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Abstract—Federated learning (FL) is a highly pursued machine
learning technique that can train a model centrally while keeping
data distributed. Distributed computation makes FL attractive for
bandwidth limited applications especially in wireless communica-
tions. There can be a large number of distributed edge devices
connected to a central parameter server (PS) and iteratively
download/upload data from/to the PS. Due to limited bandwidth,
only a subset of connected devices can be scheduled in each
round. There are usually millions of parameters in the state-of-
art machine learning models such as deep learning, resulting in
a high computation complexity as well as a high communication
burden on collecting/distributing data for training. To improve
communication efficiency and make the training model converge
faster, we propose a new scheduling policy and power allocation
scheme using non-orthogonal multiple access (NOMA) settings to
maximize the weighted sum data rate under practical constraints
during the entire learning process. NOMA allows multiple users to
transmit on the same channel simultaneously. The user scheduling
problem is transformed into a maximum-weight independent set
problem that can be solved using graph theory. Simulation results
show that the proposed scheduling and power allocation scheme
can help achieve a higher FL testing accuracy in NOMA based
wireless networks than other existing schemes within the same
learning time.

Index Terms—Federated Learning, scheduling policy, power
allocation, maximum-weight independent set, NOMA.

I. INTRODUCTION

The rapidly growing data availability has gradually enabled

training based artificial intelligence applications such as image

recognition, autonomous driving, and natural language process-

ing to become reality [1]. Unlike the traditional model-based

problem solving approaches, machine learning (ML) is more

data-driven and less depends on the knowledge of the models.

State-of-the-art ML techniques especially deep learning [2] has

demonstrated remarkable performance, such as AlphaGo and

Tesla Autopilot, which can outperform human beings in certain

areas. Since processing big data may exceed the computation

capability of a single server, processing through multiple

distributed [3] yet collaborative devices becomes a highly

promising and feasible direction to pursue. Further motivated

by the increasing computational/storage capacities of wireless

local devices as well as the ever increasing concerns on sharing

data due to privacy and security, next-generation communica-

tions/computation networks will encounter a paradigm shift

from conventional cloud/central computing to mobile edge

computing (MEC) [4], which largely deploys computational

power to the wireless network edge devices to meet the

needs of applications that demand very high computations, low

latency, as well as high privacy requirement. In this paradigm,

a large ML task is partitioned into multiple pieces that can

be performed in parallel by multiple distributed mobile edge

devices based on locally collected data.

Although data can be processed locally and do not need to

be sent in the primitive format to the central parameter server

(PS), data with reduced size may still need to be exchanged

for joint processing in order to reach a global consensus on

the model learning. Recently, a novel ML technique called

federated learning (FL) [5] is proposed to address this issue. It

allows devices to collect data from their local environment and

then train models locally. No raw data transmission to the PS

is needed. Instead the trained model with a much reduced data

size is uploaded to the PS. There are usually a large number of

edge devices connected to one PS. To achieve efficient learning

with limited wireless bandwidth, FL only selects a subset of

edge devices for model update in each round. Devices collect

data from their respective wireless local environment so the

data collected across different devices can be heterogeneous or

non-i.i.d. The significance of user scheduling is to make a de-

cision on selecting a subset of devices (most important devices

based on certain scheduling criteria) to upload model update

in each round. The study in [6] gave three different scheduling

policies, i.e., random scheduling, round robin, proportional

fair to schedule devices randomly, in group and according to

channel conditions, respectively. They considered the number

of devices and the channel conditions in scheduling but did

not consider the data distribution. [7] proposed a coordinated

scheduling and power control scheme in cloud radio access

networks. To maximize the weight sum data rate, the maximum

weight sum data rate problem was transformed to a maximum-

weight clique problem. Then the power allocation problem was

solved using [8] to achieve weighted throughput maximization

through power control. It considered user scheduling by using

the orthogonal time divsion multiplexing access (TDMA) and

frequency division multiplexing access (FDMA). [9] inves-

tigated the spectrum efficient resource management problem

(SERMP) under non-orthogonal multiple access (NOMA) by

transforming the SERMP problem into a maximum weighted

independent set problem and solved it using graph theory.

However, none of the above can be directly applied to our

scheme.

There are usually millions of model parameters in the

modern deep learning models such as ResNet-50 has 25 million

parameters, AlexNet has 62 million parameters. Most of the



existing works consider a computer-science based methodol-

ogy to reduce the model size by compression. [10] utilized

quantization and sparsification to perform model compression.

Furthermore, advanced communication mechanisms have been

developed to improve the spectral efficiency and to enhance

the data rate, which is very instrumental to facilitate the

ML methods from communications perspective. When the

transmission takes place in TDMA or FDMA, different devices

should work in different time slot or frequency channel. NOMA

allows multiple devices to transmit simultaneously on the same

channel so that data rate is increased and communication

latency is reduced when implementing FL [11].

In this work, we focus on NOMA-based FL uplink com-

munication by considering wireless fading channel. The user

scheduling and power allocation are formulated as a maximum

weighted sum rate problem, which is further transformed to

a maximum weight independent set problem and solved with

graph theory. The contributions are summarized as follows.

• We apply NOMA as the transmission scheme in FL model

update to reduce aggregation latency. Our simulations re-

veal more than 2x time reduction compared with TDMA-

based scheme.

• To find the optimal user scheduling and power allocation

scheme, we utilize the efficient maximum weight inde-

pendent set based on graph theory.

The rest of the paper is organized as follows. Section II

introduces the system model, NOMA transmission scheme and

problem formulation. Section III presents the solution for user

scheduling and power allocation. Simulation results are shown

in Section IV, where experiments are conducted to verify the

proposed schemes. Lastly, Section V concludes the paper.

II. SYSTEM MODEL

For the distributed learning task on device k, there exist a

dataset xk and a corresponding label yk. At round t, ML learns

the mapping from xt
k to yt

k. Model parameters θtk are used to

describe the mappings. f(xk,yk; θ
t
k) is the loss function used

to capture the error of the mappings. Each user performs the

machine learning task locally aiming to solve the following

problem [12]:

min
θt
k

Fk(θ
t
k) =

1

|Dk|
∑

i∈Dk

f(xt
k(i),y

t
k(i); θ

t
k), (1)

In what follows, we remove the index of t as the equation is

true for each round. |Dk| is the cardinality of the dataset on

user k.

FL training relies on the distributed stochastic gradient

descent (DSGD) [13] using dataset {D1,D2, . . . ,DK} across

K different devices. The loss function in (1) can be generalized

as:

min
θ

F (θ) =

K
∑

k=1

|Dk|
|D| Fk(θk), (2)

where θ is the global model that generated from sub-model

θk, |D| = ∑K
k=1 |Dk|.

As shown in Fig. 1, each round of the FL process starts

with the downlink communication for sharing central model

θ, followed by the learning process at local devices to obtain

θk, and ends with the uplink communication from device k

to the PS for θk transmission. For uplink, we apply NOMA

scheme that allows multiple distributed devices to update

simultaneously.

Fig. 1. One round of the FL process

In our system, there are a total of M edge devices connected

to the PS. The maximum number of devices that can be

scheduled to participate model update in NOMA is K. The

total number of iterations or rounds for the training model to

converge is T . Let M be the set of all the devices, K be the set

of devices for model update and T be the set of all the rounds.

Usually the number of devices participating the model updating

is much smaller than the total number of devices connected to

PS, due to the bandwidth limitation and signaling overhead,

i.e., M ≫ K. With the existence of massive devices, for the

sake of fairness, each device is scheduled to participate the

model update at most once. We also assume M ≥ K × T .

Fig. 2 gives the system model of the FL update. At each

round, only the right side K devices are scheduled to upload

their model update while all the M devices receive the aggre-

gated model from the PS.
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Fig. 2. FL Update Model

At the beginning, PS initializes the model as θ0 and broad-

casts it to all the users. Each user performs the local training

task and calculates the gradient gk = ∇Fk(θ) by using its local

data. In the round t, user k calculates θt
k = θt

k − η∇Fk(θ) to

get gradients gk, where η is the learning rate. All the scheduled

users then send their gradients to the PS for aggregation. The

PS further calculates θt+1 = θt − η
∑K

k=1
|Dk|
|D| ∇Fk(θ) and

sends θt+1 to all the users for the next round update. This



so-called FedAvg learning process continues until the training

on the model converges [5].

A. Uplink NOMA Transmission

NOMA allows multiple devices to transmit on the same

channel simultaneously. We consider a practical fading channel

in typical wireless settings. The channel gain of device k at

round t is ht
k = Lt

kh
t
0, which is considered constant during

each t but varies across different rounds. Lt
k is the large-scale

fading and ht
0 is the small-scale fading. Lt

k follows the free-

space path loss model Lt
k =

√
δtkλ

4πd
α/2
k

, δtk is the transmitter and

receiver antenna gain at t, λ is the signal wavelength, dk is

the distance between user k and the PS, and α is the path-

loss exponent. Small-scale factor ht
0 is a normal Gaussian

variable, i.e., ht
0 ∼ CN (0, 1). The transmit power of device

k at round t is denoted as ptk, ptk ≤ ptmax
k , where ptmax

k is

the maximum transmission power. Let stk be the encapsulated

gradient update from user k at round t. For simplicity, we

normalize the transmitted symbols ||stk||22 = 1. Due to the

superposition nature of the transmitted signal in NOMA, the

received signal at the PS at round t thus can be expressed as:

yt =
K
∑

k=1

√

ptkh
t
ks

t
k + nt, (3)

where nt ∼ CN (0, σ2) is the additive noise.

NOMA applies SIC at PS side to decode the signals from

different devices sequentially. The decoding process starts with

the strongest signal first by regarding other signals as inter-

ference. After successful decoding, PS subtracts the decoded

signal from the superposed signal and proceeds to decode

the next strongest signal. This process continues until the PS

decodes all the signals. Without loss of generality, we assume

pt1(h
t
1)

2 > pt2(h
t
2)

2 > · · · > ptK(ht
K)2. Therefore, the signal-

to-noise-plus-interference ratio (SINR) of user k at round t, γt
k

is :

γt
k =

ptk(h
t
k)

2

∑K
j=k+1 p

t
j(h

t
j)

2 + σ2
, ∀k = {1, . . . ,K − 1}. (4)

The achievable data rate for user k in round t becomes [14]:

Rt
k = log2{1 + γt

k},∀k = {1, . . . ,K − 1}. (5)

Data rate of the last decoded user K is Rt
K = log2(1 +

pt
K(ht

K)2

σ2 ).

B. Adaptive Model Compression

Interference exists within each uplink NOMA group, which

inevitably impacts the signal quality of different devices. Data

rate of each user in a NOMA-based dense wireless network

can thus be limited, which may hamper the model update ac-

curacy at each round. A common approach allows each device

to further compress their model to alleviate this limitation.

Since the channel coefficients may change across different

communication rounds, adaptive model compression is applied

here. Standard machine learning techniques typically use a 32-

bit floating point number to represent each model parameter.

However, the gradients in machine learning tasks are usually

in the range [−1, 1] or in a even smaller range. So less bits

can be used to represent the gradients and help reduce the

model size. Here limited-bit quantization is applied. DoReFa

scheme [15] is suitable for quantizing gradients within [−1, 1].

The mapping between full-bit number and less-bit number is

established as qk(π) =
1
a
⌊aπ⌉, ⌊·⌉ maps to the nearest integer,

π is the full-bit gradient value, and a = 2b − 1, where b is the

quantization bit length.

We employ adaptive compression to meet different rate lim-

itations. The compression rate rk for user k can be calculated

as rk = max{ I
ck
, 1}, I is the total bit length of gradients,

ctk = Rt
kt is the allowable transmission bit length for user k.

The quantization bit length bk is calculated by bk = ⌊ 1
rk
32⌋,

⌊·⌋ is the floor operation. Further, the compression rate rk may

vary in different rounds, so we can use the average compression

rate to represent the compression performance. Algorithm 1

summarizes the proposed adaptive aggregation scheme with

compression applied.

Algorithm 1 FL Adaptive Model Aggregation under NOMA

1: Initialization: θ0, T .

2: for each FL update round t do

3: PS sends θt to all users then selects K users.

4: for each selected user k in parallel do

5: Calculate local gradients: θt
k = θt

k − η∇Fk(θ).
6: Apply quantization on gradients.

7: Send gradients ∇Fk(θ) to the PS.

8: end for

9: PS applies SIC to decode gradient from K users.

10: PS performs weighted average to get updated model:

θt+1 = θt − η
∑K

k=1
|Dk|
|D| ∇Fk(θ).

11: end for

C. Problem Formulation

Here we provide the formulated optimization problem with

the following three constraints considered in our system model.

• C1: Each device can be scheduled at most once across

different rounds.

• C2: At most K devices are allowed to participate the FL

update in each round under NOMA.

• C3: Transmission power of each device in each round is

bounded by a maximum value.

We aim to maximize a weighted sum rate of all participated

devices, the optimization problem is formulated as

max
∑

m,t

wt
mΛt

mRt
m (6a)

s.t.
∑

t

Λt
m ≤ 1,∀m, (6b)

∑

m

Λt
m ≤ K, ∀t, (6c)

0 ≤ ptm ≤ ptmax
m , ∀(m, t) ∈ M× T , (6d)

Λt
m ∈ {0, 1},∀(m, t) ∈ M× T , (6e)



where wt
m is the data rate weight of device m scheduled at

round t. In FL, PS performs weighted average to generate the

current global model, hence a natural selection for the data

rate weight can be wt
m = |Dm|

|D| , which also clearly outlines

the significance of each device’s update. Λt
m = {0, 1} is a

binary variable that equals 1 if device m is scheduled at t

and is 0 otherwise. Here, the constraint in (6b) corresponds to

constraint C1, constraint in (6c) corresponds to constraint C2
and constraint in (6d) corresponds to constraint C3. Finding the

maximum weight sum data rate under these constraints involves

traversing all possible scheduling patterns, which possess very

high complexity when the number of total devices is large

and selected devices for scheduling is small, i.e., M ≫ K.

Towards that, we propose the following scheduling algorithm

to address this complexity issue and power allocation to solve

the optimization problem (6a).

III. SCHEDULING ALGORITHM AND POWER ALLOCATION

Fig. 3 shows the diagram of the user scheduling. Each

column represents a FL round for model update, and there are a

total of T columns. Each block in a specific column represents

a scheduled user and at most K users are scheduled to par-

ticipate FL update in each round. The power of the scheduled

user k in round t is ptk. (i1, i2, . . . , iK), (j1, j2, . . . , jK) and

(l1, l2, . . . , lK) are different user combinations.
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Fig. 3. Scheduling Diagram

For the proposed joint scheduling and power allocation

scheme, first, all possible user schedules are found. Then

optimal power allocation is applied for each schedule to

find the optimal one. The scheduling problem which aims to

maximize weighted sum rate is transformed under graph theory.

Specifically, we introduce the maximum weight independent

set problem first. An independent set is a sub-graph of an

undirected graph where there exists no edge between any

two vertices. When the weight of each vertex is set to be

equal to the sum data rate of users scheduled in the specific

round, the sum of the weight of all vertices in an independent

set equals to the sum data rate of a possible user schedule.

The maximum weight independent set then corresponds to

the schedule pattern that maximizes the sum data rate. The

maximum weight independent set problem involves searching

for all possible independent sets and then finding the maximum

weight one. Thus a critical step is to construct the scheduling

graph in order to find all the scheduling patterns.

A. Scheduling Graph Construction

Let S be the set that includes all the possible scheduling

patterns for all the devices and rounds. s ∈ S is a possible

schedule. The scheduling graph can be constructed as follows.

First, we need to generate vertices. In this graph, a vertex

vj = (j1, j2, . . . , jK)t indicates that devices j1, j2, . . . , jK are

scheduled at time t. There are a total of
(

M
K

)

× T vertices.

When creating the edges, the following constraints need to be

satisfied.

• C1: Each device can be scheduled at most once.

• C2: At most K devices can be scheduled in one round.

For two vertices vi = (i1, i2, . . . , iK)ti and vj =
(j1, j2, . . . , jK)tj , if ik ∈ {j1, j2, . . . , jK},∀k = {1, . . . K}
(violates C1) or ti = tj (violates C2), vi and vj are connected

and an edge exists between these two vertices. Then when we

select vertices from independent set, both C1 and C2 will be

satisfied. Let us construct a scheduling graph example with

M = 4, K = 1, and T = 2, as shown in Fig. 4. In this case

there are
(

4
1

)

×2 = 8 vertices. From this figure, we can find out

that the possible independent sets for vertex (1)1 (green node)

is {{(1)1, (2)2}, {(1)1, (3)2}, {(1)1, (4)2}}. Similarly, we can

find all the independent sets for each vertex in the graph.

Because of the edge connection constraints, each independent

set has at most T vertices. Since the FL rounds are continuous

and the number of FL rounds is T , the independent sets with

T vertices are only considered.

Fig. 4. A Scheduling Graph Example

B. Optimal scheduling Pattern

When scheduling graph is constructed, we calculate the

weight of each vertex as sum data rate of users scheduled in

a specified round, that is

w(vj) =
∑

k∈vj

wt
kR

t
k, ∀t ∈ s. (7)

Then the sum of the weight of all vertices in an independent

set equals the sum data rate of a possible schedule, that is
∑

j

w(vj) =
∑

k,t

wt
kR

t
k, ∀(k, t) ∈ S. (8)

where vj represents vertex in an independent set.

The objective function in (6a) is actually equal to the

problem maximizing the (8), which is the maximum weight



independent set problem. The maximum weight sum rate prob-

lem then can be transformed as a maximum weight independent

set problem. And the optimal schedule can be selected in the

Algorithm 2: here, O is the maximum weight independent

Algorithm 2 Optimal Scheduling Selection

1: Require: M,K, T , ptm, and ht
m.

2: Initialize O = ∅
3: Construct scheduling graph G

4: Compute w(v), ∀v ∈ G

5: while G 6= ∅ do

6: Q =
{

v|w(v) ≥ ∑

u∈J(v)
w(u)

β(u)+1

}

7: Select v∗ = argmaxv∈Q
w(v)

β(v)+1

8: Set O = O ∪ {v∗}
9: Set G = G− J(v∗)

10: end while

11: Output O

set in the graph, which is the schedule pattern corresponding

maximum weight sum data rate. J(v) is the sub-graph of G

containing vertex v and the vertices adjacent to v, β(v) is the

degree of v, which is the number of vertices adjacent to v. Q

is the set of vertices where the weight of vertex v is larger

than the average weight of J(v). v∗ is selected by making the

average weight of J(v) maximization.

C. Power Allocation

Once the user scheduling is determined, device power can

be allocated according to the channel condition to achieve

the maximum sum data rate. Power allocation in NOMA

has been extensively investigated in the existing works. To

achieve the maximum sum data rate under fairness constraints,

a similar algorithm to [8] is used here. We notice that the

objective function (6a) as a logarithmic function of SINR is

monotonically increasing. It can be transformed into a product

of exponential linear fraction functions. Due to the properties

of logarithm function, the optimal power allocation problem

for a specified user combination is

max

K
∏

k=1

(
µk(p)

φk(p)
)wk , (9a)

s.t. 0 ≤ pk ≤ pmax
k , ∀k ∈ K. (9b)

where p = (pk, ∀k ∈ K) is the power vector, µk(p) =
∑K

j=k pjh
2
j + σ2 and φk(p) =

∑K
j=k+1 pjh

2
j + σ2. Let

zk = µk(p)
φk(p)

for all k, the problem then can be re-formulated

as

max

K
∏

k=1

(zk)
wk (10a)

s.t. 0 ≤ zk ≤ µk(p)

φk(p)
, ∀k ∈ K, (10b)

0 ≤ pk ≤ pmax
k , ∀k ∈ K. (10c)

Notice that τ(e) =
K
∏

k=1

(ek)
wk is an increasing function for all

positive ek, where e is the collection of all ek. Besides, for two

vectors el and em, if el � em, where � means element-wise

greater than, we have τ(el) > τ(em). Clearly, the optimal

solution occurs where z∗k = µk(p
∗)

φk(p∗) , and pk in the feasible

set. This can be regarded as a multiplicative linear fractional

programming (MLFP) problem, where K linear equations are

formulated as below:

z∗kφk(p
∗)− µk(p

∗) = 0,∀k ∈ K. (11)

Notice that (11) contains random channel gain components

hence those K linear equations are independent with prob-

ability 1, which suggests a unique optimal power allocation

p∗. To solve (11) efficiently, however, requires constructing of

feasible polyblock and sequentially reduce its size, see [8] for

the detailed algorithm.

IV. SIMULATION RESULTS

This section first gives simulation results to compare two

schemes, namely the TDMA based FedAvg scheme [5] and

NOMA compression based FedAvg scheme. Both schemes use

the maximum power transmission for all the devices thus no

power control is applied on the uplink. After that we compare

the performance for the following four schemes, 1) the scheme

using optimal joint scheduling with power allocation (our pro-

posed scheme), 2) the scheme using the optimal scheduling but

with no power control (all the devices transmit at the maximum

power), 3) the scheme using a random scheduling with optimal

power allocation, and 4) the scheme using random scheduling

with no power control (maximum power transmission). All

the simulations run using image recognition as the learning

task trained on the MNIST (Modified National Institute of

Standards and Technology) dataset [16]. Testing accuracy,

which is defined as number of correct predictions divided by

total number of predictions, is used to measure the performance

of all the schemes. A fully connected neural network called

LeNet-300-100 with two hidden layers is used, which has 300
neurons in the first layer and 100 neurons in the second layer.

Thus the total number of model parameters including bias is

266, 610. The system parameter settings are given as follows.

The uplink bandwidth is B = 4 MHz, path loss exponent is

α = 3, additive noise power density is σ2 = −174 dBm/Hz.

The total number of user is M = 300 and the number of

model update user in each round is K = 3. The maximum

transmission power of each user is pmax = 0.01 watts. Cell

size of PS is 500 m. Users are uniformly distributed in the cell

and the positions of users are fixed during the learning process.

Uplink transmission time slot is t = 0.2 s. For downlink

transmission from PS, FL uses broadcast with no compression.

Transmission time is Td = maxk
I

Bd log
2
(1+pdγk)

, where I is

the total bit length of model, Bd is the downlink bandwidth

and is 10 MHz. pd = 0.2 watts is the PS transmission power,

γk is the SINR from the PS to k-th user.

The hyperparameters are given in Table I. The learning

phase is partitioned into training and testing stages at each



device. Also the dataset are split into training and testing

sets correspondingly, which are shown in Table I, where 90%

samples belong to the training set and the the rest belong to

the testing set. To make the model more general and robust,

data are made non-i.i.d across different devices, i.e., the sizes

and distributions of data at each device are both different. To

evaluate the model validation, in every communication round,

each device first does the training based the received model

from the PS and local data, followed by the testing process.

With iterative learning, more and more data are fed into the

model so that the testing accuracy keeps increasing.

TABLE I
HYPERPARAMETERS

Learning

rate size (η)

Batch

size (B)

FL

Round (T )

Training

set size

Testing

set size

0.01 10 35 90% 10%

We first demonstrate that NOMA compression based FedAvg

achieves better performance than the traditional TDMA based

FedAvg. As said, both schemes use the maximum power

transmission for all the devices thus no power control is applied

on the uplink. In the NOMA based scheme, quantization is used

for compression while there is no compression for the TDMA

based scheme. Fig. 5 shows that FL using the NOMA based

scheme achieves a better testing accuracy compared with the

TDMA based scheme during the same communication time.

Each round takes tk + Td time in the NOMA based scheme

while it takes Ktk+Td time for the TDMA based scheme. So

for a given time, NOMA based FedAvg performs more rounds

of FL training than the TDMA based FedAvg. In Fig. 5, the

NOMA based FedAvg update starts to converge and achieves

70% of accuracy after 10s while the TDMA based FedAvg

takes about 22s to achieve the similar accuracy.

Fig. 5. Testing Accuracy vs Communication time

Fig. 6 shows the comparison among 4 different scheduling

and power control schemes as defined above. It is observed

that all schemes except the 4th one (random scheduling with

maximum power transmission) can get above 60% testing

accuracy after 35 rounds of communication/training. The opti-

mal joint scheduling and power allocation scheme consistently

achieves the best performance among all the schemes during

the entire training process. Both scheduling and power control

play an important role in achieving better FL training through

improving the communication quality, which leads to more

accurate model update during the training process.

Fig. 6. Testing Accuracy vs Communication Rounds

V. CONCLUSIONS

In this work, we proposed to apply NOMA in the FL based

model update. To maximize the system sum data rate, the

maximum weight sum data rate problem was transformed to a

maximum weight independent set problem that can be solved

using graph theory based approach. The user scheduling and

power allocation were employed to obtain the maximum sum

data rate. NOMA based scheme can achieve similar accuracy

as TDMA one while reducing the communication latency sig-

nificantly. Besides, our results show that proper user scheduling

and power allocation during wireless communication stage can

help to get a higher testing accuracy.
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