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Abstract. We present a newly developed upper-thermocline, open-ocean biogeochemical flux model that is complex and flex-
ible enough to capture open-ocean ecosystem dynamics, but reduced enough to incorporate into highly resolved numerical
simulations and parameter optimization studies with limited additional computational cost. The model, which is derived from
the full 56 state variable Biogeochemical Flux Model (BFM56; Vichi et al. (2007)), follows a biological and chemical func-
tional group approach and allows for the development of critical non-Redfield nutrient ratios. Matter is expressed in units of
carbon, nitrogen, and phosphate, following techniques used in more complex models. To reduce the overall computational
cost and to focus on upper-thermocline, open-ocean, and non-iron or silicate limited conditions, the reduced model eliminates
certain processes, such as benthic, silicate, and iron influences, and parameterizes others, such as the bacterial loop. The model
explicitly tracks 17 state variables, divided into phytoplankton, zooplankton, dissolved organic matter, particulate organic mat-
ter, and nutrient groups. It is correspondingly called the Biogeochemical Flux Model 17 (BFM17). After describing BFM17,
we couple it with the one-dimensional (1D) Princeton Ocean Model (POM) for validation using observational data from the
Sargasso Sea. The results agree closely with observational data, giving correlations above 0.85, except for chlorophyll (0.63)
and oxygen (0.37), as well as with corresponding results from BFM56, with correlations above 0.85, except for oxygen (0.56),
including the ability to capture the subsurface chlorophyll maximum and bloom intensity. In comparison to previous models of
similar size, BFM17 provides improved correlations between several model output and observational data, indicating reproduc-
tion of in situ data can be achieved with a low number of variables, while maintaining the functional group approach. Notable
additions to BEM17 over similar complexity models are the explicit tracking of dissolved oxygen, allowance for non-Redfield

nutrient ratios, and both dissolved and particulate organic matter, all within the functional group framework.

1 Introduction

Biogeochemical (BGC) tracers and their interactions with upper-ocean physical processes, from basin-scale circulations to
millimeter-scale turbulent dissipation, are critical for understanding the role of the ocean in the global carbon cycle. These
interactions cause multi-scale spatial and temporal heterogeneity in tracer distributions (Strass, 1992; Yoder et al., 1992; Jr.

et al., 2001; Gower et al., 1980; Denman and Abbott, 1994; Strutton et al., 2012; Clayton, 2013; Abraham, 1998; Bees, 1998;
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Mahadevan and Archer, 2000; Mahadevan and Campbell, 2002; Levy and Klein, 2015; Powell and Okubo, 1994; Martin et al.,
2002; Mahadevan, 2005; Tzella and Haynes, 2007) that can greatly affect carbon exchange rates between the atmosphere
and interior ocean, net primary productivity, and carbon export (Lima et al., 2002; Schneider et al., 2007; Hauri et al., 2013;
Behrenfeld, 2014; Barton et al., 2015; Boyd et al., 2016). There are still significant gaps, however, in our understanding of how
these biophysical interactions develop and evolve, thus limiting our ability to accurately predict critical exchange rates.

Better understanding these interactions requires accurate physical and BGC models that can be coupled together. The exact
equations that describe the physics (e.g., the Navier—Stokes or Boussinesq equations) are often known and physically accurate
solutions can be obtained given sufficient spatial resolution and computational resources. Due to the vast diversity and com-
plexity of ocean ecology, however, even when only considering the lowest trophic levels, accurately modeling BGC processes
can be quite difficult. Put simply, there are no known first-principles governing equations for ocean biology.

As such, two different approaches to modeling BGC processes are often used when faced with this challenge. The first is to
increase model complexity and include equations for every known BGC process. Often, these models include species functional
types or multiple classes of phytoplankton and/or zooplankton that each serve specific functional roles within the ecosystem,
such as calcifiers or nitrogen fixers. The justification for this approach is that particular phytoplankton and zooplankton groups
serve as important system feedback pathways, and that without explicit representation of these feedbacks, there is little hope of
accurately representing the target ecosystem (Doney, 1999; Anderson, 2005). In many cases, these models also contain variable
intra- and extra-cellular nutrient ratios, which are important when accounting for different nutrient regimes within the global
ocean and species diversity of non-Redfield nutrient ratio uptake (Dearman et al., 2003).

Although these more complex models are typically highly adaptable and are often able to capture different dynamics than
which they were calibrated for (Blackford et al., 2004; Friedrichs et al., 2007), these more complex models contain many more
parameters than their simplified counterparts. Moreover, many of the parameters, such as phytoplankton mortality, zooplankton
grazing rates, and bacterial remineralization rates, are inadequately bounded by either observational or experimental data
(Denman, 2003). Because of the increased complexity of such models, it is also often difficult to ascertain which processes
are responsible for the development of a particular event (e.g., a phytoplankton bloom), and so these models can be ill-suited
for process studies. Lastly, while these highly complex models are regularly used within global Earth System Models (ESMs),
they are typically prohibitively expensive to integrate within high-fidelity, high-resolution physical models. Examples of such
models are those used to enhance fundamental understanding of subgrid-scale (SGS) physics in ESMs and to assist in the
development of new SGS parameterizations (Roekel et al., 2012; Hamlington et al., 2014; Suzuki and Fox-Kemper, 2015;
Smith et al., 2016, 2018).

In broad terms, the second common BGC modeling approach is focused on substantially decreasing model complexity and
severely truncating the number of equations used to describe the dynamics of an ecosystem. Such approaches include the
well-known nutrient-phytoplankton-zooplankton-detritus class of models. These models have significantly fewer unknown pa-
rameters and can be more easily integrated within complex physical models. Their simplicity also enables greater transparency
when attempting to understand the dominant forcing or dynamics underlying a particular event. While they are often capable

of reproducing the overall distributions of chlorophyll, primary production, and nutrients (Anderson, 2005), such simplified
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models have been shown to under-perform at capturing complex ecosystem dynamics, and often struggle in regions of the
ocean for which they were not calibrated (Friedrichs et al., 2007).

Although both of these general BGC modeling approaches have their respective advantages, particularly given their different
objectives, the difference between lower-complexity BGC models used in small-scale studies and the more complex BGC mod-
els used in global ESMs poses a problem. In particular, the difficulty in directly comparing the two types of models makes the
process of “scaling-up” newly developed parameterizations or “downscaling” BGC variables within nested-grid studies much
more challenging. This motivates the need for a new BGC model that is reduced enough to be usable within high-resolution,
high-fidelity physical simulations for process and parameter optimization studies and parameterization development, but is still
complex enough to capture important ecosystem feedback dynamics, as well as the dynamics of vastly different ecosystems
throughout the ocean, as required by ESMs.

To begin addressing this need, here we present a new upper-thermocline, open-ocean, 17 state-variable Biogeochemical
Flux Model (BFM17) obtained by reducing the larger 56 state variable Biogeochemical Flux Model (BFM56) developed by
Vichi et al. (2007). Most high-fidelity, high-resolution physical models are capable of integrating 17 additional tracer equations
with limited additional computational cost. Following the approach used in BFM56 (Vichi et al., 2007, 2013), a biological and
chemical functional family (CFF) approach underlies BFM 17, where matter is exchanged in the model through units of carbon,
nitrate, and phosphate. This permits variable non-Redfield intra- and extra-cellular nutrient ratios. Most notably, BFM17 in-
cludes a phosphate budget, the importance of which has historically been under-appreciated even though observational data has
indicated its potential importance as a limiting nutrient, particularly in the Atlantic Ocean (Ammerman et al., 2003). To reduce
model complexity, we parameterize certain processes for which field data are lacking, such as bacterial remineralization.

In the present study, we outline, in detail, the formulation of BFM17 and its development from BFM56. We couple BFM17
to the 1D Princeton Ocean Model (POM) and validate the model for upper-thermocline, open-ocean conditions using observa-
tional data from the Sargasso Sea. We also compare results from BFM 17 and the larger BEMS56 for the same upper-thermocline,
open-ocean conditions. As a result of the focus on upper-thermocline, open-ocean conditions, further assumptions have been
made in deriving BFM17 from BFMS56, such as the exclusion of any representation for the benthic system and the absence of
limiting nutrients such as iron and silicate.

It should be noted that the primary focus of the present study is to introduce the viability of BFM17 as an accurate BGC
model for high-resolution, high-fidelity simulations of the upper ocean used in process, parameterization, and parameter op-
timization studies. This is accomplished here by comparing results from BFM17 to results from observations and BFM56; as
such, here we only consider one open-ocean location (i.e., the Sargasso Sea). Although the model must also be applied at other
locations to determine its general applicability, its ability to reproduce important and difficult key behaviors in the Sargasso Sea
supports its use as a process study model. The correspondence between BFM17 and the more general BFMS56 also provides
confidence that the reduced model will prove effective at modeling other ocean locations and conditions, and exploring the
range of applicability of BFM17 remains an important direction for future research. We also emphasize that relatively limited

calibration of BFM17 parameters has been performed in the present study. Most parameters are set to their values used in the
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larger BFM56 (Vichi et al., 2007, 2013), and optimization of these parameters over a range of ocean conditions is another
important direction of future research, for which BFM 17 is ideally suited.

Finally, we note that other similarly complex BGC models have been calibrated using data from the Sargasso Sea, such as
those developed in Levy et al. (2005), Ayata et al. (2013), Spitz et al. (2001), Doney et al. (1996), Fasham et al. (1990), Fennel
et al. (2001), Hurtt and Armstrong (1996), Hurtt and Armstrong (1999), and Lawson et al. (1996). However, each of these
models employs less than 10 species and none uses a CFF approach or includes oxygen, a tracer that is historically difficult to
predict. Although some of these models employ data assimilation techniques (e.g., Spitz et al. (2001)) and produce relatively
accurate results, most leave room for improvement. With a minimal increase in the number and complexity of the model
equations, such as those associated with tracking phosphate in addition to carbon and nitrate, and by including both particulate
and dissolved organic nutrient budgets, we anticipate that a significant increase in model accuracy and applicability might
be achieved over previous models of similar complexity. Additionally, with this increase in model complexity, the disparate
gap between the complexity of BGC models used in small- and global-scale studies is reduced, thereby simplifying up- and
down-scaling efforts. This last point is emphasized here by the good agreement between results from BFM17 and BFM56.

In the following, BFM 17 is introduced in Section 2, with detailed equations and parameter values provided in Appendix A.
Results from a zero-dimensional (OD) test of BFEM17 is provided in Appendix B. In Section 3, BFM17 is coupled to the 1D
POM physical model. A discussion of the methods used to calibrate and validate the model with observational data collected
in the Sargasso Sea is presented in Section 4. Model results, a skill assessment, a comparison to results from BFM56, and a

brief comparison to other similar BGC models are discussed in Section 5.

2 Biogeochemical Flux Model 17 (BFM17)

The 17 state equation BFM17 is an upper-thermocline, open-ocean BGC model derived from the original 56 state equation
BFMS56 (Vichi et al., 2007, 2013), which is based on the CFF approach. In this approach, functional groups are partitioned into
living organic, non-living organic, and non-living inorganic CFFs, and exchange of matter occurs through constituent units of
carbon, nitrogen, and phosphate. To date, there are no other BGC models with this order of reduced complexity using the CFF
approach, making BFM17 unique and able to accurately reproduce complex ecosystem dynamics.

BFM17 is a pelagic model intended for oligotrophic regions that are not iron or silicate limited, and is obtained from
the more-complete BFM56 by omitting quantities and processes assumed to be of minor importance in these regions. We have
developed BFM 17 primarily for use with high-resolution, high-fidelity numerical simulations, including large eddy simulations
(LES) used in process, parameterization, and parameter optimization studies. As such, we do not validate the efficacy of BFM17
as a global BGC model, and note that it is missing potentially important processes for such an application, which we elaborate
on shortly. We also note that we compare BFM 17 to the original BFMS56 in Section 5 to demonstrate that, although it is reduced
in complexity, BFM17 is equally appropriate for use in seasonal process, parameterization, and optimal parameter estimation

studies for which a more complex model such as BFM56 may be too computationally expensive. Nevertheless, given the
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agreement between the BFM17 and BFMS56 results in Section 5, there is reason to believe that BFM17 may have potential as
a global BGC model, and the examination of the broader applicability of BFM17 is an important direction for future research.

In BFM17, the living organic CFF is comprised of single phytoplankton and zooplankton living functional groups (LFGs);
these two groups are the bare minimum needed within a BGC model and already account for six state equations (corresponding
to carbon, nitrogen, and phosphate constituents of both groups). The baseline parameters used in BFM17 are those detailed
in Vichi et al. (2007), and a complete list of the model parameters is provided in Appendix A. Parameters used in the repre-
sentation of phytoplankton loosely correspond to the flagellate LFG in BFM56, while the zooplankton parameters correspond
to the micro-zooplankton LFG. The only relevant difference with respect to Vichi et al. (2007) is related to the choice of the
phytoplankton specific photosynthetic rate (rg)) in Table A3 of Appendix A); in this case, the new value was chosen according
to the control laboratory cultures of Fiori et al. (2012).

Within BFM17, we track chlorophyll, dissolved oxygen, phosphate, nitrate, and ammonium, since their distributions and
availability can greatly enhance or hinder important biological and chemical processes. Dissolved oxygen is of particular
interest, because it is historically difficult to predict using BGC models of any complexity. This is likely due, in part, to missing
physical processes in the mixing parameterizations used in global and column models. This provides motivation for the present
study, since a primary goal in the development of BFEM17 is to create a BGC model that can be used in combination with
high-resolution, high-fidelity physical models (e.g., those found in LES) to understand the effects of these physical processes
and how they can be more accurately represented in mixing parameterizations.

Dissolved and particulate organic matter, each with their own partitions of carbon, nitrogen, and phosphate, are also included
in BEM17 to account for nutrient recycling and carbon export due to particle sinking. Another primary goal of developing
BFM17 is to explore how spatially decoupled (or “patchy’) processes, such as the sinking of organic matter and the subsequent
upwelling of multiple recycled nutrients (not just nitrate) affect the fate and distribution of a phytoplankton bloom.

Lastly, remineralization of nutrients is provided by parameterized bacterial closure terms, thereby reducing complexity while
still maintaining critical nutrient recycling. The related parameter values (see Table AS in Appendix A) were chosen according
to Mussap et al. (2016), who carried out sensitivity tests to evaluate the many parameters values found in the literature.

Iron is omitted from BFM17, limiting the applicability of the model in regions where iron components are important, such
as the Southern Ocean and the tropical Pacific. Thus, if used in such regions, at least a fixed concentration of iron may be
needed (although this method has not yet been validated within BFM17). Top-down control of the ecosystem in the form
of explicit predation of zooplankton is also not included. Instead, a simple constant zooplankton mortality is used, as this is a
complicated process and understanding where to add this closure and where to feed the particulate and dissolved nutrients from
this process in a lower-complexity model is not well understood. However, the addition of a top-down closure term was tested,
and no major differences were observed in the model results. Consequently, it was assumed that the constant mortality term was
sufficient for this model, similar to other models of this complexity (Fasham et al., 1990; Lawson et al., 1996; Clainche et al.,
2004). Additionally, the benthic system within BFM56 (Mussap et al., 2016) has been removed. It is assumed that within the

upper thermocline of the open ocean, the ecosystem is not substantially influenced by a benthic system and any water-column
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Table 1. Notation used for the 17 state variables in the BFM17 model, as well as the chemical functional family (CFF), units, description,
and rate equation reference for each state variable. CFFs are divided into living organic (LO), non-living organic (NO), and inorganic (I0)

families.

Symbol CFF Units Description Equation
Pc LO mg Cm~3 Phytoplankton carbon (AS)
Py LO mmol N m~3 Phytoplankton nitrogen (A6)
P LO mmol P m~3 Phytoplankton phosphorus (A7)
P LO mgChl-am™® Phytoplankton chlorophyll (A8)
Zc LO mgCm™3 Zooplankton carbon (A31)
ZN LO mmol N m~3 Zooplankton nitrogen (A32)
Zp LO  mmolPm™3 Zooplankton phosphorus (A33)

Rél) NO mgCm™3 Dissolved organic carbon (A41)
Rl(\ll) NO mmol N m~3 Dissolved organic nitrogen (A42)
Rf,l) NO mmol P m ™3 Dissolved organic phosphorus (A43)
R(CQ) NO mgCm3 Particulate organic carbon (A44)
RI(\IQ) NO mmol N m~3 Particulate organic nitrogen (A45)

ngz) NO mmol P m—3 Particulate organic phosphorus (A46)

(0] 10 mmol Oz m ™3 Dissolved oxygen (A47)
NM 10 mmol P m~3 Phosphate (A48)
N® 10 mmol N m~3 Nitrate (A49)
N®) I0 mmolNm™® Ammonium (A50)

influences from depth can be taken into account using boundary conditions (such as those discussed in Section 4). As such, we
cannot attest to the accuracy of BFM17 in shelf or coastal regions.

In summary, notable novel attributes of BFM17, in comparison to other models of comparable complexity, are the use of (i)
CFFs for living organisms, including two LFGs for phytoplankton and zooplankton, (i7) CFFs for both particulate and dissolved
organic matter, (iii) a full nutrient profile (i.e., phosphate, nitrate, and ammonium), and (iv) the tracking of dissolved oxygen.
A summary of the 17 state variables tracked in BEM17 is provided in Table 1, and a schematic of the CFFs and LFGs used in
BFM17, along with their interactions, is shown in Figure 1. The detailed equations comprising BEM17, as well as all associated

parameter values, are presented in Appendix A. Results from an initial 0D test of BFM17 are provided in Appendix B.

3 Coupled Physical-Biogeochemical Flux Model

As a demonstration of BFM 17 for predicting ocean biogeochemistry in oligotrophic pelagic zones, here we couple the model to

a 1D physical mixing parameterization and make comparisons with available observational data in the Sargasso Sea. In order



170

175

180

Release |
Z; Zooplankton LFG ﬁ
Zc | Zooplankton (C) o p
Zx | Zooplankton (N) Respiration Dissolved Gases ]
Zp | Zooplankton (P) v 0 | Oxygen J
ﬁ : ) “
4 !
RO Organic Matter !
- h Release
R-M|Dissolved (C) g el I
Ry®|Dissolved (N) g |
Ry™ |Dissolved (P) ;‘:) i
Rc®|Particulate (C) Photosynthesis ;
R\®|Particulate (N) II NS ic Nutri
trient
R.® |Particulate (P) y [NU norganic Nutrients ]
A P; Phytoplankton LFG Untak NO| Phosphate
_Uptake [ N®@)| Nitrate
| Exudation Lysis Pc | Phytoplankton (C) < N®| Ammonia
! Py | Phytoplankton (N)
| Pp | Phytoplankton (P) A
i P,;| Phytoplankton, chlorophyll '
1 1
1 1

' Constant Remineralization

Living Non-Living . Organic matter Gas Inorganic nutrient Boundary flux

. . Inorganic CFF flow (C,N,P) exchange flow (N,P)  (atmosphere-, land-,

Organic CFF Organic CFF sediment-ocean)
—_—> > ——---- >

Figure 1. Schematic of the 17 state equation BFM17 model. The dissolved organic matter, particulate organic matter, and living organic
matter chemical functional families (CFFs) are each comprised of three chemical constituents (i.e., carbon, nitrogen, and phosphorus). The

living organic CFF is further subdivided into phytoplankton and zooplankton living functional groups (LFGs).

to focus on the upper-thermocline, open-ocean regime for which BEM17 was developed, the physical model only extends
150 m in depth and diagnostically calculates diffusivity terms based upon prescribed temperature and salinity profiles from
the observations. While a 1D physical model is unlikely to resolve all processes relevant for biogeochemistry in the upper
thermocline, we have made additions, such as large-scale general circulation and mesoscale eddy vertical velocities, as well as
relaxation bottom boundary conditions for nutrient upwelling, to better represent missing processes.

For all equations here and in Appendix A, we adopt the same notation style used for BFM56 in Vichi et al. (2007), Mussap
et al. (2016), and the BFM User Manual (Vichi et al., 2013) for consistency and clarity. The coupled physical and BGC model
is a time-depth model that integrates in time the generic equation for all biological state variables, denoted A, given by
0 04 —[W+WE+U<560]%§+§Z(KH%§>, (1)

where A; are the 17 state variables of BFM17, the first term on the right-hand side accounts for sources and sinks within

bio

each species due to biological and chemical reactions (as represented by the equations comprising BFM17 and outlined in

Appendix A), W and W are the vertical velocities due to large-scale general circulation and mesoscale eddies, respectively,
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Table 2. Values, units, and descriptions for parameters used in the combined physical-BFM17 model.

Symbol Value Units  Description

vV -1.00 md~!  Settling velocity of particulate detritus
w -0.02-0 md~' Imposed general circulation vertical velocity
Wg 0-0.1 md~'  Imposed mesoscale circulation vertical velocity
Ao 0.06 md~!  Relaxation constant for oxygen at bottom
AN 0.06 md~'  Relaxation constant for phosphate at bottom
AN@) 0.06 md~! Relaxation constant for nitrate at bottom

v is the settling velocity, and K is the vertical eddy diffusivity. Although the BFM17 formulation and model results are
the primary focus of the present study, we also perform coupled physical-BGC simulations using BFM56 for comparison.
Equation (1) applies to all 17 state variables in BFM17, as well as to all 56 state variables in BEM56. Consequently, the only
differences between the biophysical models with BFM17 and BFM56 are the number of state variables being tracked and the
equations used to calculate the biological forcing terms. The specific forms of Eq. (1) for each of the 17 species in BEM17 are
discussed in Appendix A, and the specific forms of this equation for each of the 56 species in BEM56 were previously discussed
in Vichi et al. (2007). The parameters used in BFM56 correspond to the values provided in Tables A3—A5 of Appendix A, with
the remaining undefined parameters (since BFM56 includes many more model parameters than BFM17) based on values from
Mussap et al. (2016).

The range of values for W and Wg in Eq. (1) are included in Table 2 and the corresponding depth profiles are discussed
in Section 4.3. The settling velocity, vV, in Eq. (1) is only non-zero for the three constituents of particulate organic matter,
and its value is given in Table 2. We assume vV = 0 for zooplankton, since zooplankton actively swim and oppose their own
sinking velocity. Finally, K in Eq. (1) is calculated by the model, and is described in more detail later in this section.

To obtain the complete 1D biophysical model, BEM17 has been coupled with a modification of the three-dimensional (3D)
Princeton Ocean Model (POM) (Blumberg and Mellor, 1987) that considers only the vertical (specifically, the upper 150 m of
the water column) and time dimensions; that is, the evolution of the system in the (z,t) space. It is well known that the primary
calibration dimension in marine ocean biogeochemistry is along the vertical direction, as shown in several previous calibration
and validation exercises (Vichi et al., 2003; Triantafyllou et al., 2003; Mussap et al., 2016).

The 1D POM solver (POM-1D) is used to calculate the vertical structure of the two horizontal velocity components, denoted
U and V, the potential temperature, 7', salinity, S, density, p, turbulent kinetic energy, q2 /2, and mixing length scale, £. In this
model adaptation, vertical temperature and salinity profiles are imposed from given climatological monthly profiles obtained
from observations, as previously done in Mussap et al. (2016) and Bianchi et al. (2005). POM-1D directly computes the time
evolution of the horizontal velocity components, the turbulent kinetic energy and the mixing length scale, all of which are used

to compute the turbulent diffusivity term, Kz, required in Eq. (1). In this configuration, POM-1D is called “diagnostic” since
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temperature and salinity are prescribed. Furthermore, pressure effects are neglected in the density equation and the buoyancy
gradients and temperature are used in place of potential temperature since we consider only the upper water column.

A detailed description of POM can be found in Blumberg and Mellor (1987), and in the following we simply provide a
description of the physical model and equations solved in POM-1D. In diagnostic mode, as used in the present study, POM-1D

solves the momentum equations for U and V' given by

ou 0 ou
o fv_az<KMa) ; 2
8V a o

where f = 2(2sin ¢ is the Coriolis force, € is the angular velocity of the Earth, and ¢ is the latitude. The vertical viscosity K s

and diffusivity K g are calculated using the closure hypothesis of Mellor and Yamada (1982) as

Ky =qlSu, C))
Kp=qlSu, &)

where ¢ is the turbulent velocity and Sy and Sj; are stability functions written as

Sw[1—94145Gy] — Sy [(184 +9A4145)Gy| = A1[1-3C1 —641/B1], (6)

Sp[l—(342B2+18A41A42)Gy] = A3[1—-641/B4]. @)
The coefficients in the above expressions are (A1, By, A, B2,C1) = (0.92,16.6,0.74,10.1,0.08), with

I? g dp

H= 53 >
q? po 0z

®)

where pg = 1025 kg m—3, g = 9.81 m s~ 2. Following Mellor (2001), G5 is limited to have a maximum value of 0.028. The
equation of state relating p to T" and S is nonlinear (Mellor, 1991) and given by

999.84 (6.8 x 1072 —9.1x 10T+ 1.0 x 107472 —=1.1 x 10773 4+ 6.5 x 107°TH) T

P
+ (0.8—41x1073T+7.6x107°T? =83 x 107 "T3 +5.4 x 1079T*)S
+ (=57x1074+1.0x 10747 —1.6 x 107 57%)S"5 + 4.8 x 107452, )
where the polynomial constants have been written only up to the first digit. For a more precise reproduction of these constants,

the reader is referred to Mellor (1991). Finally, the governing equations solved to obtain the turbulence variables ¢*/2 and ¢

are

a(¢®\ 9 o (¢ oU ovN?|l g . op ¢

a(5) = 51w ()] K (az) +(3) | gt - 5 (1o
&, 0y 0 B oU ov\? op ¢d ~

at( ) = aZ{anz(q 6)]+E1€KM (az) +(az) + B KHaz Blw, (11)

where K, = xk Ky is the vertical diffusivity for turbulence variables, x = 0.4 is the von Karman constant, and

W = [14 Eof?/k?(1/|2]| +1/|z — H|)?] with (Ey, E2) = (1.8,1.33). In Egs. (10) and (11), the time rate of change of the
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turbulence quantities is equal to the diffusion of turbulence (the first term on the right hand side of both equations), the shear
and buoyancy turbulence production (second and third terms), and the dissipation (the fourth term). This is a second-order
turbulence closure model that was formulated by Mellor (2001) as a particular case of the Mellor and Yamada (1982) model
for upper ocean mixing.

Boundary conditions for the horizontal velocities U = (U, V') and the turbulence quantities are

KM%E = Tw, (12)
Z 1z=0
oUu

Krp— = 13
M@z Z=Zend 0’ ( )

2 2 _ 2/3 | Twl

(¢*.¢*0)|,_, = <B1 Ty 70) ; (14)
(%0 =2y = O, (15)

where T, = Cyg|ty, |y, is the surface wind stress, u,, is the surface wind vector, Cy is a constant drag coefficient chosen to be
2.5x 1073, and z = 0 and z = zenq denote the locations of the surface and the greatest depth modeled, respectively.

For all variables except oxygen, surface boundary conditions for the coupled model variable A; are

Koy s

0z =0 (1o

z=0

By contrast, the surface boundary condition for oxygen has the form

1y 20

9% =0, A7)

2=0

where @ is the air-sea interface flux of oxygen computed according to Wanninkhof (1992, 2014). The bottom (i.e., greatest

depth) boundary conditions for phytoplankton, zooplankton, dissolved organic matter, and particulate organic matter are

A
KH&

5 =0. (18)

Z=Zend
This boundary condition was chosen since it allows removal of the scalar quantity A; through the bottom boundary of the

domain. This can be seen by integrating Eq. (1) over the boundary layer depth using the boundary condition above, giving

19)

Z=Zend ’

z=0
% / Ajdz:[W+WE+u(set> Al

Z=Zend
where the biological part of Eq. (1) has been neglected and the resulting temporal change in the integrated scalar A; is negative
since |(W +Wg)| < [v(et)

, as shown in Table 2. For oxygen, phosphate, and nitrate, the bottom boundary conditions are

0A;
Rug

=% (4], = 47) (20)

Z=2Zend
where \; and A} are the corresponding relaxation velocity and observed at-bottom boundary climatological field data value,

respectively, of that species. Base values for the relaxation velocities are included in Table 2. Lastly, the bottom boundary
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condition for ammonium is

(3)
Ky 0. Q1)
0z

Z=2Zend
Since observations of ammonium concentration in the observational area are not available, this choice is based on the as-
sumption that the nitrogen diffusive flux from depth to the surface (euphotic) layers occurs mostly in the form of a nitrate
flux, consistent with the concepts of “new” and “regenerated” production, as described by Dugdale and Goering (1967) and

Mulholland and Lomas (2008).

4 Field Validation and Calibration Data
4.1 Study Site Description

Field data for calibration and validation of BFM17 are taken from the Bermuda Atlantic Time-series Study (BATS) (Steinberg
et al., 2001) and the Bermuda Testbed Mooring (BTM) (Dickey et al., 2001) sites, which are located in the Sargasso Sea
(31°40° N, 64°10° W) in the North Atlantic subtropical gyre. Both sites are a part of the US Joint Global Ocean Flux Study
(JGOFS) program. Data has been collected from the BATS site since 1988 and from the BTM site since 1994.

Steinberg et al. (2001) provide an overview of the biogeochemistry in the general BATS and BTM area. Winter mixing
allows nutrients to be brought up into the mixed layer, producing a phytoplankton bloom between January and March (winter
mixed layer depth is typically 150-300 m). As thermal stratification intensifies over the summer months, this nutrient supply
is cut off (summer mixed layer depth is typically 20 m). At this point, a subsurface chlorophyll maximum is observed near
a depth of 100 m. Stoichiometric ratios of carbon, nitrate, and phosphate are often non-Redfield and, in contrast to many
oligotrophic regimes, phosphate is the dominant limiting nutrient (Fanning, 1992; Michaels et al., 1993; Cavender-Bares et al.,

2001; Steinberg et al., 2001; Ammerman et al., 2003; Martiny et al., 2013; Singh et al., 2015).
4.2 Data Processing

The region encompassing the BATS and BTM sites is characterized as an open ocean, oligotrophic region that is phosphate
limited. This region has thus been chosen for initial testing of BFM17 due to the prevalence of oligotrophic regimes in the
open ocean and to demonstrate the ability of BFM17 to capture difficult non-Redfield ratio regimes (which occur in phosphate-
limited regions). The BATS/BTM data have also been collected over many years, providing long time series for model calibra-
tion and validation.

Data from the BATS/BTM area is used in the present study for two purposes: (i) as initial, boundary, and forcing conditions
for the POM-1D biophysical simulations with BEM17 and BFM56, and (ii) as target fields for validation of the simulations.
In addition to the subsurface BATS data, we also use BTM surface data, such as the 10 m wind speed and PAR. For each
observational quantity, we compute monthly averages over 27 years for the BATS data and 23 years (not continuous) for the

BTM data. Additionally, we interpolate the BATS data to a vertical grid with 1 m resolution. We subsequently smooth the
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Figure 2. Sargasso Sea physical variables, showing climatological monthly averaged (a) temperature, (b) 10 m surface wind speed, (c) surface
PAR, and (d) salinity. Panel (e) shows the mean seasonal general circulation velocity, W, and panel (f) shows the bimonthly maximum value
of the mesoscale eddy velocity Wg. Monthly averaged mixed layer depths (defined as the depth at which the density is 0.2 kg/m?® greater

than the surface density) are shown as black lines in panel (a).

interpolated data, using a robust locally estimated scatterplot smoothing (LOESS) method, to maintain a positive buoyancy
gradient, thereby eliminating any spurious buoyancy-driven mixing due to interpolation and averaging.

Figure 2 shows the monthly climatological profiles of temperature and salinity from the BATS data (maximum mixed layer
depth from the climatology is approximately 149 m, which was calculated based upon a 0.2 kg/m? increase in density from
the surface value), as well as the photosynthetically available radiation (PAR) and 10 m wind speed from the BTM data. The
same monthly averaging, vertical interpolations, and smoothing used for the physical variables is also performed for biological

variables, which largely serve as target fields for the validation of BFM17.
4.3 Inputs to the Physical Model

The physical model computes density from the prescribed temperature and salinity, and surface wind stress from the 10 m

wind speed; temperature, salinity, and wind speed are all provided by the BATS/BTM data. The model also uses this data
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in the turbulence closure to compute the turbulent viscosity and diffusivity. This diagnostic approach eliminates any drifts
in temperature and salinity that might occur due to improper parameterizations of lateral mixing in a 1D model, therefore
providing greater reliability. In addition to the 10 m wind speed, temperature, and salinity, BFM requires monthly varying PAR
at the surface. For all the monthly mean input data sets, a correction (Killworth, 1995) is applied. This correction is applied to
the monthly averages to reduce the errors incurred by linearly interpolating monthly averages to the much shorter model time
step.

We imposed both general circulation, W, and mesoscale eddy, Wg, vertical velocities in the simulations. The imposed
vertical profiles of these velocities have been adapted from Bianchi et al. (2005), where the velocities are assumed to be zero
at the surface and reach their maxima near the base of the Ekman layer, which is assumed to be at or below the bottom
boundary of the simulations. The general large-scale upwelling/downwelling circulation, W, is due to Ekman pumping and is

correspondingly given as

W:E-Vx(ﬂ“), (22)
pf

where k denotes the unit vector in the vertical direction. The monthly average value and sign of the wind stress curl, V x 1, for
the general BATS/BTM region was taken from the Scatterometer Climatology of Ocean Winds database (Risien and Chelton,
2008, 2011). The monthly value of W from Eq. (22) is then assumed to be the maximum, occurring at the base of the Ekman
layer, for that particular month. Given the sign of the wind stress curl for the BATS/BTM region, a negative W was calculated,
indicating general downwelling processes in this region. Seasonal profiles of W are shown in Figure 2(e).

Due to the prevalence of mesoscale eddies within the BATS/BTM region (Hua et al., 1985), which can provide episodic
upwelling of nutrients to the upper water column, we also include an additional positive upwelling vertical velocity, Wg,
which has a timescale of 15 days. The general profile of W is assumed to be the same as for W, with a value of zero at the
surface and a maximum value at depth. However, there is no linear interpolation between each 15-day period and the maximum

magnitude of W is randomized between 0 and 0.1 m d 1, as shown in Figure 2(f) for each 15-day period.
4.4 Initial and Boundary Conditions

Although the BATS/BTM data includes information on many biological variables, initial conditions for only 5 of the 17 species
within BFM17 could be extracted from the data. Similarly to the temperature and salinity, the initial chlorophyll, particulate
organic nitrogen, oxygen, nitrate, and phosphate were interpolated to a mesh with 1 m vertical grid spacing, averaged over the
initial month of January, and smoothed vertically in space to give the initial profiles seen in Figure 3(a). The remaining 12 state
variable initial conditions were determined either through the adoption of the Redfield ratio C:N:P = 106:16:1 (Redfield et al.,
2005), or assuming a reasonably low initial value. Since the 1D simulations were run to steady state over 10 years, memory of
these initial states was assumed to be lost, with little effect on the results.

For the comparison of BFM17 to BFM56, the initial conditions for the additional state variables were calculated by splitting

the total initial phytoplankton and zooplankton carbon values into equal amounts for all phytoplankton and zooplankton groups.

13



335

340

345

Initial Vertical Profiles

(b) Bottom BC Values

LS B L 2r L L L T ]
Nit. (0.36) 183_ @ Nit. (1.96) ]
Phos. (0.02) I =@ Phos. (0.064) ]
POC (21.68) 1 1.6F Oxy. (212.8) ]
s Chl-a (0.002) | - ]
_ Oxy. (217.05) | = 14F ]
= 17 [ ]
Na¥ S-
e 1= 1.2% :
2 1= LA\e ; + " f i
) ~— 1
A 1S ]
100 T 0.8-‘ ]
1 06F ]
1 o4af .
150 n PR NN ST SR SN (NN TR SR TR NN SO S S 1 PR IR R |

0 1 2 3 4 5 2 4 6 8 10 12
; ; Time (months)

Figure 3. Sargasso Sea initial and boundary conditions showing (a) initial profiles of nitrate, phosphate, particulate organic carbon, chloro-
phyll, and oxygen, where each profile, denoted ¢;(z), is normalized by its depth averaged value, (¢;)., and (b) monthly bottom boundary
conditions for nitrate, phosphate, and oxygen, where each quantity, ¢;(¢), is normalized by its annual average value (p;):. The depth and
annual averaged values are shown in parentheses in the legends of each panel. Units are mmol N/m? for nitrate, mmol P/m® for phosphate,

mg C/m? for particulate organic carbon, mg Chl/m?® for chlorophyll, and mmol O/m® for oxygen.

The other state variables for each group were again calculated using the Redfield ratio. The initial bacteria distribution was
defined by setting the column equal to a constant value.

In both simulations, the bottom boundary conditions for oxygen, nitrate, and phosphate species are based on observed BATS
data. Values are taken at the next closest data point below the bottom boundary (at 150 m) and then averaged over the month.

Figure 3(b) shows the monthly average bottom boundary conditions for each of the three species.

5 Model Assessment Results

The coupled BEM17-POM1D model was run using the parameter values from Tables 2, A1, and A3-AS5, which were decided on
the basis of standard literature values (Vichi et al., 2007, 2003, 2013; Fiori et al., 2012). The simulations were allowed to run out
to steady-state and multi-year monthly means were calculated as functions of depth for chlorophyll, oxygen, nitrate, phosphate,
particulate organic nitrogen (PON), and net primary production (NPP), each of which were measured at the BATS/BTM site.
The model PON is defined as the sum of nitrogen contained within the phytoplankton, zooplankton, and particulate detritus,
and NPP is defined as the net phytoplankton carbon uptake (or gross primary production) minus phytoplankton respiration.
Figure 4 qualitatively compares the BATS data (top row) with the results of from BFM17 (middle row). The model is able to
capture the initial spring bloom between January and March brought on by physical entrainment of nutrients, the corresponding
peak in net primary production and PON around the same time, and the subsequent subsurface chlorophyll maxima during the

summer (evident in Figure 4 as a larger chlorophyll concentration at depths close to 100 m during the summer months). The
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Figure 4. Comparison of target BATS fields (top row) to BFM17 simulation results (middle row) and BEMS56 simulation results (bottom row)
for (a,g,m) chlorophyll (mg Chl-a/m®), (b,h,n) oxygen (mmol 0/m®), (c,i,0) nitrate (mmol N/m?), (d,j,p) phosphate (mmol P/m®), (e.k,q)
particulate organic nitrogen (PON - mg N/m?), (f,1,r) and net primary production (NPP - mg C/m?/day). Simulation plots are multi-year,

monthly averages of the last 3 years of a 10 year integration.

predicted oxygen levels are lower than observed values, however, the overall structure predicted by BFM17 is not completely
dissimilar to that of the BATS oxygen field. These results are consistent with those from BFM56 (bottom row of Figure 4),
suggesting that the two models are in generally close agreement. Correlation coefficients between the two models are 0.85 for
chlorophyll, 0.56 for oxygen, 0.99 for nitrate, 0.99 for phosphate, 0.95 for PON, and 0.97 for NPP. Differences in chlorophyll
and oxygen are likely due to the removal in BEM17 of specific phytoplankton and zooplankton species in favor of general
LFGs, to the removal of denitrification, and to the parameterization of remineralization using new closure terms that were
calibrated to give reasonable agreement with the observational data.

As mentioned previously, oxygen is historically difficult to predict using BGC models of any complexity. It is likely that
this is due, in part, to inaccuracies in the mixing parameterizations used in POM 1D and other physical models. For example,

BFM17 struggles to accurately predict oxygen, in part, because the second-order mixing scheme of Mellor and Yamada (1982)
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Figure 5. Taylor diagram showing the normalized standard deviation, correlation coefficient, and normalized root mean squared differences
between the BEM17 output and the BATS target fields. Observations lie at (1,0). Radial deviations from observations corresponds to the
normalized root mean square error (RMSE), radial deviation from the origin correspond to the normalized standard deviation, and angular
deviations from the vertical axis correspond to the correlation coefficient. BEM17 and BFMS56 results are shown as colored circles and
triangles, respectively (chlorophyll = blue, oxygen = orange, nitrate = yellow, phosphate = purple, PON = green, NPP = cyan). Note that
BFMS56 nitrate and phosphate data points fall on top of one another (yellow and purple triangles).

lacks sufficient resolution of the winter mixing using just the monthly mean temperature and salinity. However, since it is often
not included or presented at all in models of similar complexity to BFM17 (i.e., models reduced enough to reasonably couple
to a high-fidelity, high-resolution physical model), studies that explore this hypothesis have been difficult to undertake. Thus,
we include oxygen in BFM17 and present our results here to illustrate this exact point, and to lend motivation to developing
and using a model such as BFM17 to study the effects of physical processes missing from mixing parameterizations and how
they can be better represented.

To obtain a first indication of the performance of BFM17, a model assessment was performed for each target field. The
same assessment was performed for BFM56 to compare the two models. The results are summarized by the Taylor diagram
in Figure 5. This diagram can be used to assess the extent of misfit between the models and observations by showing the
normalized root mean square (RMS) errors, normalized standard deviation, and the correlation coefficient between each of the
model outputs and the BATS target fields.

The normalized RMS errors were calculated as €15/ 0obs, Where €,,5 is the RMS error between the model and the obser-
vation fields and o is the standard deviation of the observation field. The normalized standard deviation was calculated as

Omod/Tobs Where opoq is the standard deviation of the model fields. The normalized RMS errors, normalized standard devi-
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ation, and the correlation coefficients each give an indication of the relative similarities in amplitude, variations in amplitude,
and structure of each modeled field compared to the BATS target fields, respectively. For each variable, these statistics were
calculated over all months and all depths shown in Figure 4.

The Taylor diagram in Figure 5 shows that BFM17 and BFMS56 produce similar results. For most variables, errors in the
amplitudes are within roughly one standard deviation of the observations. Additionally, the structure of the model fields for
chlorophyll, nitrate, phosphate, PON, and NPP have high correlations with that of the BATS target fields. The correlation
values range from 0.63 for chlorophyll to 0.94 for nitrate in BEFM17 and from 0.60 for chlorophyll to 0.93 for phosphate
and nitrate in BFM56. For BFM17, variability in amplitude for nitrate, phosphate, oxygen, and NPP are closest to that of the
corresponding BATS target fields, while the chlorophyll and PON have too much variability. For BEM56, nitrate, phosphate,
oxygen, and chlorophyll have similar variability in amplitude to the BATS data, while NPP and PON have too little and too
much variability, respectively.

Table 3 provides a comparison of correlation coefficients and un-normalized RMS errors, calculated with respect to the
observational fields, from BFM17 and BEM56, as well as from other models. Comparisons were only made to models that were
calibrated using the same BATS/BTM data, employed some kind of parameter estimation technique, and reported correlation
and RMS errors. Ayata et al. (2013) included six biological tracers, while both Fasham et al. (1990) and Spitz et al. (2001)
included seven. The Spitz et al. (2001) study used data assimilation, while the Ayata et al. (2013) and Fasham et al. (1990)
studies used only optimization to determine a select set of parameters. All models used climatological monthly mean forcing
from the BATS region and reported climatological monthly means for their results. Care was taken to ensure that the same
variable definition was compared between all models. Ayata et al. (2013) used a similar 1D physical model as was used here,
while Spitz et al. (2001) and Fasham et al. (1990) used a time-dependent box model of the upper-ocean mixed layer. As such,
correlations and RMS error values for comparison to Ayata et al. (2013) were computed over the entire domain (Ayata et al.
(2013) calculated their metrics over the top 168 m of their domain). For comparison to Spitz et al. (2001) and Fasham et al.
(1990), correlations and RMS errors were calculated only within the mixed layer (defined as the depth at which the density is
0.2 kg/m? greater than the surface density) and are shown as separate columns in Table 3.

The correlation coefficients and RMS errors for both BFM 17 and BFM56 are comparable with the Ayata et al. (2013) study
for chlorophyll, while out-performing this study for nitrate, PON, and NPP. The Spitz et al. (2001) study, which used data
assimilation and is therefore naturally more likely to perform better, does in fact do so for predictions of chlorophyll and
nitrate. However, the nitrate correlation values for BFM17 and the Spitz et al. (2001) model are both high, although the latter
model does have a lower RMS error value. As compared to the Spitz et al. (2001) model, BFM17 has higher correlation values
for both PON and NPP, but a larger RMS error for NPP. Lastly, both BFM17 and BFMS56 out-perform the Fasham et al. (1990)
study for all fields for both correlation coefficient and RMS error values.

These results show that, with a relatively small increase in the number of biological tracers as compared to similar models,
BFM17 is generally able to increase correlation coefficient values and decrease RMS error values for many of the target field
in comparison to similar models. Moreover, BFM17 approaches the accuracy of models that use data assimilation to improve

agreement with the observations, such as the Spitz et al. (2001) model. The extra biological tracers in BEFM17, as compared to
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Table 3. Correlation coefficients (and RMS error in parenthesis) between BATS target fields and model data for BFM 17, BFMS56, and several
example models of similar complexity. The first set of BFM columns is calculated over the entire water column, while the second set (denoted
with “ML Only”) is calculated over the monthly mixed layer depth only (defined as the depth at which the density is 0.2 kg/ m? greater than

the surface density).

Variable BFM17 BFMS56 Ayata et al. (2013) BFM17 BFMS56 Fasham et al. (1990)  Spitz et al. (2001)
(ML Only) (ML Only)

Chlorophyll  0.63 (0.08) 0.60 (0.10) 0.60 (0.06) 0.63 (0.07) 0.60 (0.09) -0.33 (0.34) 0.86 (0.04)
Oxygen 0.37 (31.18)  0.18(21.84) - 0.29 (29.53)  -0.09 (20.22) - -

Nitrate 0.94 (0.22) 0.93 (0.16) 0.80 (0.33) 0.94 (0.22) 0.93 (0.15) 0.87 (0.28) 0.98 (0.05)
Phosphate 0.91 (0.01)  0.93 (0.005) - 0.91 (0.01) 0.93 (0.005) - -

PON 0.85 (0.15) 0.85(0.11) 0.45 (0.08) 0.86 (0.14) 0.86 (0.10) 0.48 (0.6) 0.76 (0.12)
NPP 0.93 (0.26) 0.87 (0.63) 0.50 (0.14) 0.94 (0.21) 0.89 (0.5) -0.47 (0.021) 0.69 (0.016)

the Ayata et al. (2013) and Fasham et al. (1990) models, account for variable intra- and extra-cellular nutrient ratios with the
addition of phosphorus

Finally, a key benefit of the chemical functional family approach used by BFM17 is the ability of the model to predict
non-Redfield nutrient ratios. Figure 6 shows the constituent component ratios normalized by the respective Redfield ratios for
BFM17. The figure includes the component ratios of carbon to nitrogen, carbon to phosphorous, and nitrogen to phospho-
rous for phytoplankton, DOM, and POM. Zooplankton nutrient ratios were not included because the parameterization of the
zooplankton relaxes the nutrient ratio back to a constant value. The normalized ratio values are uniform non-unity valued fields.

Ultimately, Figure 6 shows that BEM17 is able to capture the phosphate-limited dynamics that characterize the BATS/BTM
region (Fanning, 1992; Michaels et al., 1993; Cavender-Bares et al., 2001; Steinberg et al., 2001; Ammerman et al., 2003;
Martiny et al., 2013; Singh et al., 2015). In particular, Figure 6 shows that all results comparing carbon or nitrogen to phos-
phorous for BFM17 produce normalized vales greater than 1, where the normalization is carried out using the Redfield ratio
(i.e., a normalized value greater than 1 indicates that the field is denominator limited). Figure 6 also shows that the ratios are
not uniform for phytoplankton, DOM, and POM, with the ratios decreasing with depth as a result of the increased availability

of nitrogen and phosphate.

6 Conclusions

In this study, we have presented a new upper-thermocline, open-ocean BGC model that is complex enough to capture open-
ocean ecosystem dynamics within the Sargasso Sea region, yet reduced enough to integrate with a physical model with limited
additional computational cost. The new model, named the Biogeochemical Flux Model 17 (BFM17) includes 17 state variables
and expands upon more reduced BGC models by incorporating a phosphate equation and by tracking dissolved oxygen, as well

as variable intra- and extra-cellular nutrient ratios. BFM 17 was developed primarily for use within high-resolution, high-fidelity
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Figure 6. Fields of BFM17 constituent component ratios of carbon to nitrogen (top row), carbon to phosphorous (middle row), and nitrogen

to phosphorous (bottom row) for phytoplankton (first column), dissolved organic detritus (second column), and particulate organic detritus

(third column). Each field is normalized by the respective Redfield ratio.

3D physical models, such as LES, for process, parameterization, and parameter optimization studies, applications for which its

more complex counterpart BFM56 would be much too costly.
To calibrate and test the model, it was coupled to the 1D Princeton Ocean Model (POM-1D) and forced using field data
430 from the Bermuda Atlantic test site area. The full 56 state variable Biogeochemical Flux Model (BFM56) was also run using
the same forcing. Results were compared between the two models and all six of the BATS target fields—chlorophyll, oxygen,
nitrate, phosphate, PON, and NPP—and a model skill assessment was performed, concluding that the BFM17 captures the
subsurface chlorophyll maximum and bloom intensity observed in the BATS data and produces comparable results to BFM56.

In comparison with similar studies using slightly less complex models, BFM17-POM1D performs on par with, or better than,

435 those studies.
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In the future, a sensitivity study is necessary to assess the most sensitive model parameters, both in BEM17 as well as in the
1D physical model. After identification of these most sensitive model parameters, an optimization can be performed to reduce
discrepancies between the BATS observation biology fields and the corresponding model output fields. Additionally, it would
be useful to study the efficacy of using BFM17 in a global context, to reproduce the ecology in other regions of the ocean, and
its sensitivity under various physical forcing scenarios. Finally, BEM17 is now of a size that it can be efficiently integrated in

high-resolution, high-fidelity 3D simulations of the upper ocean, and future work will examine model results in this context.

Appendix A: BFM17 Model Equations

In the following, the detailed equations and their parameter values for each of the 17 state variables that comprise BFM17 are
outlined. A summary of the 17 state variables is provided in Table 1 and a schematic of the CFFs and LFGs used in BFM17,
along with their interactions, is shown in Figure 1. It should be noted that for all BEFM17 equations here, we adopt the same
notation style used for BFM56 in Vichi et al. (2007), Mussap et al. (2016), and the BFM User Manual (Vichi et al., 2013) for

consistency and clarity.
Al Environmental parameters

BFM17 is influenced by the environment through temperature and irradiance. Temperature directly affects all physiological

processes and is represented in the model by introducing the non-dimensional parameter fJ(T) defined as
T T-T%)/T* .
A=, j=P2z, (A1)

where 1™ is a base temperature and ()19 ; is a coefficient that may differ for the phytoplankton and zooplankton LFGs, denoted
P; and Z;, respectively. Here, the subscript ¢ is used to denote different chemical constituents (i.e., C, N, and P) and j is
used to denote different LFGs. Base values used for 7™ and @1¢,; are shown in Table Al. The model additionally employs a

temperature-dependent nitrification parameter flslT), which is defined similarly to Eq. (A1) as

(1) _ i T (A2)

where ()10, is given in Table A1l

In contrast to temperature, irradiance only directly affects phytoplankton, serving as the primary energy source for phyto-
plankton growth and maintenance. Irradiance is a function of the incident solar radiation at the sea surface. Within BEM17, the
amount of photosynthetically active radiation (PAR) at any given location z is parameterized according to the Lambert—Beer

model as
0

Eoar() = eparQ@sexp | Awz + / Moo()d | | (A3)

z
where Qg is the short-wave surface irradiance flux, which is typically obtained from real-world measurements of the atmo-

spheric radiative transfer, epar is the fraction of PAR within QQg, A, is the background light extinction due to water, and Ay,
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465 is the light extinction due to suspended biological particles. Values for epag and A, are given in Table Al. The extinction

coefficient due to particulate matter, Apio, iS dependent on phytoplankton chlorophyll, P.p;, and particulate detritus, R,

is written as

Abio = cpLPon + CR<2>R((:2) ,

, and

(A4)

where cp and cp(2) are the specific absorption coefficients of phytoplankton chlorophyll and particulate detritus, respectively,

470 with values given in Table Al.

A2 Phytoplankton equations

The phytoplankton LFG in BFM17 is part of the living organic CFF and is composed of separate state variables for the

constituents carbon, nitrogen, phosphorous, and chlorophyll, denoted Fr, Py, Pp, and Py respectively (see also Table 1). The

governing equations for the constituent state variables are given by:

475 1. Phytoplankton functional group in the living organic CFF, carbon constituent (state variable Fc):
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2. Phytoplankton functional group in the living organic CFF, nitrogen constituent (state variable Py):

upt prd

lys 3PN
R® ot

lys 3PN
R ot

oRy
ot

upt OPx

0PN
N@) ot

ot

0PN

ot

= max
bio

0,

b
2N

N(@3)

3. Phytoplankton functional group in the living organic CFF, phosphorus constituent (state variable Pp):

upt prd

lys aPp
R}()U B 375

ory
ot

ory
ot

0P

¥ ap
ot ot

ngz) B 8t

480 = max

bio

0,

)

Zp

N1

Table Al. Symbols, values, units, and descriptions for environmental parameters within the BFM17 pelagic model.

Symbol Value Units Description

Qio,p 2.00 - Phytoplankton Q10 coefficient
Q10,2 2.00 - Zooplankton Q10 coefficient
Q1io,N 2.00 - Nitrification Q)19 coefficient

T 10.0 °C Base temperature

cp 0.03 m? (mg chl)™*  Chlorophyll-specific light absorption coefficient

EPAR 0.40 - Fraction of photosynthetically active radiation

Aw 0.0435 m~! Background attenuation coefficient

CRr(2) 0.1x107% m?(@mgC)~'  C-specific attenuation coefficient of particulate detritus
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Table A2. List of abbreviations used to indicate physiological and ecological processes in the equations comprising the BFM17 pelagic

model.

Abbreviation Process

2pp Gross primary production

sp Respiration

prd Predation

rel Biological release: egestion, excretion, mortality
exu Exudation

upt Uptake

lys Lysis

syn Biochemical synthesis

loss Biochemical loss

nit Nitrification

4. Phytoplankton functional group in the living organic CFF, chlorophyll constituent (state variable Pey):

loss

0P ’ (A%)

ot

_ 0P
bio at

W' 9P
ot

where the descriptions of each of the source and sink terms are provided in Table A2. The subscript “bio” on the left-hand side
terms indicates that these are the total rate expressions associated with all biological processes.

485 For the evolution of the phytoplankton carbon constituent given by Eq. (AS), gross primary production depends on the
non-dimensional regulation factors for temperature and light as well as on the maximum photosynthetic growth rate and the
phytoplankton carbon instantaneous concentration. This then gives

gpp
=D B pe, (A9)
CO2

where rgf) is the maximum photosynthetic rate for phytoplankton (reported in Table A3) and f I(DT) is the temperature regulation

ore
ot

490 factor for phytoplankton given by Eq. (Al). The term fI(DE) is the light regulation factor for phytoplankton, which is defined
following (Jassby and Platt, 1976) as

E,
) — 1 —exp (- b‘;‘:‘) , (A10)

where Epag is defined in Eq. (A3) and Fx (the “optimal” irradiance) is given by

Pc
. All
(Pchl> (a1l

495 The parameter aggl) is the maximum light utilization coefficient and is defined in Table A3.

0

0
O‘Ehl)

Ex =
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Table A3. Phytoplankton parameters, values, units, and descriptions within the BFM17 pelagic model.

Symbol Value Units Description
7';3) 1.60 d! Maximum specific photosynthetic rate
bp 0.05 d! Basal specific respiration rate
dg)) 0.05 d! Maximum specific nutrient-stress lysis rate
hg"P) 0.10 - Nutrient stress threshold
Bp 0.05 - Excreted fraction of primary production
P 0.05 - Activity respiration fraction
ag) 0.025 m? (mg C)~'d~? Specific affinity constant for nitrogen
hg) 1.50 mmol N-NH4 m 2 Half saturation constant for ammonium uptake
I(\Imi") 6.87 x 1073 mmolN (mg C) ™! Minimum nitrogen quota
ngI(\f o) 1.26 x 1072 mmolN (mg C) ™! Optimal nitrogen quota
I(\Imax) 1.0(1)1(\? pO) mmoIN (mg C)™* Maximum nitrogen quota
ag> 2.5x 1073 m® (mg Q)™ d™! Specific affinity constant for phosphorus
,(,mi") 4.29 x 107* mmolP (mg C)~* Minimum phosphorus quota
S 7.86 x 1074 mmolP (mg C)~* Optimal phosphorus quota
(max) 1.0¢5P) mmolP (mg C)~* Maximum phosphorus quota
ozéfl? 1.52x107° mgC (mgch)™ (uE)"' m®> Maximum light utilization coefficient
05,?1) 0.016 mg chl (mg C)~! Maximum chlorophyll to carbon quota

Phytoplankton respiration is parameterized in Eq. (A5) as the sum of the basal respiration and activity respiration rates,

namely

OP:|"™P (T) OP: |  oPc|™

— | =befpPetvr || — a5 ; (A12)
ot |co, ot |co, O R

where bp is the basal specific respiration rate, vp is the respired fraction of the gross primary production, the gross primary
production term is given by Eq. (A9), and the exudation term is defined below in Eq. (A18). Values and descriptions for bp
and yp are given in Table A3.

Both phytoplankton exudation and lysis, defined below, depend on a multiple nutrient limitation term f I(DN’P). This term allows
for the internal storage of nutrients and depends on the respective nutrient limitation terms for both nitrate and phosphate. It is

given by f I(DN’P) = min [ I(DN) , I(DP)} , where

P/ P — (min)

fI(DN):min 1, max O,N/C—N , (A13)
¢I(\;th) - ¢I(\Imm)
P /P — (min)

F%) = min<{ 1, max 0,"/C—P, : (A14)
(bl()opl) _(bl()mm)
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The parameters ¢\"" and ¢\"™ are the optimal phytoplankton quotas for nitrogen and phosphorus, respectively, while ¢\ "™

and ¢1()min) are the minimum possible quotas, below which f I(DN) and f I(DP) are zero. Values for each of these parameters are
included in Table A3.
Phytoplankton lysis includes all mortality due to mechanical, viral, and yeast cell disruption processes, and is partitioned

between particulate and dissolved detritus. The internal cytoplasm of the cell is released to dissolved detritus, denoted by REI),
while structural parts of the cell are released to particulate detritus, denoted by the state variable REQ), where ¢ = C,N, P (see

also Table 1). The resulting lysis terms in Eqs. (A5)—(A7) are then given by

ap, | ) p
7 = 1—6 ’ :| Pid R s .:C,N7P, AIS

ot REI) [ P f1(3N7P)+hg7P) P ¢ ( )

op, ™ (N,P) hg " (0) .

e e ] R (A16)

where hg’P) is the nutrient stress threshold and dﬁi’) is the maximum specific nutrient-stress lysis rate, both of which are given
in Table A3. The term 535’])) is a fraction that ensures nutrients within the structural parts of the cell, which are less degradable,

are always released as particulate detritus. This fraction is determined by the expression

(min) (min)
17 N b P
Px/Pc’ Pp/Pc

(N7P) — ]
EP = min

(A17)

)

where gbl(\]mi") and gbémm) are given in Table A3.

If phytoplankton cannot equilibrate their fixed carbon with sufficient nutrients, this carbon is not assimilated and is instead

)

released in the form of dissolved carbon, denoted by state variable R(1 , in a process known as exudation. The exudation term

in Eq. (AS) is parameterized as

OPc 2pp

ot (A18)

)

exu (N,P)} } 8Pc
CO2

={Be+0-8p) 1-£07]} £

R
where (p is the excreted fraction of gross primary production, defined in Table A3, and the gross primary production term is
again given by Eq. (A9).

The nutrient uptake of Egs. (A6) and (A7) combines both the intracellular quota (i.e., Droop) and external concentration (i.e.,
Monod) approaches Baretta-Bekker et al. (1997). The total phytoplankton uptake of nitrogen, represented by the combination
of the two uptake terms in Eq. (A6), is the minimum of a diffusion-dependent uptake rate when internal nutrient quotas are low

and a rate that is based upon balanced growth needs and any excess uptake, namely

0Py ot . (N) hg) 2 é L
— =min< a —Pr N LNO| P, M) G+ v (max) _ N\ p , Al9
ot NS P hg) N N(3) C ¢N P P N PC C ( )

where ag) is the specific affinity for nitrogen, hg) is the half saturation constant for ammonium uptake, and (bl(\,max) is the

maximum nitrogen quota; base values for these three parameters are given in Table A3. The net primary productivity Gp in
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Eq. (A19) is given as

)

(i i
RO ot

ot

gpp o PC

ot

exu B 8Pc
Rél) 8t

Bo) 23

0 ot

G p = max

lys
] . (A20)

CO, CO, R

The specific uptake rate vp appearing in Eq. (A19) is given by
vp = fOr) (A21)

It should be noted that only the sum of the two uptake terms, represented by Eq. (A19), is required in the governing equation
for Py given by Eq. (A6). However, in the governing equations for nitrate and ammonium, denoted N (?) and N®) (see Table
1) that will be presented later, expressions are required for the individual uptake portions from nitrate and ammonium. When
the total phytoplankton nitrogen uptake rate from Eq. (A19) is positive, the individual portions from nitrate and ammonium are

determined by

upt
_ep OB (A22)
N @) Ot | Nes
upt Py
= 1 — —_—
(I—ep) ot

upt

oRy
ot

oR
ot

where the rates on the right-hand sides are obtained from Eq. (A19), and ep is given as

upt

(A23)

b
N(3) N(2,3)

B SNN(2)

The preference for ammonium is defined by the saturation function sy and is given by

BN
hp’' + NG
When the phytoplankton nitrogen uptake rate from Eq. (A19) is negative, however, the entire nitrogen uptake goes to the
dissolved organic nitrogen pool, RI(\,l) [see Eq. (A42)].
As with the uptake of nitrogen, phytoplankton uptake of phosphorus in Eq. (A7) is the minimum of a diffusion-dependent
rate and a balanced growth/excess uptake rate. This uptake comes entirely from one pool and the uptake term in Eq. (A7) is

correspondingly given by

8P upt max max

e :min{ag)N(l)PQqSl(, 2 )GP+VP[ (ma )Pcpr”, (A26)
ot |yw

where ag) is the specific affinity constant for phosphorous and (bl()max) is the maximum phosphorous quota. Values for both

parameters are given in Table A3. If the uptake rate is negative, the entire phosphorus uptake goes to the dissolved organic
phosphorus pool, Ré,l).
Predation of phytoplankton within BFM17 is solely performed by zooplankton, and each of the predation terms appearing

in Egs. (A5)-(A7) are equal and opposite to the zooplankton predation terms, namely

9 Pz prd

ot

prd 9 Zz

i=C,N,P. (A27)

T

bl
P;
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Equations for the zooplankton predation terms are given in the next section.

Finally, phytoplankton chlorophyll, denoted P, with the rate equation given by Eq. (A8), contributes to the definition of
the optimal irradiance value in Eq. (A11) and of the phytoplankton contribution to the extinction coefficient in Eq. (A4).
The phytoplankton chlorophyll source term in Eq. (A8) is made up of only two terms: chlorophyll synthesis and loss. Net
chlorophyll synthesis is a function of acclimation to light n conditions, availability of nutrients, and turnover rate, and is given
by
exu

syn rsp

lys 6P
= pent (1 —p) <

Réz) ot

ot

gpp o PC

CO, ot

0P
ot

0Fc

ot

_ B
Fc

OFc
ot

; (A28)

RV R CO,

where pcp regulates the amount of chlorophyll in the phytoplankton cell and all other terms in the above expression have been
defined previously. The term p.p is computed according to a ratio between the realized photosynthetic rate (i.e., gross primary

production) and the maximum potential photosynthesis Geider et al. (1997), and is correspondingly given as

1- OP: | OPc|™
pent = 6 min { 1, 7(2) 1e) o -l - v L : (A29)
ol Epar Pent t lco, t | r®

where 00(}?1) is the maximum chlorophyll to carbon quota and C“El?l) is the maximum light utilization coefficient, both of which

can be found in Table A3. Chlorophyll loss in Eq. (A8) is simpler and is just a function of predation, where the amount of
chlorophyll transferred back to the infinite sink is proportional to the carbon predated by zooplankton, giving

prd
0P

ot

loss B = 9 Pe

T P ot (A30)

Zc .
A3 Zooplankton equations
The zooplankton LFG group in BFM17 is part of the living organic CFF and is composed of separate state variables for

carbon, nitrogen, and phosphorous, denoted Z¢, Zn, and Zp, respectively (see also Table 1). The governing equations for the

constituent state variables are given by:

5. Zooplankton functional group in the living organic CFF, carbon constituent (state variable Z¢):

rel

8Zc 0z ™ 0Zc ™ 0Ze| 0z
— = — — - — , (A31)
Ot |pio ot |p. ot |co, ot R ot R®
6. Zooplankton functional group in the living organic CFF, nitrogen constituent (state variable Zy):
9 ZN o ZN prd 9 ZN rel o ZN rel 9 ZN rel
— == - — - — - — , (A32)
Ot |pio ot Py ot R ot R® ot | e
7. Zooplankton functional group in the living organic CFF, phosphorus constituent (state variable Zp):
b ZP P ZP prd 9 ZP rel b ZP rel ) ZP rel
— = —= - — - — - — , (A33)
0t |uio ot P ot R ot R ot | v
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Table A4. Zooplankton parameters, values, units, and descriptions within the BFM17 pelagic model.

Symbol Value Unit Description

bz 0.02 d! Basal specific respiration rate

rg)) 2.00 d! Potential specific growth rate

d(ZO) 0.25 d! Oxygen dependent specific mortality rate

dz 0.05 d! Specific mortality rate

nz 0.50 - Assimilation efficiency

Bz 0.25 - Fraction of activity excretion

S 0.60 - Partition between dissolved and particulate excretion of C
e 0.72 - Partition between dissolved and particulate excretion of N
ey 0.832 - Partition between dissolved and particulate excretion of P
h(ZF) 200.0 mgCm™3 Michaelis constant for total food ingestion
0z.p 1.00 - Availability of phytoplankton to zooplankton

I/g) 1.0 d—! Specific rate constant for phosphorous excretion

1/<ZN) 1.0 d! Specific rate constant for nitrogen excretion

@;’P‘) 7.86 x10™*  mmolP (mg C)~!  Optimal phosphorous quota
@Spt) 0.0126 mmolN (mg C)™'  Optimal nitrogen quota

where, once more, descriptions of each of the source and sink terms are provided in Table A2.
Zooplankton predation of phytoplankton, which appears as the first term in each of Eqs. (A31)-(A33), primarily depends on
the availability of phytoplankton and their capture efficiency, and is expressed as

0Z;
ot

d
pr Pz

Fe

P;

where r(ZO) is the potential specific growth rate and h(ZF) is the Michaelis constant for total food ingestion. These parameters

F
16— Zc| . i=CNP, (A34)
Pc+hy

and their base values are included in Table A4. Here, f éT) is the temperature regulating factor for zooplankton growth given
by Eq. (A1). The total food availability can be expressed as dz p Pc, where 7 p is the prey availability of phytoplankton and
is included in Table A4.

Zooplankton respiration is the sum of active and basal metabolism rates, where active respiration is the cost of nutrient

ingestion, or predation. The resulting respiration rate is given by

0Zc |™P 97 P4
0| =—nz—pz) 5 +baf Ze (A35)
t lco, ot |p,

where 777 is the assimilation efficiency, 37 is the excreted fraction uptake, and by is the basal specific respiration rate. All three
parameters are included in Table A4.
The biological release terms in Eqs. (A31)-(A33) are the sum of zooplankton excretion, egestion, and mortality. Excretion

and egestion are the portions of ingested nutrients, resulting from predation, that have not been assimilated or used for respira-
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tion. Zooplankton mortality is parameterized as the sum of a constant mortality rate and an oxygen-dependent regulation factor

given by
(0) %
— A36
Z T O+4ho’ (A36)

where O represents the oxygen constituent of the dissolved gas in the inorganic CFF and K is the half saturation coefficient
for chemical processes given in Table AS. The total biological release is then partitioned into particulate and dissolved organic

matter, giving

LY rel ; LY prd
o (>:€(Z){ﬁz 5| rdztdy [1— ;0)} 5024, i=C,NP, (A37)
R P;
(9Zl rel ; 6Z rel
- {1—59} il i=CN,P, (A38)
ot |p® ot | g

where eg) is the fraction excreted to the dissolved pool, dz is the specific mortality rate, and dg)) is the oxygen dependent
specific morality rate. Base values for each parameter are given in Table A4.
The zooplankton also excrete into the nutrient pools of phosphate, N (1), and ammonium, N ). These effects are represented

by the final terms of Egs. (A32) and (A33), which are parameterized by

0Zn (N) { ZN t):|
—_— =v, /'max |0, = — o | Zn, (A39)
ot |y 2 Zc NN
0Zp ™ (P) [ Zp t):|
— =v,’max |0, — —op"" | Zp, A40
It |y z Zc ©p P (A40)
where V(ZN) and Z/(ZP) are specific rate constants and <p§\?p Y and <p§,°p Y are the optimal zooplankton quotas for nitrogen and

phosphorous, respectively. All four parameters are included in Table A4.
A4 Dissolved organic matter equations

The governing equations for the three constituents of dissolved organic matter are given by:

8. Dissolved matter in non-living organic CFF, carbon constituent [state variable Rél)]:

rel

exu aZC
RO ot

lys aPC
RY ot

oRY
ot

_ OP

ot
bio

1 — IR, (Ad1)
RSV

9. Dissolved matter in non-living organic CFF, nitrogen constituent [state variable RI(\IU]:

rel upt

upt dPx
N®@) at

97

ORY)| R
R](\]l) Bt

ot oot
bio

oRy

0 ot

— min
R{V

N(@3)

1 — (v RY, (A42)

10. Dissolved matter in non-living organic CFF, phosphorus constituent [state variable Rl(,l)]:

rel
— min |0, ﬁ
Rl()l) at

upt

b 97
R[()l) 8t

ORYM |  op

ot T oot
bio

] — (v R (A43)

N(1)
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Table AS. Values, units, and descriptions for dissolved organic matter, particulate organic matter, and nutrient parameters within the BFM17

pelagic model.

Symbol Value Units Description
g("f)c ) 0.05 d—! Specific remineralization rate of dissolved carbon
Cn 0.05 d! Specific remineralization rate of dissolved phosphorus
Cn e 0.05 d! Specific remineralization rate of dissolved nitrogen
ozg(";)c) 0.1 d-! Specific remineralization rate of particulate carbon
Enva 0.1 d-! Specific remineralization rate of particulate phosphorus
Ene) 0.1 d! Specific remineralization rate of particulate nitrogen
Ai\';i(t;) 0.01 d—! Specific nitrification rate at 10 °C
ho 10.0 mmolOz m—3 Half saturation for chemical processes
Qéo) 12.0 mmolO; mgC ™! Stoichiometric coefficient for oxygen reaction
Qf\]o) 2.0 mmolOs mmoIN~'  Stoichiometric coefficient for nitrification reaction

625 All terms except for the last terms in each of these equations, representing remineralization, have been defined in previous

630

sections. Remineralization of dissolved organic matter by bacteria is parameterized within BFM17 as a rate that is proportional

E;i(rﬁc)R(Cl), where

is a constant that controls the rate at which dissolved carbon is remineralized and returned to the pool of carbon; this

to the local concentration of that dissolved constituent. In Eq. (A41), remineralization is parameterized as «

(sinkc)
R

constant is given in Table AS. In Eqs. (A42) and (A43), remineralization is represented by the parameters () and (yay,

[e%

which are the specific remineralization rates of dissolved ammonium and phosphate, respectively. These rates are also included
in Table A5

AS Particulate organic matter equations

The governing equations for the three constituents of particulate organic matter are given by:

11. Particulate matter in non-living organic CFF, carbon constituent [state variable R(CQ)]:

rel

RN Y/
RéQ) 8t

oR%
ot

_ R
ot

bio

— ol RY, (Ad4)

(@)
RC

12. Particulate matter in non-living organic CFF, nitrogen constituent [state variable RI(\IQ)]:

rel

b 97y
RI(\I2) ot

Ry
ot

_ aP

2
- — ey R, (A45)

R

bio
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13.

Particulate matter in non-living organic CFF, phosphorus constituent [state variable Rl(,Q)]:

rel

ot

ORY
ot

_ 0P

ot
bio

) - fN(l)R]()Q) .

Rl()2> Rl()2

(A46)

Once again, all terms except for the final remineralization terms in each equation have been defined in previous sections.

Remineralization of particular organic matter by bacteria is parameterized within BEM17 as a rate that is proportional to

the local concentration of that particulate constituent. In Eq. (A44), remineralization is parameterized by «

(sinkc)
QR

where

is a constant that controls the rate at which the particulate carbon is remineralized. The base value for this constant

is provided in Table AS. The parameters £y s) and €1y are the specific remineralization rates of particulate ammonium and

phosphate, respectively. The specific remineralization rates for particulate organic matter are also presented in Table AS.

A6 Dissolved gas and nutrient equations

The only dissolved gas resolved by BFM17 is oxygen, O, (carbon dioxide is treated as an infinite source/sink) and the dissolved

nutrients in the model are phosphate, N1, nitrate, N(?), and ammonium, N®) (see also Table 1). Governing equations for

each of these state variables are given by:

14. Dissolved gas in the inorganic CFF, oxygen constituent (state variable O):

20| _o0|"™ Q@ [ PP _ O™ _0Ze[™ _ o oy _ e )
Ot |y, Ot O o, Ot |co, Ot o, © f
8N(3) nit
L N
6t N(@)

15. Dissolved nutrient in the inorganic CFF, phosphate constituent (state variable N (1)):

upt LY/ rel
+ v B + &y BREY + 67:

N

N
ot

B

ot

)
N1

bio

16. Dissolved nutrient in the inorganic CFF, nitrate constituent (state variable /N 2)y.

upt 8N(2) nit
_|_
N@) ot

ON(?)
ot

0PN
ot

)

N(®)

bio

17. Dissolved nutrient in the inorganic CFF, ammonium constituent (state variable N (3)):

upt Y/ nit
oo B Fevo BY + 58
N®)

rel 8N(3)
Ne Ot

ONG)
ot

R

ot

bio N®

(A47)

(A48)

(A49)

(A50)

Aeration of the surface layer by wind, 90/ 3t\wmd, is parameterized as described in Wanninkhof (1992, 2014). In a OD model

it is a source term for dissolved oxygen and so belongs in Eq. (A47). However, in any model of one dimension or more it
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should be treated as a surface boundary condition for dissolved oxygen and so belongs in Eq. (17) and should be omitted from
Eq. (A47). The parameters Q(CO) and Qg\?) are stoichiometric coefficients used to convert units of carbon to units of oxygen
and nitrogen, respectively. All terms in the above equations have been defined in previous sections, except for nitrification.
Nitrification is a source term for nitrate and is parameterized as a sink of ammonium and oxygen as

nit nit

ON®@) ON®)

_ — A(ni[) (T) (O)N(3) A51
at NG at N® N®) fN fZ I ( )
where Aﬁ\';lg) is the specific nitrification rate, given in Table AS. The terms fIEIT) and f éo) are defined in Egs. (A2) and (A36),
respectively.

Appendix B: Zero-Dimensional Test of the BFM17

As a simple test without the influence of any particular physical model (as discussed previously, the choice of physical model
can greatly affect the results) BFM17 was integrated in a OD (i.e., time only) test for 10 years using sinusoidal forcing for the
temperature (in units of °C), salinity (psu), 10 m wind-speed (m s~!), and PAR (W m~2) cycles. This forcing is implemented

as
FOa () = [ Fl) 4 F@Vﬂ —05 {FS("”) — F0 ] cos (tR) (B1)

where F'("*) is the annually varying forcing term, ‘var’ indicates the variable of interest, corresponding to temperature (‘temp’),
salinity (‘sal’), wind speed (‘wind’), and PAR. In Eq. (B1), F‘,(Jvar) and Fs(var) are, respectively, the winter and summer ex-
treme values for the forcing term considered, 0 < ¢ < 360 is the time, and R = 7/180. The winter and summer values were
chosen to be similar to those found in the observational data described in Section 4, with [F{™ F'™)] = [10°C,30°C],
(P8 7S = [37 psu, 36.5 psu), [F™ A = [6 ms~!,2 ms~1, and [FN), FF®] = 10 W m=2,120 W m—2].
The exact observational data was not used, and instead we used an idealized version of the data for simplicity and because
there is no physical variable in the OD framework to properly apply the exact observations. Note that, in the 0D framework, the
wind forcing does not constrain the biogeochemical dynamics, but does play a role in oxygen exchange with the atmosphere,
defined according to Wanninkhof (1992, 2014).

Initial values for chlorophyll, oxygen, phosphate, and nitrate were taken to be similar to values from the BATS/BTM ob-
servational data, with P.y = 0.2 mg Chl-a m—3, O = 230 mmol O, m—3, N() = 0.06 mmol P m~3, and N® = 1.0 mmol N
m~3). Phytoplankton carbon was calculated using the maximum chlorophyll to carbon ratio, Hc(gl) in Table A3. Initial values
for zooplankton carbon, dissolved carbon, and particulate organic carbon were assumed to be the same as the phytoplankton
carbon. Ammonium was assumed to have the same initial concentration as phosphate. All other constituents were calculated
using their respective optimal ratios in Tables A3 and A4.

Figure B1 shows the seasonal cycle of surface chlorophyll, zooplankton carbon, and nitrate over the last 4 years of the
10-year simulation period, indicating that a stable seasonal cycle with reasonable ecosystem values can be attained by the

model, regardless of its coupling to a physical model. Figures B1(a) and (c) also show monthly averaged values taken from the
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Figure B1. Seasonal cycle of surface (a) chlorophyll, (b) zooplankton carbon, and (c) nitrate from the 0D test of BFM17. Results are shown
for the last 4 years of the 10-year simulation. Panels (a) and (c) show monthly averaged values taken from the observational data described

in Section 4.

observational data described in Section 4. Although the agreement between the 0D BFM17 model and the observations is not
perfect, both are qualitatively similar and close in magnitude, providing confidence in the accuracy of the model despite the

lower fidelity of the 0D test.

Code and data availability. Current versions of BFM17 and BFM56 are at https://github.com/marco-zavatarelli/BFM17-56/tree/BFM17-56
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