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Abstract

Due to the fast development of communication and information technology, the
event sequences collected from a fleet, which consists of potentially a large number of
similar units become readily available. Each event sequence is collected from a specific
unit and may consists of multiple types of events (e.g., different types of failure event).
In this paper, we present a novel method for modeling and prediction using those event
sequences. Conventional approaches to model and predict event data involve regression
methods, such as Cox Proportional Hazards. The proposed method essentially uses
Copula to approximate the joint distribution of time-to-event variables corresponding
to each type of events. The marginal distributions of the time-to-event variables that
are needed for Copula function is obtained through the Cox PH regression models.
The proposed model is more flexible and efficient in modeling the relationships among
multiple events. With simulations and real-world case study, we show that proposed

method outperforms the base regression model in prediction accuracy.
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1 Introduction

Technological advancements in communications and information technology is rapidly cat-
alyzing data collection, sharing and processing. As a direct consequence, the service record
for a fleet consisting potentially a large number of similar units becomes readily available.
For example, many Internet-of-things enabled tele-service systems are available in practices
now. In such a system, the products (e.g., automotive, forklift) in the field are brought
online and linked to the cloud. The system failures and related service actions for the whole
fleet are recorded, aggregated on the cloud and readily accessible. The fleet service record
provides valuable information regarding various system failures and their relationships. This
work concerns the modeling and prediction of failure events using fleet service records.

As shown in Figure 1, we view fleet service record as a collection of event sequences

consisting multiple event types and their time stamps.
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Figure 1: Illustration of multi-type event data, K =4

Each event type represents one type of failure and each event sequence represents the
event record for one unit. A typical engineering product consists of multiple components and

can experience multiple types of failure events. The occurrence of different types of failure



may be correlated. The rationale of the correlation is that first, a common environmental
factor may lead to different failure (e.g., very hot environment may lead to motor overheat
and motor brush failure); second, the operation of the components within the same unit is
inter-related and one failure may lead to another failure (e.g., a bad alternator in a car will
cause the battery failure).

In engineering practice, it is highly desirable to predict the occurrence of failures for
efficient and safe system operations. In principle, failure prediction can be achieved by
a very comprehensive physical analysis on the relationships among different failures and
environmental factors. However, due to the system complexity and the facts that many
impacting factors for system failures are not observable, this approach is often not feasible.
On the other hand, the availability of fleet service records provides great opportunities for
developing data-driven statistical methods to take advantage of the potential correlation
among failure events and predict the future failure events.

In this paper, our goal is to use a data driven model to effectively learn the dependence
structure among multiple events from historical fleet service records. Then the learned
structure and the observed event sequence from the unit under study are used to predict the
expected time to next event for the unit under study.

One popular school of thoughts on event prediction using historical event sequences is
temporal mining. The basic idea of temporal mining is to first identify the temporal patterns
heuristically, i.e., the sequences of events that frequently occur, and then prediction rules
are developed based on these patterns. Mitsa (2010) covers theoretical and application as-
pects of several methods and algorithms for event prediction using temporal mining method.
However, the temporal mining approaches are heuristic in nature. The prediction rules once
built are rigid and not very flexible.

Within statistical literature, survival modeling and analysis focuses on event or time-to-
event data (Hougaard (2000)). Several suitable approaches are available for event modeling

and prediction problem. One obvious strategy is regression. We can regress an event of



interest with rest of the events (see Li et al. (2007); Yuan et al. (2011)). Cox PH model is a
popular regression model in survival and reliability literature which models the event hazard
rate using available covariates (also known as predictors) (Cox, 1972). After the model is
estimated, for prediction, we can plug in the observed predictor variables to obtain the event
hazard function, with which we can get the mean time-to-event (Klein & Moeschberger,
2005). Although Cox PH is a very powerful modeling technique and has been extended in
several ways, the available Cox PH model based prediction methods cannot differentiate the
order of past events. In other words, different order of event occurrences would yield the
same predictor set for the Cox PH, thus resulting in the same prediction — a limitation we
will tackle in this paper.

Another approach to model different types of time-to-event variables together is through
construction of a multi-variate joint distribution. Prediction from a joint distribution can
be obtained by conditioning on observed events and then marginalizing the distribution
of event of interest. Expected value of obtained marginal distribution provides the mean
time-to-event. In literature, there are available methods, particularly multi-variate Weibull
distribution which can be utilized (Hougaard, 1986; Lee & Wen, 2006; Marshall & Olkin,
1967). But, the model is inherently limited by the assumption of a parametric form which
may not be true in many real-world applications. Another quite popular way of constructing
multivariate joint distributions is through Copula. Copulas, however, under general for-
mulation are limited if the data is censored (Meeker & Escobar, 1998; Aalen et al., 2008).
This limitation has been approached in survival analysis literature where Copulas have been
adapted to study association between censored survival times (Hougaard, 2000, see chap
13). The resulting model is called survival Copula. Several studies have used the survival
Copula formulation, however, majority of them are limited to bivariate cases (Wang & Ding,
2000; Chen et al., 2010; Schemper et al., 2013). There are limited work on extending the
model to more than two variables case, such as, Othus & Li (2010); Barthel (2015). To

the best of our knowledge, the existing literature on survival Copula focuses on describing



the relationship among events and there is no literature in this domain which deals with
event prediction. Furthermore, in the available joint distribution based approach, it is not
clear how to incorporate external predictors such as the product type, known environmental
factors into consideration.

Accounting for these limitations, in this paper we propose an integrated approach to
model the event sequences and predict the next event. In a nutshell, our idea is to construct
multivariate joint distribution of the time-to-event variables using Copulas. The marginal
distributions of each time-to-event variable that is needed for Copula construction is obtained
through the corresponding Cox PH regression model for each event. We call the Cox PH
regression models base models. During prediction, we obtain conditional density of the event
we try to predict using the multivariate joint distribution. Copulas, particularly Gaussian
Copula is employed in this paper to create joint distribution from base models in the presence
of censoring. The advantages of the proposed framework are — (7). Copula is a very flexible
method, making the joint distribution quite flexible to fit the data. (i¢). The model can
easily incorporate various predictors and the order of the observed events is taken into
consideration as well. These features result in a tighter probability space for the predicted
future event and thus lead to a more accurate prediction.

The rest of the paper is organized as follows: in Section 2, we introduce the model
formulation and the conventional regression based event prediction approach is reviewed. In
Section 3, the Copula construction based on Cox PH regression models is presented. The
Copula based event prediction and the intuition are described. In Section 4, we conduct
several numerical experiments and discuss the results. Finally, in Sections 5 and 6 we
demonstrate the effectiveness of our proposed model on a real-world dataset obtained from
an industrial equipment, and conclude this paper with a brief discussion on several future

directions.



2 Problem Formulation and Review of Regression Based

Event Prediction

2.1 Data description

We consider a fleet of N independent units available in the historical dataset, where each
unit is prone to possibly experience K different kinds of events during it operation (we also
use K to denote the set of events). We assume that for a unit a particular event-type only
occurs once during the observation period. The rationale of this assumption is that the first
occurrence of an event often indicates the onset/existence of an underlying cause that leads
to other events. Therefore, we can consider only the first time-to-events for all event-types.
For any unit 4, let the period of observation be [0, 7;]. We represent the available information
for this unit using a set of two vectors: (i) event occurrence times as t; = ty;,t9;, . .., tg;, and
(i) censoring indicators &; = d1;, da;, - . . , 0x; which takes value 1 if the unit experienced this
event or 0 otherwise. This gives, t;; = 7, Vog; = 0. Overall dataset can be summarized as
D ={t;,0;} Vie N.

As an example, we provide a sample dataset obtained from a industrial material handling
machine in Table 1. The data was collected from a operation period of 250 time units. In
total, 40 units were studied and 4 different kinds of events were recorded. Due to confiden-
tiality reasons, we have renamed the event names simply as Ei,..., E;. Besides, for each
event occurrence time, we also have the corresponding censoring indicator. If a unit (for ex-
ample, unit 1) does not experience an event until the end of observation period (for example,
E, for unit 1), the corresponding censoring indicator is 0, else it is 1 when the respective
event had occurred.

Our aim is to use multi-type event data available in the historical dataset, D, to make
predictions for a new unit m. In other words, if we denote 7T; as the time-to-event random
variable for event type i, we aims at establishing a probabilistic model for Ti, ..., Tk and

estimate the model parameters using D. Then for a unit that is not in the historical dataset,



Table 1: Sample dataset illustrating recorded measurements for the units, N =40, K =4

Event times and Censoring Indicator
E1 (51 E2 (52 E3 53 E4
1 32.81 1 1250.00 0| 6086 1 | 80.46 1
2 | 250.00 O | 59.00 1 | 250.00 0O |250.00 O
3 778 1 ]1250.00 0] 3056 1 | 71.88 1

Unit

g

[l

250.00

—

1.80 1 1.86

=

38 11.00

39 | 1889 1 |250.00 0 |250.00 0 |250.00 O
40 | 250.00 0 | 250.00 0 | 250.00 0O | 250.00 O

we want predict the next event using the model and the event observations from the unit
until current time instance ¢.

In the rest, we use f(.) and F(.) to denote the density and distribution functions of the
time-to-event variable(s). The survival function for a time-to-event variable is denoted using
S(.) = 1 — F(.). In survival analysis, we also often use hazard function A(t) to describe
the time-to-event random variable distribution. By definition, hazard function is the rate of

[

probability of experiencing an event and it can be computed as A(t) = Wi) From \(t) we

can obtain S(t) as

S(t) = exp (- / A(t)dt) (1)

2.2 Review of Cox PH based event prediction

Cox PH model has been used for event prediction using multi-event sequences Li et al. (2007).
Here we provide a brief review of this approach.

For event type k, we can establish a Cox PH model as

Ak(t) = Aro(t) exp(Bg Zp, (1)) (2)

where Ai(t) is the hazard function of the kth event Ej, Axo(t) is a non-parametric baseline

hazard, B is the coefficient vector, and Zg, (¢) is the predictor vector. Cox PH regression
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Figure 2: An example of event sequence for a unit

model is a quite flexible model as the predictors Zg, (t) could include time fixed or time
varying external factors such as “type of equipment”, “location”, or ”workloads”. The
predictors could also include the other event types. Indeed, we can encode event type j,
J #k, as

0, 0<t<t,

1, t;<t<ty

In other words, Z;(t) is a function taking binary values: it is zero before E; and jumps
to 1 at the time instance when E; occurs. We can encode all the rest event type in the
same way and include them as predictors in Zg, (). As mentioned above, Zg, (t) could also
include other system factors. For the sake of simplicity, we only consider Z;(t)s, j # k as
predictors in the Cox PH model. However, all the results still hold if we have additional
external predictors in Zg, (t).

As an example, consider a unit which experiences three types of events E;, E5 and Fs as
shown in figure 2a, and let event-type Fs3 be the response event with events E; and Fy being
predictors. Z; changes from 0 to 1 once event-type E; is observed, and since event-type
FE5 is not experienced by the unit at least until event-type FEj3, the corresponding predictor
remains as 0 (see figure 2b).

After specifying the model, we use O, = {0, B} to summarize regression parameters
for k-th event-type regression model. We estimate the model parameters for this regression

model by maximizing the likelihood, Ly (see Klein & Moeschberger (2005)). Below we



express Ly

N Oik
LyexsD)=]] [Ako(t) exp(By Z, (t))] eXp{ — Ago(t) exp(B;, Zp, (t))} (3)
i=1

Let Oy, denote the estimated parameters. Please note that we can construct regression model
for each event-type and thus we have K separate Cox PH regression models if we have K

types of event. We let O denote regression function parameters across all these K models.
During prediction, for a unit under service, at any time ¢*, we can use the expected time-
to-event as the predicted time of event. In reliability literature, the expected time-to-event
is also often called as mean remaining life (MRL). We partition the events in two sets — the
observed events from the unit under study until ¢* are contained in ¥, and, the remaining
events are in set = = K\W. The estimated survival function of the event p € =, S’p(-) can be

obtained through Eq. (1) with the estimated hazard function A,(-) from the corresponding
Cox PH model.

N

Sp(t) = exp </_5‘p0(t) GXP(BIZ;ZEP (t))dt) = Spo(t)eXP(Bngp(t)) (4)

where, Sy(t) is estimated baseline survival function. The MRL denoted as mrl,(t*), is

obtained as

i Sp(t|Zg, (1) = 2, (1))dt
p(t*’ZEp( ):ZEp(t*))

wily(#) = [ 8yt > #122,) = s, ()t = 5

where, zg, (t*) = {zjev = 1, 2jez\, = 0}.
Figure 3 illustrates two instances of evaluated MRL with respect to event p. Please note
that as operation time passes, the predictor set may change, and at any t*, the MRL is the

area towards the right and under the survival function (shaded area in Fig. 3).
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Figure 3: MRL for event p at unit’s commission at t* = 0 and at t* > 0

As seen above, due to the binary nature of predictors, the Cox PH sets all predictors in
¥ to 1 and the remaining ones to 0, therefore, the actual observed sequence of events in W
is not captured. As a result, this modeling and prediction procedure is unable to distinguish
the order of events in W. As an example, consider if we have two sequences of events both
leading to event-type E5 as 7% : Ey < Ey < Esand T°: By < F; < Es, then Z, = Z, = 1
for both of these sequences.

In a typical scenario, for any unit which experiences K events, there are 25~! combina-
tions of predictor variables, where as, there are a total of K! possible permutations of event
occurrence for the unit, suggesting that there is under-utilization of available information in
above described Cox PH model based prediction. We propose the following Copula based

approach to address this issue.

3 Copula-based events modeling and prediction

3.1 General joint distribution fitting using Copula

Consider we have K different random variables as X;, X, ... X with the kth random vari-

able having density X ~ fi(x;0y). Then, Sklar’s theorem allows us to create joint distri-
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bution using a specified Copula function C'(a) with parameter o, and marginal distribution
functions, F'(xy;0y) (Sklar, 1959). The variables are transformed to probability space (or

u—space) through their respective distribution function as

uy, = Fy(zy; 0 (6)

where, u; € U[0, 1]. Thereafter, a K-dimensional joint distribution using Copula C(a) can
be obtained as

F(zy,x9,...,xx;a) = C(uy,ug, ..., uk; o) (7)

We also obtain the joint density function as

K
flz1, 20, ...,z ) = c(ug, U, . . ., Uk; ) H fr(zk) (8)
k=1
where, c(uy, ug, ..., ux; @) = % is Copula density function.

The parameters in the Copula model to be estimated contain individual density function
parameters ;s and the Copula parameter a. The likelihood across set of N independent

observations can be written as follows:

L(91792, o0k o X, X, ,XK) = Hf(xliax%» -y VK5 a) (9)

The above likelihood can be maximized using EM algorithm to obtain the parameters,
however, if the variables are time-to-event random variables with censoring, then parameter
estimation becomes challenging (Leung et al., 1997). Shih & Louis (1995) present Copula
estimation method for time-to-event variables with the presence of censoring for a bivariate
case. The essential idea is to use 1 — S(-) to estimate the marginal distribution F'(-), where
S(+) can be estimated with the presence of censoring. Alternatively, there exists concept

of survival Copula which directly uses S(-) as the input to the Copula function. Survival
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Copulas, C(.) can be obtained from the conventional Copula function through variable trans-

formation, C(.) and vice versa (see section 2.6 in Nelsen (2007)).

3.2 Copula construction based on Cox PH regression

The key idea of our proposed model is to use Cox PH regression models fitted from the
historical multi-event sequences to obtain the marginal distribution of the time-to-event
variable for each event type. Then these marginal distributions are used to construct the
Copula distribution. Through this integrated framework we are able to take advantage of
flexibility of Cox PH model while the Copula model can capture the subtle relationships
among the events (e.g., the actual event times, not only an encoded binary variable are
considered). The idea of using Cox PH model to obtain marginal distribution of time-to-
event variables has been used in medical applications (Massonnet et al. (2009); Othus & Li
(2010)). Specifically, a variable X} in Eq. (7) becomes the time-to-event variable T}, for

event-type Ej and Eq. (7) becomes

Fr(ti,ty, ..., tx) = Clug, ug, ..., ug; @) (10)

where uy, = Fy(ty) = 1—Sk(tx) and Sk(tx) is obtained from the Cox PH model for event-type
k as described in the previous section.

Many choices for Copula function are available in literature (Nelsen, 2007) and it has
also been well-studied by researchers (see Genest et al. (2009) for review). However, we limit
our choice to Gaussian Copulas in this work, for two main reasons - (i) we can estimate
the Copula parameter in presence of censoring with the help of a quick heuristic (later in
this section), and (iz) for practitioners, Gaussian Copula is easy to interpret. Please note
any other Copula functions, or vine-Copula structure can also be used instead of Gaussian
Copula, however their modeling is often complex and difficult to interpret. The parameter

for the Gaussian Copula is the correlation matrix which we denote using ¥k with {Xk}x =
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pr, {k, 1} € K. The joint distribution from Eq. (10) is given as:

FT<t17t27"'7tK) - C(U17U2,...,UK;ZK)
(11)
= Py (@7 (u), 7 (u2), - ., @7 (u))

where, @y, is multivariate Gaussian distribution with parameter (0,Xk), and ®~(-) is
inverse of standard Gaussian distribution.

Since we use Cox PH regression functions as the marginals, the overall likelihood to be
maximized contains the marginal parameters (O from section 2.2) and Copula parameter
(XK ). We can write out the overall likelihood as a product of likelihood for each unit present
in historical dataset. Further, for the unit ¢, let ¥; C K represent the set of events which
has been observed, and Z; is the set of unobserved/censored events, then the contribution

of this unit towards the likelihood will depend on these sets, given below:

N |w

L(©,Yk: D H

ulial_UQia---;l_uKi;ZK) (12)

where the function C(-) is the survival Copula function that can be obtained from the
conventional Copula function through a variable transformation. The derivation of (12) can
be found in appendix A. The Copula function parameters Xx are explicit in the likelihood
function (12). The Cox PH model parameters © are implicit in the likelihood function as
when we transform the raw time-to-event data ty; to ug;, we will need those parameters ©.

It is generally very difficult to simultaneously estimate all the parameters in (12) due to
the large number of unknown parameters. Here we adopt the method of two-step estimation
or Inference Functions for Margins (IFM) (Shih & Louis, 1995; Joe & Xu, 1996). Although
the method may cause bias in the estimation, the computational benefits make the method
highly attractive. The choice of IFM is also supported by the literature (Georges et al.,
2001; Othus & Li, 2010). The first step of IFM is to estimate marginal parameters (O in our

case) using any procedure of choice. Once O is obtained, in the second step, variables are
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transformed from T'—space to u—space and plugged into Copula density and subsequently

optimized to obtain the Copula parameters. The steps in detail is as follows

1. Obtain © by maximizing L, Vk € K for the base Cox PH model using D (see section
2.2).

2. Transform observed event-times present in the historical dataset to probability space
using the corresponding estimated survival function and predictors. For a unit ¢ and
event-type k, the event-time t;; is mapped as uy; = 1 — S’k(tki), with predictors for the
Cox PH model as zg,; = {z; =1, 2y =0}.

Jitji<tgs j,3tj/i>tki
3. Substitute the transformed variables, @y, s, ..., Uk in Eq. (12) and then estimate the

Copula parameter Sk. The likelihood to estimate Copula is

olvil
L(Xx; @, g, . . -, U ocHau C(1 = tugiy 1 — gy ..., 1 — Giges; Txc). (13)
W,

The above likelihood can be maximized directly to estimate Sk. However, if K is large
then estimation can be computationally expensive. Alternatively, we can use a pair-wise
approach as a heuristic to obtain the correlation matrix (EA]II;W) Compared to full likelihood,
the pair-wise approach is quick and easy to implement. The pair-wise approach can also be
found in literature (for example, Mehrotra (1995) in missing data, and Pesonen et al. (2015)
in left censored data). In the current work, we use estimated f]ﬁw as a starting point for
SEW

optimizing the full likelihood. The details of estimating is provided in appendix B.

3.3 Event prediction using the Copula based model

We can use the multivariate joint distributions estimated from Copula to obtain event pre-
dictions. The basic idea is to obtain the conditional-marginal distribution of the event-type

we want to predict from the joint distribution and the observed predictors up to now. Then
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the mean of the conditional-marginal distribution can be used as the event-time’s prediction.

The steps for prediction using integrated Copula and Cox PH model are as follows.

1. Assume we want to make prediction for a specific unit. For all the observed events ¢ €
VU from this unit, convert each event-time T, to probability space as u, =1 — 5’¢ (ty),
where Sw(tw) is obtained from the corresponding Cox PH model. We collectively write

them as uy.

2. For event p € = to be predicted for this unit, condition the joint Copula distribution
by uy and obtain the marginal of p in probability space. To do so, we first obtain the

conditional distribution as (derivation in appendix C)

CluziSaw) = @5, { (07 (w2) — B2uT35 07 (wa))\y DExw) ) S2o\D(S2) }
(14)
Then, conditional-marginal density for p denoted as uy|uy can be worked out from

C(us; 25‘@ as follows

We can see in (15) that if there are no events to condition upon, then u,|uy is simply

equal to @(@fl(up)) =u, ~U[0,1].

3. We can transform the distribution u,|uy back to the T—space as following. First the

survival function to be used from Eq. 4 is

~

uplug =1 — S,(t > t°) (16)

with predictors, zg, (t*) = {zjew = 1, zjez\p = 0}.

15



4. By inverting the survival function we get
b= 57 (1 — ufu), (a7)

The expected time of event is, mrl,(t*) = Et,,.

We use a simple example to illustrate the prediction process. Consider three event-
types: Fy, Esy, E3, where E; shares mild association with the Fy and FEj3, and FEs, F3 are
strongly associated. Let us further assume that we have obtained the model parameters
from historical dataset and we are particularly interested in the prediction of FEj3. If Ej is
the last event being experienced, then the two possible sequences leading to occurrence of
the third event are: 7% : Ey < Ey < Ez and 7% : By < E; < F3. The prediction begins
at t* = 0 and Fig. 4 depicts the marginal distributions of variables in u—space as the unit

continues to experience the events.

Ta2E1<E2<E3 Tb:E2<E1<E3
Tl T2 15 Tl T2 Ts
LAl e e L R L SR B () e r e m s
uy u ug uy Uy us
| I O I I T T 1T 171 [ L L L [ L [ L L [ L
0 04 08 0 04 08 0 04 08 0 04 08 0 04 08 0 04 08
t" =t tt =t
usluy uzuy Uy |z uz|uy
No further No further
possibilities. possibilities
T T T 11 T T 1T T [ e e
0 04 08 0 04 08 0 04 08 0 04 08
t* =ty =t
l uzluy < up uz|ug < uy
No further No further
possibilities possibilities
B I I B B |
02 06 1 0 04 0.8

Figure 4: Marginal distributions of variables in u—space upon conditioning for two sequences.
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As shown in Fig. 4, at t* = 0 when the unit is fresh and has not experienced any event,
then there is no event to condition on. The obtained marginals will be standard uniform.
When these marginals are transformed back to original time-to-event space, the expected
event times will be exactly identical to that from the corresponding base Cox PH model
(In fact, these expected event times will be determined by the baseline hazard function of
the corresponding Cox PH model). As the unit begins to experience events, the conditional
marginals of the events that have not occurred may not be standard uniform. In Fig. 4,
consider sequence 7% where first event experienced is F; which shares the same level of
correlation with F, and FE3, the marginal densities of u; and wus are very similar. On the
other hand, for sequence T°?, the first event experienced is E, and it shares different level
of correlation with E; and FEj, the corresponding densities are substantially different. The
above features lead to the distinct predictions for these two sequences. Please note that the

prediction only using the base Cox PH model does not have this feature.

4 Numerical Study based on Simulated Data

In this section, we use simulated data to evaluate the performance of the proposed approach.
One important issue is how to generate correlated multi-event data. We adopted two simu-

lation settings as described in the following sub-section.

4.1 Different experiment settings and data generation process

In setting (I), we generate sequence of multiple types of events through regression. These
event-types are manifestations of some underlying root causes or factors. For this experiment
setting we can draw an analogy, where these factors, in general depict working conditions
of the industrial equipment (temperature, operation-hours etc.). And, as the equipment
operates certain conditions or their combinations can have different effect on the event-times

being observed. Mathematically, let n; be the number of underlying factors which affect
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the occurrence of event-times. Corresponding to each factor, we further have the coefficient
vector as 7. These factors are associated with event’s hazard in the formulation same as

Cox PH (2) but with a specified and common baseline, i.e.
M (t) = Aok (t) exp(y; M) (18)

where, M is set of common predictor variables sampled from standard uniform distribution,
and the baseline follows Weibull distribution with parameters (b, ). Thus, the event time

vector of k-th event-type can be generated using following equation (Bender et al., 2005):

1/v

(19)

—logl
bexp(v{ M)

where, U is standard uniform distribution.

Next, we generate K different event-types and to distinguish them, we change the coeffi-
cient vectors resulting in different magnitude of effect of the underlying factors. In detail, we
consider ny = 3 and generate eight different event-types (K = 8). The covariates considered
are enlisted in table 2. Since we set some covariates’ coefficients as zero, the result can be
treated as absence of the respective factors. We provide the algorithm for data generation

for setting I in procedure 1.

Table 2: Covariate coefficient values for setting I

v | B1 Es E3 Ey E5 Es FEr Eg

ml0 -1 0 0 -1 0 -1 -1
%[0 0 -1 0 -1 -1 0 -1

(0 O o0 -1 0 -1 -1 -1
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Algorithm 1 Data generation for setting I

FEvent time generation:

1: Initialize number of units N = 100, baseline parameters b = 2 and v = 1.2, model matrix
M of dimension N X ny, and covariate coefficient vectors as in Table 2.

2: For each event-type, generate event-time vector using equation 19.
Censoring:

3: For each i € N, generate censoring/follow-up times (7;) of each unit. Let 7; ~ Weib(.).
We set 1; ~ Weib(5,5).

4: For each i € N, d; = 0 if Ty; > 75, else op; = 1,VEk € K.

5. Update Ty; = min(7;, Tg;).

As we can see, that each unit shares same observation values, but each event-type is
output of different level of coefficient values. Therefore, we expect that while these event-
types are different, they also share some commonality. Since our motivation is to highlight
the association in event-types, we do not use the observation matrix (X) during modeling
and prediction in the experiments.

Moving to experiment setting (II), in this case we generate event-times from multivariate
weibull distribution as presented in (Hougaard, 1986). We perform this experiment with
four event-types. Interestingly, under different parametrization, it is equivalent to consider a
Gumbel-Hougaard Copula (Hutchinson, 1990) with association parameter . To generate the
event times under this setting, we need to specify the association parameter and individual
marginal distributions of event-times. We consider three sub-cases by varying the level of
a. We keep a = 1 denoting independence and other two values are 1.1 and 1.25. For each
event-type we set marginals as Weib(1,5). In this setting, only one parameter controls the
association across all variables.

The steps involved in data generation for setting (II) are:
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Algorithm 2 Data generation for setting II

FEvent time generation:

1: Initialize number of units N = 50, specify K = 4 event types, underlying association
structure through Copula C'(«) and marginal distributions.

2: Follows steps in Nelsen (2007) section 2.9 to generate observations in u—space.

3: Transform variables from u—space to T'—space through respective marginal distributions.
Censoring:

4: Follow steps 3 through 5 from algorithm 1. We set 7; ~ Weib(1, 50).

4.2 Numerical Experiment

The overall study is in two steps: first, we use some portion of data to estimate the model
parameters. This known data is analogous to historical dataset available in teleservice sys-
tems. It is assumed that the estimated parameters are very close to real estimates, therefore,
for a new test-unit, which belong to the same family share the same governing parameters.
In the second step, for each test-unit, we begin the prediction procedure from ¢* = 0, which
can be treated as the unit’s commission to service. At any given point of time, we predict
the estimated time for each event which this test-unit has not experienced yet. We record
the absolute error (AFE) in prediction times. For event p, if T}, is the realized event time and
mrl,(t*) is the predicted time of event, then AE(t*), = |mrl,(t*) — T,|. Due to censoring, it
may however happen that any particular event is not realized for the test-unit, in that case
we do not assess the prediction performance for this particular event.

We choose leave-one-out cross-validation (LOO-CV) method as our approach to evaluate
and compare the prediction errors (Stone, 1974). Algorithm 3 provides the broader outline
of the adopted cross validation procedure for a Cox PH regression based modeling and
prediction model. The cross-validation procedure is same for the proposed model except
step 10 is now obtained from section 3.3. The performances are compared for each base
model against its respective integrated version. Please note that in regression model we only

use other event-types as covariates. In the next section we discuss the results obtained.
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Table 3: Prediction performance of competing models under setting I; Mean Absolute Error

(standard deviation)

Prediction methodology J Ey Ey By Ey E5 Eg E; Ey
Cox PH 0.215 0.295 0.296 0.306 0.419 0.456 0.495 0.738
(0.196) (0.256) (0.304) (0.232) (0.409) (0.416) (0.367) (0.591)
Cox PH with Copula 0.182 0.249 0.197 0.259 0.289 0.344 0.334 0.279
(0.162) (0.266) (0.141) (0.259) (0.445) (0.406) (0.362) (0.211)
Percentage improvement 9% 10% 25% 18% 33% 47% 42 % 54%

Algorithm 3 LOO-CV for Cox PH regression based prediction

1: forminl: N do
Offline stage

2: m <— test unit

3: Hist < N\'m

4: Estimate © using section 2.2 and Hist
Online stage

5: while |V| < K do

6: t* « max(0, max(7Ty))

T

8: p < event realized

9: For p: AE,,, = |T,m — mrl,(t*)]

10: Z+E\p

11: U TuUp

12: end while

13: end for

Estimate mrl,(t*) = [ S,(t > t*|zg = 1,2z, = 0)dt, for each p € =

4.3 Results and Discussion

In the two experiment settings that have been considered, the proposed model outperforms
the respective regression model. The trends for all of the experiment cases justify that the
proposed method not only enjoys the information present in the individual regression models,
but it also adequately utilizes the information offered from the joint distribution. Moreover,
the performance also highlights that a sophisticated regression model can be topped with

extra information from the joint and improve the overall prediction. Below we discuss the

results and insights of each experiment setting one-by-one.

For the setting (I), time variables are generated through regression functions. From this
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Table 4: Prediction performance of competing models under setting II; Mean Absolute Error
(standard deviation)

Case L Prediction methodology L By Ey Es E,

Cox PH 1.982 1.340 1.179 2.148

(2.362) (1.579) (L.068) (2.088)
a=1 . 1.703 0.995 1.045 1.623
Cox PHwith Copula 4 g06) (1.155) (1.126) (1650
Percentage improvement 14% 26% 11% 24%
1.569 2.112 1.765 3.256

Cox PH (1.248) (2.168) (2.068) (3.812)

a=11 . 1.389 1.652 1.335 2.992
Cox PHwith Copula 1y 5100 (1.068) (1.302) (4.037)
Percentage improvement 12% 22% 24% 8%

Cox PH 1.606 1552 2004 1.764

(1.812) (1.249) (2.413) (1.975)

a =125 . 1.518 1.504 1.489 1.434
Cox PH with Copula 1 45y (1.076) (1.270) (1.432)
Percentage improvement 5% 3% 26% 19%

setup, we gather several insights related to prediction performance of different predictive
models. First, it is worth noting that as we observe from event-type 1 through 8, the several
factors alter the overall event-time densities. This alteration is also reflected in the error
distributions as they increase (see table 3).

Second, in general, table 3 show that for any regression model, our method provides
considerable decrement in error values. The observation can be explained by the fact that
Cox PH models are indeed limited by the binary nature of the predictors, which renders the
real observation times to be masked. On the other hand, in our proposed framework, we
retain this information when we build the joint (since u is continuous). Consequently, during
prediction we are able to condition upon the observed event times.

Third, the variation of error distribution is generally less for the joint model against the
respective regression model which further suggests that the proposed model performs better
in presence of extreme values.

The second setting assumes multivariate weibull distribution as the true underlying

model. Despite this fact, we find that the employed Gaussian Copula sufficiently captures
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the dependence among the time variables and provide improved predictions (see table 4).
Here, parameter a characterizes the measure of dependence among the variables. For the
case where event-times are independent to each other (o = 1), the correlation parameters
in Gaussian Copula estimated from historical dataset are non-zero. The underlying reason
is that we transform variables through regression models which share several common co-
variates. Thus, the u—s obtained are correlated and the parameter is not necessarily zero.
As a result, during prediction, the Copula density when conditioned does not have standard

uniform distribution — thus giving better prediction estimates.

5 Real case study

5.1 Data description

In this section, we demonstrate the efficacy of our proposed method on a real world data
collected from an industrial equipment. There are multiple sensors onboard the equipment
which monitor the unit’s operation. The units are connected wirelessly and they immediately
send out warning data whenever an event has occurred. Due to confidentiality we do not
describe the warning signals in current text. The dataset is collected from 40 units and four
different kinds of events are recorded. Table 1 presents a part of the dataset. Please note
that the event times are not the calendar times, rather it is the time since the unit began
operating. As is the characteristic of the event data, not all of the units experienced all of
the events and certain amount of censoring was present. Particularly, £, was censored for
roughly a quarter of the units, Fy and E,; were censored for a fifth of the units and E3 did

not occur for roughly a third of the units in operation.

5.2 Performance evaluation

We fit Cox PH regression models for each individual event-type. The summary of model fits

is reported in Table 5. Thereafter, we convert observed event times through respective Cox
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PH models and estimate Copula parameter while adjusting for censoring which is mentioned

in Table 6. The non-zero correlation parameters indicate the presence of association between

the transformed variables.

Table 5: Obtained coefficient values with respective standard error for different Cox PH

regression models for the real case data

Model for L B B2 B3 B
089 0.5 -0.14
k=1 ©(0.30) (0.40) (0.33)
0.34 047 031
k=2 131 ~  (044) (0.31)
0.0l 0.36 20.27
k=3 1120 (03 ~ (03

014 -0.07 -0.16
k=4 1029 (029 (0.34) -

Table 6: Correlation among transformed event-times through Cox PH regression models

E, E, Es E,
Ey] 1 025 039 0.01
Ey 1025 1 0.23 0.09
E5 1039 0.23 1 -0.30
E, 1 0.01 0.09 -0.30 1

We apply the LOO-CV on the real case dataset and compare the proposed framework

against Cox PH. The results are reported in Table 7 and we find that our proposed method

outperforms the respective regression models for all event-types.

Table 7: Prediction performance of competing models on real case data; Mean Absolute

Error (standard deviation)

Prediction methodology FE FEs Es on
46.604 39.377 44.255 44.602

Cox PH (27.715) (29.186) (27.580) (23.709)
) 38.824 36.957 41.633 41.247

Cox PHwith Copula |05 000)  (22.030)  (31.961)  (26.128)
Percentage improvement 17% 6% 6% 8%
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6 Conclusion and future directions

To conclude, in this paper, we presented a framework to make prediction in a multi-type
event scenario. Cox PH regression functions although very flexible and robust in modeling,
are strongly limited by the binary formulation of the predictors during prediction. The frame-
work presented in this paper creates a joint with marginals being Cox PH regression functions
using Gaussian Copula, and, during prediction, an extra level of conditioning extracts more
information from the unit’s history. As a result the method adequately distinguishes between
the event sequence and provides a curtailed and better prediction estimates.

There are two major future research directions for the current work: (i) extend the work
by generalizing it to accommodate event’s recurrence. One straightforward way to achieve
this is by creating dummy variables, however, there are two main challenges: first, a future
recurring event can only occur after the latest event, thus the risk period will be different,
and second challenge, mainly from the practice perspective is that during the test period
the event count may exceed the limited dummy variables created in the training dataset.
Another way to solve this challenge is by using a gap-time approach — which resets the time
after event’s occurrence — however, in an engineering context where equipments age with
operation such assumption might not be right. (i) Often it happens that events or warnings
are ambiguous indicators of several underlying root-cause. In this scenario, using a fixed
Copula structure might not offer the best prediction estimates. This requirement can be
met by adopting a suitable Bayesian approach and making the Copula parameter a random

variable.
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A Likelihood construction

List of assumptions and notations
e S(s) represents a joint survival function. S(s) =1if s =0, and S(s) =0if s = 00

e Censoring is independent and non-informative of failures. Censoring time for a unit is

T.

e Let g. denote density function of censoring with ¢g.(C' < 0) = 0 indicating that proba-

bility of unit being censored at the time of commission is zero.
e Bold characters denote the multivariate versions of variables and integrations.

e Using Sklar’s representation:

K@C’(Sl(sl), 32(52>, ey SK(Sk)) (L

881{

ficls) = (—1yx BB _

83K

(20)
where, C(-) is the survival Copula which can be obtained from Copula C(-) (Georges

et al., 2001, see Theorem 2 and 3).

We start by evaluating the joint probability of observed/censored times for one unit. Please

note that for neatness we drop the unit’s index. Also, C' = {T,0 = 0} represent censored
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time and T = {7, = 1} represent the observed event time.

T oo ty

P[Cz <72, Ty < ty,T= > cz| = / [//fx(sK)dsK] gc(c)des (21)

0

Working out the integrand inside the square brackets and using equation 20

7 / ficlor)d 7/( 2o g, )
. 7 80(S=<~252;5w(tm)) B 6(7(55(82: Su(0) o
. 7 aé(Sc(Z)E, Su(te)) acxs;i?), D, -

~ {00(&(%2)5, Sy(te)) 50(5:((;1,55@(%))} (26)
{80(8:(00), 1) B oC(S=(e), 1)}
(935 85:
Using first assumption

Going back to equation 21

T

P[Cz < 7=, Ty < ty,T= > c3] OC/[

0

80(55(0), ].) _ 66’(55((3), S\p(t\p))
885 885

ge(c)des  (28)

Next, to obtain the likelihood, we partially differentiate the above equation wrt K variables

to get
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s

TPy (LR VAT R

x %{ [C*(SE(T), 1) — O(Sa(f),S@(tw))]gc(ﬂ— (31)
C(52(0), 1) - C(55(0). s@m»}gc(mdcs}

o O C(5a(r), Sulta)) = O C(Sltr) 32)

Converting to u—notation using u = 1 — S(t|Z)

oI

Loc%é(l—ul,l—u2,...,1—uK;EK) (33)

The obtained likelihood also has a nice interpretation. As can be observed that we partially
differentiate Copula function with respect to observed event-types — this means that events
in U contribute proportionally to their density function, whereas for the unobserved events
the contribution towards final likelihood is proportional to their cumulative density function

beyond the censored time.
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B Deriving pair-wise (PW) correlation parameter of
correlation matrix

We want to estimate the Copula parameter pair-wise 2" which is:

P11 P12
k= (34)

PK1 PKK

where, py; is the correlation between event-type k and [ with py, = 1. Here, we estimate
each correlation parameter separately. In other words, any pair of event-type {ki} forms
a two-dimensional Copula with parameter p;. The relation between Copula and survival
Copula in bivariate case is: C(1 —ug, 1 —w) = 1 — uj, — w; + C (ug, w;). Thus, the following

likelihood can be derived using Eq. 13 as follows:

e Case 1: The unit i experienced both events k and [, then, d; = o = 1,V; = {k,[}.

The likelihood contribution is

2

> 6uk8ul

L C(1 — s, 1 — w3 pra) (35)

oc (Ui, Uri; Pri) (36)

e Case 2: If unit i experienced only event k, then, dy; = 1,6, = 0,¥; = {k}. The

likelihood contribution using Eq. 13 is:

0 = R .
L 8_ukc<1 — Uk, 1 — Wi pra) (37)
OC (Ui, Uy pri)

Similarly we can work out the case when unit experienced only event [.
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e (Case 3: If the unit 7 did not experienced any event, then, dx; = d;; = 0. The likelihood

contribution is:

L x C(l - fbki, 1-— ali; ,Okl) (39)

o [1 — g, — Uy + C (g, Uy Pkl)] (40)

Combining these cases, the likelihood we obtain is:

N
Lipws i) = | [daki:ali;pkl)ékié”

i=1

« _1 . 80(@1“, Uy Pkl)]5ki(1ézi)
_ U auf (41)
T OC (U, gy pra) | - 0ki)0

X |1 — ]
- aul
s - o (1=6%:) (1-615)

X |1 =ty — Uy + C (g, Uy pk,)} ]

The above likelihood can be quickly maximized by parallelizing the estimation process. Once
we have the estimates of the correlation parameters, f]ﬁw can be easily constructed giving

us a joint distribution of transformed event-times.

C Conditional Gaussian Copula distribution

First, lets denote T}, = ®~*(1 — S(T})), thus, {T"1,T"y,..., Tk} ~ N(0,Yk). Let at any
time of prediction t* the set of observed events is ¥ and the remaining events are in =. Then,

correlation matrix can be split as

S = : (42)
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Next, we know that normal distribution remains closed under conditioning, thus
{T'=|T"y =t'v} ~ N(pzw, Xzv) (43)

where, pzjy = 0+ Y=g Sqy (t'y —0) and Yoo = == — Y=y yy ez, Further, let the variance
(or diagonal) components of Y=y be denoted as D(Xzw). Now, to write the conditional

distribution in form of Copula, first we normalize the conditional T"z|T"y = t'y as follows
(T'z — ZzeXgyt'v)\\/ D(Xzw) (44)

where, symbol ‘\’ denotes element wise division.

The |Z| dimensional Copula then obtained is
C(Xgw) = Py, (T'=|T'y = t'y; Xzw\D(Egw)) (45)
In terms of u—notation

C(Zzp0) = Doy { (07 (u2) = D2uD5h @7 (wa)\y/D(Szpp) ) Bw\D(Szw) | (46)
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