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Abstract—IoT security and privacy has raised grave concerns.
Efforts have been made to design tools to identify and understand
vulnerabilities of IoT systems. Most of the existing protocol
security analysis techniques rely on a well understanding of the
underlying communication protocols. In this paper, we systemat-
ically present the first manual reverse engineering framework for
discovering communication protocols of embedded Linux based
IoT systems. We have successfully applied our framework to
reverse engineer a number of IoT systems. As an example, we
present a detailed use of the framework reverse-engineering the
WeMo smart plug communication protocol by extracting the
firmware from the flash, performing static and dynamic analysis
of the firmware and analyzing network traffic. The discovered
protocol exposes severe design flaws that allow attackers to
control or deny the service of victim plugs. Our manual reverse
engineering framework is generic and can be applied to both
read-only and writable Embedded Linux filesystems.

Index Terms—IoT System, Reverse Engineering, Communica-
tion Protocols, firmware

I. INTRODUCTION

Security of IoT products has received increasing scrutiny as

IoT is being pervasively deployed [1]–[5]. For example, smart

plugs and routers may be fully controlled by buffer overflow

or command injection attacks [6]–[8]. Security vulnerabilities

also exist in popular IoT platforms such as AWS IoT [3], [5].

Efforts have been made to design tools to identify and

understand vulnerabilities of IoT systems. For example, Chen

et al. [9] proposed an automatic fuzzing framework to find

the memory corruption vulnerabilities caused by the software

and firmware of IoT devices. Given a well-formed protocol,
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formal and heuristic methods could be used to study security

and identify the vulnerabilities of the protocol [10]–[14]. For

example, Kim et al. [10] used formal symbolic modeling

to automatically analyze the frequently-used IoT protocols,

such as CoAP and MQTT. Only when these protocols have

been formally verified (mathematically proved) could they be

considered as secure. However, the challenge of automatic

protocol verification relies on a well understood protocol.

In this paper, we propose a framework of manually reverse

engineering communication protocols of embedded Linux

based IoT systems so that automation techniques can be ap-

plied over the discovered protocols for vulnerability discovery

and security analysis. We focused on the embedded Linux

based IoT system given its popularity. we find most IoT

devices (more than 71%) are installed with Linux, according

to the Eclipse IoT developer survey [15]. Our framework

adopts network traffic analysis and static analysis and dynamic

analysis of the app and device firmware to understand specific

details such as fields of the communication. Our manual

reverse engineering framework works as follows: (i) Obtaining

the app and firmware of the device; (ii) Collecting network

traffic generated by the device and app with testbeds; (iii)

Defeating traffic protection by using the man-in-the-middle

(MITM) proxy, static analysis and dynamic debugging to

defeat traffic encryption and obfuscation; (iv) Discovering

the communication protocol through traffic analysis, static

analysis and dynamic analysis of the app and firmware.

We have applied our framework and reverse engineered a

number of IoT systems including smart plugs, IP cameras

and air quality monitoring sensors. As an example, this paper

presents a detailed case study of the popular WeMo smart

plug from Belkin. The plug system involves three parts: smart

plugs, smartphones, and two cloud servers. A smartphone can

communicate with a smart plug via the cloud servers. The

cloud servers distribute keys to the smartphone and smart plug,

and authenticate them based on the distributed keys. Once

the communication protocol of the smart plug is discovered,

we are able to identify a serious design flaw that allows two

attacks: (i) A malicious software smartphone bot could be used

to control victim plugs; (ii) A fake smart plug can pretend to

be a real one and kick the real one offline. We also successfully

demonstrated reverse engineering of a Xiongmai camera and a

Haier camera and won us an Award of Excellence at GeekPwn

2020.

Contribution: Major contributions of this paper can be

summarized as follows: (i) We are the first to systematically

propose a framework to manually reverse engineer com-
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Fig. 1. A Simplified Architecture of an IoT system

munication protocols of IoT systems. (ii) We have applied

this framework to successfully reverse engineer a number of

IoT systems. As an example, this paper presents a complete

protocol analysis of the WeMo smart plug and identifies severe

design flaws that allow attackers to control victim plugs and

deny the service of victim plugs. We also briefly discuss how

we apply the framework to a few other IoT systems. (iii)

Our communication protocol reverse engineering framework

is generic and can be applied to both read-only and writable

Linux filesystems. We collected the firmware of 514 popular

IoT devices on the market and showed that our framework is

applicable to them.

Road map: The rest of the paper is organized as follows.

In Section II, we briefly introduce background knowledge. In

Section III, we present our communication protocol reverse

engineering framework. In Section IV, we present a case study

of the WeMo smart plug using the proposed framework. In

Section V, we discuss the generality and limitations of our

framework. Related work is presented in Section VI and we

conclude this paper in Section VII.

II. BACKGROUND

In this section, we present a brief introduction to the

architecture of an IoT system and terms used in this paper.

A. Architecture of an IoT System

Fig. 1 shows a typical IoT communication system based

on our experiments and previous researches [3], [13], [14],

[16]. The system consists of three components, an IoT device,

a controller and a cloud server. The IoT device implements

specific functionalities, such as medical monitoring and elec-

trical control. The controller, such as a smartphone app, is

used to control the IoT device. The cloud server is used to

relay messages between the controller and the IoT device.

The cloud server may provide other services including device

management, data storage and analysis. For a smart plug

system, the smart plug is the IoT device while the smartphone

app is the controller. When the controller and IoT device

are located in the same network, the smart plugs official app

could be used to directly communicate and control the plug

through WiFi. If the controller and IoT device are in different

networks, a cloud server could be adopted to transmit the

message between the controller and the IoT device so as to

traverse the NAT (Network Address Translation).

B. Communication Protocols and Terms

An IoT communication system may realize complicated

communication protocols and various functionalities. We have

identified four common phases of an IoT communication pro-

tocol, including paring, binding, authentication and controlling

[13], [17], which are crucial for the overall system security. (i)

Pairing: To bootstrap and configure an IoT device, a user often

needs to connect a controller (e.g. an app on a smartphone)

to the IoT device via various communication venues. For

example, the IoT device can work as a WiFi access point

(AP) so that the controller can connect to it. The controller

can also connect to the IoT device via Bluetooth. We denote

this connecting process as pairing. This is relevant to security

since the pairing process may be under malicious sniffing and

anyone may get access to the IoT device, particularly in the

cases that the device is deployed in public. (ii) Binding: When

pairing is completed, a binding mechanism is often employed

so that the cloud server can associate the controller and IoT

device, and relay messages between them. (iii) Authentica-

tion: The controller, device and cloud server often need to

authenticate each other to defeat various threats and abuses.

(iv) Controlling: After authentication, the controller can take

control of the IoT device via a cloud server or a local network.

III. FRAMEWORK OF MANUALLY REVERSE ENGINEERING

IOT COMMUNICATION PROTOCOLS

In this section, we will present the assumption about capa-

bilities of security analysts, and our manual reverse engineer-

ing framework.

A. Capabilities of Security Analyst

We adopt the term “security analyst” to refer to those

who would use our framework to reverse engineer third party

IoT products. We make the following assumptions about the

capabilities of the security analyst: (i) To the best of our

knowledge, most IoT vendors provide both Android and iOS

apps. The communication protocol of both the Android app

and iOS app is the same, for their functionality is similar. The

analyst can analyze either the Android app or the iOS app

to extract the communication protocol between the controller

and the cloud server. Since there are more existing reverse

engineering tools for the Android apps than those for the iOS

apps [18]–[20], we choose the Android app as an example

of the controller in this paper. (ii) We focus on IoT devices

that use the popular and open source embedded Linux based

Operation System (OS).

B. Overview

Fig. 2 illustrates the workflow of our manual reverse engi-

neering framework: obtaining the app and device firmware,

collecting network traffic, defeating traffic protection, and

discovering the communication protocol.

1) Obtaining the app and device firmware: The app is often

free and can be downloaded from Google Play (or Apple

App Store). The device firmware may be obtained from

the manufacturer’s website, over-the-air (OTA) update
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Fig. 2. Workflow of communication protocol reverse engineering framework

process [21] (i.e., firmware update process) or reading

the flash chip as discussed later in this section. The first

two approaches are straightforward. However, they may

not be always available.

2) Collecting network traffic: In this step, we particularly

want to collect network traffic and understand security re-

lated phases of the IoT communication protocols. During

the pairing process, the IoT device may work as a WiFi

Access Point (AP) and the controller connects to this AP.

A sniffer is needed to dump the pairing traffic. After pair-

ing, the device and controller will connect to the Internet

through a router/switch/AP. For simplicity, we will use

AP to refer to router/switch/AP. To intercept the traffic

after pairing, we set up our own APs. The controller and

IoT device connect to our APs and communicate with

each other through either the local network or Internet.

The traffic of interest can be collected from these APs.

3) Defeating traffic protection: Some vendors may adopt

TLS/SSL encryption or obfuscation to protect the com-

munication. The analyst can defeat the TLS/SSL encryp-

tion with a MITM proxy. Obfuscation algorithms can be

disclosed through static analysis and dynamic debugging

of the app and firmware.

4) Discovering the communication protocol: Through the

combination of traffic analysis, static analysis and dy-

namic analysis of the app and firmware, the communi-

cation protocol can be discovered. Based on the discov-

ered communication protocol, the analyst may use either

heuristic methods or formal methods to find vulnera-

bilities of the protocol. In this paper, we use heuristic

methods to demonstrate the feasibility of the reverse

engineering approach.

C. Obtaining the App and Device Firmware

The app is often free and can be downloaded from Google

Play. However, it can be a challenge to extract the firmware

from the flash chip, which often involves the following steps.

First, we take apart the physical device and identify the

device’s flash chip model (e.g. NOR flash, NAND flash) and

packaging type (e.g. small-outline package (SOP), quad flat

package (QFP), ball grid array (BGA)). The information can

be found on the surface of the chip or the case of the IoT

device. With such information, we can determine which type

of surface-mount packaging is applied to the device’s flash

chip accordingly. For example, if the flash uses SOP that often

exposes the flash pins, we can connect Bus Pirate [22] to

the corresponding pins via a test clip and an adapter in order

to read the firmware image from the flash. However, with a

particular packaging technology, for example, BGA, a flash

chip may not expose its pins. In such a case, we may de-

solder the flash chip by using an Surface Mount Technology

(SMT) rework station [23]. After obtaining the flash chip, a

flash engineering programmer like StarProg-F [24] may be

used to read the firmware image from the flash.

D. Collecting Network Traffic

In the pairing phase, some IoT devices may work as an

AP so that the controller can connect to it and deliver pairing

information. To collect the network traffic in the pairing phase,

a wireless network card supporting the monitor mode can

be used as a sniffer to dump the WiFi traffic. Besides, we

find there are another five methods can be used to transmit

pairing information, i.e., SmartConfig, QRcode, Bluetooth,

voice, and ethernet cable connection. In these cases, the pairing

information can be analyzed by dynamically hooking the

functions used for encoding the pairing information in the

controller app. We will discuss this in Section III-E2.

In order to dump the network traffic during binding, authen-

tication, and controlling phases, we build an AP equipped with

wireless network cards and Ethernet cards. To build our own

AP or a wireless router, we install Hostapd [25] on a computer

with a wireless network card supporting the AP mode. The

computer is also equipped with an Ethernet card connecting

to the Internet. Some IoT devices only support Ethernet. In

such a case, we equip the computer with a second Ethernet

card connecting to such an IoT device. In this way, the passing

traffic can be intercepted by the computer.

E. Defeating Traffic Protection

We now discuss how to defeat encryption and obfuscation

which are used to protect traffic from the app and IoT device.

1) Encryption: Network traffic can be encrypted by TL-

S/SSL. To decrypt the traffic, a MITM transparent proxy is

installed in front of the smartphone (i.e., controller) or IoT

device. The proxy is used to relay or manipulate the traffic

between the device and remote server, or the traffic between

the smartphone and remote server. With proper configuration,

the MITM proxy can decrypt the passing traffic. Specifically,

we use an open source tool “mitmproxy” [26] as our MITM

proxy.

We now show how to replace the target root certificate

issued by a trusted certificate authority (CA) or a self-signed

private root certificate with the forged root certificate on a

controller. Take Android as an example. From our empirical

analysis, the certificate can be located in three places: (i) The

trusted CA certificate is stored in “/system/etc/security” as an

individual file [27]. In this case, we can just add the forged

root certificate to the Android system. (ii) The private root

certificate can be packaged as a file in an app. In this case,
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we use APKTool [28] to unpack the APK package and replace

the original certificate with the forged root certificate. We

then recompile and sign the APK [29]. (iii) The private root

certificate can also be hard-coded in the format of a string in

the app code. In this case, we decompile the original app into

smali code, identify and replace the original hard-coded root

certificate, and finally generate a new app.

We now discuss how to replace the original root certificate

with the forged root certificate on an IoT device. This case is

more complicated. (i) We first search the root certificate in the

filesystem of the obtained firmware. The original certificate

can be a standalone file or hard-coded in a binary file. The

certificate often has a set of features. For example, if the

certificate is encoded in Privacy Enhanced Mail (PEM) [30]

format, it contains a header (“- - - - -BEGIN CERTIFICATE-

- - - -”). Therefore, we can locate the certificate by searching

the header. (ii) Once we locate the root certificate, we need to

identify which type of filesystem is used by the firmware so

that a specific replacement method can be applied. An open

source tool named Binwalk [31] is introduced to identify the

filesystem type, either a writable filesystem, such as JFFS2

and UBIFS or a read-only filesystem, such as SquashFS and

CramFS. For a read-only filesystem, the replacement cannot

be made directly since modification is not allowed. We can

re-flash a customized firmware with the forged root certificate

into the device. We may need to generate the Cyclical Redun-

dancy Check (CRC) and append it to the customized firmware

to pass the chip’s integrity check. For a writable filesystem,

there are two ways to replace the original certificate: (a) If

we can get into the console of the IoT device system, for

example, by using universal asynchronous receiver-transmitter

(UART), and locate file transfer tools like a ftp client, we can

replace the original certificate directly via file transfer tools.

(b) We can replace the original certificate directly by mounting

the writable filesystem segmented from the firmware onto a

Linux computer. We then re-package a new firmware with the

modified filesystem and flash the new firmware into the device.

There are two ways to flash a modified firmware with the

forged root certificate into an IoT device. (i) We can flash

the firmware back using Bus Pirate or a flash engineering

programmer. If the flash chip is de-soldered for reading the

firmware [23], we need to re-solder it back to the circuit

board. (ii) We can also flash the firmware back to the chip via

the firmware upgrading interface like the over-the-air (OTA)

interface.

2) Obfuscation: An IoT system may protect its traffic by

obfuscation. Traffic obfuscation is used to make communica-

tions more complicated. Unlike encryption, obfuscation does

not require a key to encrypt or decrypt the traffic [32]. Static

analysis and dynamic analysis may be adopted to counter

traffic obfuscation.

To de-obfuscate traffic from a controller, for example, an

Android app, we first need to understand how the obfuscated

traffic is generated and then write a de-obfuscation algorithm.

To this end, we first need to check if the app is packed. For a

packed app, we can unpack it [33]–[35]. Then we can extract

the smali code using Apktool. We analyze the workflow of the

traffic obfuscation algorithm by reading the extracted smali

code. We may use Smali2Java [36] to decompile the smali

code into the Java format for easy understanding. We can

also dynamically debug the smali code by using Android SDK

and Android Studio [37] as follows: (i) We add a new field

“android:debuggable=true” in the tag of Android manifest file

“application” to enable debugging. (ii) We locate the function

of the entry activity, “onCreate”, and add a line of smali code

at the beginning of this function as shown in List 1 to make

the app wait for the debug signal after being started. (iii) We

repackage the modified APK and install it in the smartphone.

(iv) Now once we start the app, we can use Android Studio

to add break points and monitor the functions of interest.

Listing 1. Add waitForDebugger function to entry activity of app
a = 0 ; / / # v i r t u a l methods

a = 0 ; / / . method p r o t e c t e d o n C r e a t e ( L a n d r o i d / os / Bundle ; ) V

a = 0 ; / / invoke−s t a t i c {} , L a n d r o i d / os / Debug;−>

wai tForDebugge r ( )V

However, the method above will fail when Java Native

Interface (JNI) is applied. To address this issue, we introduce

IDA pro [38], a multi-platform tool that offers both static

and dynamic analysis functionalities. (i) We first enable USB

debugging on the tested smartphone. (ii) We copy the binary

file of IDA pro, “android server”, to the smartphone and run

it via the Android Debug Bridge (adb) [39]. (iii) We map

a port on the computer to a port on the smartphone so that

they can communicate with each other. (iv) We run the app

in debug mode, and start the IDA pro client on the computer.

The smartphone then forwards the debug log to the computer

via the configured port.

Dynamic hooking tools (e.g., Xposed [40] and Frida [41])

can also be used to dynamically analyze the obfuscation

algorithm. We can first generate the function call graph with

FlowDroid [42] and IDA pro. Then we statically analyze the

function call graph to locate the potential functions related to

network communication APIs that may be used to obfuscate

the traffic. Next, we use these dynamic analyzing tools to hook

the functions to record the arguments and return values. In

this way, we can heuristically locate the obfuscation function

by comparing the obfuscation traffic and the recorded log.

Finally, static analysis can be used to extract the obfuscation

algorithm in the obfuscation function. The hooking methods

are also used to analyze the pairing information and discover

the communication protocol demonstrated in Section III-F.

We now discuss how to de-obfuscate traffic from an IoT

device. We need to identify the algorithm that obfuscates the

messages and write a de-obfuscation algorithm. The obfus-

cation algorithm is usually stored in a particular binary file.

Therefore, the first step is to identify this file in the firmware.

We compare the information from the analysis of dumped

network traffic with the IoT device’s runtime system log.

If a match is discovered, the file can then be identified. To

obtain the log, we first need to obtain the console of the IoT

device system. If we can locate the UART port on the board

of IoT device, we can connect it to the debugging computer

using a UART-to-USB bridge with a correct baud rate. User

authentication may be required to login into an IoT device

system via UART. The login passwords are often stored in

/etc/shadow file or /etc/passwd file. In these cases, there are
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two solutions: (i) We can try to extract the password hashes

from the flash and crack them. (ii) If password racking fails

because of long and complex passwords, we can use the

repacking method introduced in Section III-E1 to modify the

files and remove the login password so as to bypass the login

authentication. Otherwise, we can embed a backdoor such as

telnet into the IoT device firmware and update the device with

the new firmware. A telnet app is often hidden in an IoT device

maybe for the purpose of debugging by the manufacturer and

can be utilized too. We can then log in the IoT device system

through the backdoor from the debugging computer. The log

can then be shown in the console of the computer after the

IoT device starts. For example, we are often interested in the

design flaws in authentication of the controller and IoT device.

Hence we perform the authentication phase repeatedly and

compare the ports used in each process in the runtime system

log with the port of intercepted obfuscated traffic. If the ports

match, we find the target binary file. Afterwards, we extract

the binary file with Binwalk from the firmware of the IoT

device as discussed in Section III-C.

Once obtaining the binary file, in order to obtain the

obfuscation algorithm, we can analyze it as follows: (i) We can

perform static analysis to disassemble the binary file with IDA

pro. (ii) We can also dynamically analyze it on the IoT device

using binary instrumentation [43] by inserting additional code

into the executable binary file to observe or modify the behav-

ior of the binary file. Binary instrumentation allows us to trace

functions of interest, and follow the workflow of the inputs and

outputs. To use binary instrumentation, we need to modify the

firmware with the method proposed in Section III-E1. (iii) We

can also use the GDB client and GDBserver [44] to remotely

debug the binary program of the IoT device from a computer.

We first need to cross compile the GDBserver and embed the

GDBserver into the firmware of the target IoT device and run

the GDB client in our debugging computer. By configuring the

IP address and port of the GDBserver, we can use the GDB

client to dynamically debug the target binary file and identify

the traffic obfuscation algorithm.

F. Discovering the Communication Protocols

Through traffic analysis, we may understand the basics of

the communication protocols. However, there are some crypto-

graphic fields and obfuscated fields should be further analyzed.

For cryptographic fields, we perform the following procedure

to understand them. (i) We may measure the entropy of the

bytes of the traffic to determine whether the command or data

is created with cryptographic operations such as encryption

and hash. High entropy beyond a threshold indicates the data

is encrypted or hashed. (ii) We may also search cryptographic

APIs within the firmware to determine if encryption is used

and also identify cryptographic functions that are used. At

the controller side, the developers may encrypt or hash the

application layer data using cryptographic APIs of Android

SDK or C/C++ libraries. We can use dynamic hooking tools

introduced in Section III-E2 to analyze the frequently-used

cryptographic APIs [45]. Once a specific cryptographic func-

tion is called, the information of this function is recorded.

Therefore, we know which function is used. At the device

side, we can employ static data flow analysis to identify a

cryptographic function [46]. (iii) Once we locate the target

cryptographic function, we can obtain the original command or

data and the key for the cryptographic function by dynamically

debugging the binary file and analyzing the inputs of the target

cryptographic function with the method introduced in Section

III-E. Specifically, we can use the “Xposed” and “Frida” at

the controller side and use the GDB debugging tool at the

device side, respectively. For the obfuscated fields, we can use

the de-obfuscation methods for countering traffic obfuscation

introduced in Section III-E2 to de-obfuscate these fields.
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G. Exploring Vulnerabilities

After obtaining a well-discovered protocol using the frame-

work, we can employ heuristic methods or formal methods

to perform security analysis of the discovered communication

protocol. The security analyst may focus on the four phases of

communication protocol (i.e., pairing, binding, authentication,

and controlling) introduced in Section II while performing

vulnerability assessment of IoT systems. According to our

research [13], [14] and related work [3], we find that these

four phases are often vulnerable and can cause severe privacy

and security issues. For example, in [13] we find every online

Edimax camera can be remotely controlled by attackers using

the vulnerabilities in binding, authentication, and controlling

phases of its protocol.

IV. CASE STUDY: SMART PLUGS FROM BELKIN WEMO

The manual reverse engineering framework introduced in

Section III-C is the result of our reverse engineering of a num-

ber IoT devices, including our previous research [13], [14]. In

this section, we present a case study of reverse engineering

the WeMo smart plug using the framework and the discovered

communication protocols. We will also introduce novel attacks

against the plug based on the discovered protocols.

A. Reverse Engineering WeMo Smart Plug

We present the workflow of reverse engineering the WeMo

smart plug.

1) Obtaining the app and device firmware: The official app

of the smart plug is free to download while the firmware is

publicly unavailable. The flash chip of the smart plug is shown

in Fig. 3 and it is packaged with SOP. As shown in Fig. 4, we

can use Bus Pirate to read the firmware from the flash chip

with a SOP16 clip and an adapter, which are shown in Fig. 5.

2) Collecting network traffic: A testbed is deployed to

eavesdrop on the network traffic of interest. As shown in Fig.

6, during the pairing phase, the smart plug works as an AP and

we collect the pairing traffic with a sniffer. We intercept the

traffic between the smartphone, smart plug and cloud server

by introducing two APs, as shown in Fig. 7.

3) Defeating traffic protection: The primary challenge of

decrypting encrypted traffic is to replace the original certificate

of the firmware and controller app with our forged one. (i)

We first replace the certificate of the smartphone. We find

that the original certificate is stored in “/system/etc/security”.

Therefore, on the smartphone, we can download the forged

root certificate generated by the MITM proxy through a web

browser and Android will prompt us to install the certificate.

PlugController

Relay smartphone key

HTTPS server

Fig. 11. Binding phase

(ii) We then replace the original CA certificate in the firmware

of the smart plug. We find a UART port on the chip as shown

in Fig. 8, where the UART port has four pins, including TX,

RX, GND and VCC. We use a UART-to-USB bridge to open

a console of the smart plug’s embedded Linux system, as

shown in Fig. 9, and find a ftp client in the system. We put

the forged root certificate on a ftp server and download it to

the plug system through the discovered ftp client, so as to

replace the original CA certificate. The forged certificate will

be preserved in the device even after the device reboots. This

shows the plug’s filesystem is writable. By using Binwalk, we

find that the firmware actually contains a read-only SquashFS

filesystem and a writable JFFS2 filesystem. The plug system

implements a virtual filesystem, “mini fo”, which merges

the read-only SquashFS filesystem and the writable JFFS2

filesystem. When a file is changed, the new file is written to

the writable JFFS2 filesystem while the read-only SquashFS

filesystem still keeps the original file. (iii) After the certificate

is successfully replaced, we can eavesdrop on connections with

“mitmproxy”.

4) Discovering the communication protocol: We now

present how to reverse engineer the smart plug’s application

layer protocol. Based on traffic analysis, we are able to

identify strings that start with “MESSAGE-INTEGRITY” or

“Authorization”, but other fields of such strings are unreadable.

We find that these fields are generated with the HMAC-

SHA1 algorithm [47] by using the methods in Section III-F.

These fields actually contain authentication materials, which

are crucial for our security analysis.

B. Communication Protocols of WeMo Smart Plug

We now present the discovered architecture of the WeMo

smart plug system, and its communication protocols.

1) Architecture of WeMo smart plug system: The WeMo

smart plug system contains three components: two cloud

servers (a TURN server and a HTTPS server), smart plugs and

smartphones. A smart plug and a smartphone can communicate

with each other via the cloud servers, as shown in Fig. 10.

Since a smart plug is often behind a WiFi router using the NAT,

the TURN [48] server is used to perform the NAT traversal

for the plug so that a user on the Internet can send a command

to the plug. The HTTPS server has three functionalities, in-

cluding binding, authentication, and controlling (i.e., command

relay and information update).

2) Pairing: In the pairing phase, the plug works as an AP

and the smartphone connects to it. The smartphone sends a

request to the plug to obtain basic information of the plug, such

as the MAC address and serial number. After receiving such
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Controller

HTTPS server

TURN server

Plug

Fig. 12. Authentication phase

information, the smartphone sends the plug its identification

(ID) and description, a timestamp TS, and the home AP’s

WiFi credentials entered by the user. Then the plug can access

the Internet via the home AP.

3) Binding: The smartphone and smart plug are bound to

the HTTPS sever as shown in Fig. 11. The smart plug first

sends the binding request, including MAC address, smart-

phone’s ID and description of the plug, SSID and MAC ad-

dress of WiFi, and timestamp TS to the HTTPS server, which

can now bind (associate) the particular plug and smartphone

together on the basis of the received information. Based on

materials contained in the binding request, the HTTPS server

produces two keys: the smart plug key and the smartphone

key. The HTTPS server then sends these two keys to the

smart plug. After obtaining the two keys, the smart plug sends

the smartphone key to the smartphone via the local WiFi

network. If the smart plug and smartphone are not in the

same local network, the smartphone can obtain the smartphone

key by sending a request to the HTTPS server that knows

the particular smartphone is bound to the particular plug.

The request also contains a message authentication code, as

introduced below.

4) Authentication: Fig. 12 summarizes the authentication

phase. Within the local network, there is no authentication for

a smartphone app to control the plug. When the smartphone

and smart plug are not in the same local network, they need

to communicate through the HTTPS server. In each message

from the plug to the HTPPS server, the HTTP message header

includes an “Authorization” field, which contains authentica-

tion data. The authentication data is generated by the HMAC-

SHA1 algorithm over the plug key and other shared informa-

tion with the HTTPS server. The HTTPS server authenticates

the smartphone in a similar way. The TURN server obtains

the smart plug key from the HTTPS server and authenticates

the plug via the Challenge Handshake Authentication Protocol

(CHAP) [49].

5) Remote Controlling: After authentication, the smart-

phone and smart plug can communicate with the cloud servers

as illustrated in Fig. 13. The smart plug periodically synchro-

nizes its status with the HTTPS server. To remotely control

the plug, the smartphone first obtains the status of the smart

plug by sending a request to the HTTPS server. The status can

be either switch off (integer “0”) or switch on (integer “1”).

When the device is offline, the status is unavailable (integer

“3”). Then the smartphone can send control commands to

switch on/off the smart plug via the the HTTPS server. The

HTTPS server actually forwards the commands to the TURN

server, which uses the NAT traversal to send the command

PlugController

HTTPS server

TURN server

C
o

n
tro

l 
Fig. 13. Remote controlling phase

through the wireless router to the plug.

C. Attacks against WeMo Plugs

Once the IoT communication protocols are discovered, we

can now move forward with security analysis of pairing,

binding, authentication and controlling phases introduced in

Section II-B. We discovered two novel attacks against the

WeMo smart plug: sharing attack and connection hijacking

attack. With the sharing attack, an attacker can remotely

control a victim smart plug. The connection hijacking attack

allows a DOS attack against a plug. It is worth noting that all

the experiments are conducted on the plugs that we purchase.

1) Sharing attack: We first introduce the details of the

binding phase, which involves two binding requests from the

plug. The authorization value in the first binding request is

“dummy”, as the plug key is not derived yet. After receiving

the first binding request, the HTTPS server sends back a

temporary key. The authorization value in the second binding

request from the plug is generated using the temporary key.

After receiving the second binding request, the HTTPS server

sends the plug key and smartphone key to the plug.

To explore the smart plug resetting phase, we first press the

reset button on a smart plug and then bind a new smartphone to

the plug. We find now both the original and new smartphones

can remotely control the plug. That is, the original and new

smartphones now share the plug. Through traffic analysis, we

find the plug sends only one binding request, which is regarded

as rebinding request, to the HTTPS server. The rebinding

request contains a new field, “reRegister”. The authorization

value is generated using the original plug key. It can be

inferred that the original plug key is not erased after resetting.

We find that if we set the authorization value as “dummy”

in the rebinding request to pretend that the smart plug loses

its key, the HTTPS server will send the original plug key and

a new smartphone key to the plug. Once the new smartphone

obtains the new smartphone key, the smartphone can pass the

authentication of the HTTPS server and access the plug.

Once we understand the plug sharing phase, we are able

to bind a victim smart plug to a malicious smartphone. . The

details of the sharing attack are introduced as follows.

1) To deploy the attack, the attacker needs to obtain the

victim plug’s MAC address and serial number, as well as

the home AP’s SSID and MAC address. One limitation

of this attack is that the attacker has to use wardriving

or other means to get the victim plug’s MAC address

and home AP’s SSID and MAC address. In wardriving,

the attacker drives around and performs wireless sniffing.
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TABLE I
FILE SYSTEM OF IOT DEVICES (CRAMFS, SQUASHFS AND ROMFS ARE READ-ONLY FILE SYSTEMS AND JFFS2 IS A WRITABLE FILE SYSTEM)

File System
Manufacturer

Axis Asmnet D-Link TP-Link Netgaer Netis Asus Total

CramFS 45 0 0 0 0 0 0 45

JFFS2 33 1 0 0 0 0 0 34

SquashFS 0 9 35 13 34 29 57 177

CramFS&JFFS2 249 0 0 0 0 0 0 249

RomFS 6 3 0 0 0 0 0 9

Total 333 15 35 13 34 29 57 514

Blocks of MAC addresses are allocated to every manufac-

turer (Belkin in our case), which can be obtained from the

Internet. Therefore, the attacker will be able to identify

Belkin smart plugs through wardriving. We also find that

a plug’s serial number is predictable based on its MAC

address. Therefore, the attacker can remotely attack the

victim plug after obtaining the needed information.

2) The attacker can now implement a fake software smart

plug that pretends to be the real one. The fake plug

sends a rebinding request with the authorization value

“dummy” and fabricated smartphone information to the

HTTPS server to get a temporary key. Once the plug

receives the key, it resends a rebinding request with the

authorization value that is generated by the temporary

key, and then obtains the original plug key and a new

smartphone key.

3) The attacker now creates a fake software smartphone,

which uses the new smartphone key and sends commands

with correct authorization value to the HTTPS server. It is

worth noting that the HTTPS server has already bound the

victim plug and the fake smartphone together. In this way,

the attacker can remotely control the target WeMo smart

plug while the victim user cannot discover the attack for

the sharing feature of the WeMo plug.

2) Connection hijacking attack: Once obtaining the plug

key through the sharing attack, a fake smart plug can pretend

to be the real device so as to hijack the connection between

the victim user and the real plug. The details of the attack

process are presented as follows.

1) The attacker first creates a fake smart plug that pretends

to be the real one and uses it to deploy the sharing attack

in Section IV-C1. In this way the attacker obtains the

victim smart plug key.

2) Since the fake smart plug has the original smart plug

key, the fake smart plug can perform the authentication

process with the plug system’s Traversal Using Relays

around NAT (TURN) server to request a relay port, which

is shared with the HTTPS server. Therefore, the HTTPS

server knows that the fake plug uses that specific TURN

server port.

3) Now a control command from a victim smartphone is

sent from the HTTPS server to the relay port of the fake

plug on the TURN server. The command is relayed to

the fake plug instead of the real one. The traffic from the

smartphone is hijacked by the attacker, who denies the

service of the victim smart plug as a matter of fact.

3) Discussion: At the time of writing this paper, Belkin

has added a security patch trying to defeat our sharing attack.

With the patch, if the public source IP address of the rebinding

request sent from a plug is changed, the HTTPS server will not

send the original plug key, but generate a new smart plug key.

Since the victim plug still keeps the old plug key, it will not

be able to pass the authentication of the HTTPS server and

the TURN server, and cannot be controlled by a controller

anymore. Therefore, our sharing attack becomes a DoS attack

under the security patch. If a user wants to reuse the victim

plug, he/she has to reset the plug.

V. EVALUATION

In this section, we evaluate the generality of our commu-

nication protocol reverse engineering framework, present our

reverse engineering of a number of real-world IoT system, and

discuss the limitations of the proposed framework.

A. Generality of our Manual Reverse Engineering Framework

The most challenging part of reverse engineering an IoT

device is firmware analysis. The firmware may be from

different vendors with high customization. Table I shows the

mainstream manufacturers and the file systems used by their

products. We collected 514 firmware from 7 vendors by crawl-

ing the Internet. By analyzing these firmware with binwalk,

we can identify the file systems used in these firmware. For

example, out of the 333 firmware published by Axis, 6 of

them use RomFS, 45 use CramFS file system, 33 use JFFS2

file system and 249 use both CramFS and JFFS2 file systems.

The file system can be read-only (e.g., CramFS, SquashFS or

RomFS) or writable (e.g., JFFS2). To reverse engineer these

types of firmware, we often need to change the firmware, for

example, embedding a fake CA certificate for mitmproxy or

a GDBserver for debugging. We can perform such changes

with approached introduced in Section III-E. Therefore, we

will be able to reserve engineer all the devices listed in Table

I while the actual manual reverse engineering tasks may last

long given the complexity.

B. Reverse Engineering Real-world IoT Products

Fig. 14 shows all devices we have reverse engineered,

including Edimax camera [13], Edimax smart plug [14] and

PurpleAir air quality monitoring sensor [50], [51] in our

previous work. The PurpleAir air quality monitoring sensors

are actually bare metal systems based on microcontrollers

(MCUs) without an OS like Linux. Now our manual reverse

engineering framework is still valid. Particularly OpenOCD

and GDB can be used to debug the MCU firmware through

JTAG. We now briefly introduce how we used the framework
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to analyze the other devices that we are the first to have reverse

engineered.

We reverse engineered the communication protocol of the

D-Link cloud camera system. The camera uses a read-only

filesystem and we are able to find the CA certificate. As

proposed in Section III-C, we replace the certificate by gen-

erating a new firmware with a forged root certificate and

flash the new firmware into the target camera through the

device management interface. Therefore, we can decrypt the

TLS/SSL encrypted traffic, and finally find that the camera is

also under the risk of spoofing attacks.

We reverse engineered the communication protocol of the

Haier IP camera and the Xiongmai IP camera and find they are

vulnerable to the spoofing attack and the Xiongmai IP camera

also under an unauthorized access attack. (i) For the Haier IP

camera, we find the app is packed to hide the executable files,

i.e., dex files. To extract the dex files from the packed app [33],

we use Xposed and Fdex2 [52], which is a module of Xposed,

to hook the loadclass function and extract the dex files. Then,

we can hook the app with Xposed and Frida, and perform

static data flow analysis and dynamic debugging to the binaries

of IoT device using GDB to discover the communication

protocol, as shown in Section III-F. (ii) For the Xiongmai IP

camera, we diassemble the camera app for static analysis and

use code instrumentation techniques such as hooking through

Frida [41] to analyze the app side communication protocol.

We also disassemble the firmware, embed gdbserver onto a

flash and use GDB to dynamically debug the binary files of

the firmware.

(a) WeMo+++
Plug

(b) D-Link+
Camera

(c) Haier
Camera

(d) Xiongmai
Camera

(e) Edimax
Camera

(f) Edimax++
Plug

(g) PurpleAir
Sensor

Fig. 14. IoT devices analyzed with our framework

C. Limitations

Our communication protocol reverse engineering framework

has the following limitations. If an IoT device employs secure

boot and the firmware image verification key is in secure

storage such as e-fuse, we may not be able to change the

firmware of the device, since secure boot will detect the change

and refuse to start the device. Similarly, if flash encryption is

enabled and the related keys are in secure storage, we cannot

change the device firmware since we cannot obtain these keys.

However, we find few IoT products use such secure boot and

flash encryption.

VI. RELATED WORK

In this section, we review the existing technologies for

analyzing the security of IoT devices and Android apps.

Particularly, we divided the state of art into three categories,

i.e., static analysis, dynamic analysis, and hybrid analysis

approaches.

Static analysis: Some static analysis approaches have been

proposed to analyze the security of the IoT device firmware

[13], [53]–[57] and Android apps [58]–[63]. For example,

Costin et al. [53] preformed a large-scale static analysis of IoT

device firmware with correlation engine which could evaluate

the similarity between the target IoT device firmware and the

vulnerable ones so as to determine whether the target firmware

contains existing vulnerabilities. Nirumand et al. [61] proposed

a MDRE (Model Driven Reverse Engineering) based static

analysis method to discover the security risks in the Android

app communication. The static analysis approaches are fast

and can reach comprehensive code coverage of the firmware

or app [64], [65]. However, some IoT device firmware and

Android apps are obfuscated or encrypted which cannot be

disassembled and statically analyzed [66], [67]. In addition,

the runtime behavior such as user input could not be statically

determined and static analysis may cause false positives and

false negatives [64], [65], [68].

Dynamic analysis: Dynamic analysis approaches could

observe the runtime behavior of the target app and IoT device

firmware and could be used to verify the correctness of the

results of static analysis approaches by running the app or IoT

device firmware with test cases [64]. For Android apps, Zheng

et al. [65] proposed a dynamic analysis framework based on

ptrace (process trace) which is a system call that could be

used by one process to control another. The framework uses

ptrace to monitor selected system calls to dynamically analyze

malicious behaviors of the binary. The frameworks of dynamic

analysis methods for IoT device firmware can be divided

into two categories, i.e., software emulator based frameworks

as well as the real IoT device hardware and the emulator

based frameworks. For the first category, the IoT device

firmware is performed on a software emulator and applied the

dynamic analysis methods [69]–[71]. For example, Chen et al.

[69] presented FIRMADYNE, which is a dynamic debugging

framework based on the emulator with an instrumented kernel.

14 previously-unknown vulnerabilities were discovered by

using FIRMADYNE with automated webpages analysis and

manual analysis.

Since the IoT device hardware is fairly diverse, it is non-

trivial to emulate various IoT device hardware with software

emulators [72]. To address this problem, some frameworks

have been proposed, which relay I/O accesses between real

IoT device hardware and the emulator [72]–[74]. For instance,

Zaddach et al. [72] presented Avatar, which is a framework

that dynamically analyzes the IoT devices by combining the

emulator and the real hardware. The framework forwards
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the I/O accesses from the emulator to the real IoT device.

The framework was evaluated with KLEE symbolic execution

engine and existing fuzzing tools. However, dynamic analysis

is time-consuming as it requires numerous test cases to ensure

a certain degree of credibility for vulnerability detection. In

addition, it is difficult to generate valid test cases [64], [68].

Hybrid analysis: Hybrid analysis methods, which combines

the static and dynamic analysis technologies, have been pro-

posed [16], [64], [67], [68], [75]–[78] to improve the accuracy

of vulnerability discovery. For example, Martinelli et al. [67]

proposed a framework to detect malicious apps by performing

both static and dynamic analyzing approaches. They evaluated

the framework using 2794 malicious apps with high detection

accuracy. Palavicini et al. [77] performed static analysis on IoT

firmware to avoid path explosion when dynamically analyzing

complex binaries with symbolic execution using a software

emulator. Yao et al. [16] identified a previously unknown

vulnerability which is known as privilege separation vulnera-

bility. They leveraged firmware loading information extraction,

library function recognition, and symbolic execution methods

to analyze the IoT device firmware and located 69 of 106

firmware containing privilege separation vulnerabilities.

Those existing technologies could not be used to probe

into the various vulnerabilities located in the communication

protocol of IoT systems [3], [56], [57], [79] and there is little

systematically communication protocol reverse engineering

approaches, since it is a great challenge to reverse engineer

these protocols given the diversity of protocol implementation.

For example, Papp et al. [56] and Shwartz et al. [57] proposed

the methods for reverse engineering IoT devices. They only

focus on discovering the vulnerabilities in the firmware of IoT

device instead of the security analysis of the communication

protocol between the controller and device. To tackle this

problem, we propose a framework to reverse engineering

communication protocols of Linux based IoT systems for

further protocol security analysis in this paper.

VII. CONCLUSION

In this paper, we propose a framework to manually reverse

engineer the communication protocols of IoT devices so that

the discovered protocol can be used for further security anal-

ysis. The framework works as follows: obtaining the app and

firmware of an IoT device, collecting network traffic generated

by the device and control app, defeating traffic protection,

and discovering the communication protocol through traffic

analysis, static analysis and dynamic analysis of the app and

firmware. We present a case study of using the framework to

reverse engineer the communication protocols of the WeMo

smart plug. Once the plug’s communication protocols are

discovered, we are able to identify a crucial authentication

vulnerability that allows the plug sharing attack to control

victim plugs and connection hijacking attack for DoS. We

demonstrate our framework is generic and could be applied to

a variety of embedded Linux based IoT systems using either

read-only or writable filesystems. We also briefly discussed

how we applied the framework to a few other real-world

IoT products and systems. We are the first to systematically

propose such a manual communication protocol reverse engi-

neering framework.
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