
MIXP: Efficient Deep Neural Networks Pruning for
Further FLOPs Compression via Neuron Bond

Bin Hu∗, Tianming Zhao†, Yucheng Xie‡, Yan Wang†, Xiaonan Guo‡, Jerry Cheng§ and Yingying Chen∗
∗Electrical & Computer Engineering, Rutgers University, USA
†Computer and Information Sciences, Temple University, USA

‡Computer and Information Technology, Indiana University-Purdue University Indianapolis, USA
§Engineering and Computing Sciences, New York Institute of Technology, USA

Email: bh439@scarletmail.rutgers.edu, tum94362@temple.edu, yx11@iupui.edu, y.wang@temple.edu
xg6@iupui.edu, yingche@scarletmail.rutgers.edu

Abstract—Neuron networks pruning is effective in compressing
pre-trained CNNs for their deployment on low-end edge devices.
However, few works have focused on reducing the computational
cost of pruning and inference. We find that existing pruning
methods usually remove parameters without fine-grained impact
analysis, making it hard to achieve an optimal solution. This
work develops a novel mixture pruning mechanism, MIXP,
which can effectively reduce the computational cost of CNNs
while maintaining a high weight compression ratio and model
accuracy. We propose to remove neuron bond that can effectively
reduce convolution computations and weight size in CNNs. We
also design an influence factor to analyze the importance of
neuron bonds and weights in a fine-grained way so that MIXP
could achieve precise pruning with few retraining iterations.
Experiments with MNIST, CIFAR-10, and ImageNet datasets
demonstrate that MIXP could achieve significantly fewer FLOPs
and retraining iterations on four widely-used CNNs than existing
pruning methods.

Index Terms—pruning, deep learning, weights, CNN

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have achieved
remarkable successes in a broad range of applications due
to their performance scalability, and self adaptiveness [1].
For example, CNNs have enabled image recognitions [2],
[3] and object identifications [4], [5] with high accuracy.
CNNs have also enabled highly effective semantic segmen-
tation [6], [7] and natural language processing [8]. With the
recent emerging trend of using artificial intelligence (AI)
and virtual reality (VR)/augmented reality (AR) on mobile
devices, more mobile applications should benefit from using
CNNs. However, state-of-art mobile devices still have lim-
ited memory size and computational capacity, which prevent
them from running conventional CNNs. Thus, most mobile
applications have employed cloud-based approaches, where
mobile devices upload local sensing data to a cloud server
to perform inferences tasks. However, such approaches could
result in high processing delays, significant downgrade the
system performance, and negative user experience, especially
in time-sensitive applications (e.g., mobile healthcare and
AR/VR-based applications). Therefore, it is highly desirable
to design and develop efficient CNNs that can be deployed on
mobile devices without performance degradation.

Pre-trained
Model

Weight
 Pruning

Pruned
ModelRetrain

Pre-trained
Model

Pruned
Model

Weight
 Pruning Retrain

(a) Traditional Network Pruning Pipeline

(b) Our MIXP Method Pipeline to Achieve Significant Storage and
Computation Reduction with Much Less Retrain Iterations

Step 2 Step 3

Step 1 Step 2

Step 1

Neuron-Bond
Pruning

Fig. 1: Comparison of pruning pipeline between our MIXP
mechanism and traditional pruning approaches. (a) Traditional
weight pruning approaches only prune weights to reduce the
size and computational cost of a CNN. (b) MIXP takes three
steps to respectively prune neuron bonds and weights of a
CNN so that the resulted model has significantly reduced
computational cost (i.e., FLOPs and retrain) and size (i.e.,
numbers of neuron bonds and weights).

A typical way to obtain efficient CNNs for mobile devices
is network compression [9], [10], which eliminates traditional
CNNs’ redundant weights and channels. Pruning is one of
the most popular network compression techniques due to its
effectiveness in reducing the network complexity and resolving
the overfitting problem. Existing pruning methods can be cat-
egorized into non-structured pruning and structured pruning.
Non-structured pruning [9], [11] can prune arbitrary weights in
CNNs and achieve high pruning rates, but the resulting pruned
models often have limited acceleration in real implementations
since its sparse weight matrices and associated indices are less
compatible with the parallel execution model of current com-
puting processors. Structured pruning [12], [13], on the other
hand, can directly remove filters, channels, or a set of weights
while keeping the full matrix form. Therefore, it can achieve
acceleration in real implementation and thus becomes more
popular in recent research on network compression. However,
it is challenging for pruned models to achieve a higher weight
compression ratio. As a result, most of the existing pruning
research focus on solving this problem [14]–[16]. Few works
have been done to reduce the computational cost of pruning
(i.e., retraining iterations) and inference (i.e., floating-point op-

erations (FLOPs)). Since lowering computational cost would
facilitate the deployment of CNNs on mobile devices directly,
in this work, we develop a pruning mechanism targeting at
reducing pruning iterations and FLOPs while maintaining a
high weight compression rate and inference accuracy. As a
result, the powerful and large deep learning models could be
deployed on resources limited mobile devices.

To achieve these goals, we need to address a number
of challenges. The existing pruning methods usually remove
parameters without fine-grained analysis in each pruning it-
eration, resulting in a dramatic drop in the model accuracy.
Furthermore, since the degree of significance of parameters
depends heavily on network structure and inputs, it will
change with the dynamic network structure after each pruning
iteration. Many of the existing pruning methods recover pruned
parameters at the last step, where the majority of important
parameters may not be recovered. Consequently, the pruned
network can not achieve the optimal accuracy [17]. In addition,
the existing pruning approaches usually perform the iterations
of parameter removal and accuracy recovery at each layer,
making it hard to achieve a global optimum [14], [17] with
few retraining iterations. This further increases the difficulty
of designing pruning solutions with a low computational cost.

Therefore, we develop a novel global MIXture Pruning
mechanism, MIXP, which aims to reduce the computational
cost of CNNs during the inference and retraining phase
while maintaining a high weight compression ratio and model
accuracy. Different from the existing pruning methods that
focus on reducing the size of weights or neurons, we define
Neuron Bonds which are the paths between filter and output
map in the convolution layer and the paths between two fully
connected layers. By pruning the neuron bond, we can skip
corresponding conventional computation for generating each
pixel of the output map. We utilize Neuron Bonds pruning
to effectively reduce the convolution computations and size of
weights in CNNs. We develop a metric parameter, Importance,
to measure the global importance of each parameter. We
further design an influence factor based on the parameter’s
importance to enable fine-grained analyses on the parameter’s
importance. In contrast to simply removing a parameter in
each pruning iteration, we utilize the influence factor to adjust
the parameter’s involvement and gradually determine its im-
portance to the network. As a result, MIXP could significantly
reduce the pruning iterations by only performing a one-shot
pruning when the total number of unimportant parameters
reaches the compress ratio. It also reduces the computational
cost of powerful DNNs so that they can run on low-end mobile
devices.

Specifically, MIXP consists of three steps: Neuron Bond
Pruning, Weight Pruning, and Retrain. By utilizing the in-
fluence factor, MIXP first prunes neuron bonds of the input
model, focusing on reducing its computational cost while
removing partial weights. Then, MIXP performs the weight
pruning to optimize the size of the network by removing
more weights based on their global importance. Since MIXP
already removes the neuron bonds with associated weights

in the first step, the weight pruning process in the second
step has fewer weights to examine and therefore requires
fewer pruning iterations. Once a target weight compression
ratio is reached, MIXP performs the third step (Retrain) to
recover the model’s accuracy. Since the unimportant neuron
bonds and weights are identified and removed based on the
fine-grained parameters’ importance and influence factor, the
identification process is more accurate in finding the target
parameters and the accuracy drop in the model caused by
removed parameters is smaller than the traditional directly
pruning approach. Therefore, our approach requires fewer
retraining iterations to recover the accuracy of the network.
Figure 1 illustrates our MIXP pipeline in comparison with a
traditional weight pruning pipeline: MIXP exploits the mixture
of two pruning steps to optimize the computational cost and
size of a CNN model whereas traditional pruning methods
only focus on pruning weights.

The main contributions of this work are as follows:
• We propose a new sparsity dimension measurement of CNN,

namely neuron bond. Based on neuron bond, we develop
the first pruning mechanism that can significantly reduce
computational cost (i.e., FLOPs) while maintaining a high
model compression rate and inference accuracy

• We design an influence factor to analyze the importance of
a particular network parameter in a fine-grained way so that
MIXP could achieve precise pruning with fewer retraining
iterations. The fewer retaining iterations would effectively
save time and computational cost in running a large and
powerful pruned models on the mobile devices.

• We demonstrate that our MIXP could significantly re-
duce the FLOPs and achieve comparable compression ratio
and inference accuracy on small and simple dataset (i.e.,
MNIST), small but more complex dataset (i.e., CIFAR-10),
and larger and complex dataset (i.e., ImageNet) for the four
widely used DNNs - early models (i.e., LeNet-5), deeper and
larger models (i.e., VGG-16), dense models (i.e., ResNet),
and lightweight models (i.e., MobileNet V1/V2).

II. RELATED WORK

Existing research on CNN model pruning can be catego-
rized as non-structured pruning and structured pruning. Non-
structured pruning directly prunes weights independently of
each neuron. For example, Han et al. [9] propose a weight
pruning method by learning the importance of connections.
Zhang et al. [11] formulate the weight pruning problem of
DNN models as a non-convex optimization problem with
combinatorial constraints specifying the sparsity requirements.
Ren et al. [18] propose a joint framework of DNN weight
pruning and quantization using alternating direction method of
multipliers (ADMM) to solve non-convex optimization prob-
lems. Lee et al. [19] propose to prune a given network once
before training by introducing a saliency criterion based on the
importance of parameters. Although non-structured pruning
can achieve high compression ratio and retain decent accu-
racy, its results have irregular weight matrics, which increase
model execution overhead due to irregular memory access and

Neuron Bond

Input Map Filter Output
Map

Input Map Filter Output
Map

Mask

Neuron Bond with Mask in MIXP

(a) Neuron bonds in convolutional layer

1

2

H

1

2

K

!!!

���� ��

!!!

�������
�������

Neuron Bond

(b) Neuron bonds in fully connected layer

�������

�������

Mask

1

2

H

1

2

K

!!!

���� ��

!!!

�������
�������

Neuron Bond with Mask in MIXP

������� ������� �������

Fig. 2: Illustration of neuron bond definition in a convolutional
layer and a fully connected layer.

degraded support for parallelism. Thus, non-structured pruning
approaches are not suitable for mobile devices with limited
memory and computation capacity.

Structured pruning keeps the model with a regular structure
after pruning and is thus more suitable for regular comput-
ing hardware on mobile devices. A few filter and channel
pruning solutions have been proposed to accelerate the pruned
networks while minimizing the network’s accuracy loss. For
example, Zhao et al. [20] re-formulate the channel pruning
problem within a Bayesian probabilistic learning framework
to directly operate on a redefined scaling factor in Batch
Normalization. Lin et al. [14] globally prune the unimportant
filters across all layers first, then recover the mistakenly pruned
filters to improve the model accuracy. These approaches
are evaluated in an end-to-end manner, which are difficult
to recover the original accuracy. The layer-by-layer pruning
approaches are proposed to achieve better performance. For
instance, He et al. [21] prune each layer of a CNN model by
minimizing reconstruction error on its output feature maps.
Aghasi et al. [22] prune a trained model with removing
connections at each layer trying to keep the layer inputs and
outputs consistent with the original model.

While these pruning methods could achieve high weight
compression ratios, they overlooked the computational costs of
the inference and retrain, which are also critical for enabling
deep learning on mobile devices. Different from the existing
approaches, our MIXP leverages a novel mixture pruning
mechanism, including neuron bonds pruning and weights
pruning to significantly reduce FLOPs while preserving high
weight compression ratio and accuracy. On the contrary, tradi-
tional pruning approaches (e.g., [19]) only perform the weights
to reduce the computational cost. The major of our advantage
is that we can remove neuron bonds to effectively reduce
the convolution computations and size of weights beside the
weight pruning in CNNs. Moreover, In MIXP, the importance
of the parameters is computed by the partial derivation of the

loss function with respect to each mask of the parameter in-
stead of respect to weights. The advantage is that MIXP could
find the target parameters more precisely since the Neuron
Bond Importance is computed independently to the weight. In
addition, MIXP designs an influence factor to perform the fine-
grained analysis on the importance of parameters, resulting in
accurate pruning and reduced retraining iterations.

III. METHODOLOGY

A. Neuron Bond and Mask
Different from traditional pruning methods only removing

weights or neurons in deep learning networks, MIXP re-
moves unimportant links and weights, namely neuron bond,
to reduce FLOPs, which would facilitate the deployment of
DNN networks on mobile devices with constrained computing
resources. There are two types of neuron bonds in a CNN
model: the path connecting a filter and one entry of the
output feature map in a convolutional layer and the weight
connecting two neurons in two fully connected layers. Figure 2
demonstrates these two types of neuron bonds. Figure 2 (a)
shows the neuron bond involving the input map, filter, and
output feature map of a convolutional layer. Each element in
the output feature map corresponds to a neuron bond. Figure 2
(b) shows the neuron bond that connects every pair of neurons
between two fully connected layers.

We can see that when MIXP prunes an unimportant neuron
bond, it removes corresponding entries in the output feature
map. Since the number of FLOPs is positively correlated
to the size of the output feature map, MIXP could reduce
significantly more FLOPs than the existing work using weight
pruning. Moreover, we design a mask array denoted as M
to accurately prune the neuron bonds for each convolutional
layer. The mask is a middle layer (as shown in Figure 2)
designed to dynamically estimate the importance of each
neuron bond during the pruning process. MIXP eventually
prunes the unimportant neuron bonds based on the value of
each M (e.g., remove a neuron bond if its corresponding mask
is less than a threshold or keep it otherwise). We discuss
how to update M based on the importance of neuron bond
in Section III-E.
B. Overview of MIXP Mechanism

The basic idea of MIXP Mechanism is to analyze the impact
of each neuron bond and weight in an input CNN model in
a fine-grained way. We design two steps to prune the neuron
bonds and weights in convolutional layers and fully connected
layers, which could reduce the computational cost of the model
in both pruning and inference phases while preserving high
weight compression ratio and inference accuracy. The flow of
the MIXP mechanism is illustrated in Figure 3. First, MIXP
iteratively performs the Neuron Bond Pruning on the pre-
trained model in both convolutional and fully connected layers
to reduce the model computational cost of the input model.
A mask is employed to gradually track the importance of
every neuron bond in each pruning iteration. To capture the
importance of each neuron bond globally, we propose the
neuron bond importance in Section III-D with three levels

..

......

.

. . .

Reach the
Compresstion Ratio?

Neuron Bond Mask Updating

Neuron Bond
One-shot Pruning

Neuron Bond
Importance Measurement
!!"#$%& = {!)*+, !-%%., !&%+}
! = {!$%&, !())*, !+)&}

!" = !	X	%

Step 1: Neuron Bond Pruning Step 2: Weight Pruning

⋯ ⋯ ⋯
Fully connected layer Convolutional layer

N

Y

Reach the
Compresstion Ratio?

Weight Mask Updating

Weight One-shot
Pruning

Weight
Importance Measurement
!!"#$%& = {!)*+, !-%%., !&%+}
! = {!$%&, !())*, !+)&}

!" = !	X	%

N

Y

Fig. 3: Illustration of the MIXP mechanism.

(i.e., high, medium and low) corresponding to the impacts on
the model’s performance. To enable a fine-grained analysis on
neuron bonds’ importance, we update the associated masks
using different strategies (i.e., multiplying different influence
factors) according to their different levels of importance.
MIXP identifies the unimportant neuron bonds by examining
the masks with a threshold approach. The pruning iteration
stops when the number of unimportant neuron bonds achieves
a target compression ratio. Next, MIXP performs a one-time
pruning to remove the identified unimportant neuron bonds.

Next, MIXP iteratively performs the Weight Pruning to im-
prove the weight compression ratio. Similar to the neuron bond
importance, we propose the weight importance in Section III-D
with three levels of importance for different mask updat-
ing strategies. Eventually, MIXP identifies the unimportant
weights by examining the masks with a threshold approach,
stops the pruning iteration when the number of unimportant
weights reaches a target compression ratio and removes the
identified unimportant weights. After these two pruning steps,
MIXP iteratively performs the Retrain to recover the model
accuracy by fine-tuning the compressed mode.

C. Problem Formulation
We consider the network pruning as an optimization prob-

lem that aims to minimize the cross-entropy loss between the
prediction results and ground truth for a neural network after
pruning its redundant parameters. The optimization problem
is as follows:

min
{M,P}

L(M � P ;D) = min
{M,P}

1
n

n∑
i=1

L(M � P ; (xi, yi)),

s.t. P ∈ RJ , ‖ P ‖06 λ,M ∈ {0, 1}k,
(1)

where D = {(xi, yi)}ni=1, x and y are the input sample and
its label, L(·) denote loss functions (e.g., cross-entropy loss),
P is the target parameters (i.e., neuron bonds or weights) of
the neural network to be pruned, J is the total number of

parameters, || · ||0 is the L0 norm, λ is a target compression
ratio, and � denotes the Hadamard product. Specifically, we
need to remove a part of P based on their importance to the
neural network model, measured by a mask M which is a
vector of auxiliary indicator variables mij ∈ {0, 1} for every
parameter in P . With this, we utilize M to track parameters’
importance and decide whether to prune them or not based
on their corresponding mask values in M . The mask values
are updated after every iteration based on the importance of
the parameters. We discuss how to update the mask values in
each iteration in Section III-E.

D. Neuron Bond Importance and Weight Importance
The key to solving the above optimization problem is to

accurately identify unimportant parameters in P for pruning,
with a metric that could effectively measure the significance
of a parameter with a low computational cost. In this work,
we propose to use the difference derived by the following loss
functions to describe the impact of performance before and
after removing a parameter.

∆Lj(P;D) = L(M∗j � P ;D)− L(M ′j � P ;D), (2)

where M∗j and M ′j are the masks with and without the
jth parameter, respectively. While the concept is straightfor-
ward, Equation 2 is computationally expensive as it requires
millions of forward passes over the dataset. To solve this
problem with reasonable computing cost, we use the partial
derivation of the loss function with respect to the jth mask
M to approximate ∆Lj(P;D): ∆Lj(P;D) ≈ Φj(P;D) =
∂L(M � P ;D)/∂Mj .

Based on Φj(P;D), we define the Neuron Bond Importance
and Weight Importance sj as:

sj =
|Φj(P;D)|
m∑
k=1

Φk(P;D)
. (3)

As the higher magnitude of Φj(P;D) indicates the bigger
difference in the network loss, the parameter’s importance
sj would reflect the importance of the jth parameter to the
network [19]. We note that Equation 3 could also be applied
to weights of the network to derive the weights’ importance,
which will be used by MIXP to perform the weight pruning
in the second step.

E. Mask Update Using Influence Factor
Traditional pruning methods determine the importance of

parameters by checking the accuracy changes with and without
parameters. They use binary masks with the value of 0 indi-
cating that the corresponding parameter can be removed, and
1 indicating otherwise. Such approaches have coarse-grained
resolutions on discovering parameters’ importance and may
result in degraded performance with possible loss of essential
features by mistake. Moreover, the degraded performance
requires more iterations in the retraining step to recover the
accuracy. In contrast to the existing approaches, we analyze
the parameters’ importance in a fine-grained way by gradually
updating the mask based on the parameters’ importance. As a
result, our approach can ensure minimal accuracy drop while

TABLE I: Comparison of different pruning methods for com-
pressing LeNet-300 and LeNet-5 on the MNIST dataset.

Method Weight CR(%) FLOPs CR(%) Re-Iters ∆Acc(%)

L
eN

et
-3

00
-1

00

LC [15] 99.0 - 100K -1.5
LWC [9] 92.3 92.0 96K 0.0

GSM [16] 98.3 92.3 61K 0.0
DNS [23] 98.2 89.2 34K -0.3

FDNP [24] 99.2 - 20K 0.0
L-OBS* [25] 98.5 - 510 -0.3
AUTO [26] 98.6 91.0 27K 0.0
SNIP [19] 98.0 - 25K -0.7

MIXP 98.8 92.5 4k -0.3

L
eN

et
-5

NISP [13] 74.4 71.6 100K -0.02
GAL [27] 93.0 95.6 30K -0.2

LWC 92.0 84.0 96K 0.0
DNS 99.1 86.4 47K 0.0

L-OBS* 99.1 - 841 -0.5
FDNP 99.2 - 20K 0.0
GSM 99.2 94.1 61K 0.0

AUTO 99.4 93.0 27K 0.0
SNIP 99.0 - 25K -0.2
MIXP 99.4 96.8 4k -0.3

removing the parameters, facilitating iteration reduction in the
retraining process.

Specifically, in each pruning iteration, we derive the impor-
tance sj for each parameter using Equation 3 and obtain a list
of parameter importance SO = {s1, · · · , sj , · · · , sJ}. Next,
MIXP sorts SO by the descending order of sj’s magnitude
and obtains the sorted list SD = {s′1, · · · , s′j , · · · , s′J}. We
propose to divide the importance in SD into three groups
based on their index and design different mask updating
strategies. In implementation, we use two indices, α∗ and
β∗, to split SD into three groups: Sinc = {s′1, · · · , s′α∗},
Skeep = {s′α∗+1, · · · , s′β∗}, and Sdec = {s′β∗+1, · · · , s′J}. J
is the number of parameters P . We define α is the ratio of α∗

over J and β is the ratio of β∗ over J . Given a α and a β, we
can compute the α∗ and β∗ based on the J . (i.e., α∗ = α×J
and β∗ = β × J).

We design three mask updating strategies (i.e., increase,
decrease, and hold) based on SD to ensure that mj can
track the importance of each parameter in a fine-grained way
with low computational complexity. Specifically, we define an
influence factor θj to apply these mask updating strategies as
follows:

m′j = θj ×mj =

 θj,inc ×mj , s′j in Sins
θj,keep ×mj , s′j in Skeep
θj,dec ×mj , s′j in Sdec,

(4)

where m′j is the updated mask, θj,inc > 1, θkeep = 1, and
0 < θdec < 1. m′j is set to 1 if m′j > 1. After mask updating,
MIXP calculates the ratio of unimportant parameters based
on the masks that are less than a cut-off threshold (i.e., γc
for neuron bonds and γw for weights). If the ratio exceeds a
target compression ratio (i.e., λc for neuron bonds and λw for
weights), MIXP stops updating the masks and perform a one-
shot pruning on the unimportant parameters corresponding to
the masks that are less than the cut-off threshold. Eventually,
MIXP finishes pruning both neuron bonds and weights and
performs the retraining process to fine-tune the model accuracy
by recovering certain neuron bonds and weights. In this
work, we empirically determine the influence factors, dividing
indices, cut-off thresholds, and target compression ratios based

on input models. The values of these parameters are discussed
in Section IV.

IV. EXPERIMENTS

Benchmark Datasets. To compare the existing works fairly,
we evaluate the performance of MIXP on MNIST datasets
with LeNet-5 and LeNet-300-100, CIFAR-10 datasets with
VGG-16, MobileNet-v1/v2, and ResNet-56, and ImageNet
datasets with VGG-16, MobileNet-v1/v2, and ResNet-50, re-
spectively. We compare them in terms of FLOPs compression
rate (FLOPs CR), weight compression rate (weight CR) and
retraining iterations (Re-Iters).

MIXP Parameters. We utilize the Random Search [28]
to determine the parameters of MIXP one by one. For
each dataset, we derive a parameter setting Par =
{λc, λw, γc, γw, α, β, θj,inc, θj,dec}. The range of each param-
eter is set to λc ∈ [0.3, 0.998], λw ∈ [0.3, 0.998], γc ∈
[0.2, 0.7], γw ∈ [0.2, 0.7], α ∈ [0.01, 0.3], β ∈ [0.1, 0.7],
θj,inc ∈ [1.05, 1.2], θj,dec ∈ [0.35, 0.95].

A. LeNet on MNIST

We first conduct experiments with LeNet-300-100 and
LeNet-5-Caffe on the MNIST dataset. The parameter
setting for LeNet-5/LeNet-300 is ParLeNet MNIST =
{0.9, 0.993, 0.3, 0.3, 0.01, 0.10, 1.1, 0.90}. We train both mod-
els with SGD optimization method with mini-batch size 256,
weight decay 0.0005 and momentum 0.9. For the LeNet-300-
100, we do not use λc and γc). Training is started by a learning
rate 0.1, decayed by 0.9 at every 5 epochs, and stopped after
30 epochs.

We compare our MIXP with state-of-the-art pruning meth-
ods in Table I. We can observe that MIXP overall outperforms
the existing methods on LeNet-5 model. In particular, MIXP
achieves about 23% higher weight CR compared to NISP and
about 10% higher weight CR in comparison with GAL with no
accuracy change. In addition, MIXP can significantly reduce
FLOPs and achieve the highest FLOPs CR of 96.8%. It is
also obvious that MIXP has a low Re-Iters of 4k with a
comparably high weight CR of 99.4% and ∆Acc of −0.4.
We note that although L-OBS* exhibits the fewest Re-Iters
in the table, it suffers from much more pruning iterations
than MIXP (i.e., O(J3) (L-OBS*) v.s. O(J2) (MIXP)). The
results of LeNet-300-100 show that MIXP can achieve high
weight CR of 98.8% without loss of accuracy using only
4k retraining iterations. The experimental results demonstrate
our MIXP approach can be applied to the fully connected
neural network with high weight CR. We note that the FLOPs
CR is similar to other methods since we do not prune the
neuron bonds on LeNet-300-100. Compared to the SNIP,
MIPX achieves the higher Weight CR on both LeNet-5 and
LeNet-300 models with obvious fewer retain iterations. The
results clearly demonstrate that MIXP could significantly
reduce FLOPs and retraining iterations while maintaining a
high weight compression rate and model accuracy compared
to existing pruning methods on small and simple datasets.

TABLE II: Comparison of different pruning methods for
compressing VGG-16, MobileNet-V1/V2 and ResNet-56 on
the CIFAR-10 dataset.

Method Weight CR(%) FLOPs CR(%) Re-Iters ∆Acc(%)

V
G

G
-1

6

VCNN [20] 73.3 39.1 70K -0.1
GAL 77.6 39.6 140K -0.2

DCP [12] 47.9 50.0 300K -0.17
ASP [29] 92.7 67.0 140K -0.6
PFS [30] 48.3 50.0 300K +0.19

DINP [31] 75.0 - 120K -0.8
SM [32] 90.0 88.1 300K -6.7

SNIP 95.0 - 250K -0.45
MIXP 91.8 92.8 45K -0.42

M
ob

ile
N

et
-V

1 1× baseline 0.0 0.0 150K 0.0
0.75×

baseline 43.0 43.5 150K -0.7

0.50×
baseline 74.9 74.7 150K -1.2

0.25×
baseline 93.8 93.6 150K -5.8

DCP 58.0 73.8 300K +0.41
MIXP 89.2 90.2 45K +0.3

M
ob

ile
N

et
-V

2 1× baseline 0.0 0.0 150K 0.0
0.75×

baseline 41.0 45.1 150K -0.9

0.50×
baseline 78.9 73.1 150K -1.8

DCP 56.0 57 300K +0.22
MIXP 68.6 78.9 50K +0.15

R
es

N
et

-5
6

GAL 65.9 60.2 350K -1.23
NISP 42.0 35.5 300K -6.99

VCNN 20.4 20.3 280K -0.8
DCP 66.4 - 320K -0.96

AMC [33] 54.5 50.0 300K -2.8
MIXP 67.1 75.8 60K -0.9

B. VGG-16, MobileNet and ResNet on CIFAR-10
We test four popular models, VGG-16, MobileNet-V1/V2

and ResNet-56 on the CIFAR-10 dataset to demonstrate
the effectiveness of MIXP with more complex dataset.
The parameter setting for VGG-16 is ParV GG CIFAR =
{0.8, 0.90, 0.35, 0.35, 0.01, 0.15, 1.1, 0.6}. The parameter
setting for MobileNet-V1/V2 is ParMobi CIFAR =
{0.75, 0.90, 0.35, 0.35, 0.01, 0.1, 1.1, 0.6}. The parameter
setting for ResNet-56 is ParRes CIFAR =
{0.6, 0.70, 0.4, 0.3, 0.01, 0.1, 1.1, 0.6}. We train these models
with SGD optimization method with mini-batch size 64,
weight decay 0.0005 and momentum 0.9. Training is started
by a learning rate 0.1, decayed by 0.9 at every 30 epochs,
and stopped after 150 epochs.

Table II shows the comparison results between MIXP and
state-of-the-art pruning methods on these four models. We can
observe that MIXP has significantly higher FLOPs CR than
others on VGG-16. Particularly, compared to existing pruning
methods, MIXP achieves the highest FLOPs CR of 92.8%,
which is 5% more than the second-highest achieved by SM,
but with 7 times fewer retrain iterations. MIXP achieves the
comparative weight CR with SNIP but with 6 times fewer
retrain iterations. The results from MobileNet also show that
MIXP effectively improves the weight CR and FLOPs CR
by more than 20%. We compare the accuracy performance
of baseline models (width multipliers 1.0, 0.75, 0.5, and 0.25)
with the DCP (width multipliers 1.0) in Table II on the CIFAR-
10 dataset. Our MIXP has 20% and 30% higher weight CR and
FLOPs CR than the 0.5 baseline MobileNet-V1, respectively.

TABLE III: Comparison of different filter pruning and weight
methods for compressing VGG-16, MobileNet-V1/V2 and
ResNet-50 on the ImageNet dataset.

Method Weight CR(%) FLOPs CR(%) Re-Iters ∆Acc(%)

V
G

G
-1

6

DDS 76.8 39.1 1.5M -2.0
Thinet [34] 66.7 36.3 1.2M -0.4
RBP [35] - 83 1.2M -1.8

ASP 86.2 78.2 1.5M -0.6
AMC 80.0 50.0 1.5M -1.4

DNS [36] 92.5 77.6 1.07M -28.6
DNP [37] - 81.3 1.2M -1.4

LDRF [38] - 81.3 1.2M -1.4
MIXP 88.3 89 400K -1.2

M
ob

ile
N

et
-V

1 1× baseline 0.0 0.0 1.2M 0.0
0.75×

baseline 16.0 42.8 1.2M -3.8

0.50×
baseline 69.2 73.6 1.2M -8.1

AMC 42.8 50.1 1.2M -0.2
PFC 52.5 50.1 1.2M 0.9

MIXP 69.2 65.2 450K -0.3

M
ob

ile
N

et
-V

2 1× baseline 0.0 0.0 1.2M 0.0
0.75×

baseline 25.0 30.3 1.2M -5.4

AMC 34.2 50.0 1.2M -0.2
PFC 25.7 30.0 1.2M -2.8

MIXP 30.0 56.3 480K -0.2

R
es

N
et

-5
0

VCNN 37.3 36.7 1.2M -0.1
NISP 46.2 41.8 1.3M -1.54

GDF [39] - 51.3 1.2M -1.9
GAL 43.3 50.2 1.3M 0.6
DDS 53.5 45.3 1.2M -3.19
PFC 52.3 50.3 1.04M -1.2

DN [14] 46.2 51.2 1.5M -0.1
MIXP 52.1 62.8 500K -0.4

Similarly, it achieves 23% and 22% higher weight CR and
FLOPs CR than the 0.75 baseline MobileNet-V2, respectively.
MIXP also outperforms DCP in weight and FLOPs CR. Our
MIXP has 53% and 23% higher weight CR and FLOPs CR
than the DCP on MobileNet-V2 and 21% and 36 % higher
weight CR and FLOPs CR than the DCP on MobileNet-
V2, respectively. Note that MIXP improves the accuracy of
MobileNet-V1 and -V2 by 0.3% and 0.15 as DCP does. The
results of ResNet-56 show that MIXP achieves the comparative
weight CR and higher Flops CR in comparison with other
pruning approaches with fewer retrain iterations. Specifically,
MIXP achieves 10% FLOPs CR than the second-highest DCP
with 6% fewer retrain iterations. We note that though the
weight CR of MIXP is similar to DCP, MIXP still achieves
higher FLOPS reduction. The results demonstrate that MIXP
effectively reduces the computational cost and weight size for
complex datasets on deeper, light and dense models.

C. VGG-16, MobileNet and ResNet on ImageNet
To evaluate the effectiveness of our MIXP approach on

large-scale datasets, we further conduct experiments to prune
VGG-16, MobileNet V1/V2 and ResNet-50 on the ImageNet
ILSVRC-12 dataset. The parameter setting for VGG-16 is
ParV GG Img = {0.5, 0.9, 0.35, 0.35, 0.05, 0.3, 1.1, 0.65}.
The parameter setting for MobileNet V1 is
ParMobi1 Img = {0.5, 0.7, 0.35, 0.33, 0.1, 0.3, 1.1, 0.75}.
The parameter setting for MobileNet V2 is
ParMobi2 Img = {0.5, 0.4, 0.35, 0.33, 0.1, 0.3, 1.1, 0.75}.
The parameter setting for ResNet-50 is ParRes Img =
{0.5, 0.5, 0.35, 0.32, 0.05, 0.4, 1.1, 0.3}. We train both models

TABLE IV: Performance with different pruning components
in MIXP on LeNet-5.

Neuron bond CR(%) Weight CR(%) FLOPs CR(%)
Neuron bond pruning only 90 86 65
Weight pruning only - 98 92

Both 90 99 97

with SGD optimization method with mini-batch size 64,
weight decay 0.0005 and momentum 0.9. Training is started
by a learning rate 0.01, decayed by 0.9 at every 30 epochs,
and stopped after 300 epochs.

We compare our method with state-of-the-art pruning meth-
ods in Table III. We observe that MIXP outperforms the
existing methods in FLOPs CR on four models with fewer
retrain iterations. Compared to pruning methods on VGG-16,
though MIXP achieves lower weight CR than DNS, it achieves
8% higher FLOPs CR than it. MIXP also achieves fewer retain
iterations than other methods. The results also show that MIXP
has 15% and 24% higher weight CR and FLOPs CR than the
0.5 baseline MobileNet-V1, respectively. Similarly, it achieves
15% and 19% higher weight CR and FLOPs CR than the 0.75
baseline MobileNet-V2, respectively. MIXP also outperforms
AMC and PFC in weight and FLOPs compression ratio. Our
MIXP has 22% and 14% higher weight compression ratio
and FLOPs compression ratio than the PFC on MobileNet-
V1 and 21% and 18% higher weight and FLOPs compression
ratio than the PFC on MobileNet-V2. The results of ResNet-
50 shows that MIXP achieves comparable weight CR and
higher Flops CR in comparison with other pruning approaches
with fewer retrain iterations. Specifically, MIXP achieves 9%
FLOPs CR than the second-highest G-SGD with 3% fewer
retrain iterations. We note that the MIXP has a similar weight
CR with PFC but achieves 10% higher FLOPs CR and 3%
fewer retrain iterations. The results on ImageNet show that
the effectiveness of our MIXP approach for complex, light
and dense modes on large-scale datasets.

D. Ablation Evaluation
Performance with Different Pruning Components.

To gain insight on the effects of different pruning
components on the overall performance, we set
the MIXP parameter set ParLeNet MNIST =
{0.9, 0.993, 0.3, 0.3, 0.005, 0.85, 1.1, 0.90} and prune the
Lenet-5 on the MNIST using the partial pruning components
in MIXP (neuron bond pruning and weight pruning),
respectively. We find that using the neuron bond pruning
achieves 86% weight CR and 65% FLOPs CR, while using
the weight pruning achieves 98% weight CR and 92% FLOPs
CR. In contrast, the full MIXP achieves 99% weight CR and
97% FLOPs CR, indicating that both neuron bond and weight
pruning play a significant role in improving the performance
of MIXP. Specifically, pruning can achieve an additional
10% than pure weight pruning. The results demonstrate the
effectiveness of neuron bond pruning that can further reduce
the FLOPs.

Performance with Different Parameters. We also study
the impact of parameters by experimenting with Lenet-5 on
MNIST using different settings in Par. Figure 4 shows that

0.6 0.7 0.8 0.9
Decrease Rate dec

(a) w= 90%

0

1

2

3

4

A
cc

ur
ac

y
D

ro
p

(%
)

c= 80%

c= 85%

c= 90%

c= 95%

0.6 0.7 0.8 0.9
Decrease Rate dec

(b) c= 90%

0

1

2

3

4

A
cc

ur
ac

y
D

ro
p

(%
)

w= 92%

w= 93%

w= 94%

w= 95%

0.6 0.7 0.8 0.9
Decrease Rate dec

(c) c= 90% and w= 90%

0

1

2

3

4

A
cc

ur
ac

y
D

ro
p

(%
)

 = 0.8
 = 0.85
 = 0.9

Fig. 4: Performance with different λc, λw, β and θdec in MIXP
on LeNet-5.
when θdec = 0.9, MIXP generally achieves the minimum
accuracy drop. Figure 4 (a) and (b) also show that given the
minimum accuracy drop, there is a trade-off between λc and
λw (i.e., λc cannot exceed 90% when λw is 90%, and λw
cannot exceed 93% when λc is 90%.) We observe that for
the more complex datasets, we need to reduce the λc and
λw to achieve higher performance. That because with the
increase of complexity for the models and datasets, we could
not prune much more neuron bond as it in the MNIST dataset.
In addition, we observe that when both λc and λw are 90%,
MIXP archives the best performance when β = 0.85. We also
observe that the γc and γw have a little bit different values for
different models from 0.25 to 0.35. The α, β, θj,inc and θj,dec
have the similar values for different models. The accuracy loss
would significantly increase with these values increasing. That
is because MIXP prunes the unimportant parameters from the
fine-grained manner to the coarse manner. When these values
decrease, the retrain iterations would significantly increase
because of the significant increase of iterations of unimportant
parameters identification. The results suggest that we can focus
on adjusting the parameters α, β, θj,inc and θj,dec since they
have higher correlations with the performance of MIXP than
other parameters.

E. Discussion
The results on MNIST, CIFAR-10 and ImageNet datasets

clearly demonstrate the effectiveness of our MIXP mechanism
for different datasets and network structures. MIXP performs
better than most of pruning methods, because we utilize the
neuron bond importance and influence factor to gradually up-
date masks of neuron bond and weights, which enables a fine-
grained analysis of weights’ impacts on the model and accurate
pruning. Such high-accurate pruning also leads to significantly
fewer retraining iterations for recovering important parameters.

We are aware that the masks that our method uses would
introduce a small number of FLOPs, which equal to the size
of the masks. According to the definition of FLOPs [40],
the additional FLOPs introduced by our system are negligible
compared to the significant amount of FLOPs reduced by the
neuron bond pruning. For example, our method can reduce
8, 874, 368 FLOPs for a convolutional layer 3-4 of VGG-16
while only introducing 16, 384 additional FLOPs.

We also notice that the rules of handling the weight impor-
tance in MIXP may vary with different networks and datasets.
A thorough study of such impacts of networks and datasets
could help accelerate the convergence and reduce the accuracy
loss.

V. CONCLUSION

We develop a novel mixture pruning mechanism, MIXP,
focusing on reducing the computational cost of CNNs while
maintaining a high weight compression ratio and model ac-
curacy. By employing a novel neuron bond pruning, MIXP
removes unimportant neuron bonds in convolutional layers and
vastly reduces FLOPs of the pruned network. An influence
factor is designed to enable a fine-grained analysis of net-
work parameters’ impacts and accurate pruning, facilitating
significant reductions of training iterations. Comprehensive
experiments on three benchmark datasets demonstrate the
effectiveness of the proposed mixture approach for model
compression.

ACKNOWLEDGMENT

This work was partially supported by the NSF Grants
CCF1909963, CCF2028876, CCF2000480, CCF2028858,
CCF2028873, CNS1954959, CCF2028894, CNS1815908,
CNS1717356 and ARO Grants W911NF-18-1-0221,W911NF-
17-S-0002 and W911NF-20-S-0009.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[2] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single im-
age super-resolution using a generative adversarial network,” in CVPR,
2017.

[3] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically
designing cnn architectures using the genetic algorithm for image
classification,” IEEE Transactions on Cybernetics, 2020.

[4] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality
object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 6154–6162.

[5] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks
for image classification with convolutional neural networks,” in CVPR,
2019.

[6] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “Ccnet:
Criss-cross attention for semantic segmentation,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 603–612.

[7] J. Fu, J. Liu, Y. Wang, J. Zhou, C. Wang, and H. Lu, “Stacked
deconvolutional network for semantic segmentation,” IEEE Transactions
on Image Processing, 2019.

[8] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” ieee Computational
intelligenCe magazine, vol. 13, no. 3, pp. 55–75, 2018.

[9] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[10] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074–2082.

[11] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in ECCV, 2018.

[12] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang,
and J. Zhu, “Discrimination-aware channel pruning for deep neural
networks,” in Advances in Neural Information Processing Systems, 2018.

[13] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in CVPR, 2018.

[14] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accelerating
convolutional networks via global & dynamic filter pruning.” in IJCAI,
2018.

[15] M. A. Carreira-Perpinán and Y. Idelbayev, ““learning-compression”
algorithms for neural net pruning,” in CVPR, 2018.

[16] X. Ding, X. Zhou, Y. Guo, J. Han, J. Liu et al., “Global sparse
momentum sgd for pruning very deep neural networks,” in Advances
in Neural Information Processing Systems, 2019, pp. 6382–6394.

[17] A. Morcos, H. Yu, M. Paganini, and Y. Tian, “One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers,”
in Advances in Neural Information Processing Systems, 2019, pp. 4932–
4942.

[18] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang,
“Admm-nn: An algorithm-hardware co-design framework of dnns using
alternating direction methods of multipliers,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 925–938.

[19] N. Lee, T. Ajanthan, and P. Torr, “SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIVITY,” in Interna-
tional Conference on Learning Representations, 2019.

[20] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational
convolutional neural network pruning,” in CVPR, 2019.

[21] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in ICCV, 2017.

[22] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex
pruning of deep neural networks with performance guarantee,” in
Advances in Neural Information Processing Systems, 2017, pp. 3177–
3186.

[23] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances in neural information processing systems, 2016, pp.
1379–1387.

[24] Z. Liu, J. Xu, X. Peng, and R. Xiong, “Frequency-domain dynamic
pruning for convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2018, pp. 1043–1053.

[25] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks
via layer-wise optimal brain surgeon,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 4857–4867.

[26] X. Xiao, Z. Wang, and S. Rajasekaran, “Autoprune: Automatic network
pruning by regularizing auxiliary parameters,” in Advances in Neural
Information Processing Systems, 2019, pp. 13 681–13 691.

[27] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and
D. Doermann, “Towards optimal structured cnn pruning via generative
adversarial learning,” in CVPR, 2019.

[28] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” The Journal of Machine Learning Research, vol. 13, no. 1,
pp. 281–305, 2012.

[29] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “Autocompress: An
automatic dnn structured pruning framework for ultra-high compression
rates.” in AAAI, 2020, pp. 4876–4883.

[30] Y. Wang, X. Zhang, L. Xie, J. Zhou, H. Su, B. Zhang, and X. Hu,
“Pruning from scratch.” in AAAI, 2020, pp. 12 273–12 280.

[31] B. Mussay, M. Osadchy, V. Braverman, S. Zhou, and D. Feldman, “Data-
independent neural pruning via coresets,” in International Conference on
Learning Representations, 2019.

[32] T. Dettmers and L. Zettlemoyer, “Sparse networks from scratch:
Faster training without losing performance,” 2020. [Online]. Available:
https://openreview.net/forum?id=ByeSYa4KPS

[33] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018.

[34] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 5058–5066.

[35] Y. Zhou, Y. Zhang, Y. Wang, and Q. Tian, “Accelerate cnn via recursive
bayesian pruning,” in ICCV, 2019.

[36] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep
neural networks,” in ECCV, 2018.

[37] Y. Wang, X. Zhang, X. Hu, B. Zhang, and H. Su, “Dynamic network
pruning with interpretable layerwise channel selection,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020.

[38] W. Chen, Y. Zhang, D. Xie, and S. Pu, “A layer decomposition-
recomposition framework for neuron pruning towards accurate
lightweight networks,” in AAAI, 2019.

[39] Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, “Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, 2019, pp. 2133–
2144.

[40] R. Hunger, Floating point operations in matrix-vector calculus. Munich
University of Technology, Inst. for Circuit Theory and Signal . . . , 2005.

