
Prison Break of Android Reflection Restriction and
Defense

Zhen Ling∗, Ruizhao Liu∗, Yue Zhang†‡, Kang Jia∗, Bryan Pearson‡, Xinwen Fu†§, Junzhou Luo∗
∗School of Computer Science and Engineering, Southeast University

Email: {zhenling, ruizhaoliu, kangjia, jluo}@seu.edu.cn
‡Department of Computer Science, Jinan University

Email: zyueinfosec@gmail.com
§Department of Computer Science, University of Central Florida, USA

Email: bpearson@knights.ucf.edu
†Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, USA

Email: xinwen fu@uml.edu
Abstract—Java reflection technique is pervasively used in

the Android system. To reduce the risk of reflection abuse,
Android restricts the use of reflection at the Android Runtime
(ART) to hide potentially dangerous methods/fields. We perform
the first comprehensive study of the reflection restrictions and
have discovered three novel approaches to bypass the reflection
restrictions. Novel reflection-based attacks are also presented,
including the password stealing attack. To mitigate the threats,
we analyze these restriction bypassing approaches and find three
techniques crucial to these approaches, i.e., double reflection,
memory manipulation, and inline hook. We propose a defense
mechanism that consists of classloader double checker, ART
variable protector, and ART method protector, to prohibit the
reflection restriction bypassing. Finally, we design and implement
an automatic reflection detection framework and have discovered
5,531 reflection powered apps out of 100,000 downloaded apps,
which are installed on our defense enabled Android system of
a Google Pixel 2 to evaluate the effectiveness and efficiency of
our defense mechanism. Extensive empirical experiment results
demonstrate that our defense enabled system can accurately
obstruct the malicious reflection attempts.

Index Terms—Android reflection restrictions, Reflection-based
attack, Countermeasures, Large-scale analysis

I. INTRODUCTION

Android apps are programmed in Java, which supports
the reflection mechanism. With reflection, an Android app
does not need to access a given class at compile time but
may dynamically invoke a method or inspect a field of the
class at runtime. This is critical for Android apps since
Android Software Development Kit (SDK) frequently updates
its public APIs and Android developers may use reflection to
dynamically determine if a specific field or method is available
on the running devices for compatibility [10], [18].

However, reflection can be abused to access hidden method-
s/fields. Recent years have witnessed various reflection based
attacks [17], [22], threatening user security and privacy. For
example, Kywe et al. [17] demonstrate that reflection can be
abused to invoke hidden methods/fields so as to bypass the
Android permission model and collect user information or
deploy device fingerprint attacks. These attacks have increas-
ingly pressured Android to provide countermeasures. Starting
from Android 9, Android limits the use of a specific set of
hidden methods/fields. That is, whenever an app attempts to
use reflection to access these methods/fields, Android throws

an exception which causes the app to crash. We refer these
reflection countermeasures as restrictions in our paper.

This paper studies the reflection restriction bypassing ap-
proaches and the corresponding countermeasures. We care-
fully investigate related Android source code, are the first to
systematically analyze the Android reflection restriction mech-
anisms and have identified three novel reflection restrictions.
The reflection restriction mechanisms are implemented in the
Android Runtime (ART) which runs in the app-level memory
space. This memory space is vulnerable to manipulation by
the app itself. Therefore, we propose three novel approaches
to allow an app to bypass the reflection checking and in-
voke restricted APIs. These approaches share three common
techniques: double (i.e., recursive) reflection, inline hooking,
and variable manipulation. Unlike previous work [26] which
was ad-hoc in nature, our study is comprehensive and reveals
fundamental flaws in the Android reflection mechanism. We
also present several attacks that abuse restricted APIs to show
the potential threats posed on the privacy and security of the
smartphone users.

To address the issue, we design and implement three defense
measures against reflection restriction bypassing, Classloader
Double Checker, ART Variable Protector, and ART Method
Protector. In the Classloader Double Checker, we recursively
check the classloader of the class of the method that attempts
to invoke restricted APIs so as to defeat the double reflection
based bypassing approach. To defeat the inline hook and
variable manipulation based approaches, in the ART Variable
Protector and ART Method Protector measures, we analyze
the app launch process and protect the memory of the ART
that contains variables and code segment of the methods
used to restrict the reflection once the ART is loaded and
initialized. Extensive real-world experiments are performed to
demonstrate the effectiveness and efficiency of the reflection
restriction bypassing approaches and defense mechanism.

Our major contributions are summarized as follows.

• New insights and approaches. We are the first to sys-
tematically analyze the Android restrictions on reflection
and discover the design shortcomings. We propose three
novel reflection bypassing approaches.



• Novel attacks. Powered by these restriction bypassing
approaches, various reflection-based new attacks are pre-
sented to demonstrate the potential threats posed on the
Android user privacy and security, including the password
stealing attack and Bluetooth bond removal attack.

• New defense. To fight against the threats caused by
the reflection bypassing approaches, we propose a novel
defense mechanism. We first dissect the five Android
restriction bypassing approaches, including our three
novel approaches and two existing ad-hoc approaches
[26], and summarize the crucial techniques used in these
approaches, i.e., double reflection, variable manipulation,
and inline hook. Then we design and implement the
defense mechanism to respectively circumvent the restric-
tion bypassing via the three techniques.

• Extensive Experiments. Expensive experiments are per-
formed to evaluate the feasibility of our reflection re-
striction bypassing approaches and the effectiveness of
our defense enabled Android systems. We build an auto-
matic static analysis framework to analyze 100, 000 apps
and discover 5, 531 apps using reflection. The apps are
dynamically executed in our defense enabled Android
system. The defense takes effect and is robust.

The rest of this paper is organized as follows. We introduce
the reflection and existing Android restrictions on reflection in
Section II. Then we present the three approaches to bypass the
restrictions and various reflection-based attacks in Section III.
In Section IV, we elaborate on the design and implementa-
tion of our defense against the reflection powered attacks.
Extensive experiments are performed to evaluate the feasibility
of the attacks and effectiveness of the defense mechanism in
Section V. We review related work in Section VI. Finally, this
paper is summarized in Section VII.

II. BACKGROUND

In this section, we briefly introduce reflection in Android
and the reflection restriction mechanisms.

A. Reflection in Android

Android apps are written in Java, an object-oriented pro-
gramming language that supports the reflection mechanism.
The reflection mechanism enables developers to call a method
or inspect a field of a given class at runtime. Listing 1 provides
an example, where targetMethod() is the method an
app wants to invoke via reflection, and the class that the
target method belongs to is targetClass. In the first
line, the app first obtains the instance of an object repre-
senting targetMethod(). In the third line, the app uses
the instance to invoke the target method. Unlike a standard
method/field access, reflection does not need to know the
method/field at compile time. For example, “targetMethod” is
a string variable that can be replaced by another string, e.g.,
“anotherMethod”, from user inputs or a remote server. If this
is the case, anotherMethod() will be invoked at runtime.
One use case of reflection is testing compatibility of Android
devices [10], [18]. When Android updates its SDK, developers

may use reflection to test if a method is available on a specific
device at runtime before the app runs the method.

Although developers with reflection have the flexibility of
accessing hidden methods/fields that are reserved by the An-
droid system, the use of Android reflection opens an attacking
surface against Android ecosystem. For example, Kywe et al.
[17] report that reflection can be abused to bypass the Android
permission model and collect sensitive information such as
device ID, telephone service status, and SIM card status.

1 Method mtargetMethod =
2 Class.class.getDeclaredMethod("targetMethod"

); // obtain the instance of targetMethod
3 mtargetMethod.invoke(); // run targetMethod()

Listing 1. Code fragment of reflection

B. Restrictions on Reflection
The Android Security Team is aware of the potential

security risks brought by the reflection. Therefore, starting
from Android 9, restriction mechanisms against reflection
techniques have been introduced. With such restrictions in
position, Android limits the use of a specific set of hidden
methods/fields [4]. Whenever an app attempts to access to
a restricted method/field via reflection, Android throws an
exception to crash the app. Specifically, Android adopts four
restriction mechanisms.

Whitelist, graylist, and blacklist. Android groups all hid-
den methods/fields into three categories, called the whitelist,
the graylist, and the blacklist. (i) Whitelist. The methods/fields
in the whitelist are considered non-risk and free to access
via reflection. (ii) Graylist. Methods/fields in the graylist can
be used via reflection depending on the current Android
system version. Specifically, each method/field in the graylist
is assigned a maximum accessible API level number [3], which
functions as an identifier for the programming framework API
offered by the corresponding version of the Android system
(e.g., the API level number of Android 10 is 29). An app may
use a graylisted method/field via reflection if and only if the
target API level of the app is not higher than the maximum
accessible API level of the hidden method/field. Accordingly,
the set of methods/fields that can be accessed in the graylist
is referred to as the lightgreylist, while the remaining meth-
ods/fields that cannot be accessed are in the darkgreylist. (iii)
Blacklist. Methods/fields that are in neither the whitelist nor
the graylist are in the blacklist and prohibited to be accessed
via reflection. Based on this information, methods/fields in the
darkgreylist and blacklist cannot be accessed via reflection. In
this paper, we refer to the methods/fields in the darkgreylist
and blacklist as the protected methods/fields.

Trusted caller. Android allows a trusted caller to access
the protected methods/fields. If a class of a caller is loaded
via BootStrapClassLoader, the caller is referred to as
a trusted caller. Consequently, Android determines whether
the app can access the protected methods/fields via reflec-
tion by checking whether the classloader of the caller is
BootStrapClassLoader or not.

Enforcement policy. Android specifies a set of principles,
termed enforcement policy, including kNoChecks,

2



kJustWarn, kDarkGreyAndBlackList, and
kBlacklistOnly, so as to allow an app to invoke
some protected methods/fields via reflection under these
four conditions. The enforcement policy is set during the
initialization of the Android Runtime (ART) [2]. For example,
the enforcement policy is configured to kNoChecks by
Android when an app is in the debug mode. Then the
app can access the protected methods/fields without any
limitations. In addition, the enforcement policy can also be
set to kJustWarn, where Android system prompts warnings
whenever an app accesses the protected methods/fields
via reflection. When the enforcement policy is set to
kDarkGreyAndBlackList, the system prohibits all
protected methods/fields. When the enforcement policy is
set to kBlacklistOnly, the system only prohibits the
methods/fields in the blacklist.

Exemption list. Android also specifies an exemption list
mechanism for pre-installed apps (e.g., Settings) to access
to protected methods/fields. Only a pre-installed app can
invoke a method named setHiddenApiExemptions(.)
to add a protected method/field into the exemption list so
as to access to the method/field via reflection. However,
since the setHiddenApiExemptions(.) is not public
to third party apps, they do not have the privileges to call
setHiddenApiExemptions(.) and cannot access a pro-
tected method/field.

C. Android Sandbox

Android implements Linux-based resource isolation [16],
where each app is assigned a unique user ID (UID) in order
to set up a kernel-level sandbox. In the sandbox, the kernel
prevents an app with a specific UID from interacting with
another app with different UID. Meanwhile, since the sandbox
is implemented in the kernel, the enforcement also applies to
the native code (i.e., the underlying C/C++ code) of Android,
which the Android framework is based on. Therefore, the
mechanism cannot be bypassed through native techniques such
as the Java Native Interface [20]. However, the resources
owned by one app (e.g., the memory, OS libraries, OS
framework, and Android Runtime) run within the sandbox
and Android does not restrict how an app may access these
resources. Therefore, an app may freely access these resources.

III. REFLECTION RESTRICTION BYPASSING APPROACH

In this section, we first present reflection restriction bypass-
ing approaches one by one and then introduce the potential
attacks caused by the reflection.

A. Approach Intuition

As discussed in Section II-B, Android specifies regulations
to restrict the abuse of reflection. Particularly, whenever an
app attempts to access a hidden method/field via the reflection
(called the ”target method/field”), ART will determine whether
the attempt can succeed by checking if one of several condi-
tions is fulfilled. Particularly, Figure 1 illustrates the workflow
of the checking process:

A method/field being accessed via reflection 

Whitelist checking

Trusted Caller

Enforcement Policy

Exemptionlist Checking

Graylist checkingThrow an exception Allow to be called

NO

NO

NO

NO

YES

YES

YES

YES

YESNO

Fig. 1. Workflow of the reflection checking process

1) Android checks if the target method/field is in the
whitelist. If yes, Android permits the access.

2) Android checks whether the attempt is
initiated by a trusted caller that is loaded via
BootStrapClassLoader. If yes, Android permits
the access.

3) Android checks if the enforcement policy (e.g.,
kNoChecks) is configured to allow the target method-
/field via reflection. If yes, Android permits the access.

4) Android checks if the target method/field is in the
exemption list. If yes, Android permits the access.

5) Android checks if the target method/field is in the
lightgraylist as discussed in Section II-B. If yes, Android
permits the access.

It can be observed the reflection attempt is granted when
any one of the five conditions is satisfied. If none of these
requirements is fulfilled, the app crashes and throws exceptions
such as “NoSuchFieldException” or “NoSuchMethodExcep-
tion”. Although the checking process is conducted by the
ART, the library implementation of ART (i.e., libart.so)
is loaded in the app-level memory space of an app. This
can be manipulated by the app itself due to the sandbox
mechanism as discussed in II-C. Based on this intuition, we
craft novel approaches to bypass the reflection restrictions, and
each approach works against one specific condition.

B. Methodology

We present our new approaches for bypassing the reflec-
tion restrictions, including a whitelist bypassing approach, an
exemption list checking bypassing approach, and a graylist
checking bypassing approach. All the approaches discussed in
this section have been tested on a Google Pixel 2 running the
latest Android 10 operating system.

Whitelist checking bypassing approach: Whitelist check-
ing bypassing approach works against the whitelist checking
condition. With this approach, an app may trick Android
to determine the protected method/field is in the whitelist,
which will grant access to the method/field. Specifically,
when an app attempts to access a hidden method/field via
reflection, Android enters the checking process and first uses
GetDexFlags(.) to determine whether the method/field
being accessed is in the whitelist or not. GetDexFlags(.)
accepts the name of the method/field being accessed as the in-

3



put, and will return an integer named kMaxTargetR1, if the
method/field is in the whitelist. Therefore, the app can modify
the return value of GetDexFlags(.) to kMaxTargetR so
as to obtain the access. To this end, we employ an inline hook
tool named SandHook [13] to hook GetDexFlags(.) and
modify the return value of GetDexFlags(.). SandHook
allows a running app to record, alter, and replay the inputs
and the return value of a target method by modifying the code
fragment in memory of the app. Moreover, SandHook can be
integrated into an app without requiring root permission to be
granted. Once GetDexFlags(.) is hooked via SandHook,
we force the method to always return kMaxTargetR so as
to access a protected method/field.

Exemption list checking bypassing approach: Exemption
list checking bypassing approach works against the exemption
list condition. Since ART is loaded in the app-level memory
space of an app, the app may manipulate its own memory
space that stores the exemption list so as to intentionally
add a protected method/field into its exemption list. To this
end, the app first (i) obtains the JNI (Java Native Interface)
environment pointer (i.e., JNIEnv*) via the Java Native
Interface. The JNI environment pointer is implicitly passed
as an argument from the Java layer to the native layer,
allowing the app to use the JNI environment pointer within
a JNI native method. (ii) The JNI environment pointer can
be employed to locate the memory address of the ART
object. Then we analyze the souce code of the ART to
derive an offset to further locate the address of a vector
named hidden_api_exemptions that is a class mem-
ber variable of the ART. (iii) hidden_api_exemptions
maintains the methods/fields that have been added into the
exemption list. Each method/field is represented using its
unique signature. For example, the signature of method “an-
droid.widget.CompoundButton.getButtonDrawable()” is “Lan-
droid/widget/CompoundButton;.getButtonDrawable”. The app
then appends the signature of the method/field of interest into
the vector. In such a way, the method/field is added to the
exemption list.

The exemption list checking process uses the longest prefix
match algorithm to determine if the signature of the method-
/field being accessed matches the string in an entry of the
vector of the exemption list. Since all the signatures start with
the letter “L”, we can simply append a new entry that only
includes a letter “L” into the vector. Consequently, all protected
methods/fields are considered in the exemption list and can be
accessed without restrictions.

Graylist checking bypassing approach: Graylist check-
ing bypassing approach works against the graylist con-
dition. An app may use graylist bypassing approach to
make Android determine the protected method/field being
accessed is reachable under the graylist policy. Specifically,
the graylist checking process is conducted in a method named
GetMemberActionImpl(.) and the method returns an in-

1The value of kMaxTargetR is 6.

teger kAllow 2 if the method/field being accessed is reachable
under the graylist policy. Similar to the whitelist checking
bypassing approach, a malicious app may employ SandHook
to hook GetMemberActionImpl(.) and modify its return
value. Consequently, the caller can access a protected method-
/field of interest via reflection.

C. Other Reflection Restriction Bypassing Approaches

It is worth noting that there are other approaches for bypass-
ing Android’s reflection restrictions. These ad-hoc approaches
[26] work against either the trusted caller condition or the
enforcement policy and are summarized as follows.

Enforcement policy checking bypassing approach. An ap-
proach in [26] works against the enforcement policy. In the
approach, an app manipulates the variable of the ART in the
memory (i.e., a variable named hidden_api_policy_) so
as to configure the enforcement policy to NoChecks.

Trusted caller checking bypassing approach. In [26], the au-
thors also demonstrate that an app can use a technique named
double reflection to disguise a trusted caller. In this paper,
we refer to reflection recursively used twice as double reflec-
tion. Specifically, the app first derives an instance of a cru-
cial reflection method (i.e., getDeclaredMethod() or
getDeclaredField()) that is in the whitelist via the first
reflection to “disguise” a trusted caller, since the classloader of
the derived reflection method is BootStrapClassLoader.
Then the app uses the derived reflection method to obtain an
instance of the target protected method/field via the second
reflection. In this way, a protected method/field can be invoked
so as to bypass the checking process.

Although these approaches demonstrate additional tech-
niques that work against the restriction on reflection, they do
not propose any systemic insights from a scientific prospective.
In our work, we analyze the principles of the restrictions
and the root cause of these reflection restriction bypassing
approaches. Moreover, we demonstrate three novel approaches
against the restrictions on reflection. This provides a more
comprehensive look at the issue.

D. Reflection-based Attacks

The Reflection restriction approaches demonstrated in this
paper can be utilized as building blocks to design various
reflection-based attacks, violating user privacy and impairing
the Android ecosystem. Particularly, we have validated four
attacks on a Google Pixel 2 running the latest Android 10, as
shown in Table I. Among these attacks, permission-free device
fingerprinting attack and breaching user privacy attack were in-
troduced in [17]. Android disabled these attacks via restrictions
on reflection. However, such defenses can be thwarted by using
our approaches. We also identified password/keystroke stealing
attack and bluetooth bond removal attack. These attacks have
never been discussed in the previous works.

Permission-Free Device Fingerprinting Attack. A ma-
licious app may use our attacks to collect sensitive infor-
mation and deploy the device fingerprinting attack, which

2The value of kAllow is 0.

4



TABLE I
ATTACKS USING REFLECTION. “—” MEANS THE AN ATTACKER DOES NOT

NEED OUR APPROACHES. “X” MEANS “YES”; “7” MEANS “NO”.

Attacks Related Method
or Field Disabled Enabled by

Our Approaches

Permission-Free Device
Fingerprinting

getDeviceId(.)
getRingerModeInternal(.)

getInputDevice(.)
7 —

Breaching User Privacy getMode(.) X X
Password/Keystroke Stealing FLAG NOT TOUCHABLE 7 —

Bluetooth Bond Removal removeBond(.) X X

uniquely identifies a specific Android device. Some of this
information is protected by Android, such as the device ID
and SIM card state; therefore, an app may need specific
permissions to access the information. However, using reflec-
tion restriction bypassing, the information can be accessed
without requiring permissions to be granted as reported in
[17]. We have validated the approach, and find methods such
as getRingerModeInternal(), getInputDevice(),
and getDeviceId() can be abused to collect sensitive
information and fingerprint a device using reflection.

Breaching User Privacy. Some APIs can be abused to
breach user privacy and as a result, Android blacklists these
APIs to prevent them from being invoked via reflection.
However, a malicious app may use the approaches introduced
in our paper to bypass the restrictions [17] and violate
user privacy. For example, the method getMode(.) of
IAudioService can be abused to monitor the phone status,
indicating whether there is an incoming call/VOIP call.

Password/Keystroke Stealing Attack. An attacker may
abuse the approaches to steal user password and keystrokes. In
this attack, the malicious app may use a customized touchable
toast so as to receive user inputs without requiring permissions.
A toast is a special type of view for user feedback in Android
and does not require any permissions when apps use it. On the
other hand, other overlay based attacks may require multiple
permissions as discussed in [12]. After a toast is created by an
app, it stays on the foreground for a few seconds (i.e., 2.5 s
or 3.5 s) before Android destroys it. Toast can be customized
to appear as arbitrary content such as a keyboard-like view.
This can threaten user privacy, since such a keyboard-like
view may spoof a user to believe it is a genuine keyboard,
and a user may type sensitive information such as credentials
into it. Therefore, Android attempts to restrict a toast from
receiving user input. However, an app can disable the flag
“FLAG NOT TOUCHABLE” of a toast via reflection, so as
to make the toast receive user input.

Bluetooth Bond Removal Attack. With our approaches
enabled, a malicious app may also deploy the Bluetooth bond
removal attack via reflection, where the malicious app inten-
tionally removes all Bluetooth bonds existing on the smart-
phone so as to derive denial of service attack or even down-
grade the encrypted Bluetooth link into plaintext. In Bluetooth,
a bond is the key used for encrypting the communication. A
smartphone may pair with a peer device through the pairing
process and generate a bond for securing communication.
However, the malicious app can call removeBond() via
reflection to delete an existing bond on a smartphone. Without
a bond, the further communication between the smartphone

TABLE II
REFLECTION RESTRICTION BYPASSING APPROACHES AND USED

TECHNIQUE

Reflection restriction bypassing approaches Technique
Whitelist checking bypassing Inline hook
Enforcement policy checking bypassing Variable manipulation
Trusted caller checking bypassing Double reflection
Exemption list checking bypassing Variable manipulation
Graylist checking bypass Inline hook

and a previously bonded device may be subject to attacks such
as eavesdropping or spoofing attacks as discussed in [28].

IV. COUNTERMEASURE

In this section, we first introduce the basic idea of our coun-
termeasure against reflection-based attacks, including Class-
loader Double Checker, ART Variable Protector, and ART
Method Protector. Then we present the challenges and so-
lutions of our defense methods. Finally, we illustrate the
implementation of the methods in detail.

A. Overview

Our defense works against the reflection restriction bypass-
ing approaches so as to defend against various reflection-
based attacks. It can be observed from Section III that all
the reflection restriction bypassing approaches adopt one of
three types of techniques including double reflection, memory
manipulation, and inline hook. Specifically, Table II sum-
marizes the approaches and the corresponding techniques.
Therefore, if we can design solutions against these techniques,
the reflection-based attacks can be stopped. By applying our
defense, the app will terminate if it detects an attempt at
reflection restriction bypass.

Our defense mechanism consists of three main compo-
nents, including Classloader Double Checker, ART Variable
Protector, and ART Method Protector, corresponding to the
three techniques used by the reflection restriction bypassing
approaches, respectively. We now explain the principles of
each component: (i) Classloader Double Checker defends
against the double reflection. The Trusted caller checking by-
passing approach is made possible as Android only checks the
classloader of the class that invokes a hidden method/field via
reflection, while Android fails to construct a chain of callers
and trace back to the class that initiates the reflection process.
Classloader Double Checker can identify such an initiator so
as to defend against the approach. (ii) ART Variable Protector
works against the variable manipulation. Particularly, at run-
time, it identifies the relevant variables in memory the attacker
intends to modify, and configures the variables as non-writable
before the attacker has a chance to access them. (iii) Recall
that inline hook requires modification of methods in memory.
Therefore, similar to the approach adopted by ART Variable
Protector, ART Method Protector can locate the methods to
be protected in memory and configure them as non-writable.

B. Challenges and Solutions

The implementation of our defense should be made within
the Android System to defend against the reflection-based

5



Activity Manager 

Service
Zygote Runtime ActivityThread

 Start Process

Looper

Start Runtime

Start Activity Thread
loop()

BIND_APPLICATION

Load Class

LAUNCH_ACTIVITY

OnCreate()

1.Process creation

2.Application binding

3.Activity launching

Bind Application

Launch Activity

Fig. 2. Workflow of the app startup

attacks. However, prior to our implementation, there are a few
technical challenges to be solved.

First, for ART Method Protector and ART Variable Pro-
tector, we should select an appropriate time to load our
defense; however, identifying such a time point can be tricky.
This is because these defenses involve the modifications of
ART memory and the corresponding modifications should
occur after the ART initialization. Otherwise, the modifications
made by the defense will result in the failure of the ART
initialization. At the same time, these modifications should be
made before a malicious app can obtain the access of these
ART memories so as to avoid the malicious ART memory
manipulation. To address this issue, we go through the source
code of Android Open Source Project referring the launch
process of an Android app, so as to find an appropriate position
where our defense can be located, enabling the defense to
be loaded at the right time. Figure 2 shows three phases an
app goes through when launching, including process creation,
application binding, and activity launching. (i) In the process
creation phase, AMS (Activity Manager Service), a system
service handling the life-cycles of all activities, creates a
process via Zygote, which is a special process responsible
for creating processes for apps, for the app to be launched.
During the process creation, libart.so, the implementation
of ART, is loaded in the memory of the app and initial-
ized by the Android kernel. Then an ActivityThread
object is built and a new process is created at this point.
ActivityThread initiates a message loop by invoking
the method Looper.loop() to handle possible messages
continuously via a message queue. (ii) In the application bind-
ing phase, AMS notifies the ActivityThread to send a
BIND_APPLICATION message to associate the app with the
created process and loads all classes of the app to be launched
into memory. (iii) In the activity launching phase, AMS noti-
fies the ActivityThread to send a LAUNCH_Activity
message to the process attached to the app to start the
corresponding activity by calling the onCreate() method,
so that a user can interact with the app. Therefore, our defense
should be positioned in the process creation, particularly, at
the time the process enters the loop method. We implement
the ART Method Protector and ART Variable Protector at
Looper.loop(), right after the process enters the loop.

Second, the Android System may run various apps, and
therefore, when the defense is in position, it should not
impair the running of normal apps. For example, ART Variable
Protector configures variables in a data segment of the ART
memory such as hidden_api_policy_ to non-writable.
However, when ART Variable Protector performs such an
operation, due to the memory management policy enforced
by Android, ART Variable Protector can only manipulate
the memory at the granularity of pages. Therefore, it has to
configure the entire memory page where the variable locates
so as to achieve the goal. Observably, this may cause issues
since the pages may include variables used for other purposes,
and setting the entire page as non-writable may unintentionally
crash the app. In order to minimize the impact, we ensure that
only the variable to be protected is contained in an entire page
and if the page is set to non-writable, other variables in the
memory of the ART are not impacted. Moreover, for ART
methods to be protected, ART Method Protector configures
the page containing a code segment of methods of interest as
non-writable directly without extra efforts to be taken. This is
because normal running process of an app should not involve
the modification of any methods.

C. Implementation
Classloader Double Checker: To implement the Class-

loader Double Checker, we force the current checking pro-
cess to go further so as to discover the genuine initiator of
reflection. Fortunately, we find Android uses a method named
VisitFrame() to perform the checking process over a call
stack. When a method on the top of the call stack attempts
to access a hidden method/field, the original checking process
is to use VisitFrame() to check whether the classloader
of the class of the method is BootStrapClassLoader.
However, the double reflection technique used in the trusted
caller checking bypassing approach can bypass the checking.
To mitigate this issue, we revise the checking process in
VisitFrame() to continue to track back the methods in
the call stack one by one to check whether the class of the
method is the Method class, since the reflection method (e.g.,
getDeclaredMethod or getDeclaredField) used in
the second reflection of the trusted caller checking bypassing
approach belongs to the Method class. The stack tracing
continues until the class of the method is not Method.
Consequently, Android locates the class of the genuine method
that invokes reflection at the first time, and determine whether
its classloader is BootStrapClassLoader or not.

ART Variable Protector: This component works
against the variable manipulation. Since the referred
technique involves the modification of variables (e.g.,
hidden_api_exemptions) in the app’s memory, the
main goal of this component is to locate the variables to be
protected and configure them as non-writable. To ensure that
only the protected variables are located in an entire page,
we revise the ART source code to respectively add two new
integer arrays with each size of one page-size (4KB) before
and after the variables and then initialize them with zero. We

6



TABLE III
VALUE AND MEANING OF VM FLAGS

name value meaning

VM READ 0x00000001 readable
VM WRITE 0x00000002 writable
VM EXEC 0x00000004 Executable
VM SHARED 0x00000008 Shareable
VM MAYREAD 0x00000010 VM READ can be set
VM MAYWRITE 0x00000020 VM WRITE can be set
VM MAYEXEC 0x00000040 VM EXEC can be set
VM MAYSHARE 0x00000080 VM SHARED can be set

found that we only need to protect two variables; therefore,
the overhead is only 16KB. Next, ART Variable Protector
locates the address of the variables to be protected through
the JNI environment pointer and then computes the starting
address of the page that contains the variable to be protected.
We can compute the starting address of the page by

As = Av − (Av%4096), (1)

where Av is the address of the variable and As is the
starting address of the page. Then, ART Variable Protector
configures the page containing the variable as non-writable
using the starting address of the page As. This can be
achieved through the modification of a specific struct. In
Linux based OSes such as Android, each memory page maps
to a vm_area_struct, which contains a member vari-
able named vm_flags. The value of vm_flags ultimately
determines whether the referred page is readable, writable,
executable, and shareable as shown in Table III. Once the
bits (i.e., both VM_WRITE and VM_MAYWRITE) are set to
0, the memory page is configured to non-writable, and a
malicious app cannot reset the configuration via the system
call mprotect(.). As a result, a malicious app cannot
manipulate the memory page during the lifecycle of the app.
The VM_MAYWRITE bit is used to determine whether the
VM_WRITE bit of the memory page is able to be set to non-
writable or not. However, the Android system does not provide
a system call to modify the VM_MAYWRITE bit of a page. To
this end, we first revise the Android kernel source code to
customize a system call that can set the properties of target
page(s) to non-writable and ensure that the properties cannot
be reset again by inputting two parameters of the starting
address of the page and the number of pages and setting both
the VM_WRITE and VM_MAYWRITE of the page(s) to 0. Then
we revise the source code of the Android framework (i.e., the
method Looper.loop()) to call the customized system call
so as to set the target page(s) to non-writable. Consequently,
the variable manipulation based attacks including enforcement
policy checking bypassing and exemption list checking by-
passing based attacks can no longer work.

ART Method Protector. This component addresses the
abuse of inline hook. We observe that to achieve in-
line hook based attacks, the malicious app must intention-
ally manipulate the return values of specific methods such
as GetDexFlags(.) or GetMemberActionImpl(.).
These methods, however, are all included in the libart.so,
a core library used by ART. Therefore, to achieve inline hook,
SandHook must manipulate the code segments in this library

at runtime which contains the binary code of the methods. As a
solution against inline hook, we can locate the code segments
of libart.so in the memory and configure the correspond-
ing memory as non-writable. Particularly, a configuration file
named “proc/self/maps” stores the start and end addresses
of the app’s code segments. Moreover, these code segments
are classified into several segments of memory space. Each
segment has the executable property and the VM WRITE
bit of the page is set to 0. However, the VM MAYWRITE
bit is set to 1 by default. Therefore, a malicious app may
use the system call mprotect(.) to set VM WRITE to 1
and reset the memory as writable. To address this, we revise
the source code of the method Looper.loop() to read
the file “proc/self/maps” and search the content containing
“libart.so” with an executable and a non-writable property so
as to locate the code segments before the app initiates. Since
a code segment may cross multiple pages in memory, we
must set all these pages as non-writable. Fortunately, using
the “proc/self/maps” configuration file, we can compute the
number of pages in the code segment and derive the starting
address of each page using the starting and end address of the
code segment. As a result, we can use the method introduced
in implementing ART Variable Protector to set all pages
containing the code segment as non-writable.

V. EXPERIMENTAL EVALUATION

In this section, we first present experiment setup, and then
evaluate the presented approaches and countermeasures.

A. Experiment Setup

To measure the generality of our approaches against dif-
ferent mobile devices, we use 6 Android mobile devices
from different manufacturers. We implement our defense on a
Google Pixel 2 Android device running Android 9.0 based on
the Android Open Source Project (AOSP) [14]. We conduct
a large-scale static analysis over 100,000 apps from the
AndroZoo dataset [1] to demonstrate the current status and
the potential risks of our approaches. We create five virtual
machines on a Linux machine running Ubuntu 16.04 equipped
by Intel Core Xeon (2.10 GHz) CPUs and 128 GB RAM. Each
of the virtual machines runs Ubuntu 16.04 and is equipped
by 16 GB RAM. Four of the virtual machines are used to
download the apps and the last one is used to perform the
static app analysis. We perform a large-scale dynamic analysis
over 5, 531 apps using reflection on the smartphone with our
defense in order to measure the performance of the patched
system. We also use a Google Pixel 2 with an unpatched
Android system to run the apps as comparison.

B. Experimental Results

Feasibility of the bypassing approaches. As listed in
Table IV, we deploy different approaches against multiple
mobile devices in order to confirm the feasibility of the
reflection restriction bypassing approaches. We only assessed
our approaches on Android 9 and Android 10, since Android
8 and earlier do not provide reflection restrictions. Whitelist

7



TABLE IV
APPROACHES WORK AGAINST DIFFERENT SMARTPHONES. FOR

CONCISENESS, “WCB” IS REFERRED TO AS WHITELIST CHECKING
BYPASSING; “GCB” IS REFERRED TO AS GRAYLIST CHECKING

BYPASSING; “EXLP” IS REFERRED TO AS EXEMPTION LIST CHECKING
BYPASSING.

Brand Version Bypassing approaches

WCB GCB EXLB

Google Pixel 2 9.0 7 X X
Google Pixel 2 10.0 X X X
HUAWEI 10.0 X X X
OnePlus 10.0 7 7 X
Vivo 10.0 7 7 X
XiaoMi 10.0 7 7 X

checking bypassing does not work on Android 9, since the
method GetDexFlags(.) used for the approach is not
included in the libart.so of Android 9. Inline hook based
approaches including whitelist checking bypassing and graylist
checking bypassing fail in Vivo, XiaoMi and OnePlus, since
the SandHook [13] no longer works on these customized
systems. However, exemption list checking bypassing works
against all these devices without any changes.

Apps using reflection. We build an automatic analysis
framework based on soot [23] to analyze extensive apps down-
loaded from the AndroZoo and determine whether the apps use
reflection or not. Our observation is that an app uses reflection
to bypass protected methods/fields (i.e., the methods/fields in
the blacklist or graylist) and must initiate the methods such
as getDeclaredMethod() and getDeclaredField()
so as to invoke reflection. For example, an app may use
getDeclaredMethod() to invoke a hidden method and
use getDeclaredField() to inspect a hidden field. How-
ever, our detection does not check the use of methods such
as getMethod(), which are used to call or insect public
methods/field of a class. These methods are out of our focus,
since the restrictions on reflection do not work against the
public methods/field. Particularly, we find that 5, 531 out of
100, 000 apps adopt reflection. Further, among these apps,
all of the 5, 531 apps use getDeclaredField() and
3, 485 apps use getDeclaredMethod(). Our experiment
indicates that the use of reflection is prevalent among apps.

Sources of apps using reflection. Table V illustrates the
relationship between apps using reflection and the markets
where these apps come from. Since the AndroZoo provides
interfaces to allow us to obtain the market information of an
app, we query the market information so as to shed light on
the relationship between the apps using reflection and their
source. It can be observed that more than 82.8% of these apps
come from Google Play and only 13 of them are come from
1mobile Market. Based on these results, Google Play may be
more susceptible to reflection restriction bypass.

Trend of apps using reflection. We then analyze the
relationship between the numbers and the released time of
the reflection-based apps. Similarly, we use the interfaces
provided by AndroZoo to query and obtain such information.
We exclude a few apps with an invalid released date (e.g., an
app with a released time 1980). Figure 3 shows the result. It

can be observed that from the year before 2013 to the year
2014, the number of apps using reflection were increasing.
However, the numbers of apps using reflection decreased after
2015. This may be because people or app markets started
to notice the risks brought by reflection. For example, more
reflection detection techniques were introduced in the year
2015 and 2016 as reviewed in Section VI. The number of
apps using reflection decreased further in 2019 and 2020.
This is reasonable since Android’s reflection restrictions were
introduced in 2018. These restrictions indicate that Android
discourages modern apps from using reflection due to potential
security issues.

Effectiveness of our defense. To evaluate the effectiveness
of our defense, we launched an app with our approaches intro-
duced in Section III and confirmed that these approaches failed
under the patched Android system. When the app attempts to
run the approaches, the patched OS forces the app to crash
so as to defend against possible reflection-based attacks. As a
comparison, we run the same app on the smartphone without
our defense and found that the five approaches work with no
change. Our experiments indicate that our defense can prevent
reflection attacks effectively.

Robustness of our defense. We use the collected apps using
reflection to assess the robustness of our defense. We install
the 5, 531 collected apps using reflection one by one into a
smartphone with our defense enabled system and another one
with an original system to conduct a comparative experiment.
Monkey [5] is used to simulate the clicks of users on the
screen. The simulation using monkey lasts one minute to
ensure that the reflection of the apps can be triggered. Due
to the backward compatibility issues, 414 apps cannot be
installed in our system as these apps are developed for running
on system that is earlier than Android 9.0. 4,124 apps can
successfully run on both two systems as the apps do not access
the protected methods/fields and our defense does not affect
them. 678 apps are crashed on both systems. In addition, 162
apps are only crashed on the unpatched system and 153 apps
are only crashed on the patched system, since the Monkey
cannot cover all of the app UI operations on both patched and
unpatched systems. We analyze the system logs of the 993
crashed apps and find that these apps do not access protected
methods/fields via reflection. The main reasons that they are
crashed includes bugs and backward compatibility issues that
are unrelated with our defense.

Performance of our defense. We also evaluate the perfor-
mance of our defense by measuring the delay of our defense.
To this end, we set up a smartphone with our defense and
one without it, and run 2400 apps including 1200 apps using
reflection and 1200 apps without reflection collected from the
previous experiment on both smartphones. As discussed in
Section IV-B, our defense is initialized during the launch time
of an app. We therefore measure the launch time of each
app. Specifically, we record and calculate the time required
to execute from Looper.loop() to OnResume() when
the app has been completely launched. We use monkey [5]

8



TABLE V
NUMBER OF THE APPS USING REFLECTION

ACROSS DIFFERENT MARKETS

Market Number of apps Ratio
Google Play 4579 82.8%
Appchina 322 5.8%
AnZhi Market 473 8.5%
PlayDrone 807 14.7%
1Mobile Market 13 0.2%
VirusShare 65 1%
Mi Store 51 0.9%
F-Droid 15 0.3%

Before2013 2014 2015 2016 2017 2018 2019 2020

Year

0

200

400

600

800

1000

N
u

m
b

e
r 

o
f 

a
p

p
s
 u

s
in

g
 r

e
fl

e
c
ti

o
n

Before

Fig. 3. Relationship between the numbers and
the released time of apps using reflection

Without our With our 
0

100

200

300

400

500

600

700

T
im

e
 (

m
s

)

defense enableddefense enabled

214.7

172

214.8
187

Fig. 4. Performance of our defense enabled
system

to automatically start the app. Figure 4 demonstrates the
comparison of the launch time of the apps with and without
our defense enabled system. It can be observed that the median
of the launch time on the smartphone with our defense is 187
ms, while that on the smartphone without our defense is 172
ms. The average of the launch time on the two smartphones are
214.8 ms and 214.7 ms, respectively. Such a delay is negligible
for the typical use of apps on mobile.

VI. RELATED WORK

To the best of our knowledge, there is no systematic study of
Android reflection restriction bypassing and defense. We now
briefly review related work on the use of Android reflection.

Bypassing Security Check. Reflection has been used in
malware to go around the security check from Android OS.
Hao et al. [15] demonstrate that the malicious app may use
reflection to go around the bytecode rewriting. Mohannad et
al. [21] find that a malicious app may hide the malicious Inter-
App communication (IAC) into libraries, and load the mali-
cious libraries dynamically via reflection. Similar approaches
are also used in the work of Emre et al. [11]. Shikha et al.
[7] demonstrate run an encoded malicious app via reflection.

Evaluating the AMTs. Reflection is used to measure the
effectiveness of anti-malware tools (AMTs). For example, Xue
et al. [27] propose Mystique-S, a tool to dynamically produce
malicious code and load it into OS so as to evaluate AMTs.
Reflection enables Mystique-S to dynamically execute differ-
ent payloads on user devices at runtime. Vaibhav et al. [24]
propose DroidChameleon, which also evaluates a few AMTs
and uses reflection to load and run payloads dynamically.

Reflection Based Attacks. Collin et al. [9] demonstrate a
novel reflection based attack against the in-app billing service.
Kywe et al. [17] show that an attacker may steal sensitive
user information and fingerprint devices via reflection without
configuring permission in the “mainfest” file of the app. More
recently, a new type of malware named Triada [6] also uses
reflection to steal user sensitive information. However, due to
the newly introduced restrictions on reflection, some of these
attacks no longer work.

Reflection Awareness. A few attempts were made to detect
reflection in an app through static analysis and dynamics
analysis [8], [19], [25] before the reflection restrictions were

introduced. Our defense can detect and terminate the illegal
reflection in Android 10.

VII. CONCLUSION

In this paper, we perform the first comprehensive security
analysis on the workflow of the reflection restrictions on An-
droid and break down the workflow into five conditions. Then
we introduce five reflection restrictions bypassing approaches
to go around each condition of the restrictions workflow. Based
on the bypassing approaches, we implement defense against
the reflection restriction bypassing approaches by modifying
the Android system source code and the Android kernel source
code. Our defense mechanism consists of three main compo-
nents: Classloader Double Checker, ART Variable Protector,
and ART Method Protector. With the three components, the
app cant bypass the reflection restrictions through the method
introduced. Finally, we conducted a series of experiments to
verify the validity of our defense and experiment the impact of
our defense for the apps. The result of experiments shows that
our defense can effectively prevent attackers from bypassing
the reflection restrictions and has negligible footprint. We
expect that our studies can prompt Android to start developing
countermeasures in addressing these bypassing approaches.

ACKNOWLEDGMENTS

This research was supported in part by National Key R&D
Program of China 2018YFB2100300, 2018YFB0803400, and
2017YFB1003000, US National Science Foundation (NSF)
Awards 1643835, 1931871, and 1915780, US Department of
Energy (DOE) Award DE-EE0009152, National Natural Sci-
ence Foundation of China (Grant Nos. 62022024, 61972088,
61632008, 62072103, 62072102, 62072098, 61972083,
62061146001, and 61532013), Jiangsu Provincial Natural Sci-
ence Foundation for Excellent Young Scholars (Grant Nos.
BK20190060), Jiangsu Provincial Key Laboratory of Network
and Information Security (Grant Nos. BM2003201), Key Lab-
oratory of Computer Network and Information Integration of
Ministry of Education of China (Grant Nos. 93K-9), Col-
laborative Innovation Center of Novel Software Technology
and Industrialization. Any opinions, findings, conclusions, and
recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

9



REFERENCES

[1] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo:
Collecting millions of android apps for the research community. In
Proceedings of the 13th International Conference on Mining Software
Repositories (MSR), pages 468–471, 2016.

[2] Android Open Source Project. Android runtime (art) and dalvik. https:
//source.android.com/devices/tech/dalvik. Accessed: 2020-08-16.

[3] Android Open Source Project. Api level. https://developer.android.com/
guide/topics/manifest/uses-sdk-element#ApiLevels. Accessed: 2020-08-
16.

[4] Android Open Source Project. Restrictions on non-sdk inter-
faces. https://developer.android.com/distribute/best-practices/develop/
restrictions-non-sdk-interfaces. Accessed: 2020-08-16.

[5] Android Open Source Project. Ui/application exerciser monkey. https:
//developer.android.com/studio/test/monkey. Accessed: 2020-08-16.

[6] Avast Threat Intelligence Team. Mobile spyware uses sandbox to
avoid antivirus detections. https://blog.avast.com/mobile-spyware-uses-
sandbox-to-avoid-antivirus-detections. Accessed: 2020-08-16.

[7] S. Badhani and S. K. Muttoo. Evading android anti-malware by hiding
malicious application inside images. International Journal of System
Assurance Engineering and Management, 9(2):482–493, 2018.

[8] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, and M. d’Amorim.
Static analysis of implicit control flow: Resolving java reflection and
android intents. In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015.

[9] M. Collin, W. Robertson, and E. Kirda. Virtualswindle: An automated
attack against in-app billing on android. In Proceedings of the 9th ACM
Symposium on Information, Computer and Communications Security
(ASIACCS), 2014.

[10] S. Conder and L. Darcey. Learn Java for Android Development: Reflec-
tion Basics. https://code.tutsplus.com/tutorials/learn-java-for-android-
development-reflection-basics--mobile-3203, 2018.

[11] T. Emre, D. Kurt, and A. Güleç. Android obad. Technical Analysis
Paper, 2013.

[12] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee. Cloak and dagger:
from two permissions to complete control of the ui feedback loop. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P),
pages 1041–1057, 2017.

[13] ganyao114. Sandhook. https://github.com/ganyao114/SandHook. Ac-
cessed: 2020-08-16.

[14] Google. Android open source project. https://source.android.com/.
Accessed: 2020-08-16.

[15] H. Hao, V. Singh, and W. Du. On the effectiveness of api-level
access control using bytecode rewriting in android. In Proceedings

of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security (ASIACCS), 2013.

[16] T. Kim and N. Zeldovich. Making linux protection mechanisms egali-
tarian with userfs. In Proceedings of the USENIX Security Symposium
(Security), 2010.

[17] S. M. Kywe, Y. Li, K. Petal, and M. Grace. Attacking android
smartphone systems without permissions. In Proceedings of the 14th
IEEE Annual Conference on Privacy, Security and Trust (PST), 2016.

[18] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein. Droidra: Taming
reflection to support whole-program analysis of android apps. In
Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA), 2016.

[19] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein. Reflection-aware
static analysis of android apps. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2016.

[20] S. Liang. The Java native interface: programmer’s guide and specifica-
tion. Addison-Wesley Professional, 1999.

[21] A. Mohannad, Q. Yan, and H. Bagheri. Dina: Detecting hidden android
inter-app communication in dynamic loaded code. IEEE Transactions
on Information Forensics and Security (TIFS), 15, 2020.

[22] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden. Harvesting run-
time values in android applications that feature anti-analysis techniques.
In Proceedings of the 23rd Annual Network and Distributed System
Security Symposium (NDSS), 2016.

[23] Soot. Soot - a framework for analyzing and transforming java and
android applications. https://soot-oss.github.io/soot/. Accessed: 2020-
08-16.

[24] R. Vaibhav, Y. Chen, and X. Jiang. Droidchameleon: evaluating
android anti-malware against transformation attacks. In Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security (ASIACCS), 2013.

[25] C. Valerio and C. Zheng. Artdroid: A virtual-method hooking framework
on android art runtime. In Proceedings of the 1st International Workshop
on Innovations in Mobile Privacy and Security (IMPS), 2015.

[26] weishu. Freereflection. https://github.com/tiann/FreeReflection. Ac-
cessed: 2020-08-16.

[27] Y. Xue, G. Meng, and Y. Liu. Auditing anti-malware tools by evolving
android malware and dynamic loading technique. IEEE Transactions on
Information Forensics and Security (TIFS), 12(7), 2017.

[28] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu. Breaking secure
pairing of bluetooth low energy using downgrade attacks. In Proceedings
of the 29th USENIX Security Symposium (Security), pages 37–54, Aug.
2020.

10


