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Abstract—Prediction of events such as part replacement and failure events plays a critical role in reliability engineering. Event stream
data are commonly observed in manufacturing and teleservice systems. Designing predictive models for individual units based on such
event streams is challenging and an under-explored problem. In this work, we propose a non-parametric prognostic framework for
individualized event prediction based on the inhomogeneous Poisson processes with a multivariate Gaussian convolution process
(MGCP) prior on the intensity functions. The MGCP prior on the intensity functions of the inhomogeneous Poisson processes maps
data from similar historical units to the current unit under study which facilitates sharing of information and allows for analysis of flexible
event patterns. To facilitate inference, we derive a variational inference scheme for learning and estimation of parameters in the
resulting MGCP modulated Poisson process model. Experimental results are shown on both synthetic data as well as real-world data

for fleet based event prediction.

Index Terms—Inhomogeneous Poisson processes, Multi-output Gaussian convolution processes, Gaussian process modulated

Poisson process, Variational inference, Event prediction.

1 INTRODUCTION

ECENT advances in information and communication
Rtechnology are playing a pivotal role in enabling what
is referred to as Internet of Things (IoT). An example
of IoT technology is teleservice systems. In a teleservice
system, the data collected from a fleet of in-field units are
transmitted through the communication network to the data
processing center where the aggregated data are analyzed
for condition monitoring and prognosis of in-field units.
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Fig. 1. The structure of a teleservice system

Through the centralized data repository, the teleservice
system has access to historical off-line records of events
such as part replacements and failure events from all the
units. The teleservice system also receives real-time event
information from the in-field units. The availability of such
a rich set of historical and real-time data in a teleservice
system poses significant intellectual opportunities and
challenges. On opportunities, since we have observations
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from potentially a very large number of similar units, we
can compare their event patterns, share the information,
and extract some common knowledge to enable accurate
prediction at the individual level. On challenges, because
the data are collected in the field and not in a controlled
environment, the data contains significant variation and
heterogeneity due to the large variations in working
conditions for different units. This requires the developed
analytics methods to be stochastic in nature to account for
the variations.

This work focuses on event prediction for individual
units using the real-time event information collected from
the unit under study as well as other units managed by
the teleservice system. The event of interest occurs multiple
times for each one of similar units during their lifetime.
Figure 2 illustrates typical event data of two forklifts
collected in a teleservice system from a warehouse. An
example of the event, here, could be replacement of a part
due to its failure. In the figure, we can see that the event
repeatedly occurs for each forklift. The pattern of occurrence
for two forklifts bears some similarity but is distinct. One
of the challenges in event prediction is how to extract
useful information from data collected from other units to
improve the prediction for the unit under study. This setting
is known as multi-task learning. The premise of this setting
is that when multiple datasets from related outputs exist,
their integrative analysis can be advantageous compared to
learning multiple outputs independently. The goal of multi-
task learning is to exploit commonalities between different
units in order to improve the prediction and learning
capabilities [1], [2]. The key feature of multi-task learning
is to provide a shared representation between training and
testing outputs to allow inductive transfer of knowledge. In
this paper, this inductive transfer of knowledge is achieved
through specifying a valid semi definite covariance function
that models dependencies of all data points [3].



Event occurrence for two forklift trucks with time
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Fig. 2. lllustration of event data from material handling forklifts.

Events defined over a continuous domain arises
in a variety of real-world applications including
reliability analysis and event prediction for operational
units/machines in connected manufacturing systems [4],
disease prognosis in clinical trials [5] and events prediction
using vital health signals from monitored patients at risk
[6]. One thread of work in such point process data focuses
on learning event intensity rates by imposing smoothness
on a latent rate function [7], [8], [9]. Another consists
of predicting future events as a direct function of past
observations [10], [11]. Taking fleet based event prediction
as a motivating example, we focus on the latter problem:
given similar vehicles” history and the events history for the
vehicle under-study up to time ¢*, how many events will
this vehicle have in [t*,t* + L]? Answering such a question
provides a quantitative evaluation of the failure risk, which
helps in making efficient maintenance plans and associated
allocation of parts and resources.

Extensive research exists on event prediction, specially
on failure prediction [12], [13]. The main avenue of
research for event prediction using event data is focused
on the data-driven statistical models. Data-driven statistical
models typically estimate the probability of time-to-event
distribution through parametric models (such as Weibull
distribution) or non-parametric models [14], [15]. In this
context, Cox PH regression has been widely used in clinical
survival analysis and reliability engineering to investigate
the effect of some covariates on the hazard rate/survival
of a patient or a machine [16], [17]. Using the previously
occurred events as covariates, Cox PH model has been
used for event prediction using event stream data [18],
[19]. The structure of the Cox PH model is very flexible
such that various unit-specific factors can be incorporated
as covariates in the regression. However, one limitation is
that although the value of covariates can be unit specific,
the model parameters are fixed and cannot reflect unit-to-
unit variation. In other words, if the values of parameters
for two units is the same, then the event prediction for these
two units using the Cox PH model will always be the same.
Also, the Cox PH regression model becomes inapplicable

when good covariates are not available.

Another stream of research based on the event data
uses frailty models as an extension of the conventional
survival regression models, like Cox regression models, by
incorporating a random effect term, typically called frailty
term, to allow for unit-to-unit variation. Since the frailty
term is random and follows a common distribution, the
frailty model allows for unit-to-unit variation [20], [21], [22].
Frailty models have been used in reliability engineering
and biomedical applications to describe the heterogeneity
among the units in the population. For example, the use of
frailty for modeling unobserved heterogeneity in reliability
engineering using frailty model can be found in [23] and
[24]. However, the majority of research on frailty modeling
is predominantly focused on investigating the significance
of covariates and the frailty term in the fitted model rather
than prediction for the individual units. In addition, frailty
model is a parametric model that often needs relatively
strong assumptions.

A few works have explored the event prediction problem
in point processes by learning a functional mapping from
history features to the current event intensity rate [10], [11],
[25]. In Gunawardana et al. [11] the intensity function is
constrained to be piecewise-constant, learned using decision
trees and used for events’ prediction. This setting is not
appropriate for the events observation where the event
intensity rate (or average incidence rate) varies smoothly
over time. Moreover, this modeling approach does not
take into account the variation between individual units.
In our proposed approach, we will consider data where
the intensity of the event generating process is assumed
to vary smoothly over the domain. A popular model for
such data is the inhomogeneous Poisson process with
a Gaussian Process (GP) prior for the smoothly varying
intensity function. This form of point processes are typically
known as Cox processes in literature [26], [27]. An example
of such modeling approach is the Log Gaussian Cox Process
(LGCP) where the log intensity function is driven by a GP
prior [27]. The flexibility of the LGCP comes at the cost
of incredibly hard inference challenges due to its doubly
stochastic nature and the notorious scalability issues of GP
models. Various approximations have been introduced to
deal with this issue. The classic approach of Diggle [28] uses
Parzen-type kernel densities to construct a nonparametric
estimator, with the bandwidth chosen via the empirical
Ripley’s function [29]. Nonparametric Bayesian approaches
have also been studied which introduced tractable finite-
dimensional proxy distributions via discretization [27], [30].
There have also been nonparametric Bayesian approaches
to inhomogeneous Poisson Process inference that do
not use underlying Gaussian processes, e.g. Dirichlet
process mixtures of Beta distributions [31] as well as
approaches based on Markov Chain Monte Carlo (MCMC)
[7]. Among these approximation techniques, variational
inference approaches which give low-rank Gaussian process
functions by augmenting a small number of inducing points
has found great success in practice [9], [32], [33]. The
reason is that the variational inference approach eliminates
the requirement for discretization, protects against model
overfitting, while simultaneously estimating the parameters
of the joint Gaussian process-Poisson process model and



facilitating the scalability to large data sets.

Another difficulty with the Cox processes is that when
available training data for each unit are scarce, building such
predictive models for event occurrence processes is difficult.
This happens because industrial equipment nowadays tend
to be generally very reliable and not subject to frequent
failures. To tackle this issue, here, we treat each individual
event occurrence process as a task and follow a multi-
task learning approach to share information from all tasks.
This approach is in contrast to the general school of
thought where a population level model is constructed
[14], [18], [34]. Building a population model treats event
prediction of different units’ similarly. Such a population-
level approach lacks the individualization capability where
we need event predictions customized to an individual
unit’s history. The multi-task learning approach we propose
here borrows information from the off-line historical event
data and makes individualized predictions for a specific unit
operating in the field.

Methods for learning GPs from multiple tasks have
been proposed [35], but they typically involve a shared
global mean function and require inference at all observed
data points across all the tasks. In the context of
Cox processes, the inference of such multi-task models
become even more challenging as it is doubly stochastic
in nature and involves multiple correlated tasks [36],
[37], [38]. More details on double-stochasticity or double-
interactability of Cox processes are given later in this study.
One approximation method, variational inference, is often
applied in such models leading to improvement in the
scalablity. However, the inference in such predictive models
still lacks individualization capability. In this paper we
propose a multi-task modeling approach enabling inference
at individual level while sharing information from the
historical offline data set.

The main objective of this study is to provide a
framework for analysis of event occurrence probability of
individual units under study. One challenge is that the
available training data for each unit is typically sparse. Here,
we propose a multivariate Gaussian convolution process
(MGCP) modulated Poisson process model which facilities
sharing of information from all units through a shared latent
function. The proposed framework borrows commonalities
from different units and makes it possible to do inference
and prediction at individual level. As mentioned before,
a difficulty with building such a predictive model is
that the inference is doubly-stochastic in nature and it
scales poorly with the number of tasks and data points.
Borrowing from the framework of the inducing variables or
pseudo inputs in the GP literature [39], [40], we propose a
variational inference framework to simultaneously estimate
parameters in the resulting MGCP-Poisson Process (MGCP-
PP) model. This facilitates the scalability and safeguards
against model overfitting. Finally the advantageous feature
of the proposed model is demonstrated through numerical
studies and a case study with real-world data from forklift
trucks’ events.

The main contribution of the proposed method is to
provide a non-parametric framework for individualized
event prediction based on inhomogeneous Poisson
processes with a MGCP prior on the intensity functions.

3

The proposed framework models event occurrence at
individual level and considers unit-to-unit variation which
contrasts with the population wise modeling framework
that provides event occurrence probability at a population
level rather than for each individual unit. Moreover,
the proposed modeling framework is highly flexible and
non-parametric in nature which does not assume any
specific functional form for event occurrence patterns.
The MGCP prior on the individual intensity functions of
inhomogeneous Poisson processes also maps data from
similar historical units to the current unit under study which
facilitates sharing of information and allows for analysis of
flexible event patterns. Moreover, an inference framework
is developed using the variational inference technique for
learning and estimation of parameters that scales reasonably
with the number of data points.

The remainder of this paper is organized as follows: In
section 2, we provide an overview of the Cox processes.
In section 3, we describe the problem formulation and
inference scheme. In section 4 and section 5, we report the
results of numerical studies and a real-world case study
based on event data from a fleet of forklift trucks. Finally,
our concluding remarks are given in section 6.

2 GAUSSIAN PROCESS MODULATED POISSON
PROCESS

Assume data have been collected from N units and let
I =1{1,2,...,N} denote the set of all units. For uniti € I,
its associated data is D, = {tl(»p )}5;1 where tEp ) is the time
that event p occurred for unit i. Formally a Cox process
—a particular type of inhomogeneous Poisson process— is
defined via a stochastic intensity function \;(¢t) : X — RT
for unit ¢ € I. For a domain X = R where R is the real
coordinate space, the number of points, N(7), found in
a subregion 7 C X of unit 7 is Poisson distributed with
parameter \! = fT Ai(t)dt and for disjoint subsets 7, of
X, the counts N(7,) are independent. This independence
is due to the completely independent nature of points in
a Poisson process [26]. If we restrict our consideration to
some bounded region 7T, the probability density of a set of
P; observed points, D;, conditioned on the rate function

p(Di\) :exp{—/T)\i(u)du}ﬁ)\i(tgp)). 1)

The likelihood of observed data across all N units is
p(DIA) = [IX, p(Di|\;) where D = {D;}Y, and A =
{Xi}Y is the collection of intensity functions for all units.
Using Bayes’ rule, the posterior distribution of the rate
functions conditioned on the data, py(A|D), is:

Pa) Ty exp{— f7 Niw)dud T At
S Pa) T, exp{= [ Ai()du} T2 Ai(t?)dA
which is often described as doubly-stochastic or doubly-
intractable because of the nested integral in the
denominator. Here we use the subscript d to indicate the
probability density function.

To overcome the challenges posed by the doubly-
intractable integral, Adams et al. [7] propose the Sigmoidal

@



Gaussian Cox Process (SGCP). In the proposed SGCP model,
a Gaussian process prior [41] is used to construct an
intensity function by passing a random function, f ~ GP,
through a sigmoid transformation and scaling it with a
maximum intensity A*. The intensity function is therefore
A(t) = Mo (f(t)), where o(.) is the logistic function

1
1 +exp(—x)

o(z) ©)

In the SGCP approach, the space is discretized and the
variable set is augmented to include latent data such that
the joint distribution of the latent and the observed data
is uniform Poisson. However, this model scales poorly
with the dimensionality of the domain and the maximum
observed density of points. This is mainly due to the
incorporation of latent or thinned data whose number
grows exponentially with the dimensionality of the space.
Moreover, it only considers the event data from the in-field
unit and does not incorporate the off-line information from
the historical units stored in the data repository. In order
to tackle the issue of scalability, Lloyd et al. [9] propose to
use a variational inference scheme. They assumed that the
intensity is defined as A(t) = f2(t) where f ~ GP is a
GP distributed random function. This approach, also, falls
short of considering the information that comes from the
peer units in making inference and prediction, and only
relies on the event data from the in-field unit. Moreover,
it requires integrating the square of a Gaussian process
over a definite region to achieve the model evidence. The
integration of f2(t) can be done using numerical techniques
but it can result in poor numerical stability. Moreover, the
square transformation is not a one-to-one function where
any rate function may have been generated by f2(t) or
(- 7).

In this study we use a multi-task modeling approach
to model the intensity functions of different units. This
approach takes advantage of the multi-output GPs to share
information between units from offline historical data and
the online in-field unit via a shared latent function. Specially,
we model the individual latent log intensity function
log A(t) = f(t) with a multivariate GP prior. This approach
requires no discretization of the space, makes sharing of
information through multi-variate GP prior possible while
giving closed form formula for inference and prediction.

A GP is formally defined as a collection of random
variables, any finite number of which have consistent
joint Gaussian distributions. For any input point ¢ €
X C R, observations from a random dataset f(t) =
{f(t1), f(t2),..., f(t,)}T are considered as single sample
from some multivariate Gaussian distribution. Thus, the GP
can be expressed as f(t) ~ GP(0,%(t,t")), where X(t,t")
is a positive definite covariance function. An alternative
approach for constructing a Gaussian process is to convolve
the GP random variables with an arbitrary kernel. Thus, f(t)
can be expressed as the convolution between a smoothing
kernel G(t) and a latent function X (¢) as follows:

£t) = /R Gt — u) X (u)du. @)
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The resulting covariance function for f(¢) is then derived as

covy(t,t') = /}RG(t —u)/RG(t’ — v )k(u,u')du'du  (5)

where cov[X (¢), X (t')] = k(t,t') is the covariance defining
the latent function X (¢). We note that this construction
is general in the sense that X(¢) can be any GP
random variable [42]. Therefore, the covariance matrix
can be directly parametrized through parameters in the
smoothing kernel. In this article we employ Convolution
Process (CP) to build covariance functions that model
dependencies within and across units. The basic idea is to
build multiple GPs where all outputs depends on some
common latent processes. The proposed framework can
provide each output with both shared and unique features
and allows commonalities between different outputs to
be automatically inferred. We introduce our multi-task
modeling approach which takes advantage of the MGCPs in
modeling the intensity of inhomogeneous Poisson processes
in the next section. We also introduce a variational
inference approach to make inference in the resulting MGCP
modulated Poisson processes. The modeling framework
introduced in this study makes inference and prediction
for the individual in-field unit possible while tackling the
sparsity in the observed event data.

3 CONSTRUCTION OF MULTI-OUTPUT GAUSSIAN
PROCESS MODULATED POISSON PROCESS

We construct our prior over the individual rate functions
using GPs and assume that the resulting Cox process is
driven by a latent log intensity function log \; := f; with
a GP prior:

fi(t) ~ GP (0,%;(t,1)). (6)

To obtain an accurate predictive result, we need to capture
relatedness among all N units. Particularly, we use CP as
mentioned in section 2 to model the latent log intensity
functions f;(t) for each unit ¢ € I. We can consider a
shared independent latent function X (¢) and N different
smoothing kernels G;(t) : ¢ = 1,..., N. The latent function
is assumed a GP with covariance cov[X (t), X (t')] = k(t, t').

We set the kernels as
1

a;m 1 1¢2
exp(— ) = aiN(0,67), ()

VISl 28
to be scaled Gaussian kernels where N (t;0,£2) is the
density function of a zero mean normal distribution with
variance £2. We also consider x(t,t') to be the squared

exponential covariance function [42] as follows:

1(t—t)?
/ P— —_———_—
/f(t,t)fexp[ 5 %2 ]
= V212N (d; 0, \?) := CN(d;0,\?),
The GP f;(t) is then constructed by convolving the
shared latent function with the smoothing kernel as follows:

Gi(t) =

@®)

£ = [ Gt =X (w)du. ©)

This is the underlying principle of MGCP, where the
latent functions X (t) is shared across different units through



Fig. 3. A convolution process with one latent functions

the corresponding kernel G;(t). Since the model in Eq.
(9) shares the latent function, a GP, across multiple units
and since convolution is a linear operator, all outputs
can be expressed as a jointly distributed GP. Figure 3
shows an illustration of such a convolution structure. As
shown in figure 3, the key feature is that information is
shared through parameters encoded in the kernels G;(t).
Outputs then possess both unique and shared features; thus,
accounting for heterogeneity in the intensity functions. It
should be mentioned that the shared latent function here
does not have a specific physical meaning and rather is
a mathematical approach to induce correlation between
different separately evolving processes [32], [39], [41].

Based on equation (9), the covariance function between
fi and f; and the covariance function between f; and X,
can be calculated as follows:

covy, 5, (t, 1) = / Gi(t —u) / Gi(t' —u')k(u,u)du' du
R R

Covf, X (t,u) = / Gi(t — u/)n(u, u’)du’
R

A2 1(t—u)?
= Qi —5 (_2 ) )a
i i

(10)

where nzj =&+ f? +A%and n? = ¢2 4+ \%. Now denote the
underlying latent log intensity rates at the input data points
as f = {fT,...fI7, where f; = {£;(t"), .., f;(tPINT.
The density function of f can be obtained as pyu(f) =
N(f;0, Ky s), where Ky ¢ sized (XN pi) x (XN, pi) is
the covariance function. More details about the properties of
convolution process in (10) can be found in [41], [43], [44],
[45], [46]

Exact inference in the proposed model entails optimizing
the model evidence p(D) = Eys) [p(D|A = exp(f))] for
which the marginal log-likelihood can be obtained as
follows:

log p(D) = log / p(DIA = exp(£) pa(f)df, (1)

where as noted before py(f) = N(f;0,Ky ). The
likelihood of f in Eq. (11) involves inversion of the
large matrix K¢ ¢ which has a limiting cubic complexity

5

3
0 <(Zf\;1 pi) ) and is in general intractable. Moreover,

as mentioned in section 2, we see that the log-likelihood
is doubly-stochastic as it also involves an integration over
the latent log intensity functions (see Eq. (1) and Eq. (11)).
This, in turn, makes the exact inference more challenging.
To alleviate the computation burden of matrix inversion,
low-rank Gaussian process functions can be constructed by
augmenting the Gaussian process with a small number of
M inducing points or pseudo-inputs from the shared latent
function [44], [47], [48]. In next subsection, we introduce
a variational inference framework based on the inducing
points which tackles the double-stocasticity of Eq. (11) by
obtaining a lower bound on the model evidence.

3.1 Variational Inference

We denote the inducing points by Z = {z}}, and the
value of shared latent function at the inducing points
by X = [X(z1),...,X(zm)]". Since the latent function
is GP, any sample X follows a multivariate Gaussian
distribution. Therefore, the probability distribution of X can
be expressed as ps(X|Z) = N(X;0,Kx, x), where Kx, x
is constructed by the covariance function in equation (8). We
now can sample from the conditional prior p(X (u)| X, Z).
In equation (9) where we construct latent intensity function
fi(t), X(u) can be well approximated by the expectation
E(X(u)|X,Z) as long as the latent function is smooth
[42]. By multivariate Gaussian identities [39], [41], [42], the
probability distribution of f conditional on X, Z is:

pa(f|X, Z) :N(fQKf,XK)_(,lan

- (12)

Kyr— KpxKx xKx,z),
where K x, x is the covariance matrix between the inducing
variables and Ky x is the covariance matrix between the
latent log intensity values and the inducing variables.
Therefore, pq(f) can be approximated by py(f|Z), which
is given as:

pa(f12) = / pa£1X, 2)pa(X|2)dX.  (13)

By equation (13), the marginal log-likelihood function can
be approximated as follows:

log p(D) = log / (DA = exp(£)) pa(£)df

~ log / / p(DIA = exp(f)) pa( £I1X, Z)pa(X | 2)dX df
(14)

We next continue by integrating out the inducing
variables X, using a variational distribution ¢4(X) =
N(X;m,S) over the inducing points. We then multiply
and divide the joint by ¢4(X) and lower bound using
Jensen’s inequality to obtain a lower bound on the model
evidence:



)= tog | [ [ oDIApalsX)pa(X qg ;dde
)

> / / pa(£1X)qa(X)dX log(p(D|f))df
4 [ [ et 30007 1o 2250

qa(X)
=Ey,(5) logp(D|f)] = KL(ga(X) || pa(X

log p(D

)dX

) =L
(15)

Since pq(f|X) is conjugate to gq4(X), we can write down in
closed form the resulting integral:

qa(f) = / pa(£1X)qa( X)dX = N (f; 1, 5)
B= Kf,XK)}}xm
Y=Ksr—KsxKx x(I-SKx'x)Kx s

Here, KL(qa(X) || pa(X
between two Gaussians:

(16)

)) is simply the KL-divergence

1 K
KL(qa(X) || pa(X)) =5 [TY(K;XS) “log | |)‘;,|X|
M+ (0= m) K (0= m)]
17)

where Tr(.) is a trace operator. We now take expectation of
data log-likelihood under ¢,4(f):

L =Ey, ) logp(D|f)] — KL(qa(X

= Equ(s) |:

— KL(qa(X

) H pd(X))

Z/expfz du—&-ZZfz p]

i=1p=1
) |l pa(X))
(18)

The first term in (18) can be estimated by the moment
generating function (MGF) and the numerical integration:

N
Equ(#) |:Z/T6Xp(fi(U))du:|
N
= [ [t explsitwyisan
N
= Z/eXp(m(U) + 152

. —o7(u))du

(19)

2 K2

where p;(u) = Kfi(u)ny;(’le and o?(u) =
K.~ Kp xKx.x(I = SKx x) Kx j,u)- The
second term in (18) can be calculated based on the definition
of Gaussian processes as follows:

N P N P
Eq(s) [Z > ﬂ(tEp))] =SS w?) (o)
i=1p=1 i=1p=1

where ﬂl(t(p )) = K ) XK X, Xm To perform inference
one needs to take followmg two steps:

1) A small number of M inducing points, distributed

equally, from the shared latent function X should
be defined.

6

2) The lower bound £ constructed through Egs. (15)-
(20) should be maximized to find the variational
parameters m*, S* and the model parameters 8* =

(>‘7 {glv O‘z}ivzl)

To optimize these parameters simultaneously, we construct
an augmented vector ® = [0, m”, vech(L)"] where
vech(L) is the vectorization of the lower triangular elements
of L, such that S = LLT. The vech(.) operator is
a linear transformation which converts a matrix into a
column vector. Any multivariate optimization algorithm
such as Nelder-Mead simplex, conjugate gardient, Adam
optimization, and etc. can be used to optimize the lower
bound L. It should be noted that, in principal, any number
of inducing points can be considered for a given set of
parameters 6; however, the proper value can be tuned using
cross-validation [9], [39], [40].

3.2 Predictive Distribution

In this section, we derive the predictive distribution for the
test unit N based on the optimized ®*. Our training data
(denoted as D) includes the observations from the offline
units ¢ = 1,2,..., N — 1 as well as the partial observations
from the online test unit V.

Suppose observations from the test unit N have been
collected up to time t*. We can next derive the predictive
distribution for any new input time 7' of the test unit V.
In order to form the predictive distribution we assume our
optimised variational distribution ¢j(X) = NV (X;m*, S*)
approximates the posterior py(X|D). This assumption
can be made because the variational inference appraoch
minimizes the KL-divergence distance between the true
distribution py(X|D) and the variational distribution
¢5(X). Similar to Equation (16), we next compute ¢} (f) ~
pa(f|D). We can now derive a lower bound of the
(approximate) predictive log-likelihood for unit /V in any
new input time 7™

logp(T|D, ©") = logE,, (#1p) [P(T| f)]

~ logEy-()[p(T|f)]
> By (p)llog p(T|f)] £

The derivation of L, follows Equations (18)-(20). The
resulting bound is similar to £ except that m, S are replaced
with m* and §*, and there is no KL-divergence term. All the
kernel matrices are computed using ®*. We use this bound
to give results from approximate predictive likelihood when
comparing against other approaches.

We can now answer the question posed at the beginning
of this study using the derived predictive log-likelihood.
The question involves estimating the distribution of event
occurrence in [t*,t* + L] for the test unit N. This event
occurrence probability distribution for unit N depends
on the predicted latent log intensity function log Ay :=
fn(u),u € [t*,t* + L]. Given the predicted intensity
rate \N© = t LA n(t)dt, the event occurrence has
Poisson distributlon Given the estimated parameters, we
are interested in:

21

AN /\N*y
,y=0,1,2, (22)
y!
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Fig. 4. A sample of intensity rates generated from MGCP and the sigmoid link function.

where y is the number of events. Based on (22), the
accurate probability of event occurrence depends on the
extrapolation of the intensity rate within L for the testing
unit N. In the MGCP, the predictive distribution for any
new input point 7" is given by:

palfx (T7)D) = / pal v (T*)| X )pa(X|D)dX
~ / palfx (1) X)qa(X)dX

K1), om0y — K gy x K x %
(I - S Kx'x)Kx.j(r))

where we assumed our optimized variational distribution
g (X) N(X;m* S*) approximates the posterior
pa(X|D). We used K, () ¢y (r+) as a notation when the
covariance matrix is evaluated at 7. Consequently, the
predictions at the time point T* for unit N is fy(T*)
Ky (), XK)_(}Xm*. It should be noted that the results
in Eq. (23) is a direct consequence of the conditional
distribution from the joint distribution of {D, fn(T%)}.
This, indeed, happens because we assume the observed data
and the unseen data in the future have a joint Gaussian
process distribution.

(23)

4 EXPERIMENTS

In this section, the performance of our proposed
methodology, denoted as MGCP-PP is investigated. We
benchmark the prediction performance of our proposed
framework using both synthetic and real-world data.
Specifically, we benchmark the performance against
Variational Bayes for Point Processes (VBPP) approach of
Lloyd et al. [9] and the Sigmoidal Gaussian Cox Process
(SGCP) of Adams et al. [7] which are based on considering
a univariate Gaussian process prior for the intensity rate.
Unlike our proposed approach, the methods discussed in
[9] and [7] do not consider the cross-correlation that exists
between different units. Regarding our MGCP-PP model we
set the number of pseudo-inputs to M = 10. Throughout
this section we consider N = 10 units and it is assumed
that the observations are made in ¢ € [0, 100].

4.1
For the synthetic dataset, we simulate the underlying latent
functions f;(t),i = 1,...,10, using MGCPs and generate
the intensity rates of different units using a sigmoid link

Data Setting

function. Then conditioned on this function, we draw
training datasets and test datasets [7]. The number of units
generated is N = 10 where we pick the Nth unit as the
testing unit. This experiment is repeated for () = 1000 times
and we report the average prediction performance of the
test dataset for each approach. Figure 4 visualizes a sample
of intensity rates drawn from the defined MGCP model with
four outputs passed through a sigmoid link function along
with the simulated events based on the method discussed
in [7]. We note that here we only have four outputs for the
purpose of illustration while the actual simulation study is
done using MGCP model with N = 10 outputs. We note
that data generated using the MGCP prior has an inherent
correlation. Moreover, the intensity functions generated in
this case study are heterogeneous as also shown in figure 4;
therefore, it can provide a measure for flexibility of different
approaches.

In addition to generating the intensity rates using
MGCP and sigmoid link function, we define two parametric
functional forms to generate the intensity rates as follows:

1) A sum of an exponential and a Gaussian bump
Ai(z) = aexp(—%) + exp(—(%z°)?) where [a,b, T ~

N(pi, 1) with gy = [3,20,65]7 and X; =
5¢e —1 4e—4 —e—5
de—4 2be—1 3e—T]|.
e—5 3e—7 1
2) A sinusoid with increasing frequency:
Ai(z) = d'sin(t/z?)exp(—%) + 1 where [a/,0/, 1T ~
N(pa, Ba)  with  pe = [2,2¢ — 3,50]7 and
1 —e—7 2e—4
So=|—-e—7 e—2 3e—-T]|.
e—5 3e—7 1

We, also, generate the training and testing data
conditioned on these functional forms in the simulation
study. It should be noted that the intensity rate and
consequently the event data generated using the first
parametric form vary smoothly over the time, while the
second parametric form generates data that has more
seasonality (See figure 5 and [7], [9] for reference).

4.2 Results

We compare different approaches in terms of predictive
log-likelihood (LL) and root mean squared error (RMSE)
between the predicted intensity rate and the true intensity
rate of the testing unit N. It should be noted that models
with higher predictive log-likelihood or lower root mean
squared error have better prediction performance [7], [9].
Prediction performance at varying time points t* for the
partially observed unit N is reported. The time instant
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t* = ax 100 is defined as the a-observation percentile of the
testing unit V. The values of « is specified as 30% and 60%
in the simulations. Figure 5 illustrates an example of the unit
observed up to different percentiles of its life. The intensity
rates here are generated using the first parametric functional
form explained above. The illustrative example in Figure 5
demonstrates the behavior of our method. As can be seen
from the figure, our joint modeling framework can provide
accurate prediction of the true intensity rate for the testing
unit N. It is mainly because of the flexible convolution
structure considered for the MGCP approach that makes
sharing of information possible among different units. The
unique smoothing kernel G; for each individual allows
flexibility in the prediction as it enables each training signal
to have its own characteristics. This indeed substantiates the
strength of the MGCP. Using the shared latent processes, the
model can infer the similarities among all units and predict
the intensity rate for the testing unit more accurately by
borrowing strength from the training data.

The results in figures 6, 7 and 8 indicates that our
MGCP-PP model clearly outperforms the benchmarked
models. Based on the figures we can get some important
insights. First, as expected, the prediction errors decrease
as the lifetime percentile increase for the testing unit N.
Thus, the prediction accuracy from the MGCP-PP becomes
more accurate as t* increases and more data are collected
from the online monitoring unit. Second, we can observe
that in the first simulation study, where the data are
generated using MGCP and the sigmoid link function,
the SGCP approach gives better predictive performance
than the VBPP; however, our MGCP-PP model approach
always remains superior as it takes advantage of the
pool of historical offline units in making inference for
the online unit under consideration. The reason that the
SGCP approach performs better than the VBPP here can
be attributed to the fact that the SGCP uses the same
link function and the generative process which results in
well-tuned hyper-parameters. Moreover the results in figure
6 show that when the intensity rates are heterogeneous,

20
'

Percentile

] B3 30%
B2 6%

+

RMSE
0.5 1.0
*.

0.0
'

MGCP-PP VBPP sGcp

-80
'

Percentile

B3 30%
B e0%

120
°
o

Log-Likelihood
160

-200
'

]
MGCP-PP

Fig. 6. Simulation study results with MGCP and the sigmoid link function

the MGCP-PP model that takes advantage of a flexible
MGCP prior which does not assume any functional form
on the intensity functions outperforms other competing
approaches in terms of RMSE and predictive log-likelihood.
The results in figure 7 and figure 8 demonstrate the
performance of three approaches when the intensity
functions vary smoothly (first functional form) or has
seasonality (second functional form). It can be observed that
the proposed model in this study which shares information
between the testing unit and the units in historical dataset
performs relatively better than other approaches that does
not include sharing of information. Lastly, one striking
feature shown in figures 6, 7 and 8, is that even with a small
number of observations (30% observation percentile) from
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the testing unit we are still able to get accurate prediction
results. This is crucially important in many applications,
specially when observed data are sparse, as it allows early
prediction of an event occurrence such as part replacements.

5 REAL-WORLD CASE STUDY

In this section, application of the proposed procedure on
the real-world data for fleet based event prediction is
demonstrated. The data is collected from material handling
forklift trucks and events of interest are part replacements

9

captured in real-time. Predicting the occurrence of recurrent
part failures is of paramount importance in industry,
specially when multiple units are operating simultaneously.
With the advent of IoT teleservice systems, the event
occurrence data are collected through sensors mounted on
the equipment and are transmitted to a back office for
analysis and inference. This huge amount of offline collected
data provides an opportunity for accurate event prediction
for on-line units operating in the field. The accuracy of
event prediction plays a critical role in part procurement and
maintenance planning. A critical factor in part replacement
cost is the setup cost that is due to mobilizing repair
crew, safety provision, special transportation, disassembling
machines, and etc. These costs are shared by all the
maintenance activities performed close to each other.
Planning for part procurement and maintenance depends on
the accurate prediction of event occurrence which, in turn,
leads to considerable cost saving.

In the case study considered here, we have information
regarding the occurrence of the event of interest from 20
trucks where the number of events for each trucks lies in
the range of 6-23. The actual calendar time is adjusted for
each unit, i.e. the starting time is made zero for all the units.
Figure 2 illustrates the data collected from forklift trucks
collected in a teleservice system for warehouse material
handling equipment. Please note that the time axis is the
lifetime of the forklifts, not the calendar time.

The models MGCP-PP, VBPP, and SGCP are fitted
on the case study data. To perform a comprehensive
performance evaluation we use a leave-one-out cross-
validation approach. First, we exclude one of the 20
units as the testing unit N and the rest are used as
the training units. Prediction for testing unit N is then
performed at 50% lifetime percentile. The whole procedure
is repeated 20 times and the predictive performance of
different approaches as a function of prediction window L
is illustrated in figure 9 .

[
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Fig. 9. MAE of event occurrence in [t*,t* + L].

Figure 9 shows the Mean Absolute Error (MAE) of
the event occurrence counts in [t*,t* 4+ L]. The MAE of
all methods increases monotonically as prediction window
length increases. The MGCP-PP approach outperforms the
SGCP and VBPP approaches that are based on the univariate
Gaussian processes. On average, MGCP-PP improves
prediction accuracy in terms of MAE by %16.34 compared
to VBPP and by %23.92 compared to SGCP. This indeed
highlights the importance of borrowing information from



.|
-
fuis

-275

700

-300

-325

MGCP-PP

Log-Likelihood
g
L N ]
Ml
5 .
g
- -
+

800 200
J 400 500 ?
600 300

VBPP

10

700
800 600
700

800
SGCP

Fig. 10. Predictive log-likelihood based on cross-validation of case study dataset. (The number below each bar corresponds to prediction windows

L)

the peer units. Our MGCP-Poisson model that facilitates
sharing of information between the testing unit and the
training units in the historical datatset clearly extrapolates
the intensity rate more accurately which results in better
prediction performance.

Moreover, we compare the predictive log-likelihood
of different approaches based on the leave-one-out cross
validation of case study dataset. The results of this analysis
is shown in figure 10. We note that here, the true intensity
rate is unknown for the case study dataset; thus, we cannot
compare based on RMSE between the predicted intensity
rate and true intensity rate. As it can be seen from figure 10,
the MGCP-PP approach outperforms other three approaches
in terms of predictive log-likelihood in different prediction
windows L. More precisely, MGCP-PP improves prediction
accuracy in terms of predictive log-likelihood by %7.73
compared to VBPP and by %12.61 compared to SGCP on
average and in different prediction windows L.

6 CONCLUSION

In this study, a flexible and efficient non-parametric
joint modeling framework for analyzing event data is
presented. Specifically, we propose a multivariate Gaussian
convolution process modulated Poisson process model
that leverages information from all units via a shared
latent function. A variational inference framework using

inducing variables is further established to jointly estimate
parameters from the MGCP-Poisson model accurately. The
main advantage of the proposed framework is that it
allows accurate individualized prediction for units in the
field by sharing information obtained from the historical
off-line units. The performance of proposed framework
is benchmarked against two other competing approaches
namely VBPP and SGCP which do not offer a sharing
capability. The results of numerical studies and a case study
based on real-world data for fleet based event prediction
confirm that the proposed framework outperforms other
competing approaches in terms of predictive log-likelihood
and RMSE between the true intensity rate and the
predicted intensity rate. More specifically, the case study
results indicate that our proposed approach improves the
predictive log-likelihood by %7.73 compared to VBPP and
by %12.61 compared to SGCP, on average, for different
prediction windows L. Moreover, an analysis based on the
MAE of event occurrence count for the case study confirms a
%16.34 and a %23.92 improvement compared to VBPP and
SGCP, respectively, when using our proposed framework.
Thus, the empirical studies highlight the advantageous
features of our modeling framework to predict the intensity
rates and provide reliable event prediction.

The model presented in this study can be readily
extended to incorporate other observation covariates.
Moreover, the convolution structure proposed in this study



is flexible. Here, we only shared one latent process across
all the units. One can modify this structure by adding
more independent latent processes for each unit to improve
accuracy in modeling heterogeneity across units. Other
structures that share a group of latent processes among
selected group of units can be also extended from our model
structure. Future work will be aimed towards developing
these variational structured Poisson process frameworks.
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