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Abstract—In traditional physical layer security paradigm,
no leakage of confidential information to the eavesdropper is
tolerated regardless of whether the message is encrypted or not.
This will result in an achievable secure transmission rate that
is significantly smaller than the channel capacity. This article
presents a novel approach that allows treatment of physical layer
security in conjunction with encryption to achieve a flexible
trade-off of system resources. We propose a novel framework
to model the interplay between secured transmission rate and
error probability in error prone ciphertexts. To this end, we use
the concept of rate-equivocation region to establish such a
connection. To clearly describe the application of our framework,
we consider the case of 4-node Gaussian wiretap channel. For
such a channel, we characterize the rate-equivocation region in
different scenarios, and then use it to study the achievable rate
of encryption-aware physical layer security. The obtained results
show that, for a fixed transmission power, the prior knowledge
of encryption can significantly increase the secured transmission
rate. In addition, encryption-aware physical layer security can
achieve a target transmission rate at a reduced transmission
power compared to the conventional encryption-agnostic physical
layer security.

Index  Terms—Physical layer  security, encryption,
rate-equivocation region, error prone -ciphertext, Gaussian
wiretap channels, encryption-aware physical layer security,
encryption-agnostic physical layer security.

I. INTRODUCTION

N CONVENTIONAL communication systems, security is

achieved by the means of cryptography, where information
source encrypts the plain message using an encryption key to
generate a cipher message that can only be decrypted at the
intended receiver [1]. Each cryptography scheme can guaran-
tee the security of the cipher message against an eavesdropper
with a certain computational power. In fact, an eavesdropper
with sufficient computational power can break the cipher
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to access the plain message. Physical layer (PHY) security
can be considered as a strategy to guarantee secrecy in the
presence of a computationally strong eavesdropper. The main
objective of PHY security is to exploit the random nature of
the communication channels to ensure that an eavesdropper
cannot successfully decipher the confidential message, while,
at the same time, guaranteeing a reliable transmission between
the source and the legitimate destination [2].

PHY security schemes aim at preventing any leakage to the
eavesdropper assuming plaintext transmission; i.e. no encryp-
tion. Whereas encryption schemes are designed to be robust
against an attacker who has full access to error-free cipher-
text [3]-[5]. However, both assumptions of plaintext transmis-
sion and error-free ciphertext are not practically sound. In fact,
the presence of encryption can relax the design of PHY secu-
rity schemes as some information leakage to the eavesdropper
would be tolerable. On the other hand, the use of PHY security
can relax the encryption design as it can guarantee errors in
the ciphertext at the eavesdropper. Therefore, joint design of
encryption and PHY security schemes can provide a flexible
tool to tradeoff critical system resources, such as transmission
and computational powers, and, at the same time, can arguably
enhance the overall security of the system. Toward a more
practical cryptographic design, the authors in [6]—-[13] consider
the concept of noisy ciphertexts and show its effectiveness
from an application layer perspective. References [6]-[8] use
tandem channel coding and cryptography to show that linear
feedback shift register (LFSR) based cryptography is less
susceptible to fast correlation attacks, when the ciphertexts
are considered to be error-prone. In [9], the authors propose
a practical physical layer coding scheme that fails to offer
security in certain scenarios. Therefore, they suggest coupling
the encoding with the cryptography to further enhance security.
A new metric to measure the added complexity of attacks
needed to break the joint coding and cryptography schemes
over erasure channels is introduced in [10] and [11]. In the
same context, even a simple substitution cipher [1] can enjoy
an increased robustness when erasure-prone ciphertext is con-
sidered [12], and can also stand against the hidden Markov
model (HMM) based attack developed in [3], when error-prone
ciphertext is considered [13].

Encryption algorithms are typically designed to satisfy the
generalized avalanche property [14]. This property indicates
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that by slightly changing the ciphertext, the decrypted plaintext
will change drastically. The avalanche property makes the
ciphertext sensitive to the errors that occur at the physical
layer. Stronger encryption will utilize its error sensitivity to
make a successful cryptanalysis at the eavesdropper computa-
tionally burdensome. However, such an encryption will suffer
from a high error rate, and hence requires more powerful
channel coding to effectively detect and correct transmission
errors [15]-[18]. In an effort to utilize this security-throughput
tradeoff, [19] proposes an approach using encryption aware-
ness to improve the security performance at the physical layer.

In this article, we propose a novel framework to study the

joint effect of PHY security and encryption. Such a framework
relies on the concept of rate-equivocation regions, and can
be used to study the tradeoff between encryption strength,
allowed leakage and transmission rate. As an application of our
proposed framework, we consider a 4-node Gaussian wiretap
channel. We will show that, by considering encryption, it is
possible to achieve transmission rates beyond the secrecy
capacity that is achievable by conventional PHY security.
In the literature on PHY security, the transmission rate of a
secured system is enhanced by introducing additional nodes
to perform relaying [20]-[25], jamming [26]—[31], or both in
a hybrid manner [32]-[34]. Jamming can also be used by
the adversary as an attack mechanism in the physical layer
to undermine the legitimate source-destination link [35], [36].
These papers [20]-[30], [32]-[36], however, consider the
transmission of plaintext without encryption. We show that
it is possible to significantly increase the secured trans-
mission rate by factoring in the impact of the encryption.
Toward our goal, we exploit the fact that cryptography under-
mines the ability of the eavesdropper to access the plaintext.
We can then deliberately relax the constraint on PHY security
without compromising the security of the system. As we
demonstrate in the subsequent sections, even under a basic
4-node Gaussian wiretap channel, it is challenging to address
the problem of encryption-aware secrecy rate maximization.
Due to an additional constraint from encryption, an explicit
characterization of the rate-equivocation region is needed,
which will pose difficulties. It is because except for a few
simple wiretap channels [2], [37], [38], analytical deriva-
tion of the rate-equivocation region remains a challenging
task.

The significance and the main contributions of this article

can be summarized as follows:

« We propose a novel framework relying upon the
rate-equivocation region to study the joint impact of PHY
security and encryption by making a connection between
encryption strength and the tolerable amount of leakage to
the eavesdropper at the physical layer. To the best of our
knowledge, there does not exist any result in the literature
that is related to our proposed joint security framework.

« We apply the proposed framework to a 4-node Gaussian
wiretap channel, and derive the rate-equivocation regions
in different scenarios. We then use our approach to
maximize the secured transmission rate of the channel
by taking into account the encryption strength. Compared
to traditional PHY security, numerical results show that
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the secrecy rate can be significantly increased by taking
into account the joint effect of PHY security and encryp-
tion, and beyond secrecy capacity performances can be
achieved.

« We also formulate and solve a power minimization
problem to minimize the transmitted power for a given
encryption strength in the wiretap channel without com-
promising the secrecy. Equivalently, we can use signifi-
cantly less transmission power while still achieving the
same secrecy performance as in the unencrypted system.

The rest of the paper is organized as follows: In Section II,
we present some preliminaries on encryption-aware PHY
security. We briefly discuss the concept of rate-equivocation
region, and introduce the problem of encryption-aware rate
maximization with noisy ciphertext. In Section III, we consider
the case study of a 4-node wiretap channel and formulate
and solve the encryption-aware rate maximization for such a
system. We derive the rate-equivocation regions for different
channel conditions, and study the conditions where secured
transmission rates beyond secrecy capacity is achievable.
We also formulate and solve a rate maximization problem to
optimally extract the advantage of encryption. In Section IV,
we look at the problem from a different perspective, and
formulate an optimization problem to minimize the transmitted
power to achieve a target secured transmission rate at the
presence of encryption. Section V presents some numerical
results to illustrate the advantages of the proposed frame-
work in enhancing the security in wiretap channels. Finally,
Section VI concludes the paper.

II. ENCRYPTION-AWARE PHYSICAL LAYER SECURITY:
PRELIMINARIES AND FUNDAMENTAL LIMITS

In this section, we first present the two fundamental con-
cepts in PHY security: the traditional rate equivocation region
and the corresponding secrecy capacity. Then, by further
considering the effect of error-prone ciphertexts, we show
that one can benefit from the concept of rate-equivocation
region to expand the region of secure communication. As a
result, a key secrecy rate optimization problem is established
to demonstrate the feasibility of going beyond the secrecy
capacity with encryption.

A. PHY Security: Rate-Equivocation Region and Secrecy
Capacity

Consider a wiretap channel as shown in Fig. 1 that includes
a transmitter (Alice) and a receiver (Bob) in the presence of
a passive eavesdropper (Eve). Alice attempts to send plain
message M, to Bob by encrypting it with a shared key K
to the cipher message M, before encoding it to a codeword
X™ using a (2"%,n) code C, and the encoding function & :
M. xR — X", where R is a source of local randomness [39].
At the receiving side, Bob maps the channel observation Y™
to a message M, € M using a decoding function & : J —
MuU?. Here, M denotes the set of 2"* codewords. For a given
code Cy, the average error probability, denoted as P.(C,),
can be calculated as the probability that M, is different from
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Fig. 1. A simple 3-node wiretap system model.
M, [39], which is:
n’ﬁ A
P.(C.) 2 P [Mc £ M, |cn} . (1

Furthermore, the equivocation E(C,) and the leakage infor-
mation L(C,,) are, respectively, given as

E(Cn) £ H(M,.|2",Cy), @)

and

L(Cn) £ 1 (M; 2™ (Cn). 3)

Here, H(-) is the entropy of a random variable (RV), while
I(-;-) denotes the mutual information (MI) between two RVs.
It should be noted that, in this work, we consider the equiv-
ocation and the leakage information in terms of ciphertext.
By doing so, we can make a direct connection between
our proposed joint security framework and traditional PHY
security concepts. Using this approach, we are able to exploit
the equivocation-rate region of the ciphertext to quantify the
amount of leakage that can be protected by encryption. It is
also of great interest to consider the rate-equivocation of the
plaintext. This consideration, however, requires an explicit
derivation of the plaintext-based equivocation, which depends
on a specific cipher being used and the nature of encryption
mechanisms. In addition, the secrecy rate of the plaintext also
depends on two different equivocating factors: encryption and
wiretap coding. Such an important study is, therefore, beyond
the scope of this work, and it deserves further investigations.
Given that, an achievable rate-equivocation pair (R, R.) is
defined as follows [39].

Definition 1: A strong rate-equivocation pair (R, R.) is said
to be achievable if there exists a sequence of (2", n) codes
{Cn},>1- such that

lim P.(Cn) =0,
and lim (E(Cp)— nRe) > 0.

(C))
(&)
Note that inherently R, < R. Then, the secrecy capacity,

which is denoted as Rg, can be obtained by solving the
following optimization problem

Rs 2 sup {R :(R,R) € ';QWTC} . (6)
R

Here, R"WTC is referred to as the strong rate-equivocation

region, which is the closure of all achievable pairs of (R, R.).

The secrecy capacity Rg is always less than the capacity of the
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main channel between Alice and Bob, Rp. From a physical
layer perspective, security is guaranteed even when Eve has
full access to the shared key K as long as the transmission
rate is less than Rg. On the other hand, transmitting beyond
Rg leads to a non-zero leakage, and hence, jeopardizes the
secrecy. In many cases, it turns out that Rg can be found
without the need of obtaining the detailed characteristics of
the rate-equivocation region [20]-[29]. For example, for many
Gaussian-based wiretap channels, the secrecy capacity can
be obtained by exploiting the characteristics of the physical
channels, such as power and fading, to maximize the dif-
ference between the two rates of Alice-Bob and Alice-Eve
channels [38].

Assuming achievable rate-equivocation pair of (R, R.), for
the leakage information we have

L(Cp) = H (M. |Cn) — E(Cp)

=nR — E(C,) < n(R— R.). @

Tolerating leakage, by transmitting with a rate higher than R.,
increases Eve’s chance for a correct detection. In this case,
encryption can become useful to secure the part of information
that is leaked. Using Fano’s inequality [40], the message
error probability at the eavesdropper satisfies the following
condition

H (M. |Z™Cy) — h(Pgye) _ nRe — h(Prye)

Pgye = . (8
e 2 T logy@r 1) © log@R 1)

For a sufficiently large n, we have
Prye > ﬁe} n> 1 9

Not surprisingly, when the rate R is very close to R,
the message error probability approaches one indicating that
eavesdropper always decodes the wrong message. Equation (9)
also indicates that the eavesdropper at best can detect the
message with probability R_RRQ, which equals to the normal-
ized leakage information. Note that although the use of the
Fano’s inequality may not be suitable for all system models,
it provides a secure region that is generic, reasonably tight in
many scenarios [41]-[43], simple enough to be specified in the
two-dimensional rate-equivocation region, and also intuitively
justified.

B. Encryption-Aware Rate Maximization With Noisy
Ciphertext

The above results on the secrecy capacity Rg still hold
true with encryption under the extreme assumption that Eve
can completely recover the entire ciphertext without error.
However, with error-prone ciphertexts, it is more difficult for
Eve to intercept the ciphertext. As we have discussed earlier,
the effect of error-prone ciphertexts imposed by physical
layer at Eve has been studied in [6]-[13] to demonstrate that
Eve needs to be computationally stronger or equipped with
more sophisticated attacks in order to successfully break a
ciphertext when it is noisy. In addition, it was demonstrated
that the effective error rate at Eve is an important factor that
determines how much computation is needed by Eve for a
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successful attack. As an alternative, we shall demonstrate,
in the following, the mutual impact between physical layer
and encryption via a connection between noisy ciphertext and
the transmission rates for beyond-capacity performances.

1) Error Threshold Pipher and Encryption Strength A:
Because there is a certain computational strength possessed by
Eve, noisy ciphertext makes it more difficult for Eve to break
the cipher. As a result, there is a minimum level of ciphertext
error that causes Eve to fail in breaking the cipher [6].
We define this minimum error probability threshold as Peipper.
For any cryptographic algorithm and a computationally limited
Eve, P.ipher can be equivalently understood as the minimum
error probability needed at Eve to prevent the eavesdropper
from extracting the confidential message. In such a paradigm,
secrecy is achieved as long as the probability of error at Eve
is greater than or equal t0 FPripher; i€., Peve = Pripher-
P.ipher is therefore an indicating factor to reflect how strong
the encryption is under a certain Eve’s computational strength.
For example, if Eve has an unlimited computational power,
the maximum message error probability, i.e., Peipher = 1,
is required, and relying on encryption does not help (weak
encryption). On the other hand, if Eve is incapable of perform-
ing any sort of computation, no message error is required; i.e.
P.ipher = 0, and we can completely rely on encryption (strong
encryption). Given Ppipher, We can now define an encryption
factor A that can be used to reflect the strength of encryption.
It is clear that a stronger encryption dictates a larger value
for A, or equivalently, a smaller threshold Ppipper. From this
inverse relationship, A can be simply defined as

1

A= .
Pcipher

(10)

It should be noted that the minimum value of A is 1, which
corresponds to the case of no encryption. On the other hand,
a very strong or unbreakable encryption corresponds to a
large A.

To demonstrate the meaningfulness of the above definition
of encryption strength, let us consider a simple example of
LFSR-based stream ciphers. Authors in [6] investigated the
impact of an error-prone LFSR-based stream ciphertext on
fast-correlation attacks [44]. In particular, they showed that the
number of iterations needed to break the cipher is governed
by how the LFSR output is correlated with the generated key
sequence. As a result, for a fixed correlation probability, they
derived the relationship between the number of required trials
and the bit error rate at the eavesdopper (p?). On the other
hand, to consider a robust encryption, we assume the cipher
satisfies the strict avalanche criterion [45], which indicates that
the bit error rate (pl) is almost half of the message error rate
Pgye. Based on this and the findings in [6], one can find the
minimum required error probability Ppipher (or, equivalently,
encryption strength A) for LESR-based stream ciphertext as a
function of the number of trials available at Eve to perform the
fast-correlation attack. Fig. 2 shows the relationship between
the number of iterations required to break the cipher for
different Pgye. It can be observed from the figure that for
error-free cipher, the attacker needs about 1.8 x 10% iterations
to break the cipher. With the noisy ciphertext, Pg.. is bounded
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Number of Required Iterations (A)
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Eavesdropper Message Error Probability (pE“]

Fig. 2. The number of iterations required to break the cipher for different
eavesdropper message error probabilities Peipper--

away from zero (noisier ciphertext), and significantly more
number of iterations are needed to have a successful attack.
In practice, Eve has a limited computational capability that
constrains her to perform only certain number of iterations.
This amount of trials fails to break the cipher when Pgy.
becomes relatively larger. As an illustrative example, let us
assume a scenario where the eavesdropper can only afford
a maximum of A = 10° iterations, which corresponds to
Pgye = 0.44. If more errors happen, the adversary cannot
break the cipher, and perfect secrecy is still ensured; i.e.
P.ipher = 0.44.

2) Encryption-Aware Rate Maximization: We can now use
the defined encryption strength A to establish a connection
between PHY security and encryption. From (9), and setting
the ratio % as an upper bound for Fipner Will ensure that
P.oc > Pripher. This means that in this case the system is
secure. Therefore, from (10), we have

R, 1

RN (1)
The rate maximization problem at the physical layer can now
be modified by taking into account an additional constraint
imposed by the encryption; i.e., R < AR.. Of course, stronger
encryption means a smaller Peipper, and consequently, a
larger A. This new security condition applied at the physical
layer can therefore lead to a larger security region. The new
encryption-aware secrecy rate is the solution to the following
optimization problem

Rsésup {R: (R,E) € RWTC}.
R A

Different from (6), the solution of (12) requires a com-
plete characterization of the rate-equivocation region and
its boundary region, which makes the problem non-trivial.
As we demonstrate shortly, to overcome this difficulty, our
approach is to examine different cases of the channel state
information (CSI) to shed light on the detailed properties of
the secrecy rates as a function of the transmit power. While
the results in some cases are rather simple, this approach
allows us to explicitly establish the boundary region of the

(12)
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Charles Eve

Fig. 3. 4-node wiretap system model, where Charles is a jamming transmitter.

rate-equivocation region, and eventually, to determine the
encryption-aware secrecy rate.

III. ENCRYPTION-AWARE RATE MAXIMIZATION FOR
GAUSSIAN WIRETAP CHANNEL

In this section, we focus on a common 4-node Gaussian
wiretap channel [46] to demonstrate the strength and use-
fulness of the proposed joint security design. In this model,
besides Alice, Bob, and Eve, it is assumed that there is a
cooperating transmitter (Charles) that sends only a parasite
signal to facilitate secure communication between Alice and
Bob. For convenience, let a; and [3; be Alice-Bob and
Alice-Eve channel power gains, respectively. Similarly, assume
ap and [, are, respectively, Charles-Bob and Charles-Eve
channel power gains. Note that if as = 2 = 0, the 4-node
model reduces to a simpler 3-node model consisting of Alice,
Bob, and Eve only as in Fig. 1. The channels are assumed to
be static, and full channel state information (CSI) is available
at Alice and Charles.

In this work, we consider a joint power constraint p =
p1 + p2 on the two transmitting nodes, where p; and p; are
the powers to be allocated to Alice and Charles, respectively.
The joint power assumption is feasible in current and future
wireless networks, and it has been considered extensively in
the literature. It is because Alice and Charles are managed
by the same control center. By using Gaussian codebooks as
in [38], the achievable rate and secrecy rate of the Alice-Bob
channel as functions of p; can be obtained as

pP—p2
1+azp )’

_ +
Rulp) = | Ro(on) —loms (14 B 22 )|

where [z]* = maz{0, z}. It is evident from (13) that Ry(p2)
is a decreasing function of the jammer power py. Therefore,
the capacity is achieved when no power is allocated for
jamming, i.e., Rg = logy(1 + a1p). Also, it is clear from
(14) that the jammer works in favor of secrecy only when
B2 > as. Furthermore, the region R 7T (py), within which
the rate-equivocation pair (R, R.) is achievable, can be defined
as follows

Ry(p2) = log, (1 +aq (13)

0 < R < Rp(p2)
(R,Re) : 0 < Re < Ro(p2)
R.<R

As a result, the rate-equivocation region can be expressed
as RWTC = ,, R"T(p2). To shed further light on the

RWTC‘

(p2) = (15)

7841

Rq R, R

Fig. 4. Rate-equivocation region RWTC (py) as a sharp trapezoid.

rate-equivocation region RWTC, and eventually, to find the
encryption-aware secrecy capacity Rg, we first study the
detailed characteristics of R.(p2), so that the relationship
between R and R, in the boundary region can be determined.
It should also be emphasized that encryption awareness is
beneficial only in the case of a positive Rs(p2). Therefore,
hereafter, we only need to focus on the case of positive R(p2)
and the notation [z]* in (14) can be dropped.

A. Secrecy Rate R(pz)

It is clear that Ry(p2) is positive if and only if oy {2222~ >

ﬁlfﬁ-%. Equivalently, we need (a7 — f31) (1 — %) > 0,
where
ay — B
= 16
PT = aabr — B (16)

Therefore, depending on the channel conditions, there are four
possibilities for the channel gains as follows

) If @1 > By and a1/as = B1/Ba2: pr is negative and

the secrecy function is always positive, regardless of the
value of ps.

2) If @y > B1 and a1/as < (1/P2: pr is positive. The

secrecy function is only positive when ps < pr.

3) If ay < (4 and ay1/as > (B1/B2: pr is positive. The

secrecy function is only positive when ps > pr.

4) If oy < 51 and oy /as < [1/B2: pr is negative and the

secrecy function is never positive.
Note that cv1 /a2 and (31 /32 can, respectively, be considered
as Bob’s and Eve’s normalized channel gains.

As the next step, we shall investigate the detailed character-
istics of the secrecy function in each case in order to establish
the rate-equivocation region. It should be noted that for a
given power allocation pp that results in a positive secrecy
rate, the corresponding rate-equivocation region RW7T (py)
is a sharp trapezoid as shown in Fig. 4. As such, the shape of
the boundary of R"7C is determined by R, as a function of
Ry, denoted as Rms(Rb), that sweeps over all possible corner
points. To further characterize this function, from (13), we first
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CASE 1:¢.rI =3, uz=2.5, ﬁ1 =2, ﬂ'2=3
2, . . . :

CASE 2: @ = 3, @, = 2.5, ﬂ" =2, 32 =1
12, . ; . .

0.8/ py=0

CASE 3:0‘ =1, a2=2.5, ﬁ‘l =2, ﬁ2=3
0.8

CASE4:a,=05,0,=25,0 =2,/(,=6

Fig. 5. Typical sweeping functions for four different cases (p = 20 dB).
Note that arrow is in direction of increasing p2.

write p2 as a function of R as follows

ajp— (2R —1)
a1 + 0:2(235 — 1)’

a7

p2 =

Substituting (17) into (14), the sweeping function R,(R;) is
given as

R(Ry) = Ry — log,
1 2f 1
o1 (14 PB2p) +(az — [F2) (28> — 1)
Now, for convenience, and with a slight abuse of notation,

let Ry be represented by a variable x; so, we can write the
sweeping function R.(Rs) as a function of z, i.e.,

f(z) =z —log,
Bl + a2p) (27 — 1)
g [1 T o+ Bap) + (a2 — Bo)(@ — 1)

After some simple manipulations, f(x) can be written as:

]- (19)

f(z)=z—log, (u(z)), forall z: 0<2% — 1 < ayp, (20)
where
a
u(:::) = (1 + (1) - m, (21)
with
_ Bl +azp) __@m—p
a_iaz—ﬁg and b_al(l—i—,@gp)' (22)

As an example, in Fig. 5, this sweeping curve is illustrated
for four cases of the channel gains as discussed earlier by
varying pp and finding the corresponding rate R; and the
sweep function f(z), or equivalently, R.(Rp). We now state
the following lemma regarding the properties of parameters a
and b.
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Lemma 1: [Properties of terms a and b]

ab =B (P
(@1 -—ab a1(1+ﬁzp)(1 pr)'

(b) If az < B, then 1+ bz > 0 forall 0 < z < ayp. (24)
(c) If az < B and (a1 — B1)pr < 0, then
1—b(a+1)>0forall p> pr.

(23)

(25)

Proof: The proof is provided in Appendix A. |
Given the above results, we are now ready to obtain
important properties of the sweeping function f(x) in (20).
In particular, we have the following propositions regarding
f(z) that are helpful in characterizing the rate-equivocation
region.

Proposition 1: If as > [2, f(z) in (20) is a convex
function in the region of interest 0 < 2% — 1 < ajp.
Furthermore, f(x) is maximized at z* € {0,log,(a1p+ 1)}.

Proof: Since —log(-) is a non-increasing convex function,
based on [47], it is sufficient to show that w(x) in (21) is con-
cave. Specifically, it can be verified that u'(z) = %

and u"(z) = I%’;]—f%)]; Since @ and b are both positive,

u”(z) < 0 and, as a result, u(z) is concave. Therefore, f(x)
is convex, and the maximum is attained on the boundary. W

Proposition 2: If aa < B2, (a1 — Bi)pr < 0 and p >
pr. f(z) is a concave function in the region of interest.
Furthermore, f(x) is maximized at

*

T
b—-1

min{log, T) ,logy(arp + 1)}, a=-1
- . -1+VA

min{log, B1+a) + 1)110g2(0ﬁ1a9+ 1}, a# -1
where

A=1—-(a+1)(1—ab)=a(—(1—ab)+b). (26)

Proof: The proof is given in Appendix B. [ ]

B. Rate-Equivocation Region

Given the obtained properties of f(z), we are now ready to
establish the rate-equivocation region. In Fig. 6, three different
scenarios for rate-equivocation region are illustrated. Specif-
ically, No Jamming (NJ) scenario, when the channel gains
are such that allocating power to jamming does not improve
the secrecy rate, the rate-equivocation region of Fig. 6.a is
achievable. On the other hand, in Beneficial Jamming (BJ)
scenario, where the secrecy rate without applying jamming is
positive, yet power allocation to jamming further improves the
secrecy rate, the typical rate-equivocation region is illustrated
in Fig. 6.b. There is also the Essential Jamming (EJ) scenario,
where a non-zero secrecy rate can only be achieved by
applying jamming. The rate-equivocation region for such a
scenario is shown in Fig. 6.c. In the following, based on the
properties derived for the secrecy function in the previous
subsection, we investigate each of these cases. We first have
the following proposition.
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Rate-Equivocation Region for the NJ scenario Rate-Equivocation Region for the BJ scenario Rate-Equivocation Region for the EJ scenario

Re

® "= PR s o Ry R

Fig. 6. Typical rate-equivocation regions for: (a) NJ scenario, (b) BJ scenario and (c) EJ scenario. Note that the dashed red lines specify the thresholds for

encryption strength.

Proposition 3: When aq > 31 and as < 32, the maximum
total power resulting in the optimal jamming power to be zero,
ie., p5 =0,is

pe @7

_ —a+V+pr
2 ?

P

where p = f1a1 (B2 —a2), ¢ = f1f2—aiaz, and 7 = oy — ;.
Proof: The proof is straightforward and can be obtained
by setting the optimal p; to zero. [ ]

The next theorem then characterizes the detailed properties
of the rate-equivocation region for the 4-node Gaussian chan-
nel.

Theorem 1: Depending on the channel conditions, the rate-
equivocation region for the 4-node Gaussian channel can be
described as follows:

(a) The rate-equivocation region of R}'7 in Fig. 6.a is
achievable iff oy > 1, and one of the following
conditions are satisfied:

o« az = [a.
e az < fFrand 0 < p < pc.
(b) The rate-equivocation region of RY T in Fig. 6.b is
achievable iff ay > (31, as < 2 and p > pe.
(c) The rate-equivocation region of RY¥7TC in Fig. 6.c is
achievable iff oy < 81, a1 /az > £1/52 and p > pr.
(d) No positive equivocation rate is achievable iff oy < 34
and one of the following conditions are satisfied:

e ai/az < B/
o ai/az > f1/Bz and 0 < p < pr.
Proof: The proof is in Appendix C. [ ]
Corollary 1: When the rate-equivocation region RY 7¢ or

RYTC is achieved, the maximum achievable transmission rate
that results in maximum equivocation rate of Rg is
vA-—-1
10g2 1+m), G%—l
— a
s =f""(Rs) = (28)

log, a=—1.

b-1
%)
Proof: Based on the proof of Theorem 1 in Appendix C,
for each case, the secrecy function is maximized at =*. |
Corollary 2: Assuming fixed channel gains for Bob, a;
and 31, and the available power p, different rate-equivocation
regions are achievable depending on Eve’s channel gains, ag
and [32. This is shown in Fig. 7 where

o< B

R

No Region
o —Bl
:p(1+B:p Br-s
ap
~{o -By) . -LP -t
Bo(irap) @ G0 &
Fig. 7. The conditions for different rate-equivocation region shapes.

(a) The left figure is for the case of a; > 31, where R{VT¢
is achievable when the point (a2, 32) is located below
the line [31 p(1+a1p)] Bo—[a1p(1+P1p)] a2 = a1 —P1.
On the contrary, RY ¢ in achievable when the point is
above the line.

(b) The right figure is for the case of ay < [, where
R¥TC is achievable when the point (a3, 3;) is located
above the line (a1p) B2 — (B1p) a2 = B1 — .

On the contrary, no rate-equivocation is achievable when
the point is below the line.

Proof: For each case, the threshold line can be easily
obtained by combining different conditions in Theorem 1. W

C. Rate Maximization

Given that the rate-equivocation has been fully character-
ized, we are now ready to analyze the effect of encryption
on the maximum achievable rate. As can be seen from
Fig. 6, the boundary of the rate-equivocation region RW 7T,
in general, can be divided into four segments, connecting
five corner points (R, R.) = (0,0), (R,R.) = (Rs,Rs),
(R,R.) = (Rpr,Rs), (R,R.) = (Rs,Rp), and (R, R.) =
(Rp,0). Here, Ry is the maximum transmission rate that
R. = Rg is achievable; ie., Ry = f~'(Rs), and RS is
the maximum achievable equivocation rate for R = Rp;
ie., R = f(Rp). It should be noted that for the NJ and
EJ scenarios, the boundary regions are simplified to three
segments. To conveniently examine the intersection between
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the line segment R = AR, for a given A and the boundary
of RWTC 5o that a maximum secrecy rate can be found,
we can define two threshold values for encryption factor as
Ar1 = R /Rs and Apo = Rp/Rj. It is clear from Fig. 6
that the two line segments R = AriR. and R = AR,
intersect the boundary of RW7T€ at (R, R.) = (Rp’, Rs) and
(R, R.) = (Rgs', Rp), respectively. Therefore, to evaluate the
maximum rate in different scenarios, we can consider three
different regions for A as 1 < A < Ay, Arp < A < Ape and
A > Ara. The following corollary states a main result.
Corollary 3: The maximum secrecy rate can be obtained as

RS:)\RS ]_S/\SATI
RS = )\f(Rmax) /\Tl <A< /\TQ (29)
RS = RB A 2 A'I"Za

Proof: The proof comes straightforwardly from Theo-
rem 1, and it is omitted here. [ |
Before closing this section, it should be noted that for a
3-node wiretap channel with Ar; = Apa = Ap, the maximum
achievable rate can be obtained as

Rs=ARgs 1<A<A\
i 5 o ="="T (30)
Rs=Rgrp A= Ar.
IV. POWER ALLOCATION FOR 4-NODE
GAUSSIAN WIRETAP MODEL

In this section, by considering the same 4-node Gaussian
wiretap channel as in Section III, we investigate the power
allocation problem. The goal is to minimize the total transmit
power p given an encryption level A to achieve a certain
transmission rate R = R*. It should be noted that the design
for transmit power minimization can also be formulated via
a power optimization problem, which might give important
insights on power allocation strategies. However, for consis-
tency, our focus is on the encryption-aware secrecy rate. This
optimization problem can be formulated as

mingcnize p

subject to Rg(p) = R*,
Rs(p) = Re,
B r<r.

(3D

The shape of the rate-equivocation region is a key factor
in solving the optimization problem in (31). In the following,
we shall provide the solutions to each of the region types
in Fig. 6 using a graphical method.

A. No Jamming

This is the case where having the jammer node does not
have any added benefit. This case, as shown in Fig. 6.a,
has a trapezoid rate-equivocation region, and we know from
Theorem 1 that the best secrecy performance is experienced
when the jammer is silent. So, the 4-node system can be
treated as if there are three nodes in the system. Considering
the rate-equivocation of a Gaussian wiretap channel for a
certain transmit power illustrated in Fig. 6.a, the main channel
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Fig. 8. Optimal power allocation for the NJ scenario. Two cases of A = Ay
and A = Mg are illustrated, where (A1 > Az and A2 < Ag); Both cases
satisfy the target rate of R* = 1 bit/channel use.

capacity Rg(p) and secrecy capacity Rs(p) can be found from
(13) and (14), respectively, with p; = 0.

To solve this optimization problem, we define a curve
in R — R plane that sweeps the boundaries of the
rate-equivocation regions with different powers. This curve can
be obtained by solving the following equations

R. = Rs(p).
From (13), we have
2T —1
p= Rzl (z) = . (33)

As a result, the curve can be expressed as R, = h(R), where

h(z) = Re(Rg' (z)) = z — log, {1 + i—i(?x — 1)] ,

forall z: 0 <2 —1<a1p. (34)

By calculating the first and second derivatives of k(x), it is
not difficult to show that h(x) is an increasing concave
function of x, since h'(z) > 0 and A”(z) < 0 for all
r:0<2% -1 < aqp.

For a given target rate R*, let us define a threshold encryp-
tion strength A, above which the power budget achieving the
desired rate cannot be further reduced. Therefore, we have

R*
Aa = h(R*)
In other words, pmin can be reduced by increasing the
encryption strength, but it saturates at A,. Also, note that since
Rs(p) from (14) is bounded by log;,(g—i), the target rate is
restricted to be always less than or equal to Alogﬂ%). The
following proposition summarizes the solution to this case.

Proposition 4: For the rate-equivocation region of R}V T¢,
the minimum power satisfying security condition and rate at
R* < Alogy(3t) can be obtained by

(33)

R* 2R/X 1
Ri(F)=——75 A<\
prmin = A B2 (36)
RZ'Y(R*) = , A> Ay
(231
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Fig. 9.
target rate R* = 1.5 bits/channel use.

Proof: The proof is straightforwardly obtained from
Fig. 8. [ |

B. Beneficial Jamming

In this case, the rate-equivocation region shown in Fig. 6.b,
is achievable for any p. Also, note that there is always a
nonzero secrecy rate R corresponding to the maximum main
channel capacity Rp, which occurs at pz = 0 (see (13)).
A 4-node system with no power allocated for the jammer is
equivalent to a 3-node system. Therefore, the same curve h(x)
from (34) can be effectively used to sweep the point (Rp, R).
Similarly, in this case, at some point, increasing the encryption
strength is no longer useful in terms of power minimization.
The same threshold A, from (35) is used for a given target
rate R* (see Fig. 9). This threshold determines whether the
solution point is on the vertical line of the rate-equivocation
region or not.

In order to solve the optimization problem, it is required
to locate the solution point on the non-vertical part of the
rate-equivocation region when A < ;. Thus, for a given p,
we define another curve that sweeps the point at which the
boundary of rate region transitions from being a horizontal
line into a curve by R, = f(R) from (20) for R : Ry <
R < logy(1 + a1p), as seen in Fig. 6.b. However, the curve
sweeping the rate pair (R’5, Rs) can be obtained by solving
the following equation

R = Riy(p)
R. = Rs(p),

where R’;(p) is obtained from (28). Then, the curve can be
expressed as R, = g(R), where

(37)

g(z) = Rs((R)™!(z)), forall z: 0 < 2% —1< a1p. (38)

Again, for a given target rate R*, let us define another
threshold A, such that any encryption with less strength
will have a unique solution point that lies on the horizontal
boundary of the rate-equivocation region. This threshold is
obtained by

R*
A:
*~ g(RY)

. (39)

15 (b) 2 25 3 R

L L L L 0

Optimal power allocation for the BJ scenario. Three cases are illustrated: (a) A < Ap, (b)Ap < A < Ag and (c) A > Ag; all the cases satisfy the

Therefore, the following proposition states the solution of the
optimization problem in this case.

Proposition 5: For the rate-equivocation region of RY 7€,
by using the two thresholds A, and Ap, the minimum power
satisfying security condition and rate at R* with a strength A
can be obtained by

BR*
RpAR) =21 Az
n = o (40)
Pmin p:R*/A=f(R"), M<A<A
p:R*/A=Rs(p), A=,

where R*/A = f(R*) and R*/\ = Rs(p) are nonlinear and
can be simply solved by using the bisection method.
Proof: The proof can readily be seen from Fig. (9). H
The corresponding optimal jamming power is given by

0, A>
@] Pmin — (QR‘ - 1)
Ao <A< A
=1 a1 ta@F —1) > ATt @
a1pmin — (2% —1)

1 -|—0:2(2R,B — ]_) ’

where R’B is evaluated using (28), at p = ppmin. Three different
rate regions in Fig. 9 graphically represent each case.

C. Essential Jamming

In this case, the rate-equivocation region shown in Fig. 6.c,
is achievable only for p > pp. Different from the first case,
when the main channel capacity is maximized at p; = 0,
PHY security is not achievable without encryption. To solve
the optimization problem in (31), we only need to use the same
curve g(x) from (38) that sweeps the point (R, Rg) for all
p > pr; and then, evaluate A, using (39) for a given target
rate R*. The solution is given in the following proposition.

Proposition 6: For the rate-equivocation of RY 7€, using
the threshold (M), the minimum power satisfying security
condition and rate at R* with a strength A can be obtained
as

(42)

o P RS, A
™= p: RY/A=Rs(p), A<,
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Fig. 10. Optimal power allocation for the EJ scenario: two cases of A = Ay
and A = Az are illustrated, where A1 > Ap and A2 < Ap; Both cases satisfy
the target rate R* = 0.5 bits/channel use.
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Fig. 11. Secure transmission rate versus SNR for three- and 4-node WTCs
with and without encryption awareness in the BJ scenario with &y = 1, a2 =
0.83,81 = 0.67,82 = 2, and A\ = 4 dB.

where R*/A = f(R*) and R*/A = Rg(p) are nonlinear
equations. Similar to the previous case, these equations can be
solved by applying the bisection method. The corresponding
optimal jamming power is given by
Q1 Pmin — (QR‘ - 1)
a1 + 0:2(23“ - 1) ’
@] Pmin — (QRB - ]-)
1 -|—0:2(QR’1‘3 — ]_) ’
Fig. 10 shows two different rate-equivocation regions that
graphically represent each of these cases.

A > Ay
(43)
A<M

V. NUMERICAL RESULTS

In this section, we present insightful results to show the
significance of the proposed encryption aware scheme over
traditional PHY security. Specifically, we first demonstrate that
with encryption, secrecy rate can be significantly increased,
and beyond traditional secrecy capacity performances can be
achieved. In addition, compared to traditional PHY security,
the same secrecy rate can be achieved with a smaller power
budget.

A. Enhanced Secrecy Performance

Fig. 11 first compares the achievable secrecy rate of
encryption-aware systems with that of conventional systems
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Fig. 12. Secure transmission rate versus SNR for three- and 4-node WTCs
with and without encryption awareness in the NJ scenario with &y = 1, ap =
0.83, 81 = 0.67, 32 = 0.33, and \ = 4 dB.
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Fig. 13. Secure transmission rate versus SNR for 3- and 4-node WTCs with
and without encryption awareness in the EJ scenario with a1 = 1,9 =
2.5“81 =2,,52 =8, and A = 4 dB.

for 3- and 4-node WTCs with A = 4 dB. Here, it is assumed
a; = l,ap = 083,68, = 0.67,0; = 2, which results
in the BJ scenario. The advantage of encryption awareness
can be clearly observed, and we can achieve a significantly
higher secrecy rate. It is interesting to note that at low SNRs,
encryption aided 3-node WTC even outperforms the con-
ventional 4-node WTC. It means that encryption knowledge
can significantly reduce the complexity by relinquishing the
jammer, while enjoying a higher transmission rate.

Fig. 12 presents the secrecy performance in the NJ scenario
with A = 4 dB, where the channel gains are chosen as
a; = 1,as = 0.83,3; = 0.67,3; = 0.33. It is clear from
Fig. 12 that encryption awareness also significantly enhances
the secrecy rate in this case. Furthermore, it can be seen
that the 4-node system achieves the same performance as
that of the 3-node system. It is because under this scenario,
the jammer channel conditions are not in favor of adding
SECrecy.

The advantage of the proposed encryption-aware scheme
for the EJ scenario is shown in Fig. 13, where we use oy =
l,ag = 2.5,8; = 2,3, = &, and A = 4dB. Note that, in this
case, the secrecy rate is always zero for the 3-node system
whether or not encryption is exploited. However, with the
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Fig. 14. Secure transmission rate versus encryption strength for 3- and 4-node
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Fig. 15. Secure transmission rate comparison: Encryption-aware versus

cooperative jamming [30], [31] in the BJ scenario with oy = 1l,ap =
0.25,81 = 0.2, B2 = 1.1.

presence of the jammer, the secrecy rate increases significantly
with encryption, especially at higher SNR regions.

It is also interesting to see the effect of A to the secrecy
performance. Let us consider the BJ scenario with oy =
l,az = 0.25,8; = 0.2,5, = 1.1. Fig. 14 shows the
secrecy rates achieved by the 4-node and 3-node networks,
respectively, for a wide range of A, with SNR being fixed at
40dB. It can be seen from Fig. 14 when A is small enough,
i.e., A < Ara, the 4-node networks achieve a higher secrecy
rate. However, when A > Aps, the two rates are almost the
same. It is because we achieve the maximum secrecy rate that
cannot be exceeded neither by using a helping interferer nor
by making the encryption stronger.

Finally, to demonstrate the significance of the proposed
appraoch over traditional physical layer approaches, Fig. 15
compares the secrecy rates achieved by the encryption-aware
4-node systems with A = 4dB and A = 8dB under the same
BJ scenario with a; = 1,03 = 0.25,5; = 0.2,3; = 1.1,
and those of traditional cooperative jamming schemes using
multiple antennas in [30], [31]. Specifically, we consider the
scheme in [30] in which Alice communicates with Bob with
the help of a jammer being equipped with 2 and 3 antennas,
respectively. In this cooperative jamming system, the secrecy
rate is maximized by jointly optimizing the antenna weights
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Fig. 16.  Optimal power allocation versus encryption strength for the
BJ scenario with vy = 1,9 = 0.25,3; = 0.2,83 = 1.1, and different
target rate R* values.
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Fig. 17.  Optimal power allocation versus encryption strength for the
EJ scenario with a1 = 1, ¢9 = 2.5, 51 = 2,32 = 8, and different target
rate R* values.

and transmit power of the source and the jammer [30]. For a
fair comparison, it is assumed that Alice-Bob and Alice-Eve
channel gains are the same. Furthermore, as in [30], the ampli-
tudes of the channel gains from each of the antennas at the
jammers to Bob and to Eve are the same, which are 0.2 and
1.1, respectively, while their phases are uniformly distributed.
With A = &8dB, the proposed 4-node system with only a
single-antenna jammer outperforms the schemes in [30] using
multiple antennas. When the encryption is slighly weaker,
i.e., A = 4dB, the proposed 4-node system still performs better
than the multiple-antenna schemes in [30] over a wide range
of SNRs.

B. Reduced Power Consumption

With the aid of encryption, we can also reduce the trans-
mission power while still achieving the same targeted secrecy
rate with the no-encrypted system. This advantage is shown
in Fig. 16 and Fig. 17 for the BJ and EJ scenarios, respectively,
where the consumed power is plotted versus A for different
target secrecy rates. Note that A = 0 corresponds to the case
of no encryption. It can also be observed for the EJ scenario,
having a stronger encryption is always beneficial. However,
in the BJ case, when the encryption strength is sufficiently
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Fig. 18. Minimum required power to achieve a target rate of 2 bpcu, and the
corresponding jammer power for different encryption strength values. Channel
gains satisfy the BJ scenario with a1 = 1,2 = 0.25, 51 = 0.2, B2 = 1.1,
and Ay = 1.8 dB.
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Fig. 19. Minimum required power to achieve a target rate of 2 bpcu, and the
corresponding jammer power for different encryption strength values. Channel
gains satisfy the EJ scenario with a1 = 1,2 = 0.5, 81 = 0.2, 32 = 1.5,
and Ap = 1.8 dB.

large enough, i.e., A > A,, the consumed power cannot be
further reduced.

Using the results in Theorems 5 and 6, the power allocation
between the source and the jammer to achieve a given secrecy
rate can also be obtained for different values of A. The results
are shown in Fig. 18 and Fig. 19 for the BJ and EJ scenarios,
respectively, with the target rate of 2 bpcu. In both scenarios,
it can be seen that the power allocated to the jammer decreases
as the encryption strength increases. In the BJ scenario, when
the encryption is strong enough, e.g., A > A,, the jammer can
be kept silent, and the total power is allocated to the source
only.

VI. CONCLUSION

In this article, we proposed a novel encryption-aided phys-
ical layer security scheme for Gaussian channels. We intro-
duced an approach that can directly link encryption strength
with the amount of leakage at the eavesdropper. Furthermore,
we have shown that the encryption awareness enables us to
improve the secure transmission rate beyond what is achiev-
able in traditional physical layer security; i.e. the secrecy
rate. An encryption-aware secrecy capacity was derived
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by fully characterizing the rate-equivocation regions for a
4-node systems with different conditions on channel gains.
Finally, an optimization problem was formulated and solved
to minimize the total transmission power for a predetermined
encryption strength.

Finally, it is worth mentioning that the extension of this
work to multi-antenna wiretap channels is very interesting,
and it is currently under investigation. In addition, while we
have defined the encryption strength A as an inverse of the
threshold Peipher, more meaningful measurements for A can
also be investigated. Such an important topic deserves further
studies.

APPENDIX A
PROOF OF LEMMA 1

To prove Property (a), we use (16) and

Cab=1-— B1(1+ azp)
L = At Bap)
_ (1 = B1) + (212 — af)p
a1(1+ B2p).

a1 — p
=—|1-—). 44
a1(1+ B2p) ( PT) @
Now, we prove Properties (b) and (c) with the assumption
of ap < B2 as follows

ai(l+ B2p) + (a2 — Ba)z

b s A B
- a1(l + Bap) + (a2 — Ba)aup
n ai(1+ B2p)
_ltayy
= Tia, " (45)
_ bla _ (a1 = 1)+ (a1f2 —azBi)p+ (B2 — a2)
1-bla+1) = 11T Bap)
(a1 = B)(1 = L)+ (B2 — o)
a ag(1 tﬁzp)
(a1 =) - 1)
a1+ Bap)- o)

Since (a1 — f1)pr < 0, if @y > (34, then pr is negative.
Also, if ay < f1, then pr is positive. Therefore, for both
cases, the last term in (46) is positive for p > pr.

APPENDIX B
PROOF OF PROPOSITION 2

Let us start with the concavity. We first have

1y, o - G.b 2:: _ p2(21‘ — ]_)
fo=1e 1 ey @
we s abln2x 2% x p3(2T — 1)
f (‘E) - [P1(2I _ 1)]2 ] (48)
where
pi(z) = B*(1 +a)z® +b(2+a)z + 1
_ 2 1 1
p2(z) = b2 (1 +a)z? + 2bz + 1 — ab, (50)

p3(z) = X(1+a)z?2 +2b*(1 +a)z +b(2+a) — 1. (51)
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Now, consider the case a > —1: Let w»(z) =
—log, ((1 +a) - % ) for 0 <z < ayp. Since z =2 -1
is convex, it is sufficient to show that v(z) is a non-increasing
concave function of z. The first and second derivatives of v(z)

are calculated as follows

, —ab 1

viz) = 2 [1+ b2][1 + bz + abz]

" ab? 2(a+1)+2(1+a)bz—a
V) = e X Wb+ (@t Db

From property (b) in Lemma 1, we have 1+bz > 0. Moreover,
because ay < 2, a < 0and b < 0, v/(z) < 0 and v"(z) < 0.
As a result, f(z) is a concave function when a > —1.

For the case a < —1: Using property (c) in
Lemma 1, we have p3(z) = b*(1 + a)(z + 1)? —
(*(1+a)—b2+a)+1) < —(1—b(1+a))(1—b) <0.
Thus, f”(z) < 0, and f(z) is concave.

Given its concavity, it is clear that f(r) is maximized at a
stationary point, which can be found by solving pa(z) = 0.
For the special case of a = —1, from (50), p2(z) has one
root z* = gb and pi(z*) # 0. Therefore, we have z* =
log, (%) In the case that @ # —1, pa(z) has a quadratic
form with the following roots

zZy = L\/E, (53)
b(1+a)

where A is given in (26). From property (a) in Lemma 1,
we have (1 —ab) > 0 for all p > pp. Since a and b are
negative, A is always positive. Given that, we examine the
two roots in (53). For z_, If a > —1, we have z_ > ajp.
On the other hand, when @ < —1, we have z_ < 0. Thus,
in any case, z_ ¢ [0,a;p|, which means z_ is not a valid
solution. For z, if @ > —1, we have A < 1, and therefore,
z4 > 0. If, on the other hand, a < —1, we have A > 1, and
z4 > 0. This means that z; is a valid solution. As a result,

(52)

when a # —1, 2* = ﬁg and p;(z*) # 0. Therefore, f(z)
is maximized at z* = log, (_b%lJ:;)_ + 1)
APPENDIX C

PROOF OF THEOREM 1

(a) a1 > 1 and az > (B2 imply that the secrecy function
is convex and is maximized at z* = log,(a1p+ 1) (see
Propositions 1). On the other hand, when oy > (31 and
ag < [32, the secrecy function is concave, but since p <
pc, the function is maximized at =* = log, (a1 p1 + 1)
(it decreases as pg increases), (see Proposition 2 and 3).

(b) a1 > (1 and ag < By imply pr < 0. As aresult, p > pr
and (ay — 31)pr < 0. Therefore, the secrecy function is
a concave. If p > pc, then z* = log, (;—H‘fg—‘)ﬁ_ + 1)
if @ # —1, and z* = log, (%) if a =
Propositions 2 and 3).

(€) aqn < (1 and ay/az > [B1/B2 imply that pr > 0
and ay < [J2. Therefore, for p > pp, the function
is concave (see Proposition 2). On the other hand,
since the function is zero at pp = 0 and p2 = pr,

—1, (see
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¥ = log, (;;i:_‘ﬁ)_—i—l) if a # —1, and =¥ =
]0g2(2 ) ifa=—1.

(d) aq < 1 and a1 /az > (B1/B32 imply that the secrecy
function is not positive. On the other hand, oy < 3

and aq /g > 31 /P imply that pr > 0 and ay < Fs.
However, the available power is not sufficient to make
the secrecy function positive.
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