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Abstract

Prediction of the remaining useful life of in-field components, traditionally, relies on condition monitor-

ing signals which are correlated with the physical degradation of the system. Many models assume that

condition monitoring signals behave under similar environmental conditions (e.g. pressure, temperature,

workload and relative humidity) or these conditions have no effect on degradation process. In this paper, we

propose a Brownian motion process with a stress-dependent drift to model multiple time-varying environ-

mental covariates. A semiparametric regression approach utilizing penalized splines is, further, proposed

to model the environmental covariates-drift relationship. The unique feature of our approach is that it

does not assume a functional form for the degradation process drift and models multiple environmental

covariates’ effect on the degradation process. Moreover, the model is combined with in situ degradation

measurements of the in-field unit and its environmental conditions to predict the unit’s remaining useful

life through a Bayesian updating scheme. The performance of the proposed framework is investigated and

benchmarked through analysis based on numerical studies and a case study using real-world data of frying

oil degradation collected from connected fryers.

Keywords: Environmental covariates, Remaining useful life estimation, Degradation modeling, B-spline

regression, Bayesian updating

1. Introduction

Recent advances in sensor technology and wireless communication systems are playing a significant role in

what is referred to as the Internet of Things (IoT). Remote condition monitoring of physical assets using

sensor data provides unprecedented opportunity for assessing the health and performance of engineering

systems. Many statistical models have used sensor data, typically referred to as condition monitoring (CM)

signals e.g. internal resistance of automotive battery or vibration signal of a rotating machinery, to predict

the remaining useful life (RUL) of in-service units (19; 10). In such models, a historical database of CM
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signals is utilized to predict the RUL of an in-service unit through a linkage between the historical data and

real-time CM information collected from the in-service units. A unit is typically deemed failed once its CM

signal reaches a pre-specified threshold value (30).

In most of the existing RUL prediction models, it is assumed that the units perform under a fixed

operating condition (e.g. pressure, temperature, workload and relative humidity), i.e. the environmental

condition has no effect on the failure and degradation process (19; 18; 36; 24; 39). However, in many cases,

the environmental condition varies with time and units may be exposed to different operating conditions.

Under such circumstances, the degradation of an operating unit can greatly decelerate or accelerate, and

the CM signal may exhibit different evolution rate over time. For products with degradation driven by

environmental conditions, information about these variables can be critical for modeling the degradation

process. For example, the degradation of the frying oil is primarily driven by a series of physical and

chemical reactions as a result of change in temperature, humidity, and other factors affecting oil quality

during frying. There are many other examples where degradation is driven by the usage and environmental

variables, such as degradation of ball bearings, the loss of color and gloss of an automobile coating, and

corrosion in oil transportation pipeline.

Development in technology makes collection and transmission of massive amount of data possible in many

systems. Nowadays, it is common to dynamically record product/system usage as well as other environmental

condition information like temperature, humidity, and etc. Environmental condition data contains rich

information and can be utilized for modeling and predicting product reliability. Most of the literature that

incorporates environmental condition in reliability modeling is based on proportional hazards models. Such

models handle the environmental conditions by incorporating them as covariates in the parametric hazard

functions. For instance, Jardine and Makis (15) used the hazard model for condition-based maintenance

by modeling different attributes of CM signals as covariates. Along this line, Banjevic and Jardine (3)

modeled the operating condition as Markov processes and developed approximations for the failure time

distribution. Moreover, Rizopoulos (34) proposed a joint framework that incorporates a polynomial mixed

effects model and the proportional hazards model. This framework was later extended in Zhou et al. (45)

through updating the parameters of the polynomial mixed effects models. Other extensions and applications

of the proportional hazards model can be found in (12) and (44).

For degradation data analysis, the operating condition and environmental effects are also available in

several settings such as accelerated repeated measure degradation tests (28) and accelerated destructive

degradation tests (9). Most of these approaches proposed in the literature for modeling the environmental

conditions estimate the lifetime of the population rather than that of a single unit operating in the field.

However the few approaches that utilize CM signals for RUL estimation are usually based on mixed effects

model, gamma processes, Brownian motion process and other Lévy processes. Gebraeel and Pan (11), for

instance, extended the mixed effects model with an exponential function to provide individualized prognosis

for an in-service unit with different attributes using a Bayesian approach. Doksum and Hoyland (7) pro-
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posed a stress-dependent drift to account for environmental condition in accelerated life testing experiments.

Later, Whitmore and Schenkelberg (40) proposed a time-scale transformation for accelerated experiments

to account for the level of stress under which the CM signals are operated. Lawless and Crowder (20)

modeled CM signals as a gamma process with random effects and covariates. Li et al. (22) modeled the

effect of a single time-varying environmental covariate based on a two-factor state-space model considering

signal jumps at condition change points. Pang et al. (31) proposed a non-linear diffusion process model to

characterize the degradation process of a product and then a parametric model was developed to establish

the relationship between a single environmental covariate and the model parameters. Similar ideas can be

found in (23), (25) and (2).

Most of the existing statistical models, including the above-mentioned studies, consider only the effect

of a single environmental covariate on the degradation signal. Few studies extended this assumption to

incorporate the effects of multiple environmental factors on CM signal modeling. Park and Padgett (32),

and Ye and Chen (43), for instance, modeled the effect of multiple environmental covariates by assuming

a known physics-based model. A limitation of these approaches is the need to specify the correct physical

model for the covariate-CM signal relationship. However, there exist numerous practical situations where

this parametric form is unknown or difficult to specify. For instance, consider the degradation of ball bearings

operated under different loads and speeds where the parametric form of degradation signal as a function of

environmental covariates is hard to specify (4). As another case in point, consider the degradation of frying

oil in fast food restaurants. During the frying process a complex series of physical and chemical reactions

takes place, resulting in degradation of frying oil. In the field of food science, the physical and chemical

changes of oil and its degradation during frying operations have been extensively studied through lab testing

and experiments (6; 16; 5). Although very useful, most of these studies are qualitative or use a simple

quantitative model under a very specific well-controlled lab environment to describe oil degradation. Thus,

the results in above studies cannot be directly used to model the oil degradation in a real-life setting, such

as in a restaurant environment. An exception is the work by Hong et al. (13) where they modeled the effect

of multiple covariates on degradation process using a non-parametric general path model and considered a

parametric model to describe the covariate process. While this approach works well in case all the units

are exposed to the same environmental condition, it does not apply to the scenario that the environmental

condition covariates are evolving uniquely for each unit. For instance, the case study of this paper models

the degradation of frying oil in different frying pots where the environmental conditions (e.g. temperature,

cooking time, humidity, and etc.) are changing uniquely for each pot. An ideal degradation model in this

case should be able to take into account this unique evolution of environmental conditions. With the growing

usage of IoT-enabled fryers in fast food restaurants, the comprehensive dataset collected from the connected

fryers enables us to establish a quantitative data-driven model to consider multiple dynamic factors in the

oil degradation model. Little work has been done in degradation data modeling that considers the uniquely
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evolving environmental covariates. Table 1 summarizes the result of literature survey on prognostics models

considering time-varying environmental condition.

Table 1: Summary of existing literature on prognostics models considering time-varying environmental con-
dition.

Number of
covariates

Covariate
effect
model

Online
updating

Parameter
estimation
procedure

Unique
evolution of

environmental
covariates

Sources

Single Parametric
No

Monte Carlo
No

(15; 9; 3); etc.

Single Parametric
Yes

MLE
No

(34; 45; 11; 25; 31;
22; 2); etc.

Single Parametric
No

MLE
No

(20); etc

Multiple Parametric
No

MLE
No

(32; 43); etc

Multiple Non-
parametric Yes

MLE
No

(13; 41)

Multiple Non-
parametric Yes

EM algorithm
with penalized

splines

Yes
Current work

The purpose of this paper is to develop a degradation modeling framework that does not depend on a

specific parametric form and considers the effect of multiple time-varying environmental covariates as well

as their unit-to-unit variability. Specifically, we propose a stochastic Brownian motion process with a drift

dependent on the environmental conditions to incorporate the effects of multiple operational covariates. A

semi-parametric regression model using penalized splines is considered to model the drift of proposed Brown-

ian motion process. Estimation is then performed through casting the problem into a mixed effects modeling

framework. A Expectation-Maximization (EM) procedure is further developed to estimate the parameters

of the proposed framework. This framework offers a number of advantages. First, it is semiparametric and

does not assume any rigid parametric form on the Brownian motion process drift. The penalized splines

that combine a set of spline basis functions with a quadratic penalty on the corresponding coefficients,

also, strike a balance between ovefitting and accuracy of covariate-drift relationship. Moreover, the mixed

modeling framework proposed offers a natural way for choosing the smoothing parameters. The proposed

framework allows for the unique evolution of environmental covariates for each unit. Also, the stochastic

model can further be updated through a Bayesian procedure combining the degradation signal observations

and environmental conditions to predict the RUL of the in-field unit in real-time.

The remainder of this paper is organized as follows. Section 2 provides a detailed framework of our

modeling approach and estimation procedure and presents the RUL prediction using online updating for the

in-field units. To illustrate the effectiveness of our proposed approach, extensive numerical study and a case
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study based on the degradation data of frying oil are conducted in Section 3 and Section 4. Finally, Section

5 concludes the paper with a short discussion.

2. Model Development

In this section, we first introduce the notation and then develop an offline modeling framework using a

semi-parametric based Brownian motion process modeling the effect of multiple time varying environmental

covariates on the degradation process. Then, an online updating procedure is proposed to combine the

degradation data and environmental condition observations of the in-service unit with the developed offline

model.

2.1 Notation for the data

Here, we introduce some notations for the degradation data model and the environmental covariate informa-

tion. Suppose the database contains a historical dataset of N units. For the ith unit, denote the degradation

measurements at time ti,j by Xi(ti,j), i = 1, ..., N , j = 0, ..., ni, and ni marks the last timepoint where the

degradation measurement was taken. The history of degradation signal observations for unit i is denoted as

Xi(ti,0:ni) = [Xi(ti,0), ..., Xi(ti,ni)]
t
. Let ωi(τ) = [ωi,1(τ), ωi,2(τ), ..., ωi,q(τ)]

t
be a vector denoting the values

of q environmental covariates at time τ for unit i. The value of covariate l for unit i at the time τ is denoted

by ωi,l(τ). The history of covariate process for unit i is denoted by Ωi(ti,ni) = {ωi(τ) : 0 ≤ τ ≤ ti,ni}, which

records the dynamic covariates information from time 0 to time ti,ni for unit i. We consider all the observed

degradation signals and the corresponding operating condition for each unit i in our historical database as

Di and all observed data from N units as D = {Di}Ni=1. It should be noted that in any

Figure 1 shows the degradation process measurements and two corresponding environmental covariates.

The CM signal measurements are done at equal time intervals ∆T while the two environmental covariates

continuously change over time and are measured within each time intervals ∆T .

2.2 Offline degradation modeling based on the Brownian motion process

2.2.1 Model Structure

The Borwnian motion process has several good properties and is often used to describe the degradation of

products (21; 43; 1; 33). In this paper, we model the degradation based on a Brownian motion process as

follows:

X(t) = x0 +

∫ t

0

Γ(ω(τ))dτ + σW (t), (1)

where x0 is the initial degradation, Γ : Rq → R is the drift dependent on the level of environmental covariates

ω(τ) at time τ , and σ is the diffusion parameter. W (t) denotes the standard Brownian motion with the
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following three properties:

1. W (0) = 0, where W (t) ∈ (−∞,+∞).

2. W (t+ ∆t)−W (t) ∼ N (0,∆t).

3. W (t) ∼ N (0, t).

Figure 1: Unit degradation in response to time-varying environmental covariates.

We introduce an additive regression model to incorporate operating condition information into the degra-

dation model. In particular, the drift of process for unit i at time t can be modeled as follows:

Γ(ωi(t)) = β0 +

q∑
l=1

fl (ωi,l(t);βl) , (2)

where each function fl(.) models the effect of an environmental covariate. Here β0 is the intercept and

βl denotes the parameter(s) in each function fl(.), l ∈ {1, ..., q}. The coefficient vector of the functions

parameters can be denoted as β′ =
[
βt1, ...,β

t
q

]t
. For each covariate l, the function fl(ωi,l(τ);βl) represents

the effect of ωi,l(τ) at time τ on the drift of degradation process.

The cumulative damage model considered by equations (1) and (2) is motivated by the cumulative

damage model for the accelerated failure-time model in Nelson (29). For certain degradation mechanisms

(e.g. wear out, crack growth, and decomposition of chemical structures), the assumption of cumulative

effects is appropriate. In the motivating example of this article, the environmental variables cause certain

chemical reactions which leads to degradation of oil over the time. Thus, the assumption of cumulative

effects is appropriate for the application.
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Two approaches are typically available to choose the functional form for the effect functions fl(.). The first

approach is based on the models motivated by physical, chemical and engineering knowledge. For example,

the Arrhenius relationship (27) is typically used to model the temperature effect on the degradation rate.

When there is not enough information on the correct form of fl(.) from physical/engineering knowledge

or when such models do not fit the data well, nonparametric models can be used. For this approach, the

functions fl(.) can be estimated as the linear combination of the spline bases. Considering the B-spline bases

to non-parametrically model each covariate l, we have that:

fl(ωi,l(τ);βl) =

dl∑
d=1

Btd,l(ωi,l(τ))βd,l, (3)

where Bd,l(ωi,l(τ)) is the value of the corresponding B-spline basis evaluated at ωi,l(τ), βd,l’s are B-spline

coefficients and dl is the number of B-spline bases for each covariate l.

Based on the independent increment property of the Brownian motion process ∆Xi(ti,j) = Xi(ti,j) −

Xi(ti,j−1) is independent and identically distributed with a normal distribution N
(∫ ti,j

ti,j−1
Γ(ω(τ))dτ, (σ

√
δti,j)

2
)

where σ is the diffusion of the process and δti,j = ti,j − ti,j−1. Considering the additive regression model in

(2), the mean of ∆Xi(ti,j) in each interval [ti,j−1, ti,j ] can be written as follows:

µij =

∫ ti,j

ti,j−1

Γ(ωi(τ))dτ = β0δti,j +

∫ ti,j

ti,j−1

q∑
l=1

fl (ωi,l(τ);βl) dτ. (4)

It should be noted that most of the IoT systems record the environmental covariates information in

discrete time points. Therefore, a discrete-data version of (4) should be estimated for any real life application.

Such an estimate of equation (4) can be obtained as follows:

µij = β0δti,j +

q∑
l=1

∑
ti,j−1≤τi,k<ti,j

fl(ωi,l(τi,k);βl)(τi,k+1 − τi,k). (5)

Here, τi,k are the time points where the environmental covariates were recorded for unit i. Thus, consid-

ering B-splines to model fl(.) as in (3), equation (4) can be rewritten as follows:

µij = β0δti,j +

q∑
l=1

dl∑
d=1

Gtd,l(ti,j)βd,l, (6)

where Gd,l(tij) =
∑
ti,j−1≤τi,k<ti,j Bd,l(ωi,l(τi,k))(τi,k+1 − τi,k).

One popular way of modeling the additive regression is through penalized splines, and here we focus on

the penalized B-splines or P-splines (8). For covariate l = 1, ..., q suppose we choose B-spline of degree ml

and we consider Kl interior knots equally spaced on the input interval. Then, the cumulative effect of each

covariate in each time interval can be modeled as sl(ti,j) = Gt
l(ti,j)βl where Gl(ti,j) is constructed based
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on a set of dl = Kl + ml − 1 basis functions evaluated at ti,j and βl = [β1,l, ..., βdl,l]
t

is the corresponding

dl-vector of coefficients.

To avoid overfitting, we augment the bases with a quadratic penalty on the coefficients, typically based

on the squared difference of the adjacent coefficients. Such penalty can be written in the form of Pl =

λl
∑dl−1
d=1 (βd+1,l − βd,l)2 which has a matrix form as follows:

Pl = λlβ
t
l


1 −1 0 . . .

−1 2 −1 . . .

0 −1 2 . . .
...

...
... . . .

βl = λlβ
t
lSlβl, (7)

where λl ≥ 0 is a smoothing parameter. Increase in the λl forces a smoother curve, while λl = 0 implies no

penalization. In this paper, we focus on the cubic B-splines and set the degree as 3 for all covariates, i.e.

m1 = ... = mq = 3. Regarding the number of knots, for simplicity, we use the same number of interior knots

for all q covariates.

2.2.2 Model Estimation

Let Ψ = [β0, σ,λ
t]
t

denote the parameters corresponding to the parametric component of the model where

λ = [λ1, λ2, ..., λq]
t. Also, let β′ =

[
βt1, ...,β

t
q

]t
denote the coefficients in the non-parametric component

corresponding to the B-splines. The penalized log-likelihood estimate of model parameters considering the

independent increment property of Brownian motion process can be written as follows:

`P (Ψ,β′) =
N∑
i=1

ni∑
j=1

ln (p(∆Xi(ti,j)|Ψ,β′))− 2−1

q∑
l=1

λlβ
t
lSlβl, (8)

where p(∆Xi(ti,j)|Ψ,β′) = N (β0δti,j +Gt(ti,j)β
′, (σ

√
δti,j)

2) and G(ti,j) = [Gt1(ti,j), ..., Gtq(ti,j)
]t

. Since

the works of (17), (38) and (35), it has been recognized that this penalized likelihood estimation can

be reformulated as a mixed effects model by considering that the quadratic penalty amounts to assum-

ing a normal random effects distribution. Specifically for l = 1, ..., q, let p(βl|λl) = Ndl
(
0, (λlSl)

−1
)

=

c0λ
2−1dl exp(−2−1λlβ

T
l Slβl) where c0 is the normalizing constant independent of βl and λl. Noting that Sl

is of full rank, we then have the marginal log-likelihood as follows:

`P (Ψ) = ln

∫ N∏
i=1

ni∏
j=1

p(∆Xi(ti,j)|Ψ,β′)
q∏
l=1

p(βl|λl)dβl

 . (9)

Formulating the additive regression drift as a mixed effects model allows us to exploit the wealth of mixed

model methodology for inference. We can utilize an EM algorithm to estimate the model parameters.
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The EM algorithm is an iterative method for computing maximum likelihood estimators by alternating

between the expectation step, the E-step, and its maximization, the M-step, at every iteration until con-

vergence. We notice here that the coefficients β′ are actually hidden random variables in our mixed effects

framework. The EM algorithm proceeds by computing the expectation of the log-likelihood of the complete

data with respect to the posterior p(β′|D; Ψ) in the E-step. It is straightforward to show that the posterior

distribution of β′ is multivariate normal ND(β′|µβ′ ,Σβ′) with :

Σβ′ =

(
1

σ2

N∑
i=1

ni∑
j=1

G(ti,j)G(ti,j)
t

δti,j
+ Sλ

)−1

,

µβ′ =

(
1

σ2

N∑
i=1

ni∑
j=1

G(ti,j)G(ti,j)
t

δti,j
+ Sλ

)−1

×
N∑
i=1

ni∑
j=1

(∆Xi(ti,j)− β0)G(ti,j),

(10)

where Sλ is aD×D block diagonal matrix formed by taking the blocks of λlSl for l = 1, ..., q andD =
∑q
l=1 dl.

At each iteration ν of the EM algorithm, the expected value of the logarithm of complete likelihood with

respect to the posterior p(β′|D; Ψ) is as follows:

Q(ν)(∆X,β′; Ψ) = Ep(β′|∆X;Ψ(ν)){`P (Ψ,β′)}, (11)

where ∆X =
{
{∆Xi(ti,j)}nij=1

}N
i=1

is the collection of degradation process shift observations from historical

data. The E-step corresponds to analytical calculation of the function Q(ν), considering the model parameters

Ψ(ν) calculated in the previous iteration. The M-step entails maximizing the Q(ν)(∆X,β′; Ψ) with respect

to the parameters β0, σ and λ. In this regard, we get the following formulas to update the parameters β0, σ

and λ:

β
(ν+1)
0 =

1∑N
i=1

∑ni
j=1 δti,j

N∑
i=1

ni∑
j=1

(∆Xij −Gt(tij)µ
(ν)
β′ ),

σ(ν+1) =
( 1

M

N∑
i=1

ni∑
j=1

(
(Ri(tij)−Gt(tij)µ

(ν)
β′ )

2

δti,j
+
Gt(tij)Σ

(ν)
βl
G(tij)

δti,j
)
)1/2

,

λ(ν+1)
p =dl

(
µ

(ν)
βl

t
Slµ

(ν)
βl
− tr(Slµ

(ν)
βl

)

)−1

,

(12)

where M =
∑N
i=1 ni and Ri(ti,j) = ∆Xi(ti,j) − β0δti,j denotes the residual observations from parametric

component. Please refer to appendix for a detailed derivation of these updating formulas. Notice that after

initializing the parameters to some values (β
(0)
0 , σ(0), λ(0)), the algorithm proceeds by iteratively performing

the E-step and M-step until some convergence criterion is satisfied. Here, we note that inference for β′

can be directly obtained since the sufficient statistic for its posterior is computed in the E-step. Using this
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property, we propose a Bayesian updating scheme for online updating based on the new data available from

the in-service unit in the next section.

2.3 RUL prediction via online Bayesian updating

The proposed RUL prediction approach requires the simultaneous monitoring of both degradation signal and

operating conditions. For in-service unit r at the current time point th when the prediction is to be made,

assume sr is the recent value of degradation signal observation, i.e. Xr(tr,0:h) = [Xr(tr,0), ..., Xr(tr,sr )]
t and

tr,0:h = [tr,0, tr,1, ..., tr,sr ]
t where tr,sr ≤ th. Moreover, we consider ∆Xr(tr,1:h) = [∆Xr(tr,1), ...,∆Xr(tr,sr )]

t

and R̂r(tr,1:h) = [R̂r(tr,1), ..., R̂r(tr,sr )]
t where R̂r(tr,j) = ∆Xr(tr,j) − β̂0δtr,j as the vector of estimated

residual observations for in-service unit r. In addition, let Ωr(tr,h) = {ωr(τ) : 0 ≤ τ ≤ tr,sr} denote

the environmental covariates observations from unit r up to sr. The posterior distribution of the envi-

ronmental effect coefficients β′(r) based on the newly observed data from the in-service unit up to time

sr, can be computed as p(β′(r)|R̂r(tr,1:h),Ωr(tr,h), Ψ̂) ∝ p(R̂r(tr,1:h),Ωr(tr,h)|β′(r), Ψ̂)π(β′(r), Ψ̂) where

p(R̂r(tr,1:h),Ωr(tr,h)|β′(r), Ψ̂) denotes the likelihood for in-service unit r, which by the property of Brow-

nian motion process is normally distributed, and π(β′(r), Ψ̂) refers to the prior distribution estimated in

the offline stage and in the E-step of EM algorithm. Assuming normally distributed β′(r), and follow-

ing the conjugate property of multivariate normal distribution, the posterior is also normally distributed

p(β′(r)|R̂r(tr,1:h),Ωr(tr,h); Ψ̂) ∼ N (µ̂β′r,h , Σ̂β′r,h
) where µ̂β′r,h and Σ̂β′r,h

represent the mean and covariance

matrix of the posterior. Considering the prior parameter estimates µβ′0 and Σβ′0
, it is straightforward to

derive the closed form expression for the posterior mean and covariance matrix as follows:

µ̂β′r,h = Σ̂β′r,h

[
Gt(tr,1:h)∆T−1R̂r(tr,j)

σ2
+ Σ−1

β′0
µβ′0

]
,

Σ̂β′r,h
=

[
Σ−1
β′0

+
Gt(tr,1:h)∆T−1G(tr,1:h)

′

σ2

]−1

, (13)

where Gt(tr,1:h) = [G(tr,1), ...,G(tr,sr )], ∆T = diag(δtr,1, ..., δtr,sr ). Also µβ′0 , Σβ′0
and σ can be replaced

by their estimates µ̂β′0 , Σ̂β′0
and σ̂ obtained in the previous section from the offline stage. It should be noted

that the model updating performed in equation (13) involves the inversion of Σβ′0
which has a computational

complexity of O((q × dl)3). We note that q × dl is always reasonably small and therefore updating of the

parameters does not take much of time.

The RUL of a unit is defined as the remaining time until its degradation level reaches a pre-defined

failure threshold DF . Two assumptions for RUL prediction under time-varying environmental covariates

can be considered. The first one assumes that the future environmental covariates are unknown and can

be estimated from their most recent observation. Let Tr denote the RUL of unit r, i.e. Tr = inf{t ≥ 0 :

Xr(tr,sr ) +Xr(t) ≥ DF } where DF ≥ Xr(tr,sr ). Then assuming constant stress level ωr(tr,sr ) after tr,sr i.e.

{ωr(τ) = ωr(tr,sr ) : tr,sr ≤ τ}, the RUL of unit r conditional on Ψ̂ and the updated coefficients β′(r) follows
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an inverse Gaussian (IG) distribution as:

P (Tr = t|Xr(tr,sr ),Ωr(tr,h),β′(r), Ψ̂) ∼ IG(t;µIG(th), λIG(th)), (14)

where IG(t; ., .) represents the pdf of an IG distribution, µIG(th) =
DF−Xr(tr,sr )

β̂0+B(ωr(tr,h))tµ̂β′
r,h

is the mean parameter

of IG distribution, and λIG(th) =
(DF−Xr(tr,sr ))2

σ̂2
is the shape parameters of the IG distribution. Here,

recall that ωr(tr,h) is the most recent observation of the environmental conditions for in-service unit r and

B(ωr(tr,h))t = [B1(ωr(tr,h)), ...,Bq(ωr(tr,h))]t are the B-spline bases.

Typically we have control over the environmental covariates and they can be set according to the specific

application. The second assumption, which is used in this study, assumes that the future operating conditions

can be set in advance; therefore, the RUL of the component can be predicted based on the profiled environ-

mental covariates. Assume that the stresses in the future after tr,sr is a time-varying series and denoted as

Ω′(tr,sr ) = {ωr(τ) : sr ≤ τ}. It is quite difficult to obtain an analytical formula of the RUL distribution for a

Brownian motion process under varying drift parameters. For this reason, we use a Monte Carlo simulation

method to estimate the RUL distribution approximately. The basic idea is to simulate the evolution of the

degradation process in the future with the knowledge at time tr,sr . For simplicity, the time interval for pre-

dictions are assumed to be uniform and equal to unit interval 1, namely tr,sr+j−tr,sr+j−1 = 1, j = 1, 2, ...,m.

For a simulated degradation path, the m-step prediction of the future state, that is Xr(tr,sr ), under varying

stress series Ω′(tr,sr ) is given by the following procedure:

Step 1: Generate a sample β′(r)
∗

from N (µ̂β′r,h , Σ̂β′r,h
);

for j = 1, 2, ...,m;

Step 2: Generate a sample ∆Xr(tr,sr+j) fromN (β̂0+
∑q
l=1

∑
tr,sr+j−1≤τr,k<tr,sr+j

fl(ωr,l(τr,k);β
′(r)∗
l )(τr,k+1−

τr,k), σ∗2)

Step 3: Let Xr(tr,sr+j) = Xr(tr,sr+j−1) + ∆Xr(tr,sr+j).

Repeat Step 1-3 U times (say U = 1000), we can obtain U simulated paths to predict the states of

Xr(t) after time tr,sr . To obtain the distribution of the RUL, we can determine when the U samples fail,

respectively. As mentioned above, the RUL for a sample can be obtained by the first simulated steps when

Xr(tr,sr+1:sr+m) exceeds DF . Then, we have U simulated RULs, which are denoted as {T 1
r , T

2
r , ..., T

U
r }.

The mean and confidence interval can be estimated approximately using these simulated RULs. The mean

RUL at time tr,sr is estimated by 1
U

∑U
u=1 T

u
r . The approximated 100(1 − α)% CI for RUL at time tr,sr is

estimated by
[
T

(LB)
r , T

(UB)
r

]
, where LB = b(α/2) · Uc, UB = b(1− (α/2)) · Uc and b·c means round to the

nearest integer and T
(u)
r is the u-th ordered statistic of the set of RULs for unit r.
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3. Numerical Study

In this section we conduct simulations to validate the performance of the proposed modeling approach.

Specifically, we first discuss the general procedure to generate degradation signals considering the operating

conditions and to evaluate the performance of different methods. Then using the simulated signals, we

demonstrate the advantage of our proposed framework.

3.1 Simulation Setup

We simulate degradation signals from three model settings. In each model setting, we report the RUL

prediction accuracy of a partially observed in-service unit at varying time points t∗. Specifically, we report

the prediction accuracy for different percentiles of the observed in-service signal (i.e. 35%, 50% and 85%).

Our procedure is based on simulating 20 degradation signals from a specific model setting and then randomly

selecting one of them as the in-service unit, and treating the rest as our historical dataset. This procedure

is repeated 1000 times, and each time we report the absolute error (AE) between the true RUL (Tr(t)) and

the estimated RUL (T̂r(t
∗) as follows:

AE(t∗) = |T̂r(t∗)− Tr(t)|, (15)

where, as mentioned before, a unit is deemed failed once its degradation signal passes its failure threshold.

Specifically, we compare the performance of our approach with the degradation modeling approach proposed

in (25) where a Brownian motion process with a parametric stress-dependent drift is defined to model the

degradation process.

Let us first assume that we have signals generated from a Brownian motion process with a drift dependent

on the effect of one environmental covariate where µij = β0δti,j + αi sin(πωi(tj))(tj+1 − tj), i ∈ {1, ..., 20},

j ∈ {1, ..., 20}. Specifically, we assume that αi ∼ U [3, 3.5] and we generate ωi from a uniform distribution

U [0, 1]. The initial degradation measure is normally distributed as x0 ∼ N (20, 1), the diffusion is set to σ = 1

and degradation signal observations are made at equal time intervals δti,j = 0.5, ∀i, j. Figure 2 demonstrates

the signals generated in such a setting.

As shown in Figure 2, the generated degradation signals are heterogeneous and do not follow a common

functional form. The reason is that unlike the traditional RUL prediction models (14; 19; 18) where the

degradation signals are generated from a common function and have similar temporal evolution, here in each

degradation signal observation stage, the Brownian motion drift is generated according to a random covariate

effect function. Considering these historical signal observations, we can use the framework proposed in this

study which utilizes environmental covariate observations to model the degradation process. For the sake

of comparison, we can fit the mixed effects model proposed in (14) to predict the RUL of a new in-service

unit. The model in (14) utilizes B-splines to model the temporal evolution of degradation signals and does

not consider the effect of environmental covariates. Figure 3 demonstrates the prognosis results for the new

12
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Figure 3: Prognostics using B-spline vs. using proposed method considering the environmental covariate.

in-service unit considering the mean of the parameters’ posterior and the future environmental conditions

as discussed in section 2.3.

From Figure 3, it can be observed that the prediction results based on B-splines as proposed in (14) are

misleading. The main reason is that the historical signal data is heterogeneous hence making it difficult,

even for a non-parametric approach like B-splines, to converge to the true underlying signal of the in-service

unit. However, the model based on the environmental covariate observations can quickly adapt to the trend

of the new in-service unit. The reason is that this model is not limited to the temporal evolution of the

degradation signal and performs regression on the environmental covariate which controls the degradation

process evolution over the time in future.

In order to get insight on the performance of the proposed framework, we perform further numerical

study. We assume that the initial degradation measure is x0 = 0.5 and the diffusion parameter is set to

σ = 1, which are identical across all units. Moreover, it is assumed that the degradation signal observations

are made at equal time intervals δti,j = 1, ∀i, j, the environmental covariates are fixed during the time

13



intervals, and the failure threshold is set to DF = 350. We simulate degradation signals dependent on the

effect of three environmental covariates from the Brownian motion with the following drift in each interval

j of unit i:

µij = β0δti,j +
3∑
l=1

fl(ωi,l(tj);βl)(tj+1 − tj), (16)

Specifically, for j ∈ {1, ..., 30} and i ∈ {1, ..., 20} a vector of three covariates (ωi,l(t), l = 1, 2, 3) is

generated by simulating ωi,1 from a uniform distribution U [0, 2], ωi,2 = 0.9ωi,1 + e1 where e1 ∼ U [0, 1] and

ωi,3 from a uniform distribution U [0, 1]. We adopt the linear function of stress as proposed in (25) with some

modifications to model the stress-drift relationship of ωi,1. To be more specific, we consider f1(ωi,1) = αi,1ωi,1

where αi,1 ∼ N (0.1, 0.252). The second covariate effect function is designed as f2(ωi,2) = exp(−αi,2ωi,2)

where αi,2 ∼ N (2.5, 0.252). The effect of the third covariate is modeled as f3(ωi,3) = αi,3 sin(πωi,3) where

αi,3 ∼ U [1.2, 2.5]. It is also considered that β0 = 20.

3.2 Performance Comparison

We first generate the degradation signals as discussed in section 3.1. In model setting I, we initially only

consider the effect of the first covariate for degradation modeling using the procedure proposed in section

2. Then, we add the effect of the second covariate to the proposed framework and finally we consider the

effect of all three covariates in RUL prediction. These three models are denoted as “Additive Regression I”,

“Additive Regression II”, “Additive Regression III”, respectively. In each of these three models, we compare

the performance of our proposed framework with (25)’s approach where the drift is modeled to be linearly

dependent on ωi,1 for each unit i denoted as “Linear Drift Model”. Figure 4 shows the results of numerical

study in this model setting.
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Figure 4: Results of model setting I

14



0.
0

0.
5

1.
0

1.
5

2.
0

35% Percentile

Lin
ea

r D
rif

t M
od

el

Add
itiv

e 
Reg

re
ss

ion
 II

I

0.
0

0.
5

1.
0

1.
5

2.
0

50% Percentile

Lin
ea

r D
rif

t M
od

el

Add
itiv

e 
Reg

re
ss

ion
 II

I

0.
0

0.
5

1.
0

1.
5

2.
0

85% Percentile

Lin
ea

r D
rif

t M
od

el

Add
itiv

e 
Reg

re
ss

ion
 II

I

Figure 5: Results of model setting II

Figure 4 shows the performance of the proposed framework in comparison to the Brownian motion pro-

cess with parametric linear drift model proposed in (25). As can be seen from this figure, with increase in

the number of observations from the in-service unit the prediction accuracy generally improves. Moreover,

figure 4 shows that as we include more covariates in the proposed degradation modeling framework, the

prediction accuarcy increases. We would, in fact, expect these results as the originally generated degrada-

tion signals are affected by all three environmental covariates. Removing covariates from the degradation

modeling framework introduces extra bias in estimating the diffusion term of the Brownian motion process

and consequently causes inaccurate RUL prediction.

Figure 4 also shows that in the case where we only consider the effect of the first covariate, the non-

parametric approach proposed in this paper performs relatively similar to the linear drift model based on

this covariate. In the earlier stage of RUL prediction when only 35% of in-service unit degradation signal is

observed, however, the parametric approach performs relatively better than our non-parametric approach.

This is intuitively understandable as the linear drift model is based on the true parametric function and

can inherently capture the correct unit specific parameters even with small number of observations from the

in-service unit.

In order to further investigate the performance of our approach, we conduct two more numerical studies.

Specifically in model setting II, we investigate the effect of proposed approach when the noise level is high.

In this model setting, we set the diffusion parameter of the Brownian motion process to σ = 5. Figure

5 demonstrates the performance of the parametric model which only considers the effect of one covariate

with the proposed procedure with all three covariates. It can be seen that increasing the diffusion generally

increases the prediction error of different approaches; however, the proposed framework of this paper which

considers all three covariates effect remains superior.
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In model setting III, we add extra environmental covariates’ observations in each time interval i, j. TO

be more specific, we assume that in each time interval i, j of degradation shift, we observe environmental

covariates in four equally-spaced time intervals. The drift-effect relationship for each covariate l would then

be modeled as
∑
ti,j−1≤τi,k<ti,j fl(ωi,l(τi,k);βl)(τi,k+1 − τi,k) where τi,k+1 − τi,k = 1

4 ∀i, j. Specifically, we

compare the performance of our proposed framework with the case where we ignore the extra environmental

covariate observations and only consider the observations made at the beginning of each degradation mea-

surement interval. We denote the former model with extra environmental observations modeling as “Additive

Regression V” and the latter as “Additive Regression IV” model. Figure 6 demonstrates the performance

of two models. As can be seen from Figure 6, ignoring extra environmental covariates information affecting

the degradation process in our modeling, indeed, hurts the RUL prediction accuracy.
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Figure 6: Results model setting III

4. Case Study

This section applies the proposed framework on a real-world case study of frying oil degradation modeling.

During the frying process, typically, a complex series of physical and chemical reactions occur leading to the

degradation of oil. The total polar component (TPC) which is a measure of proportion of polar materials

in the oil, is the most predominant indicator for oil degradation. TPC can be obtained by measuring

the dielectric of the oil. Fortunately, modern fryers are equipped with a sensor that can provide TPC

measurements and daily TPC readings from the connected fryers can be collected. Per oil disposal, the

frying vat is refilled with fresh oil and the TPC values reset to a lower value. The oil is typically deemed

bad once its TPC value hits a pre-specified threshold value. We note that this threshold value is domain

specific and depends on the degradation process under study. Also, this threshold value does not necessarily

indicates hard failure and merely suggests that the oil is not healthy any more with TPC above this value.
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This pre-specified threshold value is considered to be 25 in this study. Figure 7 demonstrates the TPC

measurements for 12 such oil disposal cycles.

Figure 7: Degradation paths of frying oil

Figure 7 shows that the degradation rates of frying oil are considerably heterogeneous in different oil

disposal cycles. Moreover, the degradation rate of each oil disposal cycle is different in different time

intervals. This is, in fact, directly related to the condition that the frying oil was exposed to. Oil temperature

is the most significant time-varying covariate contributing to the oil degradation. Beside temperature, other

covariates like number of cooks and number of filterings in each time interval influence the corresponding

degradation rate. We also checked the degradation data model fit based on the Brownian motion process

for the oil degradation data. The results are in figure 8. The plot of studentized residuals in figure 8 shows

that the constant variance assumption holds reasonably well. We can also check the normality assumption

using the QQ-plot. The plot shows that the normality assumptions holds well. These graphical check shows

that the overall the model assumptions holds reasonably well.

Figure 9 shows the plot of estimated functions for the drift-environmental covariates relationship esti-

mated by the procedure introduced in Section 2.2. This figure, further, demonstrates that there is a strong

non-linear relationship between the temperature and the drift of Brownian motion process defining the

degradation.

In order to investigate the performance of our proposed method, we pursue the leave-one-out cross

validation scheme for the available 117 oil disposal cycles. To be more specific, we leave one of the available

cycles as the testing data and fit the model using all other available data. Then, the prediction for the

in-service unit is performed for different percentiles of its lifespan. The whole procedure is repeated 117

times and the AE is calculated each time. Each time, we fit three models similar to numerical study section.
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Figure 8: QQ-plot and the studentized residual plots for the residuals of the degradation data.

Figure 9: Estimated covariate effect functions and the corresponding approximate 95% confidence interval.
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Figure 10: Results of case study

The first model considers only the effect of temperature, the second model adds the effect of number of cooks

and the third model considers all three covariates. We denote these three models as “Case I”, “Case II” and

“Case III” respectively. Figure 10 summarizes the results for the case study.
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As can be seen from Figure 10, increasing the number of covariates using the proposed framework increases

the RUL prediction accuracy. We would, indeed, expect this result as increasing the number of covariates

increases the available information affecting the change in the oil degradation process.

5. Conclusion

In this paper, we propose a statistical framework for modeling degradation signals using a Brownian motion

process with a drift dependent on the time-varying environmental covariates. Specifically, our proposed

framework considers a semi-parametric regression based on penalized splines to model the environmental

covariates-drift relationship. An EM algorithm is further developed to estimate the model parameters. The

advantage of the proposed approach is that while it models the effect of multiple time-varying environmental

covariates on the degradation process, it does not assume any rigid parametric assumption on the envi-

ronmental covariate-drift relationship of the Brownian motion process. The penalized splines that combine

a set of splines basis functions with a quadratic penalty on the corresponding coefficients, also, strike a

balance between ovefitting and accuracy of covariate-drift relationship while not being limited to specifying

the exact number and location of knot values. Moreover leveraging the mixed effect modeling framework

and EM algorithm, it offers a natural way of choosing the smoothing parameters of penalty term. Com-

bining the offline model estimation with degradation data and environmental covariates observations from

the in-service unit, we proposed a Bayesian updating scheme to conduct individualized RUL prediction. We

evaluated the performance of our approach using both simulated and real data of frying oil degradation

collected from connected fryers. The numerical study and case study results confirmed that ignoring the

extra information available through multiple time varying covariates affecting the degradation process hurts

the RUL prediction accuracy.

This study considers a penalty based on the squared difference of the adjacent coefficients which results in

smoother functional forms. One can also use the adaptive LASSO penalty or any other appropriate penalty

form which provides a natural framework for variable selection for stress-drift relationship. Moreover, the

proposed model in this study only considers the additive effect of multiple covariates. However, one can

consider interactions among some of the covariates in the degradation modeling framework using a tensor

based spline approach. Also, the degradation process developed in this study mainly concerns modeling the

evolution of a one-dimensional degradation process. However, one can extend this framework by considering

techniques like data fusions to develop a composite health index for degradation modeling and prognostics

analysis based on multidimensional degradation process (26; 42; 37). We will investigate along this lines

and report the results in a future study.
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Appendices

The equation in (11) can be further expanded as follows:

Q(ν)(∆X,β′; Ψ) =− 1

2

N∑
i=1

ni∑
j=1

lnσ2 − 1

2σ2

N∑
i=1

ni∑
j=1

(Ri(tij)−Gt(tij)µ
(ν)
β′ )

2

δti,j
− 1

2σ2

N∑
i=1

ni∑
j=1

Gt(tij)Σ
(ν)
β′ G(tij)

δti,j

+
1

2

q∑
l=1

{
dl ln(λl)− λlµ(ν)

βl

t
Slµ

(ν)
βl
− λl tr(SlΣ(ν)

βl
)

}
+ const,

(17)

where µ
(ν)
βl

and Σ
(ν)
βl

correspond to coefficients posterior of lth covariate and Σ
(ν)
βl

is of dimension dl × dl
and denotes the lth diagonal block in Σ

(ν)
β′ estimated in iteration ν. Here µ

(ν)
β′ and Σ

(ν)
β′ are computed using

the current estimates of Ψ(ν). The M-step entails maximizing the Q(ν)(∆X,β′; Ψ) with respect to the

parameters β0, σ and λ. The derivatives of Q(ν)(∆X,β′; Ψ) with respect to these parameters are as follows:

dQ(ν)(∆X,β′; Ψ)

dβ0
=

1

σ2

N∑
i=1

ni∑
j=1

(∆Xi(ti,j)− β0δti,j−Gt(ti,j)µ
(ν)
β′ ),

dQ(ν)(∆X,β′; Ψ)

dσ
=−

N∑
i=1

ni∑
j=1

1

σ
+

1

σ3

N∑
i=1

ni∑
j=1

(
(Ri(ti,j)−Gt(ti,j)µ

(ν)
β′ )

2

δti,j
+
Gt(ti,j)Σ

(ν)
βl
G(ti,j)

δti,j
),

dQ(ν)(∆X,β′; Ψ)

dλl
=
dl
λl
− µ(ν)

βl

t
Slµ

(ν)
βl
− tr(Slµ

(ν)
βl

).

(18)

Setting these to zero, we get the formulas to update the parameters β0, σ and λ in equation (12).
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dation in soybean oil, sunflower oil and partially hydrogenated fats after food frying, monitored by
conventional and unconventional methods. Food Control 22, 12 (2011), 1920–1927.

[17] Kimeldorf, G. S., and Wahba, G. A correspondence between bayesian estimation on stochastic
processes and smoothing by splines. The Annals of Mathematical Statistics 41, 2 (1970), 495–502.

[18] Kontar, R., Son, J., Zhou, S., Sankavaram, C., Zhang, Y., and Du, X. Remaining useful life
prediction based on the mixed effects model with mixture prior distribution. IISE Transactions 49, 7
(2017), 682–697.

[19] Kontar, R., Zhou, S., Sankavaram, C., Du, X., and Zhang, Y. Nonparametric modeling and
prognosis of condition monitoring signals using multivariate gaussian convolution processes. Techno-
metrics 60, 4 (2018), 484–496.

[20] Lawless, J., and Crowder, M. Covariates and random effects in a gamma process model with
application to degradation and failure. Lifetime Data Analysis 10, 3 (2004), 213–227.

[21] Le Son, K., Fouladirad, M., Barros, A., Levrat, E., and Iung, B. Remaining useful life
estimation based on stochastic deterioration models: A comparative study. Reliability Engineering &
System Safety 112 (2013), 165–175.

[22] Li, N., Gebraeel, N., Lei, Y., Bian, L., and Si, X. Remaining useful life prediction of machinery
under time-varying operating conditions based on a two-factor state-space model. Reliability Engineering
& System Safety 186 (2019), 88–100.

[23] Liao, C.-M., and Tseng, S.-T. Optimal design for step-stress accelerated degradation tests. IEEE
Transactions on Reliability 55, 1 (2006), 59–66.

21



[24] Liao, G., Yin, H., Chen, M., and Lin, Z. Remaining useful life prediction for multi-phase deterio-
rating process based on wiener process. Reliability Engineering & System Safety 207 (2021), 107361.

[25] Liao, H., and Tian, Z. A framework for predicting the remaining useful life of a single unit under
time-varying operating conditions. Iie Transactions 45, 9 (2013), 964–980.

[26] Liu, K., Gebraeel, N. Z., and Shi, J. A data-level fusion model for developing composite health
indices for degradation modeling and prognostic analysis. IEEE Transactions on Automation Science
and Engineering 10, 3 (2013), 652–664.

[27] Meeker, W. Q., and Escobar, L. A. Statistical methods for reliability data. John Wiley & Sons,
2014.

[28] Meeker, W. Q., Escobar, L. A., and Lu, C. J. Accelerated degradation tests: modeling and
analysis. Technometrics 40, 2 (1998), 89–99.

[29] Nelson, W. Prediction of field reliability of units, each under differing dynamic stresses, from acceler-
ated test data. Handbook of Statistics 20 (2001), 611–621.

[30] Nelson, W. B. Accelerated testing: statistical models, test plans, and data analysis, vol. 344. John
Wiley & Sons, 2009.

[31] Pang, Z., Si, X., Hu, C., Du, D., and Pei, H. A bayesian inference for remaining useful life
estimation by fusing accelerated degradation data and condition monitoring data. Reliability Engineering
& System Safety 208 (2021), 107341.

[32] Park, C., and Padgett, W. J. Stochastic degradation models with several accelerating variables.
IEEE Transactions on Reliability 55, 2 (2006), 379–390.

[33] Riascos-Ochoa, J., Sánchez-Silva, M., and Klutke, G.-A. Modeling and reliability analysis of
systems subject to multiple sources of degradation based on lévy processes. Probabilistic Engineering
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