On Automating BACnet Device Discovery and Property Identification

Michael Cash*, Shan Wangﬁ, Bryan Pearson®, Qun Zhou*, Xinwen Fu*T
*Dept. of Computer Science, University of Central Florida, USA
Email: mcash001 @knights.ucf.edu, bpearson@knights.ucf.edu, qun.zhou@ucf.edu
1School of Cyber Science and Engineering, Southeast University
Email: wangshan@ seu.edu.cn
TDept. of Computer Science, University of Massachusetts Lowell, MA, USA
Email: xinwen_fu@uml.edu

Abstract—BACnet is the most popular inter-communication
protocol in building automation systems (BAS) and has been
deployed in a large scale. It is critical to scan and perform risk
analysis of a BAS. Existing work identifies BACnet devices in
a manual way and does not further discover their properties.
In this paper, we design and implement an automatic tool to
identify a BACnet device at a given IP and enumerate both
standard and vendor-defined BACnet objects and properties.
We applied our tool to a testbed real-world BAS system
on a university campus and successfully validated the tool’s
effectiveness. Our tool is the first of its kind for risk assessment
of the BAS, e.g., automatically scanning open smart buildings
on the Internet. The video at https://youtu.be/YUfO8GQILxQ
demonstrates that our toolkit may be used to remotely move
a damper controlling a building’s Heating, ventilation, and air
conditioning (HVAC) system from the Internet and justifies the
importance of using our tool for penetration testing of a BAS.

1. Introduction

The BACnet protocol has allowed building automation
systems (BAS) administrators to maintain central building
communication control of legacy devices while simultane-
ously adapting to new building automation devices. However,
with BACnet’s use of security being optional, the lack of
security makes these devices vulnerable [1], [2], [3]. BACnet
is an open protocol, where the equipment between vendors
can interoperate with one another without the need for
proprietary equipment. This can be beneficial for adversaries,
using BACnet’s openness to intrude and manipulate BAS
systems. This can lead to dire consequences if precautions
are not taken. As the number of devices deployed to a BAS
increases, it is critical to identify these BACnet devices and
perform risk assessment of the entire BAS.

Current tools for scanning BACnet for the purpose of
penetration testing only provide basic property identification
or do not completely enumerate device contents, especially
autonomously. Brandsteter and Reisinger [4] identify security
tools for discovering building automation systems, such as
the Nmap Scripting Engine (NSE) [5], Redpoint [6], and
HVACScanner [7]. Gasser et al. [1] use ZMap [8] to port-
scan the internet-wide network for publicly reachable BACnet

devices, returning a list of IP addresses that are potentially
for BACnet devices. Since standard ports for building control
may be used for other purposes, the tool has a very high false
positive rate. Their tool cannot confirm these IP addresses
indeed belong to BACnet devices either.

We implement a BACnet tool to automatically discover
and scan for object types and properties of BACnet de-
vices. The BACnet automation tool confirms the identify
of a BACnet device by scanning the target IP address
using BACnet’s WhoIsIAm request service. After an IP
address is confirmed to belong to a BACnet device, our
tool automatically enumerates BACnet object types and
their corresponding properties. By automating the process of
confirming the presence of BACnet devices and automating
property and object enumeration, we provide a tool to display
a larger outlook on the BAS system.

The major contributions of this paper are summarized as
follows: (i) We carefully analyze the BACnet protocol and
design and implement a tool to automatically confirm BACnet
devices at given IP addresses and then scan for objects and
associating properties of the BACnet devices. (ii) We have
applied our tool to a real-world BAS on campus within a lab
environment and validated the effectiveness of the tool. Our
tool can be particularly used for risk assessment of a BAS,
for example, scanning a campus network and identifying
open and vulnerable BAS devices, objects and properties.

2. Background

Building automation systems (BAS) is used to auto-
matically monitor and control the conditions of indoor
environments in large buildings, such as heating, ventilation,
and air-conditioning (HVAC) systems. The core benefits of
BAS are energy conservation and performance improvement
[9] [10]. In order to integrate various automated services
that are developed individually, the BAS adopts a collection
of communication protocols: LonWorks, KNX, and BACnet
[11]. Of the three, BACnet is the most popular.

2.1. BACnet Protocol

BACnet is the standard communication protocol for
Building Automation and Control Networks developed by


https://youtu.be/YUfO8GQILxQ

the American Society of Heating, Refrigerating, and Air-
Conditioning Engineers (ASHRAE) [12]. BACnet has be-
come the standard for inter-communication within BAS
systems. Its increase in popularity is due to its role as a
centralized communication protocol, allowing devices that
use different building automation protocols to communicate.
This gives building system administrators more flexibility in
the deployment of building automation devices.

The BACnet protocol is based on a collapsed version
of the Open Systems Interconnection (OSI) model [13]. As
shown in Figure 1, it is composed of 4 layers: (i) The physical
layer makes it possible for BACnet to be implemented
on different network types, such as ISO 8802.3 Ethernet,
ARChnet, and BACnet/IP. (ii) The data link layer provides
access to the physical medium while organizing the data to
be transmitted into data packets recognizable to the protocol.
(iii) The network layer provides message routing from one
BACnet network to another, regardless of the technologies
used in the sublayers of the protocol. (iv) The application
layer provides information about a device and methods for
accessing that information. These are organized into BACnet
objects and BACnet services.

BACnet Application Layer Application
BACnet Network Layer Network
BACnet/IP
ISO 8802-2 Type 1 | MS/TP PTP Data Link
1SO LonTalk
8802-3 | ARCnet | EIA-485 | EIA-232 Physical
Ethernet

Figure 1. BACnet Protocol Architecture

2.2. BACnet Objects and Properties

To achieve interoperability between devices, the BACnet
protocol defines a collection of data structures, known as
BACnet objects. Each device in a BACnet network is a
Device object which can define multiple other BACnet
objects. Each object stores appropriate values based on
that object’s property. These properties characterize the
BAChnet object’s functionality and purpose. Table 1 shows an
example of an Analog Output object, which a building
automation controller could use to access the readings for
a temperature sensor. The left column shows the properties
that can be presented in an Analog Output object. Some
properties are required from every Analog Output object
while others are optional.

2.3. BACnet Services

BACnet provides multiple services for acquiring data
from BACnet objects, commanding BACnet devices to

TABLE 1. PROPERTIES OF AN ANALOG OUTPUT OBJECT

Property Value Type
Object Name | Zone Temperature | Required
Object Type Analog Output Required
Present Value 71 Required

Units Degrees-Celsius Required
Status Flags Normal Required
High Limit 75 Optional
Low Limit 60 Optional

perform actions or announcing events that have occurred to
other devices [14]. BACnet defines 5 service types: (i) Alarm
and Event Services relay changes in conditions (e.g., if a
threshold is reached) for a BACnet device. (ii) File Access
Services read from and write to files contained on BACnet
devices. These operations are atomic, meaning only one
operation (read or write) can occur at a time. (iii) Object
Access Services provide the methods for reading, modifying,
and writing properties as well as adding and deleting ob-
jects. There is a Read Property method in this service,
which can be used to read the value of target property,
such as the Present Value of the Zone Temperature
Analog Output object in table 1. (iv) Remote Device
Management Services provide operational control, special
message transfer, and configuration functions. For example,
the Who-Is and I-Am in this service request the presence
and basic information of a BACnet device. (v) Virtual
Terminal Services provide bi-directional communication
to programs which execute in a remote device.

Figure 2 shows a BACnet-based BAS example. Desigo
CC is Siemens’ facilities and building automation manage-
ment system with a highly graphic interface. However, any
tools following BAS protocols can be used to control facilities
and buildings. For example, the Raspberry Pi in Figure
2 attempts to read the temperature from the temperature
sensor, which is connected to the Siemens DXR2.E10PL-
102B device (room automation station). The Pi sends a
ReadProperty Request, which is a method of the Object
Access Services, to the DXR2.E10PL-102B. The target
property of this ReadProperty request is Present
Value of the Analog Output object as shown in Table
1, which is an Analog Output object type. DXR2.E10PL-
102B retrieves the Present Value reading of the Analog
Output object, sending a ReadProperty response message
back to the Pi saying that the Present Value of the Zone
Temperature object is 71 °C.

3. Automating BACnet Devices Discovery

In this section, we introduce our methodology of identi-
fying BACnet devices given an IP and enumerating objects
and properties as well as basic information as seen with
Nmap [5] and Redpoint [6] for the BACnet device. By doing
so, we obtain a complete list of device contents. We identify
both standard BACnet objects and vendor-defined objects.



Raspberry Pi for
BAS risk assessment

Campus
network

Siemens Desigo
CC - building
management
station

I\

Figure 2. Example of BACnet-based BAS

For all standard BACnet objects, we further identify their
standard properties.

3.1. Identifying BACnet Devices

We use the BACnet Who-Is and I-Am services to
confirm the presence of a BACnet device located at an
IP address. In the Remote Device Management Services of
BAChnet, the Who—-Is and I-Am Services are two commonly
used services. The Who-Is service is a special request
(message) that is broadcast to the network in an attempt
to obtain the network addresses of BACnet devices on the
BACnet network that is specified by the request. When a
BAChet device needs to know the address of another BACnet
device it will broadcast a Who—-TIs service request, specifying
the Device object type’s instance number of the BACnet
device to be known. The instance number is a unique number
for an object type that differentiates itself from an object
of the same type. If more than one BACnet device is to be
requested, the Who—-TIs service request can also send a range
of the instance numbers. Responses to these request, known
as I—-Am service response, are also broadcast to the network,
providing the address information to the requester. By broad-
casting the response, any other BACnet device which may
need its address information can also receive the response
without creating additional traffic on the network. Combined,
these services remove the necessity of manually configuring
addresses for each BACnet device on the network.

3.2. Standard and Vendor-Defined BACnet Objects
Discovery

The BACnet protocol provides standard object types such
as accumulator, analog input/output, command, file, program

and schedule for vendors to communicate with building
automation devices from other vendors. The list of standard
object types continues to increase. The BACnet protocol’s
versatility also allows vendors to create specific BACnet
objects, which are not accessible by other equipment used in
the BAS. Vendor-defined object types do not interfere with
the standard object types. When identifying all the objects for
a BACnet device, the possibility of vendor defined objects
must be considered.

Objects in BACnet are numerically coded, where the
string name of the object equals a numeric value (i.e.
analogOutput = 1 and binaryValue = 5). For standard object
types, BACnet reserves the numeric codes 0-127. Codes 128-
1023 are left for vendor object creation. Thus, if an object
is encountered that possesses a numeric code within 0-127,
we can confirm that it is a standard vendor-defined object
type. If the numeric code of an object is within 128-1023,
we can confirm that it is a vendor-defined object type.

A property called objectList of the Device object
can be used to discover both standard and vendor-defined
BACnet objects. The Device object represents a real-
world device. It is a unique object defined by BACnet that
contains metadata about the BACnet device. Table 2 shows
an example of the Device object and its properties. The
objectList property lists each object associated to the
BACnet device. Using the ReadProperty method from
the Object Access service, we can request the objectList
property obtained in the Device object. Extracting this list
provides a complete view of what objects exist on the BACnet
device. Every BACnet device contains a Device object, and
every Device object contains the objectList property.
Using this method ensures discovering every object known
to the BACnet device, including both standard objects and
vendor-defined objects.

3.3. BACnet Properties Discovery

After we obtaining a device’s BACnet objects, we identify
the standard properties of all standard BACnet objects.
Properties in BACnet also use numeric coding. BACnet
reserves numeric codes 0-511 for standard properties. Any
property using a numeric coding from 512 to 4194303 is a
vendor-defined BACnet property. For example, the standard
Present Value property in Figure 1 has a numeric code
of 85. Here, we only identify the standard properties.

The BACnet service Object Access Services
can be used to get the properties of BACnet objects. Since
BAChnet objects do not maintain a list of properties currently
deployed, we check all candidates to identify the presence of
properties. Fortunately, each standard object has their own
subset from the total 512 properties. The subset is defined by
the BACnet protocol. A method called ReadProperty in
Object Access Services can be exploited. It accepts
inputs such as IP address, object type and the property to
be read. This method checks if the property exists. If the
property does exist, this method returns its specified value. If
the property does not exist, this method returns none. If the



TABLE 2. EXAMPLE OF PROPERTIES OF THE DEVICE OBJECT TYPE. THE
’OBJECTLIST’ PROPERTY CONTAINS THE OBJECT IDENTIFIERS FOR ALL
OBJECTS ON THE DEVICE.

Algorithm 1 Algorithm for Identifying BACnet Devices and
Enumerating Objects and Properties

Object Name = AS02

Object Identifier = ("device’, 10001)

systemStatus = operational

vendorName = Siemens Building Technologies

vendorlIdentifier = 7

modelName = DXR2.E12P-1

firmwareRevision = FW=01.21.50.128; WPC=1.7.10;
SVS-300.4:SBC=13.22

applicationSoftwareVersion = AAS-20; AP=15020_VAV_US.3.001;
SU=UsUn; APT=HvacLgtShd12_A; APTV=6.002;

location = B_01

protocol Version = 1

protocolRevision = 13

protocolServicesSupported = [1, 1, 1, 1, 1, 1,1, 1, 1, 1,0, 0, 1, O,
1,1,1110,10,0,0,0,0,1,1,1,1,1,0,1,1, 1,1, 1,0, 1, 1, ]

protocolObjectTypesSupported = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
o1,1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0, 1, 0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0,0, 0, 1]

objectList = [("analogInput’, 6), ("analogInput’, 32), ("analogInput’, 56),

(’analogInput’, 57), ("analoglnput’, 58), ....]

property requires read access privileges, then it will output
readAccessDenied instead.

3.4. Automatic Discovery Tool

The automation tool mainly utilizes the BACpypes library
[15] [16]. BACpypes provides the application layer and
network layer to allow for programming daemons, scripts,
and graphical interfaces. The automation tool requires an
input of a text file listing IP addresses. The tool will check

whether the IP addresses are associated with BACnet devices.

Algorithm 1 illustrates our process.

Accepting a text file listing IP addresses as an input,
the automatic device discovery tool iterates through this list,
sending a Who—Is request to each IP address. If an address
sends back an appropriate I—-Am response, the IP address is
confirmed to be an associated BACnet device. The IP address
and instance number of its Device object are stored in

the list device_addrs and device_ids, respectively.

These lists are used by the automation tool to identify all
standard and vendor-defined objects for the BACnet device
and also identify all standard properties of the standard
objects. Both the device_addrs and device_ids lists
will have same number of elements, with a one to one
matching of IP address to instance number.

For each address and instance number pair in the lists,
we send a ReadProperty request carrying the IP address,
Device object type and objectList property [17]. This
means the automation tool is requesting the objectList

Input: addressList
Output: out
Initialisation :
1: Open addressList
2: Create lists device_ids, device_addrs
3: Create object_counter, property_counter
LOOP Process

4: for address K in addressList do

5:  Create Whols request

6:  Send request

7. if Response is I AmRequest then

8: Print pduSource, Device Identifier, Max Apdu
Length Accepted, Segmentation Supported, Ven-
dorID

9: Append K to device_addrs

10: Append Device instance number to device_ids

11:  else

12: Pass

13:  end if

14: end for

15: for address A, instance B in device_addrs, device_ids
do
16:  Create ReadProperty request for ObjectList property

17:  Send request
18:  if Response is ReadProperty response then

19: Save objectList

20: for Object O in objectList do

21: if Object O is Standard Object then

22: for Each property P in O do

23: Create ReadProperty request for P

24: Send request

25: if Response if ReadProperty response
then

26: Print property value

27: property_counter += 1

28: Pass

29: else

30: Pass

31 end if

32: end for

33: object_counter += 1

34: end if

35: if Object O is a Vendor-defined Object then

36: object_counter += 1

37: end if

38: end for

39:  else

40: Pass

41:  end if

42: end for

43: Print object_counter, property_counter
44: return




property from the Device object type. The IP address indi-
cates the target device. The response of the ReadProperty
Request from the target device should contain the value of the
objectList property. The returned value enumerates each
object type associated to the BACnet device. This includes
standard objects as well as vendor-defined objects. If the
response carries a list of objects, we can also confirm that
this IP address is indeed associated to a BACnet device,
where every BACnet device has a unique Device object.

For each object from the list, we further request the
presence of all standard properties that are defined for
each type of object. The tool places the list of properties
into a queue to be requested sequentially. It then sends a
ReadProperty request, carrying the IP address, to the
target BACnet object type and the property. Some properties
may have read and/or write restrictions. If the property being
requested has no restrictions, the tool outputs the value of
the property. A request to a restricted property will result
in the tool outputting that an readAccessDenied error
occurred and will continue to the next queued property. If
the property is not configured for the object, the process will
continue to the next property in the queue instead. When all
of the properties in the queue for the current object have been
requested, the tool repeats these steps for the next object in
the objectList.

Vendor-defined objects (objects with numeric codes
greater than 127) do not have string names in the
objectList. These objects will instead be listed by their
numeric code. Since vendor-defined objects could have
potentially any property, we only confirm the existence of the
vendor-defined object and do not further list its properties.
This is because the ReadProperty request uses the string
object name as input in the BACpypes library. When using
vendor-defined objects numeric code, this library will return
an error when attempting to read its properties.

4. Evaluation

In this section, we first present the experiment setup
and then present the results of our tool confirming BACnet
devices at given IP addresses and discovering associated
BAChnet objects and properties.

4.1. Experiment Setup

Our BACnet field panel in Figure 2 for experiments is a
standalone system at the University of Central Florida (UCF),
connected to the campus network, but isolated from UCF’s
actual building control system. The panel was installed and
configured by Siemens as part of collaboration with UCF. It
hosts a collection of Siemens Building Automation products
and uses imported data obtained from a live building automa-
tion system. Figure 2 illustrates an overview of the field panel.

Our BACnet field panel has three controllers. The
DXR2.E12P-102B Room Automation Station is a fully pro-
grammable device for connecting BACnet devices for HVAC,
lighting, and shading (window blinds) applications with an in-
tegrated port that supports KNX devices. The DXR2.E10PL-
102B is similar to that of the DXR2.E12P-102B, except

that it includes an integrated damper actuator for HVAC,
lighting, and shading. The PXC100-E.A controller performs
control, monitoring, and energy management functions, while
operating by itself (standalone) or together with other devices
(networked setting). It is a multi-tasking platform for program
execution and communication with other BACnet devices
while also storing program and database information.

The field panel also includes a QMX3.P74-1WSB
Room Operator Unit, connected to the DXR2.E12P-102B,
and QMX3.P37B Room Operator Unit, connected to
the DXR2.E10PL-102B. The QMX3.P74-1WSB includes
sensors for temperature, humidty, and CO2, while the
QMX3.P37B is equipped with a temperature sensor. The
two Siemens QAM2030 duct point temperature sensors are
connected to the two DXR2 room automation stations. The
touch room operator unit QMX7.E38 is connected to the
DXR2.E12P-102B through Ethernet. The PXC controller and
DXR2 devices are preloaded with building data while also
using live data from the connected sensors.

To interact with the field panel, we use a Raspberry Pi
3 with 32 GB flash memory running Raspbian OS version
10 Buster. The BACpypes python library implementation for
the BACnet protocol uses version 0.13.6. These devices are
all located within the same network.

4.2. Discovery Results

To evaluate our automation tool, we use the IP addresses
of our field panel devices to test how well we are able
to identify objects and properties. We analyze three IP
addresses of the three BACnet devices: the PXC controller,
the two Room Automation Stations DXR2.E10PL and
DXR2.E12P. Table 3 illustrates our results.

TABLE 3. OBJECT DISCOVERY AND PROPERTY IDENTIFICATION

. Standard Objects Total Unique Properties
Device Discovered Standard Identified
Objects Discovered
PXC100-E.A 17 3 148
DXR2.E10PL 429 14 3025
DXR2.E12P 423 16 2957

TABLE 4. OBJECT DISCOVERY AND PROPERTY IDENTIFICATION FOR
VENDOR-DEFINED OBJECTS

Vendor-Defined Total Unique Properties
Device Objects Vendor-Defined I degti ﬁeé
Discovered Objects Discovered
PXC100-E.A 0 0 0
DXR2.E10PL 12 4 0
DXR2.E12P 16 5 0

In scanning the PXC controller, our automation tool is

able to correctly discover 17 objects and identify 148 total
properties associated to those objects, shown in table 3. All
17 objects found for the PXC controller are standard objects,
using 3 unique standard object types, while the associated
148 total properties are standard properties.



The DXR2.E10PL scanning discovered 429 standard
objects, using 14 unique object types. For the 429 standard
objects, a total of 3025 standard properties are also identified.
Vendor-defined objects were also discovered, however their
properties could not be identified, giving a possible total
number of properties for the DXR2.E10PL to be greater than
3025 properties.

Finally, the automation tool scanning the DXR2.E12P
Room Automation System discovered 423 standard objects.
We discovered 16 unique standard objects types used to create
the 423 standard objects. The 2957 properties identified are
standard properties associated only to the standard BACnet
objects. Vendor-defined objects were discovered,but no prop-
erties identified. With this, the total number of properties
belonging to the DXR2.E12P would exceed 2957 total
properties. However, the exact number cannot be identified
by the automation tool.

Table 4 shows the results of discovering vendor-defined
objects within the three BACnet devices. From the PXC
controller, no vendor-defined objects were discovered, while
12 and 16 vendor-defined objects were discovered for the
DXR2.E10PL and DXR2.E12P, respectively. The automation
tool correctly recognizes that there are no vendor-defined
objects contained on the PXC controller, according to the
objectList property. From the 12 vendor-defined objects
for the DXR2.E10PL, there were 4 unique vendor-defined
objects, where each use a unique numeric object code.
Likewise, the DXR2.E12P had 5 unique vendor-defined
objects, each also using unique numeric codes.

4.3. Limitations

Although our automation tool can identify a large quantity
of properties, it was not able to identify all of them, particu-
larly those of the vendor-defined objects. In the discovering
of the vendor-defined objects, the automation tool was not
able to identify their associated properties. This is because
the vendor-defined objects do not have a predefined set of
properties. They could use any possible combination of both
standard properties and vendor-defined properties. Current
implementation for the automation tool does not allow for
searching the entire possible property set for vendor-defined
objects. We plan to use natural language processing (NLP)
techniques to scan online documentation of interest to identify
such properties of the vendor-defined objects.

5. Conclusion

In this paper, we first analyze the BACnet protocol and its
use of objects and properties for data transmission. Objects
and properties from BACnet devices can respond to requests
from other devices outside of a BAS, as long as the request
follows the BACnet protocol. Limited access control of
BACnet allows the adversary to alter property value and
severely damage the entire BAS. As the size of the system
grows, it can become difficult to perform security analysis of
a BAS. We develop a tool to automate the identification of a
BAChnet device at a given IP and its objects and properties.

We have successfully applied our tool to a live testbed BAS
on a university campus.

Acknowledgements

This research was supported in part by US National
Science Foundation (NSF) Awards 1931871 and 1915780,
and US Department of Energy (DOE) Award DE-EE0009152.
Any opinions, findings, conclusions, and recommendations
in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

References

[1] O. Gasser, Q. Scheitle, C. Denis, N. Schricker, and G. Carle, “Security
implications of publicly reachable building automation systems,” in
2017 IEEFE Security and Privacy Workshops (SPW), 2017, pp. 199—
204.

[2] M. Peacock, M. N. Johnstone, and C. Valli, “Security issues with
bacnet value handling,” in ICISSP, 2017.

[3] D. G. Holmberg, D. G. Holmberg, and D. L. Evans, “Bacnet wide
area network security threat assessment,” 2003.

[4] T. Brandstetter and K. Reisinger, “(in)security in building automation
how to create dark buildings with light speed,” 2017.

[5] “nmap/nmap.” [Online]. Available: https://github.com/nmap/nmap

[6] “digitalbond/redpoint.” [Online]. Available: https://github.com/
digitalbond/Redpoint

[71 Musicmancorley, “musicmancorley/hvacscanner.” [Online]. Available:
https://github.com/musicmancorley/HVACScanner

[81 Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap:
Fast internet-wide scanning and its security applications,” in
22nd USENIX Security Symposium (USENIX Security 13).
Washington, D.C.: USENIX Association, Aug. 2013, pp.
605-620. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 1 3/technical-sessions/paper/durumeric

[9]1 J. Figueiredo and J. Martins, “Energy production system management
— renewable energy power supply integration with building
automation system,” Energy Conversion and Management, vol. 51,
no. 6, pp. 1120 — 1126, 2010. [Online]. Available: http:
/Iwww.sciencedirect.com/science/article/pii/S0196890409005263

[10] F. Xiao and C. Fan, “Data mining in building automation system
for improving building operational performance,” Energy and
Buildings, vol. 75, pp. 109 — 118, 2014. [Online]. Available: http:
/Iwww.sciencedirect.com/science/article/pii/S0378778814001169

[11] W. Kastner, G. Neugschwandtner, S. Soucek, and H. Newman, “Com-
munication systems for building automation and control,” Proceedings
of the IEEE, vol. 93, pp. 1178 — 1203, 07 2005.

[12] “The new standard protocol.” [Online]. Available: http://www.bacnet.
org/Bibliography/EC-9-97/EC-9-97.html

[13] T. Park and S. Hong, “Experimental case study of a bacnet-based
lighting control system,” IEEE Transactions on Automation Science
and Engineering, vol. 6, no. 2, pp. 322-333, 2009.

[14] B. Swan, “The language of bacnet-objects, properties and services.”
[Online]. Available: http://www.bacnet.org/Bibliography/ES-7-96/
ES-7-96.htm

[15] J. Bender, “Bacpypes.” [Online]. Available: https:/github.com/
JoelBender/bacpypes

[16]

, “Welcome to bacpypes.” [Online]. Available: https://bacpypes.
readthedocs.io/en/latest/

[17] “Readproperty service results: Continental control systems.”
[Online]. Available: https://ctlsys.com/support/readproperty_service_
array_results/


https://github.com/nmap/nmap
https://github.com/digitalbond/Redpoint
https://github.com/digitalbond/Redpoint
https://github.com/musicmancorley/HVACScanner
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
http://www.sciencedirect.com/science/article/pii/S0196890409005263
http://www.sciencedirect.com/science/article/pii/S0196890409005263
http://www.sciencedirect.com/science/article/pii/S0378778814001169
http://www.sciencedirect.com/science/article/pii/S0378778814001169
http://www.bacnet.org/Bibliography/EC-9-97/EC-9-97.html
http://www.bacnet.org/Bibliography/EC-9-97/EC-9-97.html
http://www.bacnet.org/Bibliography/ES-7-96/ES-7-96.htm
http://www.bacnet.org/Bibliography/ES-7-96/ES-7-96.htm
https://github.com/JoelBender/bacpypes
https://github.com/JoelBender/bacpypes
https://bacpypes.readthedocs.io/en/latest/
https://bacpypes.readthedocs.io/en/latest/
https://ctlsys.com/support/readproperty_service_array_results/
https://ctlsys.com/support/readproperty_service_array_results/

	Introduction
	Background
	BACnet Protocol
	BACnet Objects and Properties
	BACnet Services

	Automating BACnet Devices Discovery
	Identifying BACnet Devices
	Standard and Vendor-Defined BACnet Objects Discovery
	BACnet Properties Discovery
	Automatic Discovery Tool

	Evaluation
	Experiment Setup
	Discovery Results
	Limitations

	Conclusion
	References

