5.7 and 5.3,

we obtain that

𝐴𝐿𝐺 ≥
(
1 − 1

𝑒

)
𝑂𝑃𝑇 (𝜀) ≥

(
1 − 1

𝑒

)
(1 − 𝜀)𝑂𝑃𝑇 ≥

(
1 − 1

𝑒
− 𝜀

)
𝑂𝑃𝑇 .

□

6 NUMERICAL EXPERIMENTS

We complement our theoretical results by demonstrating the practical efficacy of our algorithm on:

(𝑖) the Manhattan network, with real passenger data from for-hire vehicle ride requests, and (𝑖𝑖) a
synthetic dataset based on a random network, designed to minimize any structural advantages. We

present the former here, and defer our synthetic experiments to Appendix C.

We compare the solution returned by our algorithm to that of a state-of-the-art ILP solver, run

on problem (𝑃) in Section 3.2. Note that the ILP solver cannot directly solve the configuration LP

𝑃 , due to its exponential size. We instead feed it the natural formulation of the problem (𝑃). To
emulate the real-time constraints on such a policy in practice, we run both our algorithm and the

ILP solver under a strict time budget. All methods were implemented in Python using the Gurobi

solver v9.0 [24]. Computational experiments were run on a laptop with an Intel I7-4650U processor

and 8GB of RAM. Our replication code is available online.
3

6.1 Practical Implementation

Although the theoretical analysis of our algorithm relies on using the ellipsoid method for solving

the configuration LP, in practice, column generation is known to be more efficient (despite lacking

poly-time guarantees) [15]. Thus, in our experiments we opt for column generation, where the

generation of the new columns is done using our separation algorithm (Algorithm 2).

Given an instance 𝐼 of Rlpp, and parameters 𝜀 ∈ (0, 1
2
),𝑚 ∈ N, we proceed as follows:

(1) Solve the configuration LP 𝑃 (𝜀)
in Algorithm 1 via column generation. Return the current LP

solution once the time budget has been exceeded.

(2) Simulate the rounding through re-aggregation steps of Algorithm 1𝑚 times.

(3) Let S𝐵 (𝐼) denote the set of all budget-respecting solutions of the𝑚 realized solutions; return

the solution of maximum value in S𝐵 (𝐼).
We note that this procedure retains our polynomial-time guarantees. Moreover, it benefits from

the fact that Step 2 is easily parallelizable. In our experiments, we use 𝜀 = 0.05 and𝑚 = 10
4
.

6.2 Experimental setup and results

To test the performance of our algorithm in a realistic setting, we develop a new dataset for modeling

Mobility-on-Demand platforms, based on the Manhattan road network. We obtain the network

from the publicly available OpenStreetMap (OSM) geographical data using the OSMnx Python

package [7].

3
https://github.com/noemieperivier/line_planning

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

https://github.com/noemieperivier/line_planning

24:20 Noémie Périvier et al.

Fig. 4. An example of line plan generated by our algorithm for the Manhattan network. We consider here the

trip requests made on April 3, 2018 from 5pm to 6pm, with 𝐵 = 3 · 104, 𝐿 = 10
3
and 𝛽 = 3.

Line inputs. We set the size of the candidate set of lines to be 𝐿 = 10
3
, and generate the candidate

set based on the skeleton method proposed by Silman et al. [39], by iteratively choosing four nodes

in the graph, uniformly at random, and connecting them via shortest path. We also set 𝑐ℓ to be

proportional to the total travel time between the start and end nodes of line ℓ . We set the bus

capacity 𝐶 = 30, and assume that all bus routes operate at frequency 1. Note that increasing the

frequency of a line is equivalent to duplicating a route of frequency 1 in our algorithm. In our

synthetic experiments (Appendix C) we observe that our algorithm’s performance improves relative

to the ILP solver as the size of the candidate set of lines increases. Thus, assuming frequency 1 lines

only serves as a lower bound on our algorithm’s performance on the real-world dataset.

Passenger inputs. We use records of for-hire vehicle trips in Manhattan using the New York City

Open Data platform, considering an hour’s worth of trip requests between 5pm and 6pm on the

first Tuesday of February, March and April 2018. Our time windows have 9983, 13851, and 12301

trip requests respectively. We note that the more commonly-used taxicab and rideshare datasets are

unsuitable for our setting, as these datasets are heavily biased towards short trips (indeed, running

our algorithm on this data results in most trips using the car-only option). In contrast, the for-hire

trips are longer, and hence lead to significant savings from multi-modal trips.

For each trip, instead of exact pickup and drop-off coordinates, the dataset provides only origin

and destination ‘areas’ (the over 4,000 nodes in the Manhattan network are divided into 69 areas).

Given the area of an origin or destination, we sample a node in the area from the network uniformly

at random. For each passenger 𝑝 ∈ P and line ℓ ∈ L, we define the passenger-line value to be the

difference between the time travelled by car when using ℓ and the duration of the direct car trip.

Thus, our objective function is proportional to the total reduction in miles travelled by car in the

system. We moreover impose the constraint that a passenger-line value is only positive if the travel

time induced for the passenger is no more than 𝛽 times the time of a direct trip by car, and set this

detour factor 𝛽 = 3.

We run the procedure under a strict time budget of 1200𝑠 for each of the three sets of requests,

averaging the solutions returned by the procedure over these three instances. Let 𝐴𝐿𝐺 denote the

corresponding empirical average. We also report 𝑛ILP and 𝑛ALG, the number of lines respectively

opened in the solutions returned by our algorithm and the ILP. Finally, in order to characterize the

rounding loss, we compute the multiplicative gap between the empirical average of the𝑚 = 10
4

solutions of the rounding process and the value of the configuration LP 𝑃 (𝜀)
at the end of the

allotted time. We use 𝜂 to denote this gap.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:21

Table 2. Numerical results for different budget values: We set 𝐿 = 10
3
, 𝛽 = 3. Bold values indicate the better

solution for the corresponding value of 𝐵. While the ILP outperforms our algorithm for the smallest and

largest budgets, our algorithm consistently outperforms the ILP solver for more realistic intermediary budgets,

where the ILP solver is often unable to return a solution within the allotted time.

The gap 𝜂 is consistently above 85%, which is a significant improvement on the

(
1 − 1/𝑒

)
(i.e., 63%) theoretical

guarantee. For larger budgets (i.e., between 10
5
and 2 · 105), the performance of our algorithm plateaus, as

the column generation process requires more iterations to optimally solve the configuration LP.

𝐵 ILP 𝐴𝐿𝐺 𝑛ILP 𝑛ALG 𝜂

10
4 289,139 279, 364 15 16 0.93

2 · 104 356, 621 509,586 25 27 0.89

3 · 104 — 704,800 — 36 0.87

5 · 104 — 917,683 — 60 0.85

10
5

— 1,140,700 — 106 0.85

2 · 105 2,859,276 1, 132, 616 242 101 0.85

We report the results of our experiments in Table 2. Our findings illustrate the practicality of our

algorithm and relative inadequacy of the ILP for the task of real-time routing at scale.

7 CONCLUSION

The integration of ride-hailing platforms’ flexible demand-responsive services with the sustainability

of mass transit systems is the next frontier in urban mobility. As ride-hailing platforms such as

Uber and Lyft expand their range of services and look to adding high-capacity vehicles such as

buses and shuttles to their fleets, they are faced with the following operational question: Given a
set of dynamically changing trip requests and a fleet of high-capacity vehicles, what is the optimal set
of bus routes and corresponding frequencies with which to operate them?
In this work we provided a partial characterization of the hardness landscape of the Real-Time

Line Planning Problem by proving that, unless the platform has access to an existing candidate

set of lines and passengers can only travel via one bus line (but are nevertheless allowed to

transfer between bus and car services), the problem is hard to approximate within a constant

factor. Under these assumptions, however, we developed a 1 − 1

𝑒
− 𝜀 approximation algorithm.

We moreover demonstrated its efficacy in numerical experiments by showing that, when the

platform is constrained to short computation times (which is precisely the case if it wishes to be

demand-responsive), then our algorithm outperforms exact methods on state-of-the-art ILP solvers.

This paper lends itself to a number of natural directions for futurework. From a theory perspective,

though we showed that our algorithm can be modified with at most a constant-factor loss when the

trip optimality assumption is relaxed, existing approximation bounds for the interval scheduling

problem are quite weak. An important area of investigation is whether we can leverage the additional

structure of the Real-Time Line Planning Problem to strengthen the bounds of existing interval

scheduling techniques.

ACKNOWLEDGMENTS

This material is based upon work partially supported by: the National Science Foundation (NSF)

grants DMS-1839346, ECCS-1847393, CNS-1955997, and CNS-1952011; US Army Research Labora-

tory (ARL) grant W911NF-17-1-0094.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:22 Noémie Périvier et al.

REFERENCES

[1] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. 2017. On-demand high-

capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy of Sciences 114, 3
(2017), 462–467.

[2] Siddhartha Banerjee, Daniel Freund, and Thodoris Lykouris. 2016. Pricing and optimization in shared vehicle systems:

An approximation framework. arXiv preprint arXiv:1608.06819 (2016).
[3] Siddhartha Banerjee, Yash Kanoria, and Pengyu Qian. 2018. State dependent control of closed queueing networks. In

ACM SIGMETRICS ’18.
[4] Alexandre Barra, Luis Carvalho, Nicolas Teypaz, Van-Dat Cung, and Ronaldo Balassiano. 2007. Solving the transit

network design problem with constraint programming.

[5] Dimitri P Bertsekas. 1991. Linear network optimization: algorithms and codes. MIT press.

[6] Robert G Bland, Donald Goldfarb, and Michael J Todd. 1981. The ellipsoid method: A survey. Operations research 29, 6

(1981), 1039–1091.

[7] Geoff Boeing. 2017. OSMnx: A Python package to work with graph-theoretic OpenStreetMap street networks. Journal
of Open Source Software 2, 12 (2017).

[8] Ralf Borndörfer and Marika Karbstein. 2012. A direct connection approach to integrated line planning and passenger

routing. In 12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[9] Ralf Borndörfer, Martin Grötschel, and Marc E. Pfetsch. 2007. A Column-Generation Approach to Line Planning in

Public Transport. Transportation Science 41, 1 (2007), 123–132.
[10] Anton Braverman, Jim G Dai, Xin Liu, and Lei Ying. 2019. Empty-car routing in ridesharing systems. Operations

Research 67, 5 (2019), 1437–1452.

[11] Robert Carr and Santosh Vempala. 2000. Randomized metarounding. In Proceedings of the thirty-second annual ACM
symposium on Theory of computing. 58–62.

[12] Avishai Ceder and Nigel H.M. Wilson. 1986. Bus network design. Transportation Research Part B: Methodological 20, 4
(1986), 331 – 344.

[13] Partha Chakroborty and Tathagat Wivedi. 2002. Optimal Route Network Design for Transit Systems Using Genetic

Algorithms. Engineering Optimization 34, 1 (2002), 83–100.

[14] Chandra Chekuri and Martin Pal. 2005. A recursive greedy algorithm for walks in directed graphs. In 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’05). IEEE, 245–253.

[15] Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon. 2006. Column generation. Vol. 5. Springer Science &
Business Media.

[16] D. Dubois, G. Bel, and M. Llibre. 1979. A Set of Methods in Transportation Network Synthesis and Analysis. The
Journal of the Operational Research Society 30, 9 (1979), 797–808.

[17] T. Erlebach and F.C.R. Spieksma. 2003. Interval selection: applications, algorithms, and lower bounds. Journal of
Algorithms 46, 1 (Jan. 2003), 27–53. https://doi.org/10.1016/S0196-6774(02)00291-2

[18] Wei Fan and Randy B. Machemehl. 2006. Using a Simulated Annealing Algorithm to Solve the Transit Route Network

Design Problem. Journal of Transportation Engineering 132, 2 (2006), 122–132.

[19] Reza Zanjirani Farahani, Elnaz Miandoabchi, Wai Yuen Szeto, and Hannaneh Rashidi. 2013. A review of urban

transportation network design problems. European Journal of Operational Research 229, 2 (2013), 281–302.

[20] Emma G. Fitzsimmons. 2016. Surge in Ridership Pushes New York Subway to Limit. The New York Times (2016).
[21] Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. 2011. Tight approximation algorithms

for maximum separable assignment problems. Mathematics of Operations Research 36, 3 (2011), 416–431.

[22] Philine Gattermann, Jonas Harbering, and Anita Schöbel. 2017. Line pool generation. Public Transport 9, 1-2 (2017),
7–32.

[23] Valérie Guihaire and Jin-Kao Hao. 2008. Transit network design and scheduling: A global review. Transportation
Research Part A: Policy and Practice 42, 10 (2008), 1251–1273.

[24] LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http://www.gurobi.com

[25] AJ Hawkins. 2017. Lyft Shuttle mimics mass transit with fixed routes and fares. The Verge (2017). https://www.

theverge.com/2017/3/29/15111492/lyft-shuttle-fixed-route-fare-sf-chicago

[26] Doug Johnson. 2020. Microtransit Gives City Agencies a Lift During the Pandemic. Wired (2020). https://www.wired.

com/story/microtransit-gives-city-agencies-a-lift-during-the-pandemic/

[27] Christos Kalaitzis, Aleksander Madry, Alantha Newman, Lukáš Poláček, and Ola Svensson. 2015. On the configuration

LP for maximum budgeted allocation. Mathematical Programming 154, 1-2, 427–462.

[28] Yash Kanoria and Pengyu Qian. 2019. Near optimal control of a ride-hailing platform via mirror backpressure. arXiv
preprint arXiv:1903.02764 (2019).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

https://doi.org/10.1016/S0196-6774(02)00291-2
http://www.gurobi.com
https://www.theverge.com/2017/3/29/15111492/lyft-shuttle-fixed-route-fare-sf-chicago
https://www.theverge.com/2017/3/29/15111492/lyft-shuttle-fixed-route-fare-sf-chicago
https://www.wired.com/story/microtransit-gives-city-agencies-a-lift-during-the-pandemic/
https://www.wired.com/story/microtransit-gives-city-agencies-a-lift-during-the-pandemic/

Real-Time Approximate Routing for Smart Transit Systems 24:23

[29] Tai-Yu Ma. 2017. On-demand dynamic Bi-/multi-modal ride-sharing using optimal passenger-vehicle assignments. In

2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial
Power Systems Europe (EEEIC/I & CPS Europe). IEEE, 1–5.

[30] Tai-Yu Ma, Saeid Rasulkhani, Joseph YJ Chow, and Sylvain Klein. 2019. A dynamic ridesharing dispatch and idle vehicle

repositioning strategy with integrated transit transfers. Transportation Research Part E: Logistics and Transportation
Review 128 (2019), 417–442.

[31] Thomas L Magnanti and Richard T Wong. 1984. Network design and transportation planning: Models and algorithms.

Transportation science 18, 1 (1984), 1–55.
[32] Pasin Manurangsi. 2017. Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph. In Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of Computing. 954–961.
[33] Ángel G Marín and Patricia Jaramillo. 2009. Urban rapid transit network design: accelerated Benders decomposition.

Annals of Operations Research 169, 1 (2009), 35–53.

[34] Karl Nachtigall and Karl Jerosch. 2008. Simultaneous network line planning and traffic assignment. In 8th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[35] Jake Offenhartz. 2020. MTAWill End Free Cab Rides For Essential Workers, As Overnight Subway Shutdown Continues.

Gothamist (2020). https://gothamist.com/news/mta-will-end-free-cab-rides-essential-workers-overnight-subway-

shutdown-continues

[36] Uwe Pape, Yean-Suk Reinecke, and Erwin Reinecke. 1995. Line network planning. In Computer-Aided Transit Scheduling.
Springer, 1–7.

[37] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H. Strogatz, and Carlo Ratti. 2014. Quantifying

the benefits of vehicle pooling with shareability networks. Proceedings of the National Academy of Sciences 111, 37
(2014), 13290–13294.

[38] Thibault Séjourné, Samitha Samaranayake, and Siddhartha Banerjee. 2018. The price of fragmentation in mobility-on-

demand services. Proceedings of the ACM on Measurement and Analysis of Computing Systems 2, 2 (2018), 1–26.
[39] Lionel Adrian Silman, Zeev Barzily, and Ury Passy. 1974. Planning the route system for urban buses. Computers &

operations research 1, 2 (1974), 201–211.

[40] Mitja Stiglic, Niels Agatz, Martin Savelsbergh, and Mirko Gradisar. 2018. Enhancing urban mobility: Integrating

ride-sharing and public transit. Computers & Operations Research 90 (2018), 12–21.

[41] Pranshu Verma. 2020. ‘We’re Desperate’: Transit Cuts Felt Deepest in Low-Income Areas . The New York Times (2020).
[42] José Verschae and Andreas Wiese. 2014. On the configuration-LP for scheduling on unrelated machines. Journal of

Scheduling 17, 4 (2014), 371–383.

[43] Quentin K Wan and Hong K Lo. 2003. A mixed integer formulation for multiple-route transit network design. Journal
of Mathematical Modelling and Algorithms 2, 4 (2003), 299–308.

[44] Laurence A. Wolsey. 1982. Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location

Problems. Mathematics of Operations Research 7, 3 (1982), 410–425.

[45] Fang Zhao and Ike Ubaka. 2004. Transit network optimization-minimizing transfers and optimizing route directness.

Journal of Public Transportation 7, 1 (2004), 4.

[46] Fang Zhao and Xiaogang Zeng. 2006. Simulated annealing–genetic algorithm for transit network optimization. Journal
of Computing in Civil Engineering 20, 1 (2006), 57–68.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

https://gothamist.com/news/mta-will-end-free-cab-rides-essential-workers-overnight-subway-shutdown-continues
https://gothamist.com/news/mta-will-end-free-cab-rides-essential-workers-overnight-subway-shutdown-continues

24:24 Noémie Périvier et al.

A EXTENSIONS

A.1 Relaxing trip optimality.

In this section, we describe how our algorithm and analysis can be modified if the trip-optimality

assumption (Assumption 2) is relaxed. Specifically, we no longer assume that passengers must use

the trip option which maximizes their value along that line; the platform must now consider all

possible ways in which a passenger can join each line. We refer to this variant of the problem as

the Generalized Real-Time Line Planning Problem (GRlpp).

Given line ℓ ∈ L, we define a sub-route of 𝑟ℓ to be any set of consecutive edges of 𝑟ℓ . Let 𝑛ℓ

be the size of the set of all sub-routes of 𝑟ℓ . We index sub-routes of 𝑟ℓ as 𝑟
(𝑖)
ℓ

for 𝑖 ∈ [𝑛ℓ]. Let 𝑣 (𝑖)ℓ𝑝

denote the value associated with passenger 𝑝 traveling along sub-route 𝑟
(𝑖)
ℓ

of 𝑟ℓ . Passenger 𝑝 can

be assigned to any sub-route 𝑟
(𝑖)
ℓ

for which 𝑣
(𝑖)
ℓ𝑝

> 0.

We first define the notion of trip-optimality gap.

Definition A.1 (Trip-optimality gap). The trip-optimality gap 𝛾 characterizes the worst-case

multiplicative gap between the optimal values of Rlpp and GRlpp. Formally, let I denote the set of

all instances for the Generalized Real-Time Line Planning Problem. For 𝐼 ∈ I, 𝑂𝑃𝑇 (𝐼) and 𝑂𝑃𝑇 (𝐼)
respectively denote the value of the optimal solution to Rlpp and GLpp.

𝛾 = sup

𝐼 ∈I

𝑂𝑃𝑇 (𝐼)
𝑂𝑃𝑇 (𝐼) .

Proposition A.2. The Real-Time Line Planning Problem has unbounded trip-optimality gap.

Proof. Consider the setting where |𝐸 | = |P | = 𝑛 − 1, 𝐶 = 1, and 𝐵 is such that only one line ℓ

at frequency 1 can be opened. Let 𝑟
(𝑛)
ℓ

denote the sub-route which uses all 𝑛 − 1 edges of 𝐺 , and

suppose 𝑣
(𝑛)
ℓ𝑝

= 1 for all 𝑝 ∈ P. Let 𝑟
(𝑒)
ℓ

denote the sub-route of 𝑟ℓ which uses a single edge 𝑒 , and

suppose 𝑣
(𝑒)
ℓ𝑝

= 1/2 for all 𝑒 ∈ 𝐸, 𝑝 ∈ P. Then, under the trip optimality assumption, the Real-Time

Line Planning Problem has optimal value 1 (since all passengers must be served on 𝑟
(𝑛)
ℓ

but 𝐶 = 1).

When this assumption is relaxed, however, the optimal value is at least 𝑛−1
2
, achieved by having

each passenger travel along a different edge. □

An unbounded trip-optimality gap would lead one to think that the more general, relaxed

problem would require a fundamentally different approach from that of our algorithm. We however

demonstrate the flexibility of our approach by proving that our algorithm can easily be modified

for this setting, with at most a constant-factor loss.
We first introduce the following notation. Let 𝑆𝑖 denote a feasible assignment of passengers

to sub-route 𝑟 (𝑖)
ℓ

of line ℓ , for 𝑖 ∈ [𝑛ℓ]. Now, 𝑆 = (𝑆1, . . . , 𝑆𝑛ℓ
) denotes a feasible assignment of

passengers to line ℓ . For 𝑆 to be feasible, {𝑆𝑖 } must be disjoint subsets of P (i.e., a passenger can

only be matched to one trip option), and the number of passengers using edge 𝑒 of 𝑟ℓ must not

exceed the capacity of the line. Let Iℓ denote the set of feasible assignments of passengers to ℓ . For

ease of notation, we use 𝑝 ∈ 𝑆 if there exists 𝑖 ∈ [𝑛ℓ] such that 𝑝 ∈ 𝑆𝑖 .

We can still define an exponential-size configuration ILP for the Generalized Real-Time Line

Planning Problem:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:25

𝑃 := max

{𝑋ℓ𝑆 }

∑
ℓ∈L

∑
𝑆 ∈Iℓ

∑
𝑖∈[𝑛ℓ]

∑
𝑝∈𝑆𝑖

𝑣
(𝑖)
ℓ𝑝
𝑋ℓ𝑆

s.t.

∑
ℓ∈L

𝑐ℓ
©­«
∑
𝑆 ∈Iℓ

𝑋ℓ𝑆
ª®¬ ≤ 𝐵 (12)∑

𝑆 ∈Iℓ

𝑋ℓ𝑆 ≤ 1 ∀ ℓ ∈ L (13)∑
ℓ∈L

∑
𝑆 ∈Iℓ :
𝑝∈𝑆

𝑋ℓ𝑆 ≤ 1 ∀𝑝 ∈ P (14)

𝑋ℓ𝑆 ∈ {0, 1} ∀ ℓ ∈ L, 𝑆 ∈ Iℓ
We can apply Algorithm 1 to this problem. As before, however, we require a subroutine which

(approximately) solves 𝑃 (𝜀)
, the auxiliary configuration LP.

In Section 5 we showed that we can solve 𝑃 (𝜀)
by applying the ellipsoid method to the dual

problem 𝐷 (𝜀)
, assuming access to a polynomial-time separation oracle. To this end, we showed

that an exact polynomial-time separation algorithm was within reach due to additional structure

induced by trip optimality.

We adopt a similar approach for the Generalized Real-Time Line Planning Problem. Consider the

dual corresponding to 𝑃 (𝜀)
, which we denote as before 𝐷 (𝜀)

:

𝐷 (𝜀)
:= min

{𝑞ℓ },{𝜆𝑝 },𝛼

∑
ℓ∈L

𝑞ℓ +
∑
𝑝∈P

𝜆𝑝 + 𝐵(1 − 𝜀)𝛼

s.t. 𝑞ℓ + 𝛼𝑐ℓ ≥
∑

𝑖∈[𝑛ℓ]

∑
𝑝∈𝑆𝑖

(
𝑣
(𝑖)
ℓ𝑝

− 𝜆𝑝

)
∀ ℓ ∈ L, 𝑆 ∈ Iℓ

𝑞ℓ ≥ 0 ∀ ℓ ∈ L, 𝜆𝑝 ≥ 0 ∀𝑝 ∈ P, 𝛼 ≥ 0

Recall, for fixed ℓ , given 𝑞ℓ , 𝑐ℓ , {𝜆𝑝 }, a separation algorithm for 𝐷 (𝜀)
either certifies that 𝑞ℓ +𝛼𝑐ℓ ≥∑

𝑖∈[𝑛ℓ]
∑

𝑝∈𝑆𝑖

(
𝑣
(𝑖)
ℓ𝑝

− 𝜆𝑝

)
∀𝑆 ∈ Iℓ , or returns 𝑆 such that this constraint is violated. This can be

done by solving the following combinatorial optimization problem:

max

𝑆 ∈Iℓ

∑
𝑖∈[𝑛ℓ]

∑
𝑝∈𝑆𝑖

(
𝑣
(𝑖)
ℓ𝑝

− 𝜆𝑝

)
.

The following lemma follows from Fleischer et al. [21].

Lemma A.3 ([21]). A 𝛽-approximate separation algorithm for 𝐷 (𝜀) implies a 𝛽-approximation for
𝐷 (𝜀) .

Thus, given a constant-factor approximation for the separation algorithm, a constant-factor

approximation for the Generalized Real-Time Line Planning Problem follows.

Corollary A.4. Let A be a 𝛽-approximate separation algorithm for 𝐷 (𝜀) . Then, using A as a
sub-routine to Algorithm 1 guarantees a

(
(1 − 1

𝑒
)𝛽 − 𝜀

)
-approximation for the Generalized Real-Time

Line Planning Problem that is budget-respecting with probability at least 1 − 𝑒−𝜀
2𝐵/3𝑐max .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:26 Noémie Périvier et al.

It suffices to show that such a constant-factor approximation exists. To see this, we show that

the problem of finding a separation algorithm for 𝐷 (𝜀)
reduces to an instance of the Weighted

Job Interval Selection problem (Wjis), for which a
1

8
-approximation exists [17]. Establishing this

analogy then completes the argument that we can use our algorithm to obtain a constant-factor

approximation for the Generalized Real-Time Line Planning Problem.

Definition A.5 (Weighted Job Interval Selection Problem). Consider a set of 𝑛 jobs,𝑚 machines,

and a set of intervals I of the real line. Each job 𝑗 is defined by a set of feasible intervals 𝐼 𝑗 ∈ I in

which it can be processed, as well as associated weights {𝑤𝑖 𝑗 }𝑖∈𝐼 𝑗 . The goal is to select a subset of

the intervals of maximum weight such that: (𝑖) at most one interval is selected for each job, and

(𝑖𝑖) at any point on the real line, no more than𝑚 jobs can be scheduled.

The analogy between the Generalized Real-Time Line Planning Problem and the Weighted Job

Interval Selection Problem is as follows. Each line ℓ ∈ L corresponds to the real line, and sub-route

𝑟
(𝑖)
ℓ

corresponds to an interval 𝑖 of the real line. Each passenger 𝑝 corresponds to a job 𝑗 , and

𝑣
(𝑖)
ℓ𝑝

− 𝜆𝑝 corresponds to the weight of processing job 𝑗 on interval 𝑖 . The bus capacity 𝐶 is the

number of machines. Thus, from any feasible solution toWjis we can construct an assignment of

passengers to sub-routes {𝑟 (𝑖)
ℓ

}𝑖∈[𝑛ℓ] such that each passenger is only assigned to one sub-route

and the capacity 𝐶 of a bus on 𝑟ℓ is nowhere exceeded. Such an assignment is thus feasible for line

ℓ , and any 𝛽-approximation forWjis also gives us a 𝛽-approximate separation oracle for 𝐷 (𝜀)
.

We briefly note that 𝑛ℓ is polynomial in 𝑛 since we’ve assumed that the maximum duration

(weight) of a route is upper bounded by 𝐷 , and the edge travel times are bounded below by a

constant 𝜏min > 0.Thus, since Algorithm 1 runs in polynomial time for the Real-Time Line Planning

Problem, it also runs in polynomial time for the Generalized Real-Time Line Planning Problem.

A.2 Travel times.

We now show that abstracting away notions of travel and clock times is indeed without loss of

generality, and that all results continue to hold for a more realistic, time-centric model.

Let 𝑇 denote the length of the discrete time window during which the platform must serve the

trip requests. A passenger is now defined by her source and destination nodes 𝑠𝑝 and 𝑑𝑝 , as well

as the time of her trip request 𝑡𝑝 . Let P𝑇 denote the set of all passengers. Clearly, |P𝑇 | = |P |. In
the same vein, a line is now defined by a route, a frequency, and a start time. Formally, the set of

all possible lines the platform can operate is L𝑇 =
{
(𝑟, 𝑓 , 𝑡) | (𝑟, 𝑓 , 𝑡) ∈ R × N × [𝑇]

}
. In this case,

we have |L𝑇 | = 𝑇 |L|. Given the set of travel times {𝜏𝑖 𝑗 }, the platform can pre-compute the bus

schedule induced by each line (e.g., if (𝑖, 𝑗) ∈ 𝑟ℓ , and the bus leaves node 𝑖 at time 𝑡 , then it reaches

node 𝑗 at time 𝑡 + 𝜏𝑖 𝑗). With slight abuse of notation, let 𝑡ℓ𝑖 denote the time at which line ℓ reaches

node 𝑖 . Then, the only feasible trip options for passenger 𝑝 via line ℓ are 𝜔 = (𝑠𝑝 , 𝑖, 𝑗, 𝑑𝑝) such
that 𝑡𝑝 + 𝜏★𝑠𝑝 ,𝑖 ≤ 𝑡ℓ𝑖 , where 𝜏

★
𝑠𝑝 ,𝑖

is the car travel time from 𝑠𝑝 to 𝑖 (i.e., the duration of the shortest

path between the two nodes). Given the bus schedule {𝑡ℓ𝑖 } and the passenger set P𝑇 , the platform

can then pre-compute the passenger-line values {𝑣ℓ𝑝 }. The size of each input to Algorithm 1 has

increased at most by a constant factor 𝑇 . Hence, our algorithm still runs in polynomial time under

this time-sensitive construction.

B OMITTED PROOFS

B.1 Limits of approximation for the Real-Time Line Planning Problem

B.1.1 Necessity of a candidate set of lines.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:27

Proof of Proposition 4.4. Since there is an edge of cost 𝑡 between 𝑟 and 𝑔𝑖 , by definition of a

min-cost path, 𝑡★𝑝𝑖 ≤ 𝑡 . Thus, (1 − 𝜀
𝑡
)𝑡★𝑝𝑖 ≤ (1 − 𝜀

𝑡
)𝑡 = 𝑡 − 𝜀. This then implies that 𝑣𝑝𝑖 (𝜔ℓ,𝑝𝑖) = 0 for

𝜔ℓ,𝑝𝑖 such that 𝑡 car (𝜔ℓ,𝑝𝑖) > 𝑡 − 𝜀. □

Proof of Proposition 4.5. Consider passenger 𝑝𝑖 . We first claim that it is without loss of gen-

erality to assume that direct travel by car is completed via edge (𝑟, 𝑔𝑖). This is due to the fact that

the cost of each edge of 𝐺 is lower bounded by 𝜀 > 0, and the cost of (𝑗, 𝑔𝑖) is 𝑡 − 𝜀 for all 𝑗 ∈ 𝑆𝑖 .

Thus, traveling from 𝑟 to 𝑔𝑖 via 𝑗 ∈ 𝑆𝑖 costs at least 𝑡 , which is exactly the cost of the trip which

uses edge (𝑟, 𝑔𝑖).
The fact that a bus line cannot be routed via edge (𝑟, 𝑔𝑖) follows from the fact that the cost of

(𝑟, 𝑔𝑖) is 𝑡 > 𝐷 , and as such is infeasible by bus since the maximum cost of a bus line is 𝐷 .

The fact that a bus line cannot be routed via edge (𝑗, 𝑔𝑖) follows from the fact that the cost of

(𝑗, 𝑔𝑖) is 𝑡 − 𝜀 > 𝐷 for all 𝑗 ∈ 𝑆𝑖 and is thus infeasible by bus. Now, suppose that the passenger

travels via line ℓ , and let 𝑗−𝑖 denote the vertex at which 𝑝𝑖 leaves the line and begins her journey by

car. If 𝑗−𝑖 ∉ 𝑆𝑖 , then reaching 𝑔𝑖 by car must incur a cost of at least 𝑡 (a cost of at least 𝜀 to reach

a node 𝑗 ′ ∈ 𝑆𝑖 then a cost 𝑡 − 𝜀 to reach 𝑔𝑖 from 𝑗 ′). Thus, the value for this trip option is 0 by

Proposition 4.4 and the passenger would opt for a direct travel by car via edge (𝑟, 𝑔𝑖).
□

Proof of Proposition 4.6. The proposition follows immediately from Proposition 4.5. The only

feasible options for passenger 𝑝𝑖 which use a bus line and collect strictly positive value are those

for which a node in 𝑆𝑖 can be reached by bus. □

B.1.2 Inefficacy of standard approximation techniques.

Proof of Proposition 4.10. Let 𝑆 denote the set of lines opened under y. With mild abuse of

notation, we use𝑤 (𝑆) to denote the welfare induced by this set of lines.

Consider the setting with three passengers 𝑝1, 𝑝2, 𝑝3, L = {ℓ1, ℓ2, ℓ3}, 𝑓ℓ = 1∀ ℓ ∈ L and 𝐶 = 1.

The value functions associated with each passenger are as follows:

𝑣ℓ1 =


1 if ℓ = ℓ1

1 if ℓ = ℓ2

0 if ℓ = ℓ3

, 𝑣ℓ2 =


1 if ℓ = ℓ1

0 if ℓ = ℓ2

1 if ℓ = ℓ3

, 𝑣ℓ3 =


1 if ℓ = ℓ1

0 if ℓ = ℓ2

0 if ℓ = ℓ3.

Passengers 𝑝1 and 𝑝2 use disjoint edges of 𝑟ℓ1 . Passenger 𝑝3, on the other hand, uses the same edges

of 𝑟ℓ1 as 𝑝1 and 𝑝2. Thus, any feasible assignment of 𝑝3 to ℓ1 requires 𝑝3 to be its sole passenger.

Let 𝑆1 = {ℓ1}. Then,𝑤 (𝑆1) = 2, achieved by assigning 𝑝1 and 𝑝2 to ℓ1. Moreover,𝑤 (𝑆1 ∪ {ℓ3}) = 2,

by assigning 𝑝1 and 𝑝2 to ℓ1, or 𝑝1 to ℓ1 and 𝑝2 to ℓ3. Now, let 𝑆2 = {ℓ1, ℓ2}. Again, by assigning 𝑝1
and 𝑝2 to ℓ1, we obtain𝑤 (𝑆2) = 2. Moreover,𝑤 (𝑆2 ∪ {ℓ3}) = 3, obtained by assigning 𝑝1 to ℓ2, 𝑝2 to

ℓ3 and 𝑝3 to ℓ1.

Since 𝑆1 ⊂ 𝑆2 and𝑤 (𝑆1 ∪ {ℓ3}) −𝑤 (𝑆1) < 𝑤 (𝑆2 ∪ {ℓ3}) −𝑤 (𝑆2),𝑤 is not submodular. □

Proof of Proposition 4.11. Consider passengers 𝑝1, 𝑝2 and lines ℓ1, ℓ2 such that

𝑣ℓ1,𝑝1 = 𝑣ℓ2,𝑝2 = 1 , 𝑣ℓ2,𝑝1 = 𝑣ℓ1,𝑝2 = 0,

with 𝑟ℓ1 and 𝑟ℓ2 non-overlapping. Suppose moreover that 𝑐ℓ1 = 𝑐ℓ2 = 1, and 𝐵 = 2 − 𝜀, for some

𝜀 ∈ (0, 1).
Since the ILP can only open a single line, its optimal value is 𝑂𝑃𝑇 = 1. An optimal solution to

the LP relaxation of the ILP, on the other hand, is such that 𝑦★ℓ1 = 1, 𝑦★ℓ2 = 1 − 𝜀, and thus its optimal

value is 𝑂𝑃𝑇 = 2 − 𝜀. Taking 𝜀 → 0 proves the claim. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:28 Noémie Périvier et al.

B.2 Main result: a 1 − 1

𝑒
− 𝜀 approximation algorithm

Proof of Lemma 5.5. Let 𝐴 ∈ R |𝑟ℓ |× |P |
denote the constraint matrix corresponding to (11). 𝐴 is

such that 𝐴𝑒,𝑝 = 1 if passenger 𝑝 uses edge 𝑒 , and 0 otherwise. Since a passenger exclusively uses

consecutive edges of 𝑟ℓ , the columns of 𝐴 have the consecutive-ones property. Thus, 𝐴 is totally

unimodular. Since 𝐶 and 𝑓ℓ are integral by assumption, these two facts together imply that LP-SEP

is integral. □

Proof of Proposition 5.6 [21]. Let 𝐴𝐿𝐺 (𝑝) denote passenger 𝑝’s expected contribution to the

objective in the solution returned by our algorithm. To prove the approximation guarantee, it

suffices to show the following:

𝐴𝐿𝐺 (𝑝) ≥
(
1 − 1

𝑒

) ∑
ℓ∈L

∑
𝑆 ∈Iℓ :𝑝∈𝑆

𝑣ℓ𝑝𝑋
(𝜀)
ℓ𝑆

∀𝑝 ∈ P

where

{
𝑋

(𝜀)
ℓ𝑆

}
is the solution to 𝑃 (𝜀)

. Summing over all 𝑝 and using

∑
𝑝

∑
ℓ∈L

∑
𝑆 ∈Iℓ :𝑝∈𝑆 𝑣ℓ𝑝𝑋

(𝜀)
ℓ𝑆

=

𝑂𝑃𝑇 (𝜀)
completes the proof of the result.

For each passenger 𝑝 ∈ P, let 𝑌ℓ𝑝 =
∑

𝑆 ∈Iℓ :𝑝∈𝑆 𝑋
(𝜀)
ℓ𝑆

. Sort the lines for which 𝑌ℓ𝑝 > 0 in decreasing

order of 𝑣ℓ𝑝 . Let {ℓ1, ℓ2, . . . , ℓ𝑘 } denote these lines, with 𝑣ℓ1,𝑝 ≥ 𝑣ℓ2,𝑝 ≥ . . . 𝑣ℓ𝑘 ,𝑝 .

After rounding and re-assignment (R&R), passenger 𝑝 is assigned to line ℓ1 if any set containing

𝑝 is assigned to ℓ1. Thus, 𝑝 is assigned to ℓ1 with probability 𝑌ℓ1,𝑝 . If no set containing passenger 𝑝

is assigned to ℓ1 after R&R, then we look to ℓ2. The probability that a set containing 𝑝 is assigned to

ℓ2 after R&R is 𝑌ℓ2,𝑝 . Thus, 𝑝 is assigned to ℓ2 with probability (1 − 𝑌ℓ1,𝑝)𝑌ℓ2,𝑝 . It follows that, for all
𝑘 ′ ≤ 𝑘 , passenger 𝑝 is assigned to 𝑘 ′

with probability

∏𝑘′−1
𝑖=1 (1 − 𝑌ℓ𝑖 ,𝑝)𝑌𝑘′ . Hence, we have

𝐴𝐿𝐺 (𝑝) =
𝑘∑

𝑘′=1

𝑣ℓ𝑘′𝑝𝑌𝑘′
©­«
𝑘′−1∏
𝑖=1

(1 − 𝑌ℓ𝑖 ,𝑝)
ª®¬ .

Lemma B.1 relates𝐴𝐿𝐺 (𝑝) to the contribution of passenger 𝑝 before rounding and re-assignment,∑𝑘
𝑘′=1 𝑣ℓ𝑘′ ,𝑝𝑌ℓ𝑘′ ,𝑝 .

Lemma B.1 ([21]). Suppose 𝑌ℓ𝑝 ≥ 0 for all ℓ ∈ L,
∑

ℓ∈L 𝑌ℓ𝑝 ≤ 1, and 𝑣ℓ1,𝑝 ≥ 𝑣ℓ2,𝑝 ≥ . . . ≥ 𝑣ℓ𝑘 ,𝑝 ≥ 0.
Then

𝑘∑
𝑘′=1

𝑣ℓ𝑘′𝑝𝑌𝑘′
©­«
𝑘′−1∏
𝑖=1

(1 − 𝑌ℓ𝑖 ,𝑝)
ª®¬ ≥

(
1 − (1 − 1

𝐿
)𝐿
) 𝑘∑
𝑘′=1

𝑣ℓ𝑘′ ,𝑝𝑌ℓ𝑘′ ,𝑝 .

Using the fact that (1− (1− 1

𝐿
)𝐿) ≥ 1− 1

𝑒
for all 𝐿 ≥ 1 completes the proof of Proposition 5.6. □

Proof of Proposition 5.8. Let 𝑌ℓ be the indicator variable denoting the event that line ℓ was

opened before the re-assignment step, and let 𝑌ℓ denote the final line status, after the aggregation

step. Let 𝑐 (𝑌) and 𝑐 (𝑌) denote the total costs associated with 𝑌 and 𝑌 , respectively. Between the

re-assignment step and the aggregation step, the cost of the solution could only have decreased,

since lines were potentially closed. Similarly, by Proposition 5.7, the cost of the solution could only

have decreased after the aggregation step. Thus, we have 𝑐 (𝑌) ≤ 𝑐 (𝑌), and

E
[
𝑐 (𝑌)

]
≤ E

[
𝑐 (𝑌)

]
=
∑
ℓ∈L

𝑐ℓP
[
𝑌ℓ = 1

]
=
∑
ℓ∈L

𝑐ℓ
©­«
∑
𝑆 ∈Iℓ

𝑋
(𝜀)
ℓ𝑆

ª®¬ ≤ 𝐵(1 − 𝜀),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

Real-Time Approximate Routing for Smart Transit Systems 24:29

where the second inequality is by feasibility of 𝑋
(𝜀)
ℓ𝑆

. Thus, the budget constraint is satisfied in

expectation.

We now prove the second part of the claim:

P
©­«
∑
ℓ∈L

𝑐ℓ 𝑌ℓ ≥ (1 + 𝛿) (1 − 𝜀)𝐵ª®¬≤P ©­«
∑
ℓ∈L

𝑐ℓ 𝑌ℓ ≥ (1 + 𝛿) (1 − 𝜀)𝐵ª®¬
= P

©­«
∑
ℓ∈L

𝑐ℓ

𝑐max

𝑌ℓ ≥ (1 + 𝛿) (1 − 𝜀)𝐵
𝑐max

ª®¬
≤𝑒−𝛿2 (1−𝜀)𝐵/3𝑐max

(15)

where (15) follows from an application of the Chernoff bound to the independent random variables{
𝑐ℓ
𝑐max

𝑌ℓ

}
ℓ∈L

, and uses the fact that E
[∑

ℓ
𝑐ℓ
𝑐max

𝑌ℓ

]
≤ (1−𝜀)𝐵

𝑐max

by feasibility of

{
𝑋

(𝜀)
ℓ𝑆

}
.

□

C ADDITIONAL NUMERICAL EXPERIMENTS ON SYNTHETIC DATA

To complement our real-world data experiments, we consider a synthetic dataset and show how

the performance of our algorithm depends on the number of requests and the cardinality of the

candidate set of line, using the ILP as a benchmark.

Observe that our algorithm relies on the underlying road network solely through the candidate

set of lines L, the line costs {𝑐ℓ }, and the passenger-line values {𝑣ℓ𝑝 }. Thus, it suffices to directly

generate these latter sets of inputs, rather than inheriting them from an underlying structured

network. We note that generating inputs in this manner, rather than running our algorithm on a

synthetic network (e.g., a grid network), further underscores the strength and generalizability of

our scheme, as its success is not tied to the geometry of any underlying graph.

Line inputs. We generate the candidate set of lines as follows. For each ℓ ∈ L, we associate 𝐷ℓ

edges, where 𝐷ℓ ∼ 𝑈𝑛𝑖 𝑓 {5, 50}. Moreover, let 𝑐ℓ = 1∀ ℓ ∈ L. This implies that a platform with

budget 𝐵 can open at most 𝐵 lines. Let F denote the set of possible frequencies with which to

operate each bus route. In our first set of experiments, we let F = {1}. We set the bus capacity

𝐶 = 30.

Passenger inputs. For each passenger 𝑝 ∈ P and line ℓ ∈ L, we let 𝑟ℓ𝑝 be a random subset

of contiguous edges of 𝑟ℓ . To model the fact that, in a realistic network, passengers would not

be covered by all lines, we define random variable 𝑍ℓ𝑝 ∼ 𝐵𝑒𝑟 (0.1) representing whether or not

passenger 𝑝 is covered by line ℓ . Given 𝑍ℓ𝑝 , we define the passenger-line value as follows:

𝑣ℓ𝑝 =

{
𝑈𝑛𝑖 𝑓 [0, 1] if 𝑍ℓ𝑝 = 1

0 otherwise.

Performance metrics. We investigate the performance of this practical procedure along three

dimensions: (𝑖) the number of passengers 𝑁 , (𝑖𝑖) the size of the candidate set of lines 𝐿, and (𝑖𝑖𝑖)
the platform’s budget 𝐵. For both the ILP and our algorithm, we set a strict time limit of 20 minutes,

and compare the solutions returned by the two schemes at the end of the allotted time.

We run the procedure for 5 randomly-generated instances of line and passenger inputs. Let 𝐴𝐿𝐺

denote the empirical average of the solution returned by the procedure.

We report the results of our experiments in Table 3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

24:30 Noémie Périvier et al.

Table 3. Numerical results for budgets 𝐵 ∈ {20, 40}. Bolded values of 𝐴𝐿𝐺 indicate that our procedure

outperforms the ILP benchmark for the corresponding 𝐿, 𝑁, 𝐵. While the ILP outperforms our algorithm on

smaller instances, for larger values of 𝐿 and 𝑁 , our algorithm consistently outperforms the ILP. As the budget

increases from 20 to 40, the ILP outperforms our algorithm for a larger set of values of 𝐿 and 𝑁 ; however,

there still exists a threshold past which our algorithm outperforms the ILP. This difference is especially stark

when 𝐿 and 𝑁 are both very large (we note that it is reasonable to expect 𝐿 and 𝑁 to grow with 𝐵): for these

large-scale settings, the ILP is incapable of returning any feasible solution in the allotted time.

𝐿 𝑁 𝐵 ILP 𝐴𝐿𝐺

1, 000 5, 000 20 2363 2173

5, 000 5, 000 20 2098 2171
7, 000 5, 000 20 807 2173
10, 000 5, 000 20 — 2174
5, 000 5, 000 20 2098 2171
5, 000 10, 000 20 — 3498
5, 000 15, 000 20 — 4445

𝐿 𝑁 𝐵 ILP 𝐴𝐿𝐺

1, 000 5, 000 40 3671 2744

5, 000 5, 000 40 3686 2743

7, 000 5, 000 40 2750 2754
10, 000 5, 000 40 — 2748
5, 000 5, 000 40 3686 2743

5, 000 10, 000 40 — 4949
5, 000 15, 000 40 — 6691

Whereas in theory the ILP solver provides an upper bound on𝐴𝐿𝐺 , this does not necessarily hold

in our numerical results. This is due to the fact that, for large-scale problems and under reduced

time budgets (i.e., the real-time application we are interested in), the ILP solver cannot solve the

problem to optimality, and as such the objective it achieves is not necessarily an upper bound on

𝐴𝐿𝐺 in practice.

Received February 2021; revised April 2021; accepted April 2021

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 24. Publication date: June 2021.

	Abstract
	1 Introduction
	1.1 Summary of our contributions

	2 Related work
	3 Preliminaries
	3.1 System Model
	3.2 The Real-Time Line Planning Problem (Rlpp)

	4 Fundamental limits of real-time routing
	4.1 Necessity of a candidate set of lines
	4.2 Hardness of multiple transfers
	4.3 Inefficacy of standard approximation techniques

	5 Main result
	5.1 An exponential-size configuration ILP
	5.2 Approximating the exponential-size ILP

	6 Numerical Experiments
	6.1 Practical Implementation
	6.2 Experimental setup and results

	7 Conclusion
	Acknowledgments
	References
	A Extensions
	A.1 Relaxing trip optimality.
	A.2 Travel times.

	B Omitted proofs
	B.1 Limits of approximation for the Real-Time Line Planning Problem
	B.2 Main result: a 1-1e- approximation algorithm

	C Additional numerical experiments on synthetic data

