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Abstract

Due to the fast development of communication and information technology, the

event sequences collected from a fleet, which consists of potentially a large number of

similar units become readily available. Each event sequence is collected from a specific

unit and may consists of multiple types of events (e.g., different types of failure event).

In this paper, we present a novel method for modeling and prediction using those event

sequences. Conventional approaches to model and predict event data involve regression

methods, such as Cox Proportional Hazards. The proposed method essentially uses

Copula to approximate the joint distribution of time-to-event variables corresponding

to each type of events. The marginal distributions of the time-to-event variables that

are needed for Copula function is obtained through the Cox PH regression models.

The proposed model is more flexible and efficient in modeling the relationships among

multiple events. With simulations and real-world case study, we show that proposed

method outperforms the base regression model in prediction accuracy.

Keywords: Event Prediction, Correlated events, Copula, Survival Models, Associ-

ation
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1 Introduction

Technological advancements in communications and information technology is rapidly cat-

alyzing data collection, sharing and processing. As a direct consequence, the service record

for a fleet consisting potentially a large number of similar units becomes readily available.

For example, many Internet-of-things enabled tele-service systems are available in practices

now. In such a system, the products (e.g., automotive, forklift) in the field are brought

online and linked to the cloud. The system failures and related service actions for the whole

fleet are recorded, aggregated on the cloud and readily accessible. The fleet service record

provides valuable information regarding various system failures and their relationships. This

work concerns the modeling and prediction of failure events using fleet service records.

As shown in Figure 1, we view fleet service record as a collection of event sequences

consisting multiple event types and their time stamps.
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Figure 1: Illustration of multi-type event data, K = 4

Each event type represents one type of failure and each event sequence represents the

event record for one unit. A typical engineering product consists of multiple components and

can experience multiple types of failure events. The occurrence of different types of failure
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may be correlated. The rationale of the correlation is that first, a common environmental

factor may lead to different failure (e.g., very hot environment may lead to motor overheat

and motor brush failure); second, the operation of the components within the same unit is

inter-related and one failure may lead to another failure (e.g., a bad alternator in a car will

cause the battery failure).

In engineering practice, it is highly desirable to predict the occurrence of failures for

efficient and safe system operations. In principle, failure prediction can be achieved by

a very comprehensive physical analysis on the relationships among different failures and

environmental factors. However, due to the system complexity and the facts that many

impacting factors for system failures are not observable, this approach is often not feasible.

On the other hand, the availability of fleet service records provides great opportunities for

developing data-driven statistical methods to take advantage of the potential correlation

among failure events and predict the future failure events.

In this paper, our goal is to use a data driven model to effectively learn the dependence

structure among multiple events from historical fleet service records. Then the learned

structure and the observed event sequence from the unit under study are used to predict the

expected time to next event for the unit under study.

One popular school of thoughts on event prediction using historical event sequences is

temporal mining. The basic idea of temporal mining is to first identify the temporal patterns

heuristically, i.e., the sequences of events that frequently occur, and then prediction rules

are developed based on these patterns. Mitsa (2010) covers theoretical and application as-

pects of several methods and algorithms for event prediction using temporal mining method.

However, the temporal mining approaches are heuristic in nature. The prediction rules once

built are rigid and not very flexible.

Within statistical literature, survival modeling and analysis focuses on event or time-to-

event data (Hougaard (2000)). Several suitable approaches are available for event modeling

and prediction problem. One obvious strategy is regression. We can regress an event of
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interest with rest of the events (see Li et al. (2007); Yuan et al. (2011)). Cox PH model is a

popular regression model in survival and reliability literature which models the event hazard

rate using available covariates (also known as predictors) (Cox, 1972). After the model is

estimated, for prediction, we can plug in the observed predictor variables to obtain the event

hazard function, with which we can get the mean time-to-event (Klein & Moeschberger,

2005). Although Cox PH is a very powerful modeling technique and has been extended in

several ways, the available Cox PH model based prediction methods cannot differentiate the

order of past events. In other words, different order of event occurrences would yield the

same predictor set for the Cox PH, thus resulting in the same prediction – a limitation we

will tackle in this paper.

Another approach to model different types of time-to-event variables together is through

construction of a multi-variate joint distribution. Prediction from a joint distribution can

be obtained by conditioning on observed events and then marginalizing the distribution

of event of interest. Expected value of obtained marginal distribution provides the mean

time-to-event. In literature, there are available methods, particularly multi-variate Weibull

distribution which can be utilized (Hougaard, 1986; Lee & Wen, 2006; Marshall & Olkin,

1967). But, the model is inherently limited by the assumption of a parametric form which

may not be true in many real-world applications. Another quite popular way of constructing

multivariate joint distributions is through Copula. Copulas, however, under general for-

mulation are limited if the data is censored (Meeker & Escobar, 1998; Aalen et al., 2008).

This limitation has been approached in survival analysis literature where Copulas have been

adapted to study association between censored survival times (Hougaard, 2000, see chap

13). The resulting model is called survival Copula. Several studies have used the survival

Copula formulation, however, majority of them are limited to bivariate cases (Wang & Ding,

2000; Chen et al., 2010; Schemper et al., 2013). There are limited work on extending the

model to more than two variables case, such as, Othus & Li (2010); Barthel (2015). To

the best of our knowledge, the existing literature on survival Copula focuses on describing
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the relationship among events and there is no literature in this domain which deals with

event prediction. Furthermore, in the available joint distribution based approach, it is not

clear how to incorporate external predictors such as the product type, known environmental

factors into consideration.

Accounting for these limitations, in this paper we propose an integrated approach to

model the event sequences and predict the next event. In a nutshell, our idea is to construct

multivariate joint distribution of the time-to-event variables using Copulas. The marginal

distributions of each time-to-event variable that is needed for Copula construction is obtained

through the corresponding Cox PH regression model for each event. We call the Cox PH

regression models base models. During prediction, we obtain conditional density of the event

we try to predict using the multivariate joint distribution. Copulas, particularly Gaussian

Copula is employed in this paper to create joint distribution from base models in the presence

of censoring. The advantages of the proposed framework are – (i ). Copula is a very flexible

method, making the joint distribution quite flexible to fit the data. (ii ). The model can

easily incorporate various predictors and the order of the observed events is taken into

consideration as well. These features result in a tighter probability space for the predicted

future event and thus lead to a more accurate prediction.

The rest of the paper is organized as follows: in Section 2, we introduce the model

formulation and the conventional regression based event prediction approach is reviewed. In

Section 3, the Copula construction based on Cox PH regression models is presented. The

Copula based event prediction and the intuition are described. In Section 4, we conduct

several numerical experiments and discuss the results. Finally, in Sections 5 and 6 we

demonstrate the effectiveness of our proposed model on a real-world dataset obtained from

an industrial equipment, and conclude this paper with a brief discussion on several future

directions.
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2 Problem Formulation and Review of Regression Based

Event Prediction

2.1 Data description

We consider a fleet of N independent units available in the historical dataset, where each

unit is prone to possibly experience K different kinds of events during it operation (we also

use K to denote the set of events). We assume that for a unit a particular event-type only

occurs once during the observation period. The rationale of this assumption is that the first

occurrence of an event often indicates the onset/existence of an underlying cause that leads

to other events. Therefore, we can consider only the first time-to-events for all event-types.

For any unit i, let the period of observation be [0, τi]. We represent the available information

for this unit using a set of two vectors: (i) event occurrence times as ti = t1i, t2i, . . . , tKi, and

(ii) censoring indicators δi = δ1i, δ2i, . . . , δKi which takes value 1 if the unit experienced this

event or 0 otherwise. This gives, tki = τi, ∀δki = 0. Overall dataset can be summarized as

D = {ti, δi} ∀i ∈ N .

As an example, we provide a sample dataset obtained from a industrial material handling

machine in Table 1. The data was collected from a operation period of 250 time units. In

total, 40 units were studied and 4 different kinds of events were recorded. Due to confiden-

tiality reasons, we have renamed the event names simply as E1, . . . , E4. Besides, for each

event occurrence time, we also have the corresponding censoring indicator. If a unit (for ex-

ample, unit 1) does not experience an event until the end of observation period (for example,

E2 for unit 1), the corresponding censoring indicator is 0, else it is 1 when the respective

event had occurred.

Our aim is to use multi-type event data available in the historical dataset, D, to make

predictions for a new unit m. In other words, if we denote Ti as the time-to-event random

variable for event type i, we aims at establishing a probabilistic model for T1, ..., TK and

estimate the model parameters using D. Then for a unit that is not in the historical dataset,
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Table 1: Sample dataset illustrating recorded measurements for the units, N = 40, K = 4

Unit
Event times and Censoring Indicator

E1 δ1 E2 δ2 E3 δ3 E4 δ4

1 32.81 1 250.00 0 60.86 1 80.46 1
2 250.00 0 59.00 1 250.00 0 250.00 0
3 7.78 1 250.00 0 30.56 1 71.88 1
.. .. .. .. .. .. .. .. ..
38 11.00 1 1.80 1 1.86 1 250.00 0
39 18.89 1 250.00 0 250.00 0 250.00 0
40 250.00 0 250.00 0 250.00 0 250.00 0

we want predict the next event using the model and the event observations from the unit

until current time instance t.

In the rest, we use f(.) and F (.) to denote the density and distribution functions of the

time-to-event variable(s). The survival function for a time-to-event variable is denoted using

S(.) = 1 − F (.). In survival analysis, we also often use hazard function λ(t) to describe

the time-to-event random variable distribution. By definition, hazard function is the rate of

probability of experiencing an event and it can be computed as λ(t) = f(t)
S(t)

. From λ(t) we

can obtain S(t) as

S(t) = exp

(
−
∫
λ(t)dt

)
(1)

2.2 Review of Cox PH based event prediction

Cox PH model has been used for event prediction using multi-event sequences Li et al. (2007).

Here we provide a brief review of this approach.

For event type k, we can establish a Cox PH model as

λk(t) = λk0(t) exp(βTk ZEk
(t)) (2)

where λk(t) is the hazard function of the kth event Ek, λk0(t) is a non-parametric baseline

hazard, βk is the coefficient vector, and ZEk
(t) is the predictor vector. Cox PH regression
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(a) A sequence of three events for a unit
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(b) Encoded predictors Z1(t) and Z2(t)

Figure 2: An example of event sequence for a unit

model is a quite flexible model as the predictors ZEk
(t) could include time fixed or time

varying external factors such as “type of equipment”, “location”, or ”workloads”. The

predictors could also include the other event types. Indeed, we can encode event type j,

j 6= k, as

Zj(t) =


0, 0 ≤ t < tj

1, tj ≤ t < tk

In other words, Zj(t) is a function taking binary values: it is zero before Ej and jumps

to 1 at the time instance when Ej occurs. We can encode all the rest event type in the

same way and include them as predictors in ZEk
(t). As mentioned above, ZEk

(t) could also

include other system factors. For the sake of simplicity, we only consider Zj(t)s, j 6= k as

predictors in the Cox PH model. However, all the results still hold if we have additional

external predictors in ZEk
(t).

As an example, consider a unit which experiences three types of events E1, E2 and E3 as

shown in figure 2a, and let event-type E3 be the response event with events E1 and E2 being

predictors. Z1 changes from 0 to 1 once event-type E1 is observed, and since event-type

E2 is not experienced by the unit at least until event-type E3, the corresponding predictor

remains as 0 (see figure 2b).

After specifying the model, we use Θk = {λk0,βk} to summarize regression parameters

for k-th event-type regression model. We estimate the model parameters for this regression

model by maximizing the likelihood, Lk (see Klein & Moeschberger (2005)). Below we
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express Lk

Lk(Θk; D) =
N∏
i=1

[
λk0(t) exp(βTk ZEk

(t))

]δik
exp

{
− Λk0(t) exp(βTk ZEk

(t))

}
(3)

Let Θ̂k denote the estimated parameters. Please note that we can construct regression model

for each event-type and thus we have K separate Cox PH regression models if we have K

types of event. We let Θ̂ denote regression function parameters across all these K models.

During prediction, for a unit under service, at any time t∗, we can use the expected time-

to-event as the predicted time of event. In reliability literature, the expected time-to-event

is also often called as mean remaining life (MRL). We partition the events in two sets – the

observed events from the unit under study until t∗ are contained in Ψ, and, the remaining

events are in set Ξ = K\Ψ. The estimated survival function of the event p ∈ Ξ, Ŝp(·) can be

obtained through Eq. (1) with the estimated hazard function λ̂p(·) from the corresponding

Cox PH model.

Ŝp(t) = exp
(∫
−λ̂p0(t) exp(β̂Tp ZEp(t))dt

)
= Ŝp0(t)exp(β̂T

p ZEp (t)) (4)

where, Ŝp0(t) is estimated baseline survival function. The MRL denoted as mrlp(t
∗), is

obtained as

mrlp(t
∗) =

∫ ∞
0

Ŝp(t > t∗|ZEp(t∗) = zEp(t∗))dt =

∫∞
t∗
Ŝp(t|ZEp(t∗) = zEp(t∗))dt

Ŝp(t∗|ZEp(t∗) = zEp(t∗))
(5)

where, zEp(t∗) = {zj∈Ψ = 1, zj∈Ξ\p = 0}.

Figure 3 illustrates two instances of evaluated MRL with respect to event p. Please note

that as operation time passes, the predictor set may change, and at any t∗, the MRL is the

area towards the right and under the survival function (shaded area in Fig. 3).
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Figure 3: MRL for event p at unit’s commission at t∗ = 0 and at t∗ > 0

As seen above, due to the binary nature of predictors, the Cox PH sets all predictors in

Ψ to 1 and the remaining ones to 0, therefore, the actual observed sequence of events in Ψ

is not captured. As a result, this modeling and prediction procedure is unable to distinguish

the order of events in Ψ. As an example, consider if we have two sequences of events both

leading to event-type E3 as T a : E1 ≺ E2 ≺ E3 and T b : E2 ≺ E1 ≺ E3, then Z1 = Z2 = 1

for both of these sequences.

In a typical scenario, for any unit which experiences K events, there are 2K−1 combina-

tions of predictor variables, where as, there are a total of K! possible permutations of event

occurrence for the unit, suggesting that there is under-utilization of available information in

above described Cox PH model based prediction. We propose the following Copula based

approach to address this issue.

3 Copula-based events modeling and prediction

3.1 General joint distribution fitting using Copula

Consider we have K different random variables as X1, X2, . . . XK with the kth random vari-

able having density Xk ∼ fk(x;θk). Then, Sklar’s theorem allows us to create joint distri-
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bution using a specified Copula function C(α) with parameter α, and marginal distribution

functions, F (xk;θk) (Sklar, 1959). The variables are transformed to probability space (or

u−space) through their respective distribution function as

uk = Fk(xk;θk) (6)

where, uk ∈ U [0, 1]. Thereafter, a K-dimensional joint distribution using Copula C(α) can

be obtained as

F (x1, x2, . . . , xK ;α) = C(u1, u1, . . . , uK ;α) (7)

We also obtain the joint density function as

f(x1, x2, . . . , xK ;α) = c(u1, u2, . . . , uK ;α)
K∏
k=1

fk(xk) (8)

where, c(u1, u2, . . . , uK ;α) = ∂C(u1,u2,...,uK)
∂u1∂u2...∂uK

is Copula density function.

The parameters in the Copula model to be estimated contain individual density function

parameters θks and the Copula parameter α. The likelihood across set of N independent

observations can be written as follows:

L(θ1,θ2, . . . ,θK ,α; x1,x2, . . . ,xK) =
N∏
i=1

f(x1i, x2i, . . . , xKi;α) (9)

The above likelihood can be maximized using EM algorithm to obtain the parameters,

however, if the variables are time-to-event random variables with censoring, then parameter

estimation becomes challenging (Leung et al., 1997). Shih & Louis (1995) present Copula

estimation method for time-to-event variables with the presence of censoring for a bivariate

case. The essential idea is to use 1− S(·) to estimate the marginal distribution F (·), where

S(·) can be estimated with the presence of censoring. Alternatively, there exists concept

of survival Copula which directly uses S(·) as the input to the Copula function. Survival
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Copulas, C̃(.) can be obtained from the conventional Copula function through variable trans-

formation, C(.) and vice versa (see section 2.6 in Nelsen (2007)).

3.2 Copula construction based on Cox PH regression

The key idea of our proposed model is to use Cox PH regression models fitted from the

historical multi-event sequences to obtain the marginal distribution of the time-to-event

variable for each event type. Then these marginal distributions are used to construct the

Copula distribution. Through this integrated framework we are able to take advantage of

flexibility of Cox PH model while the Copula model can capture the subtle relationships

among the events (e.g., the actual event times, not only an encoded binary variable are

considered). The idea of using Cox PH model to obtain marginal distribution of time-to-

event variables has been used in medical applications (Massonnet et al. (2009); Othus & Li

(2010)). Specifically, a variable Xk in Eq. (7) becomes the time-to-event variable Tk for

event-type Ek and Eq. (7) becomes

FT (t1, t2, . . . , tK) = C(u1, u2, . . . , uK ;α) (10)

where uk = Fk(tk) = 1−Sk(tk) and Sk(tk) is obtained from the Cox PH model for event-type

k as described in the previous section.

Many choices for Copula function are available in literature (Nelsen, 2007) and it has

also been well-studied by researchers (see Genest et al. (2009) for review). However, we limit

our choice to Gaussian Copulas in this work, for two main reasons - (i ) we can estimate

the Copula parameter in presence of censoring with the help of a quick heuristic (later in

this section), and (ii) for practitioners, Gaussian Copula is easy to interpret. Please note

any other Copula functions, or vine-Copula structure can also be used instead of Gaussian

Copula, however their modeling is often complex and difficult to interpret. The parameter

for the Gaussian Copula is the correlation matrix which we denote using ΣK with {ΣK}kl =
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ρkl, {k, l} ∈ K. The joint distribution from Eq. (10) is given as:

FT(t1, t2, . . . , tK) = C(u1, u2, . . . , uK ; ΣK)

= ΦΣK
(Φ−1(u1),Φ−1(u2), . . . ,Φ−1(uK))

(11)

where, ΦΣK
is multivariate Gaussian distribution with parameter (0,ΣK), and Φ−1(·) is

inverse of standard Gaussian distribution.

Since we use Cox PH regression functions as the marginals, the overall likelihood to be

maximized contains the marginal parameters (Θ from section 2.2) and Copula parameter

(ΣK). We can write out the overall likelihood as a product of likelihood for each unit present

in historical dataset. Further, for the unit i, let Ψi ⊆ K represent the set of events which

has been observed, and Ξi is the set of unobserved/censored events, then the contribution

of this unit towards the likelihood will depend on these sets, given below:

L(Θ,ΣK; D) ∝
N∏
i=1

∂|Ψi|

∂uΨi

C̃(1− u1i, 1− u2i, . . . , 1− uKi; ΣK) (12)

where the function C̃(·) is the survival Copula function that can be obtained from the

conventional Copula function through a variable transformation. The derivation of (12) can

be found in appendix A. The Copula function parameters ΣK are explicit in the likelihood

function (12). The Cox PH model parameters Θ are implicit in the likelihood function as

when we transform the raw time-to-event data tki to uki, we will need those parameters Θ.

It is generally very difficult to simultaneously estimate all the parameters in (12) due to

the large number of unknown parameters. Here we adopt the method of two-step estimation

or Inference Functions for Margins (IFM) (Shih & Louis, 1995; Joe & Xu, 1996). Although

the method may cause bias in the estimation, the computational benefits make the method

highly attractive. The choice of IFM is also supported by the literature (Georges et al.,

2001; Othus & Li, 2010). The first step of IFM is to estimate marginal parameters (Θ in our

case) using any procedure of choice. Once Θ̂ is obtained, in the second step, variables are
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transformed from T−space to u−space and plugged into Copula density and subsequently

optimized to obtain the Copula parameters. The steps in detail is as follows

1. Obtain Θ̂ by maximizing Lk ∀k ∈ K for the base Cox PH model using D (see section

2.2).

2. Transform observed event-times present in the historical dataset to probability space

using the corresponding estimated survival function and predictors. For a unit i and

event-type k, the event-time tki is mapped as ûki = 1− Ŝk(tki), with predictors for the

Cox PH model as zEki = {zj = 1
j:tji<tki

, zj′ = 0
j′:tj′i>tki

}.

3. Substitute the transformed variables, û1, û2, . . . , ûK in Eq. (12) and then estimate the

Copula parameter Σ̂K. The likelihood to estimate Copula is

L(ΣK; û1, û2, . . . , ûK) ∝
N∏
i=1

∂|Ψi|

∂uΨi

C̃(1− û1i, 1− û2i, . . . , 1− ûKi; ΣK). (13)

The above likelihood can be maximized directly to estimate Σ̂K. However, if K is large

then estimation can be computationally expensive. Alternatively, we can use a pair-wise

approach as a heuristic to obtain the correlation matrix (Σ̂PW
K ). Compared to full likelihood,

the pair-wise approach is quick and easy to implement. The pair-wise approach can also be

found in literature (for example, Mehrotra (1995) in missing data, and Pesonen et al. (2015)

in left censored data). In the current work, we use estimated Σ̂PW
K as a starting point for

optimizing the full likelihood. The details of estimating ΣPW
K is provided in appendix B.

3.3 Event prediction using the Copula based model

We can use the multivariate joint distributions estimated from Copula to obtain event pre-

dictions. The basic idea is to obtain the conditional-marginal distribution of the event-type

we want to predict from the joint distribution and the observed predictors up to now. Then
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the mean of the conditional-marginal distribution can be used as the event-time’s prediction.

The steps for prediction using integrated Copula and Cox PH model are as follows.

1. Assume we want to make prediction for a specific unit. For all the observed events ψ ∈

Ψ from this unit, convert each event-time Tψ to probability space as uψ = 1− Ŝψ(tψ),

where Ŝψ(tψ) is obtained from the corresponding Cox PH model. We collectively write

them as uΨ.

2. For event p ∈ Ξ to be predicted for this unit, condition the joint Copula distribution

by uΨ and obtain the marginal of p in probability space. To do so, we first obtain the

conditional distribution as (derivation in appendix C)

C(uΞ; Σ̂Ξ|Ψ) = ΦΣ̂Ξ|Ψ

{(
(Φ−1(uΞ)− Σ̂ΞΨΣ̂−1

ΨΨΦ−1(uΨ))\
√
D(Σ̂Ξ|Ψ)

)
; Σ̂Ξ|Ψ\D(Σ̂Ξ|Ψ)

}
(14)

Then, conditional-marginal density for p denoted as up|uΨ can be worked out from

C(uΞ; Σ̂Ξ|Ψ) as follows

up|uΨ = marg
p

C(uΞ; Σ̂Ξ|Ψ)

= ΦΣ̂p|Ψ

(
(Φ−1(up)− Σ̂pΨΣ̂−1

ΨΨΦ−1(uΨ))/

√
(Σ̂Ξ|Ψ){pp}

) (15)

We can see in (15) that if there are no events to condition upon, then up|uΨ is simply

equal to Φ
(

Φ−1(up)
)

= up ∼ U [0, 1].

3. We can transform the distribution up|uΨ back to the T−space as following. First the

survival function to be used from Eq. 4 is

up|uΨ = 1− Ŝp(t > t∗) (16)

with predictors, zEp(t∗) = {zj∈Ψ = 1, zj∈Ξ\p = 0}.

15



4. By inverting the survival function we get

tp = Ŝ−1
p (1− up|uΨ), (17)

The expected time of event is, mrlp(t
∗) = Etp.

We use a simple example to illustrate the prediction process. Consider three event-

types: E1, E2, E3, where E1 shares mild association with the E2 and E3, and E2, E3 are

strongly associated. Let us further assume that we have obtained the model parameters

from historical dataset and we are particularly interested in the prediction of E3. If E3 is

the last event being experienced, then the two possible sequences leading to occurrence of

the third event are: T a : E1 ≺ E2 ≺ E3 and T b : E2 ≺ E1 ≺ E3. The prediction begins

at t∗ = 0 and Fig. 4 depicts the marginal distributions of variables in u−space as the unit

continues to experience the events.

No further

possibilities

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

No further

possibilities

0 0.4 0.8 0 0.4 0.8

0.2 0.6 1

No further

possibilities

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

No further

possibilities

0 0.4 0.8 0 0.4 0.8

0 0.4 0.8

Figure 4: Marginal distributions of variables in u−space upon conditioning for two sequences.
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As shown in Fig. 4, at t∗ = 0 when the unit is fresh and has not experienced any event,

then there is no event to condition on. The obtained marginals will be standard uniform.

When these marginals are transformed back to original time-to-event space, the expected

event times will be exactly identical to that from the corresponding base Cox PH model

(In fact, these expected event times will be determined by the baseline hazard function of

the corresponding Cox PH model). As the unit begins to experience events, the conditional

marginals of the events that have not occurred may not be standard uniform. In Fig. 4,

consider sequence T a where first event experienced is E1 which shares the same level of

correlation with E2 and E3, the marginal densities of u2 and u3 are very similar. On the

other hand, for sequence T b, the first event experienced is E2 and it shares different level

of correlation with E1 and E3, the corresponding densities are substantially different. The

above features lead to the distinct predictions for these two sequences. Please note that the

prediction only using the base Cox PH model does not have this feature.

4 Numerical Study based on Simulated Data

In this section, we use simulated data to evaluate the performance of the proposed approach.

One important issue is how to generate correlated multi-event data. We adopted two simu-

lation settings as described in the following sub-section.

4.1 Different experiment settings and data generation process

In setting (I), we generate sequence of multiple types of events through regression. These

event-types are manifestations of some underlying root causes or factors. For this experiment

setting we can draw an analogy, where these factors, in general depict working conditions

of the industrial equipment (temperature, operation-hours etc.). And, as the equipment

operates certain conditions or their combinations can have different effect on the event-times

being observed. Mathematically, let nf be the number of underlying factors which affect
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the occurrence of event-times. Corresponding to each factor, we further have the coefficient

vector as γ. These factors are associated with event’s hazard in the formulation same as

Cox PH (2) but with a specified and common baseline, i.e.

λk(t) = λ0k(t) exp(γTk M) (18)

where, M is set of common predictor variables sampled from standard uniform distribution,

and the baseline follows Weibull distribution with parameters (b, ν). Thus, the event time

vector of k-th event-type can be generated using following equation (Bender et al., 2005):

Tk =

[
− logU

b exp(γTk M)

]1/ν

(19)

where, U is standard uniform distribution.

Next, we generate K different event-types and to distinguish them, we change the coeffi-

cient vectors resulting in different magnitude of effect of the underlying factors. In detail, we

consider nf = 3 and generate eight different event-types (K = 8). The covariates considered

are enlisted in table 2. Since we set some covariates’ coefficients as zero, the result can be

treated as absence of the respective factors. We provide the algorithm for data generation

for setting I in procedure 1.

Table 2: Covariate coefficient values for setting I

γ E1 E2 E3 E4 E5 E6 E7 E8

γ1 0 -1 0 0 -1 0 -1 -1

γ2 0 0 -1 0 -1 -1 0 -1

γ3 0 0 0 -1 0 -1 -1 -1
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Algorithm 1 Data generation for setting I

Event time generation:
1: Initialize number of units N = 100, baseline parameters b = 2 and ν = 1.2, model matrix

M of dimension N × nf , and covariate coefficient vectors as in Table 2.
2: For each event-type, generate event-time vector using equation 19.

Censoring:
3: For each i ∈ N , generate censoring/follow-up times (τi) of each unit. Let τi ∼ Weib(.).

We set τi ∼ Weib(5, 5).
4: For each i ∈ N, δki = 0 if Tki > τi, else δki = 1, ∀k ∈ K.
5: Update Tki = min(τi, Tki).

As we can see, that each unit shares same observation values, but each event-type is

output of different level of coefficient values. Therefore, we expect that while these event-

types are different, they also share some commonality. Since our motivation is to highlight

the association in event-types, we do not use the observation matrix (X) during modeling

and prediction in the experiments.

Moving to experiment setting (II), in this case we generate event-times from multivariate

weibull distribution as presented in (Hougaard, 1986). We perform this experiment with

four event-types. Interestingly, under different parametrization, it is equivalent to consider a

Gumbel-Hougaard Copula (Hutchinson, 1990) with association parameter α. To generate the

event times under this setting, we need to specify the association parameter and individual

marginal distributions of event-times. We consider three sub-cases by varying the level of

α. We keep α = 1 denoting independence and other two values are 1.1 and 1.25. For each

event-type we set marginals as Weib(1, 5). In this setting, only one parameter controls the

association across all variables.

The steps involved in data generation for setting (II) are:
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Algorithm 2 Data generation for setting II

Event time generation:
1: Initialize number of units N = 50, specify K = 4 event types, underlying association

structure through Copula C(α) and marginal distributions.
2: Follows steps in Nelsen (2007) section 2.9 to generate observations in u−space.
3: Transform variables from u−space to T−space through respective marginal distributions.

Censoring:
4: Follow steps 3 through 5 from algorithm 1. We set τi ∼ Weib(1, 50).

4.2 Numerical Experiment

The overall study is in two steps: first, we use some portion of data to estimate the model

parameters. This known data is analogous to historical dataset available in teleservice sys-

tems. It is assumed that the estimated parameters are very close to real estimates, therefore,

for a new test-unit, which belong to the same family share the same governing parameters.

In the second step, for each test-unit, we begin the prediction procedure from t∗ = 0, which

can be treated as the unit’s commission to service. At any given point of time, we predict

the estimated time for each event which this test-unit has not experienced yet. We record

the absolute error (AE) in prediction times. For event p, if Tp is the realized event time and

mrlp(t
∗) is the predicted time of event, then AE(t∗)p = |mrlp(t

∗)− Tp|. Due to censoring, it

may however happen that any particular event is not realized for the test-unit, in that case

we do not assess the prediction performance for this particular event.

We choose leave-one-out cross-validation (LOO-CV) method as our approach to evaluate

and compare the prediction errors (Stone, 1974). Algorithm 3 provides the broader outline

of the adopted cross validation procedure for a Cox PH regression based modeling and

prediction model. The cross-validation procedure is same for the proposed model except

step 10 is now obtained from section 3.3. The performances are compared for each base

model against its respective integrated version. Please note that in regression model we only

use other event-types as covariates. In the next section we discuss the results obtained.
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Table 3: Prediction performance of competing models under setting I; Mean Absolute Error
(standard deviation)

Prediction methodology E1 E2 E3 E4 E5 E6 E7 E8

Cox PH
0.215 0.295 0.296 0.306 0.419 0.456 0.495 0.738

(0.196) (0.256) (0.304) (0.232) (0.409) (0.416) (0.367) (0.591)

Cox PH with Copula
0.182 0.249 0.197 0.259 0.289 0.344 0.334 0.279

(0.162) (0.266) (0.141) (0.259) (0.445) (0.406) (0.362) (0.211)
Percentage improvement 9% 10% 25% 18% 33% 47% 42 % 54%

Algorithm 3 LOO-CV for Cox PH regression based prediction

1: for m in 1 : N do
Offline stage

2: m← test unit
3: Hist← N \m
4: Estimate Θ̂ using section 2.2 and Hist

Online stage
5: while |Ψ| < K do
6: t∗ ← max(0,max(TΨ))
7: Estimate mrlp(t

∗) =
∫
Ŝp(t > t∗|zΨ = 1, zΞ\p = 0)dtp for each p ∈ Ξ

8: p← event realized
9: For p: AEpm = |Tpm −mrlp(t

∗)|
10: Ξ← Ξ\p
11: Ψ← Ψ ∪ p
12: end while
13: end for

4.3 Results and Discussion

In the two experiment settings that have been considered, the proposed model outperforms

the respective regression model. The trends for all of the experiment cases justify that the

proposed method not only enjoys the information present in the individual regression models,

but it also adequately utilizes the information offered from the joint distribution. Moreover,

the performance also highlights that a sophisticated regression model can be topped with

extra information from the joint and improve the overall prediction. Below we discuss the

results and insights of each experiment setting one-by-one.

For the setting (I), time variables are generated through regression functions. From this
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Table 4: Prediction performance of competing models under setting II; Mean Absolute Error
(standard deviation)

Case Prediction methodology E1 E2 E3 E4

α = 1

Cox PH
1.982 1.340 1.179 2.148

(2.362) (1.579) (1.068) (2.088)

Cox PH with Copula
1.703 0.995 1.045 1.623

(1.906) (1.155) (1.126) (1.650)
Percentage improvement 14% 26% 11% 24%

α = 1.1

Cox PH
1.569 2.112 1.765 3.256

(1.248) (2.168) (2.068) (3.812)

Cox PH with Copula
1.389 1.652 1.335 2.992

(1.347) (1.968) (1.392) (4.037)
Percentage improvement 12% 22% 24% 8%

α = 1.25

Cox PH
1.606 1.552 2.004 1.764

(1.812) (1.249) (2.413) (1.975)

Cox PH with Copula
1.518 1.504 1.489 1.434

(1.454) (1.276) (1.270) (1.432)
Percentage improvement 5% 3% 26% 19%

setup, we gather several insights related to prediction performance of different predictive

models. First, it is worth noting that as we observe from event-type 1 through 8, the several

factors alter the overall event-time densities. This alteration is also reflected in the error

distributions as they increase (see table 3).

Second, in general, table 3 show that for any regression model, our method provides

considerable decrement in error values. The observation can be explained by the fact that

Cox PH models are indeed limited by the binary nature of the predictors, which renders the

real observation times to be masked. On the other hand, in our proposed framework, we

retain this information when we build the joint (since u is continuous). Consequently, during

prediction we are able to condition upon the observed event times.

Third, the variation of error distribution is generally less for the joint model against the

respective regression model which further suggests that the proposed model performs better

in presence of extreme values.

The second setting assumes multivariate weibull distribution as the true underlying

model. Despite this fact, we find that the employed Gaussian Copula sufficiently captures
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the dependence among the time variables and provide improved predictions (see table 4).

Here, parameter α characterizes the measure of dependence among the variables. For the

case where event-times are independent to each other (α = 1), the correlation parameters

in Gaussian Copula estimated from historical dataset are non-zero. The underlying reason

is that we transform variables through regression models which share several common co-

variates. Thus, the u−s obtained are correlated and the parameter is not necessarily zero.

As a result, during prediction, the Copula density when conditioned does not have standard

uniform distribution – thus giving better prediction estimates.

5 Real case study

5.1 Data description

In this section, we demonstrate the efficacy of our proposed method on a real world data

collected from an industrial equipment. There are multiple sensors onboard the equipment

which monitor the unit’s operation. The units are connected wirelessly and they immediately

send out warning data whenever an event has occurred. Due to confidentiality we do not

describe the warning signals in current text. The dataset is collected from 40 units and four

different kinds of events are recorded. Table 1 presents a part of the dataset. Please note

that the event times are not the calendar times, rather it is the time since the unit began

operating. As is the characteristic of the event data, not all of the units experienced all of

the events and certain amount of censoring was present. Particularly, E1 was censored for

roughly a quarter of the units, E2 and E4 were censored for a fifth of the units and E3 did

not occur for roughly a third of the units in operation.

5.2 Performance evaluation

We fit Cox PH regression models for each individual event-type. The summary of model fits

is reported in Table 5. Thereafter, we convert observed event times through respective Cox
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PH models and estimate Copula parameter while adjusting for censoring which is mentioned

in Table 6. The non-zero correlation parameters indicate the presence of association between

the transformed variables.

Table 5: Obtained coefficient values with respective standard error for different Cox PH
regression models for the real case data

Model for β1 β2 β3 β4

k = 1 -
0.89 0.15 -0.14

(0.30) (0.40) (0.33)

k = 2
0.34

-
-0.47 0.31

(0.31) (0.44) (0.31)

k = 3
-0.01 0.36

-
-0.27

(0.29) (0.3) (0.3)

k = 4
0.14 -0.07 -0.16

-(0.29) (0.29) (0.34)

Table 6: Correlation among transformed event-times through Cox PH regression models

E1 E2 E3 E4

E1 1 0.25 0.39 0.01

E2 0.25 1 0.23 0.09

E3 0.39 0.23 1 -0.30

E4 0.01 0.09 -0.30 1

We apply the LOO-CV on the real case dataset and compare the proposed framework

against Cox PH. The results are reported in Table 7 and we find that our proposed method

outperforms the respective regression models for all event-types.

Table 7: Prediction performance of competing models on real case data; Mean Absolute
Error (standard deviation)

Prediction methodology E1 E2 E3 E4

Cox PH
46.604 39.377 44.255 44.602

(27.715) (29.186) (27.580) (23.709)

Cox PH with Copula
38.824 36.957 41.633 41.247

(25.980) (22.939) (31.961) (26.128)

Percentage improvement 17% 6% 6% 8%
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6 Conclusion and future directions

To conclude, in this paper, we presented a framework to make prediction in a multi-type

event scenario. Cox PH regression functions although very flexible and robust in modeling,

are strongly limited by the binary formulation of the predictors during prediction. The frame-

work presented in this paper creates a joint with marginals being Cox PH regression functions

using Gaussian Copula, and, during prediction, an extra level of conditioning extracts more

information from the unit’s history. As a result the method adequately distinguishes between

the event sequence and provides a curtailed and better prediction estimates.

There are two major future research directions for the current work: (i) extend the work

by generalizing it to accommodate event’s recurrence. One straightforward way to achieve

this is by creating dummy variables, however, there are two main challenges: first, a future

recurring event can only occur after the latest event, thus the risk period will be different,

and second challenge, mainly from the practice perspective is that during the test period

the event count may exceed the limited dummy variables created in the training dataset.

Another way to solve this challenge is by using a gap-time approach – which resets the time

after event’s occurrence – however, in an engineering context where equipments age with

operation such assumption might not be right. (ii) Often it happens that events or warnings

are ambiguous indicators of several underlying root-cause. In this scenario, using a fixed

Copula structure might not offer the best prediction estimates. This requirement can be

met by adopting a suitable Bayesian approach and making the Copula parameter a random

variable.
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A Likelihood construction

List of assumptions and notations

• S(s) represents a joint survival function. S(s) = 1 if s = 0, and S(s) = 0 if s = ∞

• Censoring is independent and non-informative of failures. Censoring time for a unit is

τ .

• Let gc denote density function of censoring with gc(C ≤ 0) = 0 indicating that proba-

bility of unit being censored at the time of commission is zero.

• Bold characters denote the multivariate versions of variables and integrations.

• Using Sklar’s representation:

fK(s) = (−1)K
∂S(sK)

∂sK

= (−1)K
∂C̃(S1(s1), S2(s2), . . . , SK(sk))

∂sK

= (−1)K
∂C̃(SK(sK))

∂sK

(20)

where, C̃(·) is the survival Copula which can be obtained from Copula C(·) (Georges

et al., 2001, see Theorem 2 and 3).

We start by evaluating the joint probability of observed/censored times for one unit. Please

note that for neatness we drop the unit’s index. Also, C = {T, δ = 0} represent censored
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time and T = {T, δ = 1} represent the observed event time.

P [CΞ ≤ τΞ,TΨ ≤ tΨ,TΞ > cΞ] =

τ∫∫∫
0

[ ∞∫∫∫
c

tΨ∫∫∫
0

fK(sK)dsK

]
gc(c)dcΞ (21)

Working out the integrand inside the square brackets and using equation 20

∞∫∫∫
c

tΨ∫∫∫
0

fK(sK)dsK =

∞∫∫∫
c

tΨ∫∫∫
0

(−1)K
∂C̃(SK(sK))

∂sK

dsK (22)

∝
∞∫∫∫
c

∂C̃(SK(sK))

∂sΞ

∣∣∣∣∣
tΨ

0

dsΞ (23)

∝
∞∫∫∫
c

∂C̃(SΞ(sΞ), SΨ(tΨ))

∂sΞ

− ∂C̃(SΞ(sΞ), SΨ(0))

∂sΞ

dsΞ (24)

∝
∞∫∫∫
c

∂C̃(SΞ(sΞ), SΨ(tΨ))

∂sΞ

− ∂C̃(SΞ(sΞ),1)

∂sΞ

dsΞ (25)

∝
{∂C̃(SΞ(∞), SΨ(tΨ))

∂sΞ

− ∂C̃(SΞ(c), SΨ(tΨ))

∂sΞ

}
−
{∂C̃(SΞ(∞),1)

∂sΞ

− ∂C̃(SΞ(c), 1)

∂sΞ

} (26)

Using first assumption

∝ ∂C̃(SΞ(c), 1)

∂sΞ

− ∂C̃(SΞ(c), SΨ(tΨ))

∂sΞ

(27)

Going back to equation 21

P [CΞ ≤ τΞ,TΨ ≤ tΨ,TΞ > cΞ] ∝
τ∫∫∫
0

[∂C̃(SΞ(c), 1)

∂sΞ

− ∂C̃(SΞ(c), SΨ(tΨ))

∂sΞ

]
gc(c)dcΞ (28)

Next, to obtain the likelihood, we partially differentiate the above equation wrt K variables

to get
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L ∝ ∂K

∂tK

{ τ∫∫∫
0

[∂C̃(SΞ(c),1)

∂sΞ

− ∂C̃(SΞ(c), SΨ(tΨ))

∂sΞ

]
gc(c)dcΞ

}
(29)

∝ ∂|Ψ|

∂tΨ

{
∂|Ξ|

∂tΞ

τ∫∫∫
0

[∂C̃(SΞ(c), 1)

∂sΞ

− ∂C̃(SΞ(c), SΨ(tΨ))

∂sΞ

]
gc(c)dcΞ

}
(30)

∝ ∂|Ψ|

∂tΨ

{[
C̃(SΞ(τ ),1)− C̃(SΞ(τ ), SΨ(tΨ))

]
gc(τ )−

[
C̃(SΞ(0),1)− C̃(SΞ(0), SΨ(tΨ))

]
gc(0)dcΞ

} (31)

∝ ∂|Ψ|

∂tΨ
C̃(SΞ(τ ), SΨ(tΨ)) =

∂|Ψ|

∂tΨ
C̃(SK(tK)) (32)

Converting to u−notation using u = 1− S(t|Z)

L ∝ ∂|Ψ|

∂uΨ

C̃(1− u1, 1− u2, . . . , 1− uK ; ΣK) (33)

The obtained likelihood also has a nice interpretation. As can be observed that we partially

differentiate Copula function with respect to observed event-types – this means that events

in Ψ contribute proportionally to their density function, whereas for the unobserved events

the contribution towards final likelihood is proportional to their cumulative density function

beyond the censored time.
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B Deriving pair-wise (PW) correlation parameter of

correlation matrix

We want to estimate the Copula parameter pair-wise ΣPW
K which is:

ΣPW
K =


ρ11 ρ12 . . .

...
. . .

ρK1 ρKK

 (34)

where, ρkl is the correlation between event-type k and l with ρkk = 1. Here, we estimate

each correlation parameter separately. In other words, any pair of event-type {kl} forms

a two-dimensional Copula with parameter ρkl. The relation between Copula and survival

Copula in bivariate case is: C̃(1− uk, 1− ul) = 1− uk − ul + C(uk, ul). Thus, the following

likelihood can be derived using Eq. 13 as follows:

• Case 1: The unit i experienced both events k and l, then, δki = δli = 1,Ψi = {k, l}.

The likelihood contribution is

L ∝ ∂2

∂uk∂ul
C̃(1− ûki, 1− ûli; ρkl) (35)

∝ c(ûki, ûli; ρkl) (36)

• Case 2: If unit i experienced only event k, then, δki = 1, δli = 0,Ψi = {k}. The

likelihood contribution using Eq. 13 is:

L ∝ ∂

∂uk
C̃(1− ûki, 1− ûli; ρkl) (37)

∝
[
1− ∂C(ûki, ûli; ρkl)

∂uk

]
(38)

Similarly we can work out the case when unit experienced only event l.
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• Case 3: If the unit i did not experienced any event, then, δki = δli = 0. The likelihood

contribution is:

L ∝ C̃(1− ûki, 1− ûli; ρkl) (39)

∝
[
1− ûk − ûl + C(ûki, ûli; ρkl)

]
(40)

Combining these cases, the likelihood we obtain is:

L(ρkl; ûk, ûl) =
N∏
i=1

[
c(ûki, ûli; ρkl)

δkiδli

×
[
1− ∂C(ûki, ûli; ρkl)

∂uk

]δki(1−δli)
×
[
1− ∂C(ûki, ûli; ρkl)

∂ul

](1−δki)δli

×
[
1− ûk − ûl + C(ûki, ûli; ρkl)

](1−δki)(1−δli)
]

(41)

The above likelihood can be quickly maximized by parallelizing the estimation process. Once

we have the estimates of the correlation parameters, Σ̂PW
K can be easily constructed giving

us a joint distribution of transformed event-times.

C Conditional Gaussian Copula distribution

First, lets denote T
′

k = Φ−1(1 − S(Tk)), thus, {T ′1, T ′2, . . . , T ′K} ∼ N (0,ΣK). Let at any

time of prediction t∗ the set of observed events is Ψ and the remaining events are in Ξ. Then,

correlation matrix can be split as

ΣK =

ΣΞΞ ΣΞΨ

ΣΨΞ ΣΨΨ

 (42)
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Next, we know that normal distribution remains closed under conditioning, thus

{T ′Ξ|T ′Ψ = t′Ψ} ∼ N (µΞ|Ψ,ΣΞ|Ψ) (43)

where, µΞ|Ψ = 0+ΣΞΨΣ−1
ΨΨ(t′Ψ−0) and ΣΞ|Ψ = ΣΞΞ−ΣΞΨΣ−1

ΨΨΣΨΞ. Further, let the variance

(or diagonal) components of ΣΞ|Ψ be denoted as D(ΣΞ|Ψ). Now, to write the conditional

distribution in form of Copula, first we normalize the conditional T ′Ξ|T ′Ψ = t′Ψ as follows

(T ′Ξ − ΣΞΨΣ−1
ΨΨt

′
Ψ)\
√
D(ΣΞ|Ψ) (44)

where, symbol ‘\’ denotes element wise division.

The |Ξ| dimensional Copula then obtained is

C(ΣΞ|Ψ) = ΦΣΞ|Ψ(T ′Ξ|T ′Ψ = t′Ψ; ΣΞ|Ψ\D(ΣΞ|Ψ)) (45)

In terms of u−notation

C(ΣΞ|Ψ) = ΦΣΞ|Ψ

{(
(Φ−1(uΞ)− ΣΞΨΣ−1

ΨΨΦ−1(uΨ))\
√
D(ΣΞ|Ψ)

)
; ΣΞ|Ψ\D(ΣΞ|Ψ)

}
(46)
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