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Abstract

People spontaneously infer other people’s psychology from faces, encompassing inferences of their affective states, cognitive
states, and stable traits such as personality. These judgments are known to be often invalid, but nonetheless bias many social
decisions. Their importance and ubiquity have made them popular targets for automated prediction using deep convolutional
neural networks (DCNNs). Here, we investigated the applicability of this approach: how well does it generalize, and what
biases does it introduce? We compared three distinct sets of features (from a face identification DCNN, an object recognition
DCNN, and using facial geometry), and tested their prediction across multiple out-of-sample datasets. Across judgments
and datasets, features from both pre-trained DCNNs provided better predictions than did facial geometry. However, predic-
tions using object recognition DCNN features were not robust to superficial cues (e.g., color and hair style). Importantly,
predictions using face identification DCNN features were not specific: models trained to predict one social judgment (e.g.,
trustworthiness) also significantly predicted other social judgments (e.g., femininity and criminal), and at an even higher
accuracy in some cases than predicting the judgment of interest (e.g., trustworthiness). Models trained to predict affective
states (e.g., happy) also significantly predicted judgments of stable traits (e.g., sociable), and vice versa. Our analysis pipe-
line not only provides a flexible and efficient framework for predicting affective and social judgments from faces but also
highlights the dangers of such automated predictions: correlated but unintended judgments can drive the predictions of the
intended judgments.
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Introduction

People rapidly and spontaneously make judgments about
unfamiliar others’ social attributes based on their faces,
such as forming an impression that someone looks beauti-
ful, trustworthy, or happy (Engell et al., 2007; Sutherland
et al., 2018; Willis & Todorov, 2006). By and large, these
judgments are either known to be invalid or are of unknown
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validity, since the ground truth of how people really feel
and what personality they have is generally impossible to
infer merely from looking at their faces (Todorov, 2017).
Yet these social judgments have ubiquitous and major con-
sequences in everyday life. For instance, a large body of
research has demonstrated that social judgments of politi-
cal candidates based merely on faces (e.g., how competent
an unfamiliar candidate looks) are associated with election
outcomes across various regions of the world (Lin et al.,
2017; Martin, 1978; Todorov et al., 2005). Some evidence
even suggests that these social judgments from faces caus-
ally influence individual voting decisions (Ahler et al., 2017;
Lenz & Lawson, 2011). Other examples of social judgments
from faces influencing real-life decisions range from picking
out dates to hiring employees, choosing science news, and
determining courtroom sentences (Gheorghiu et al., 2017,
Hamermesh, 2011; Oliviola et al., 2015; Wilson & Rule,
2015). In the real world, these judgments can show large
individual differences and context effects: not only are they
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invalid, but consensus can also be difficult to achieve even
for stimuli argued to be universal, such as emotional facial
expressions (Barrett et al., 2019). With these constraints in
mind, it remains a fact that people make many judgments
about other people solely from faces in the absence of con-
text or other information (e.g., deciding not to date some-
one just based on profile photos on dating sites), and the
underlying psychological dimensions that explain the most
variance in these judgments show considerable consensus
across cultures (Lin et al., 2021).

An important applied question is whether machines
could be trained to make social judgments from faces like
humans do. Recent work has trained deep convolutional
neural networks (DCNNs) on face images that had been
previously rated on various social attributes to predict how
humans would judge new face images on the same set of
social attributes (Lewenberg et al., 2017; McCurrie et al.,
2018). While this approach is informative, it is difficult to
obtain sufficiently dense ratings for training — and turns
out to be unnecessary. DCNNs that have only been trained
to recognize face identity, or even object identity, without
any training specifically on social judgments, already gener-
ate features that can be used in linear regression models to
predict the social judgments that humans make from faces
(Parde et al., 2019; Song et al., 2017). This successful pre-
diction is likely due to the fact that in the absence of any
other context, the structural features of the face are also the
only source of information that human raters have available
for their social judgments. This approach in principle offers
a more flexible and scalable framework for practical applica-
tion: new faces can be projected into the same, pre-trained
DCNN to generate facial features, which could then be used
in regression models to predict social judgments. This takes
advantage of the power of existing pre-trained DCNNs that
typically generalize over pose, viewpoint, and image quality,
and obviates the need to train new DCNNSs or retrain exist-
ing networks on domain-specific social judgments, which is
inefficient (Hill et al., 2019; O’Toole et al., 2018).

However, past work highlights several specific limitations
of using pre-trained DCNNSs to predict social judgments that
humans make from faces. First, inconsistent results have
been found when comparing performance between models
using features from DCNNSs pre-trained for face identifica-
tion and those using features from DCNNs pre-trained for
object recognition (Parde et al., 2019; Song et al., 2017). It
is also unclear to what extent features from different pre-
trained DCNNSs explain the same or unique variance in
social judgments from faces. Second, prior studies trained
and tested their models using a single dataset, such as the
10 k US Adult Face Database (Bainbridge et al., 2013) in
Song et al. (2017), and the Human ID Database (O’ Toole
et al., 2005) in Parde et al. (2019). It remains an open ques-
tion how well this approach generalizes out-of-sample, both
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across face databases and across human raters, which is a
growing concern in modern machine learning for practical
applications (D’Amour et al., 2020). Third, recent findings
show that social judgments from faces made by human par-
ticipants on a large number of social attributes can be cap-
tured by only a small number (two to four) of psychological
dimensions (Lin et al., 2021; Oosterhof & Todorov, 2008;
Sutherland et al., 2013). These findings suggest that many
social judgments from faces are highly correlated, raising
the possibility that models trained to predict one social judg-
ment may also predict other social judgments. If that is the
case, then it will be difficult to assert whether models trained
to predict one social judgment (e.g., whether someone looks
like a criminal) indeed learn the representation of this spe-
cific social attribute from faces (criminal) or they instead
learn the representation of other social attributes from faces
that happen to be stereotypically linked to the perception of
criminality (e.g., whether someone looks feminine or mas-
culine; Oldmeadow et al., 2013). Examining this question
will offer critical insights into how one should interpret the
results from the increasingly popular automated predictions
of various social attributes from faces (Bowyer et al., 2020;
Wang & Kosinski, 2018).

We address the above three open questions in the present
study. We fit regularized linear regression models with cross-
validation to predict social judgments from faces made by
humans using features from three distinct spaces (Fig. la—b;
see also “2”): a pre-trained DCNN for face identification
(DCNN-Identity; King, 2009, 2017), a pre-trained DCNN
for object recognition (DCNN-Object; Simonyan & Zisser-
man, 2015), and facial geometry (Facial-Geometry; e.g., eye
size; see Fig. S2; Ma et al., 2015) for comparison to previous
findings (e.g., faces with wider eyes are perceived as more
honest; Zebrowitz et al., 1996). All linear regression models
were fitted to the neutral, frontal, white faces (N=183) and
their corresponding available human subject ratings from
the Chicago Face Database (Ma et al., 2015), a widely used
database in machine learning studies of faces. To character-
ize the generalizability of the current approach across faces,
raters, and social judgments, we tested the models in five
out-of-sample datasets that included ratings for different
types of face images on a variety of social attributes pro-
vided by independent samples of human subjects (Fig. 1c).
To compare the performance across the three distinct feature
spaces, we conducted variance partitioning analysis to char-
acterize the shared and unique variance in the social judg-
ments that could be explained by these feature spaces. We
also digitally manipulated several aspects of the face images
(e.g., color and hair style) and compared how robustly these
different feature spaces predicted social judgments from
the manipulated faces. Finally, to understand the specific-
ity of these predictions, we examined the cross-predictions
across social attributes — that is, how one model trained on
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Fig.1 Overview of modeling framework. a Face images were
projected into three distinct feature spaces: a feature space obtained
from the top layer of a pre-trained DCNN for face identification
(DCNN-Identity; King, 2009, 2017); a feature space obtained from
the block5_conv?2 layer (Song et al., 2017) of a pre-trained DCNN for
object recognition (DCNN-Object; Simonyan & Zisserman, 2015),
and a feature space obtained from physical and geometric measures
of the faces (Facial-Geometry; Ma et al., 2015). b Regularized linear
regression with cross-validation was used to estimate a set of model

a specific social judgment predicted other social judgments.
We further investigated the underlying mechanism of these
cross-predictions using semi-partial correlation analyses,
which sheds light on how different social attributes play a
role in leading to cross-predictions.

Methods
Training and Test Datasets

The data used in the present research were from publicly
available datasets and previously published studies. The
linear regression models were fit to 183 studio portraits of
neutral, frontal, white faces of men and women and their
ratings on various social attributes from the Chicago Face

C;rrelatlon¢ ¢ t

Measured ratings

weights for each social attribute, which maps each feature space onto
the social judgment ratings measured from human participants. ¢ The
estimated model weights were then used to predict the measured rat-
ings for novel faces from their facial features. Models constructed for
the three distinct feature spaces were compared based on how accu-
rately they predicted ratings for novel faces (Spearman’s correlation
between the predicted ratings from the model and the actual ratings
collected from human participants)

Database (Ma et al., 2015). This database originally con-
tained social attribute ratings for 597 portraits of neutral,
frontal faces from four races (Asian, Black, Latino, and
White); the other 414 of the 597 faces that are not white
were excluded since the effect of race is beyond the scope
of our current research. The database provides, for each
face, ratings by human subjects on 15 social attributes
(afraid, angry, attractive, baby-faced, disgusted, domi-
nant, feminine, happy, masculine, prototypic, sad, sur-
prised, threatening, trustworthy, and unusual) using a 1-7
Likert scale (1 =Not at all, 7=Extremely). We excluded
judgments of unusual because neither this social attribute
nor its synonym or antonym was rated in any of the out-
of-sample test datasets that we used. Thus, we fit 14 linear
regression models, one for each of the remaining 14 social
attributes. The design matrix for the linear regression had
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183 rows. Each row represented one of the 183 face images
in the training dataset and each column represented one of
the features in the respective facial feature space that was
considered (Fig. 1b).

The models were tested on five out-of-sample independ-
ent datasets that are publicly available (Lin et al., 2021;
Oh et al., 2020; Oosterhof & Todorov, 2008; Walker et al.,
2018; White et al., 2017). These test datasets were selected
to sample social judgments from different types of faces,
including studio portraits of frontal, neutral faces, computer-
generated faces, and ambient photos of faces taken under
unconstrained conditions. All faces in our training and test
datasets were limited to white faces; the effects of race and
context (e.g., image background and facial expression) are
beyond the scope of our current study. Specifically, the Lin
et al. (2021) dataset included ratings for 100 studio por-
traits of frontal, neutral, white faces (of which 60 were non-
overlapping with the training dataset, i.e., 60 novel faces) on
100 social attributes. The Oh et al. (2020) dataset included
ratings for 66 novel studio portraits of frontal, neutral, white
faces on 14 social attributes. The Walker et al. (2018) data-
set included ratings for 40 novel studio portraits of frontal,
neutral, white faces on seven social attributes. The Oost-
erhof and Todorov (2008) dataset included ratings for 300
computer-generated frontal, neutral, white faces on nine
social attributes. The White et al. (2017) dataset originally
included ratings for 1224 ambient photos (12 images of each
of the 102 individuals of various races) taken in real-world
contexts downloaded from their Facebook accounts (varied
in viewpoint, facial expression, background, illumination,
etc.) on five social attributes. We only used 504 photos of
white individuals (12 images of each of the 42 individuals).
Model training and testing were performed using ratings
averaged across human subjects per face per social attribute.

To assess how well the linear regression models with dif-
ferent feature sets predicted social judgment from faces (see
the first section of Results, “Generalizability Across Faces,
Raters, and Social Attributes™), we fit a model for a social
attribute on the Chicago Face Database and tested the model
for the same or highly (dis)similar (synonyms/antonyms)
social attribute on the out-of-sample test datasets. Ideally, we
would fit a model for a social attribute and test the model for
the same social attribute. However, the different test datasets
generally measured judgments of different social attributes
than the training dataset. Therefore, in the case where the
same social attribute in the training dataset was not available
in the test dataset, we used the synonym/antonym of the fit-
ted social attribute in the test dataset (if available). Based on
this rationale, we tested the models that were fit to the cor-
responding social attributes in the Chicago Face Database
on nine social attributes in the Lin et al. (2021) dataset, four
social attributes in the Oh et al. (2020) dataset, four social

@ Springer

attributes in the Oosterhof and Todorov (2008) dataset, and
three social attributes in the White et al. (2017) dataset.

To assess how well a model fitted for a social attribute
would predict other social attributes (i.e., the last section
of Results, “Non-specific Predictions Across Social Attrib-
utes”), we did not require ratings on the exact same or highly
(dis)similar social attribute between the training dataset and
test datasets. Therefore, we fit a model for each of the 14
social attributes in the Chicago Face Database, and assessed
how well the predicted ratings from these models correlated
with the ratings in the test datasets on all available social
attributes (except for the Lin et al. (2021) dataset, where rat-
ings were measured for 100 social attributes; we only used
a subset of 15 social attributes that are commonly studied
in the literature).

DCNN-Identity Features

To extract identity features from face images, we used the
dlib C+ + machine learning library, which offers an open
source implementation of face recognition with deep neu-
ral networks (King, 2009, 2017). The network’s final layer
represents each face image with a vector of 128 features.
The network had been originally trained to identify 7,485
face identities in a dataset of about three million faces with
a loss function such that the two face images of the same
identity were mapped closer to each other in the face space
than the face images of two different identities. Built on a
ResNet architecture with 29 convolutional layers, the net-
work achieved an accuracy of 99.38% on the “Labeled Faces
in the Wild” benchmark (King, 2009, 2017). We directly
used the feature vectors from the last layer of the network,
without tuning the network or its last layer specifically for
social judgments from faces.

DCNN-Object Features

To extract object features from face images, we used the fea-
tures obtained from the block5_conv2 layer of the VGG16
network because prior studies showed that features from this
layer of the network successfully predicted social judgments
from faces (Song et al., 2017). We also repeated our analyses
with features from other layers of the network, which pro-
duced worse performance (Fig. S1); we therefore used the
features from the block5_conv?2 layer for subsequent analy-
ses. To extract the object features from a face image, the face
region of the image was first detected and segmented auto-
matically using the histogram of oriented gradients-based
face detector implemented in the dlib C+ +library (King,
2009, 2017). Then the segmented image was presented to
the VGG16 model implemented in the Keras deep learn-
ing library (Chollet, 2015) with weights pre-trained on the
ImageNet dataset (Deng et al., 2009) for object recognition.
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The output of the blockS_conv2 layer had a volume shape
of 14 x 14 x 512, which was flattened into a 100,352-dimen-
sional feature vector. Thus, the layer represented each face
image with a vector of 100,352 features.

Due to the large number of features, we used principal
component analysis (PCA) to reduce the dimensionality
and redundancy of these features. Our goal was to retain
a much smaller number of PCs from the 100,352 features,
and project the 100,352 features of the face images in both
the training dataset and test datasets onto these PCs —
which we eventually used in the linear regression models.
To prevent biasing the PCs of the faces in the test datasets
with the variance in the faces from the training dataset, we
performed PCA using a larger and more comprehensive
set of faces: face images of 426 white adults with neutral
expression aggregated from three popular publicly avail-
able face databases (Chelnokova et al., 2014; DeBruine &
Jones, 2017; Ma et al., 2015). We determined the optimal
number of PCs based on their performance for predicting
social judgments from the faces in the model training dataset
(i.e., the 183 studio portraits from the Chicago Face Data-
base). Specifically, the 426 faces were first represented with
the 100,352-dimensional DCNN-Object feature vectors, on
which we performed PCA to extract PCs of the features.
Next, the 100,352-dimensional feature vectors of the 183
faces in the training dataset were projected onto these PCs
obtained from the 426 faces. Finally, we fit ridge regression
models using different numbers of PCs (increased from 10
to 110 with a step size of one) to predict the ratings of the
183 faces. Results showed that the first 26 PCs offered the
best average prediction accuracy across all 14 social attrib-
utes, and we therefore used the first 26 PCs to represent the
DCNN-Object features in all subsequent analyses (Fig. S1).

Facial-Geometry Features

The brute-force approach offered by DCNNs has the well-
known effect of producing representations, such as the face
features described above, that are not easily interpretable.
We therefore also used a complementary human-specified
set of interpretable face features. The physical and geomet-
ric features of the face (e.g., brighter skin, larger eyes, and
rounder face) have been shown to influence how humans
make social judgments of unfamiliar others based on faces
(Ma et al., 2015). To obtain these features, we referred to the
40 facial-geometry features provided in the Chicago Face
Database (Ma et al., 2015), which were defined based on
a review of the social perception literature (Blair & Judd,
2011; Zebrowitz & Collins, 1997). In the Chicago Face
Database, these 40 physical and geometric features were
manually measured using an image editing software (Ma
et al., 2015). In our present study, given the large number
of faces we used, we aimed to generate a subset of those

physical and geometric features that could be automatically
measured, but were still easily interpretable. A recent study
showed that automatically measured physical and geometric
features are highly correlated with those that are manually
measured (Jones et al., 2021). Here, to automatically meas-
ure physical and geometric features, we used a pre-trained
model of facial landmark detection implemented in the dlib
C + +library to estimate the location of 68 key points on
each face image. This model had been originally built using
an ensemble-of-regression-trees approach and trained on
the IBUG 300-W facial landmark dataset (Kazemi & Sul-
livan, 2014; King, 2017; Sagonas et al., 2016). We used
another pre-trained model of face parsing to segment each
face image into several facial parts such as skin area, left and
right eye, and the nose (see Fig. S2). This model has been
originally built using a BiSeNet architecture and trained on
CelebAMask-HQ dataset (Lee et al., 2020; Yu et al., 2018;
Zllrunning, 2020). These automated methods allowed us to
obtain 30 physical and geometric features (Facial-Geom-
etry features) that closely imitate the manually measured
physical and geometric features provided in the Chicago
Face Database. The 30 Facial-Geometry features were the
median luminance of skin area, nose width, nose length,
lip thickness, face length, eye height (left, right), eye width
(left, right), face width at cheek, face width at mouth, dis-
tance between pupils, distance between pupil and upper lip
(left, right, asymmetry), chin length, length of cheek to chin
(left, right), face shape, (face) heartshapeness, nose shape,
lip fullness, eye shape, eye size, midface length, chin size,
cheekbone height, cheekbone prominence, face roundness,
and facial width-to-height ratio. We verified that the 30
automatically extracted Facial-Geometry features described
the social judgments from faces as well as the 40 manually
measured features by comparing the prediction accuracy of
the models based on the two sets of features (see Fig. S2).

Model Fitting

L2-regularized linear regression (a.k.a. ridge regression;
Hoerl & Kennard, 1970) was used to fit a set of model
weights separately for each social attribute that optimally
mapped facial features onto human subjects’ social judg-
ments from faces (Fig. 1). Cross-validation was used to
determine the optimal regularization parameter for ridge
regression. Specifically, the training dataset was randomly
split into 80% training and 20% validation samples for 2,000
iterations. At each iteration, a range of regularization param-
eters (n=30, log-spaced between 1 and 100,000) were used
to fit models to the training part, and each fitted model was
used to predict the human ratings of the faces in the vali-
dation part. This procedure yielded a model accuracy per
regularization parameter per iteration per social attribute,
assessed with the mean squared error (MSE). For each social
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attribute, the optimal regularization parameter that mini-
mized the average error across all iterations was selected,
and the model weights were refit with this optimal regulari-
zation parameter using the entire training dataset (i.e., the
final model). We also repeated this procedure of selecting
regularization parameter using evaluation metrics in addition
to MSE, including the coefficient of determination (R% and
the root mean square error (RMSE) — results corroborated
those using MSE reported here.

The final fitted model for each social attribute was used to
predict ratings of the same social attribute for the novel faces
in each test dataset. Some out-of-sample test datasets did not
include ratings of the exact same social attributes as in the
training set (i.e., the Chicago Face Database). In those cases,
we used the final model for a social attribute (e.g., domi-
nant) to predict ratings of a semantically highly (dis)similar
social attribute in the test dataset (e.g., submissive) if that
was available. A bootstrap procedure was used to robustly
estimate the prediction accuracy of each model on each
test dataset. Specifically, the face images and their ratings
in each test dataset were randomly sampled 10,000 times
with replacement, and the Spearman rank-order correlation
between the resampled predicted and resampled human rat-
ings was computed per social attribute (Lescroart & Gal-
lant, 2019). We used the Spearman rank-order correlation
to assess model accuracy because the ratings in some test
datasets were collected on a different scale than the training
dataset and the rank order of faces based on an attribute (i.e.,
whether a face looks more trustworthy than another face) is a
more reliable metric than raw rating values attributed to the
faces. The mean prediction accuracy for each social attribute
was obtained by averaging the accuracies across bootstrap
iterations. For the test dataset that contained a large num-
ber of ambient photos (504 photos of 42 white individuals;
White et al., 2017), one image was randomly sampled from
the set of images available for each identity at each bootstrap
iteration (i.e., 42 images were included at each iteration) to
prevent bias in prediction accuracy.

To assess the statistical significance of the mean predic-
tion accuracy and estimate the chance threshold for the pre-
diction per social attribute in each test dataset, we performed
a permutation analysis to generate an empirical null distribu-
tion of correlations for each social attribute and test dataset
separately. At each permutation iteration, the ratings in a
test dataset were shuffled across face images, and the Spear-
man correlation between the predicted and permuted ratings
was computed for each social attribute. This procedure was
repeated 10,000 times to obtain a distribution of the correla-
tions, under the null hypothesis that there is no relationship
between facial features and social judgments from faces.
The chance threshold was determined by taking the 95th
percentile of the empirical null distribution (p =0.05). The
permutation p-value for each social attribute was defined as
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the proportion of the null correlations that were greater than
or equal to the observed prediction accuracy. The p-values
were corrected for multiple comparisons across the predicted
social attributes using the false discovery rate (FDR) proce-
dure (Benjamini & Hochberg, 1995).

In order to characterize the robustness of our findings to
the specific analysis pipeline, we also repeated the above
analysis procedures using linear regression methods in
addition to ridge regression, including LASSO regres-
sion and ordinary least square regression (OLS). The same
cross-validation procedure as described for ridge regression
was used to select the optimal regularization parameter for
LASSO regression from a range of regularization param-
eters (n=30, log-spaced between 0.01 and 100). No cross-
validation procedure was used in training the OLS models
since there was no regularization parameter to be determined
for this method. We found that ridge regression provided
the best predictions across social attributes and test datasets
(mean prediction accuracy measured with Spearman’s p =
0.552 +£0.197 for the DCNN-Identity models; 0.430+0.218
for the DCNN-Object models; 0.385 +0.213 for the Facial-
Geometry models; mean + standard deviation across test
datasets and attributions). In comparison, LASSO regres-
sion provided similar prediction accuracies as ridge regres-
sion across social attributes and test datasets (mean Spear-
man’s p = 0.527 +0.198 for the DCNN-Identity models;
0.426 +0.226 for the DCNN-Object models; 0.369 +0.224
for the Facial-Geometry models). However, OLS regression
provided worse prediction accuracies for the DCNN-Identity
models (mean Spearman’s p = 0.239 +0.140 across social
attributes and test datasets) and the Facial-Geometry models
(0.169+0.098) due to multicollinearity in the features, and
similar prediction accuracies for the DCNN-Object models
(0.434+0.221). Therefore, we used the linear regression
method that produced the best prediction accuracies across
feature spaces, ridge regression, in our present investigation.

Variance Partitioning Analysis

We used a variance partitioning analysis procedure to com-
pare the unique and shared explained variance between each
pair of feature spaces (Cukur et al., 2016; Lescroart & Gal-
lant, 2019). Specifically, for each social attribute and each
pair of feature spaces, we fit three models using the train-
ing dataset: one fit the ratings to a feature space (e.g., 128
DCNN-Identity features), the second fit the ratings to a sec-
ond feature space (e.g., 26 DCNN-Object features), and the
third fit the ratings to both feature spaces (e.g., 154 DCNN-
Identity and DCNN-Object features). These three fitted mod-
els were used to predict the ratings of the faces in the test
dataset. The variance explained (R? by each model for each
social attribute was computed by using R?, the coefficient
of determination. Finally, the unique variance explained by



Affective Science

each of the two compared feature spaces (A and B) and the
shared variance explained by both feature spaces were com-
puted as follows:

2 _p2  _p2
Ry =Ryp— Ry
2 _p2 _p2
R = Ris — R,

2 _p2 2 2
Ry = Ry + Ry — R p

where Rf‘ is the total variance explained by the first model
using feature space A, Ri is the total variance explained by the
second model using feature space B, Riu p 1 the total variance
explained by the third model using features from both spaces,
Ri , 18 the unique variance explained by feature space A, Ri B
is the unique variance explained by feature space B, and Ri B
is the shared variance explained by feature spaces A and B.

Semi-partial Correlation Analysis

To understand how different social judgments contribute to the
cross-predictions across multiple social attributes (i.e., when a
model fitted to one social attribute predicted other social attrib-
utes), we performed a semi-partial correlation analysis. This
analysis procedure measures the relationship between two vari-
ables X and Y while statistically controlling for (or partialing out)
the effect of a third variable Z on Y. Note that, in contrast, the
(standard) partial correlation controls for the effect of Z on both
X and Y. In this analysis, the actual ratings of a social attribute
provided by the human subjects in the test dataset were used as
the variable X (i.e., the social attribute to be cross-predicted by a
model that was not fitted to this social attribute). The ratings of a
second social attribute predicted by a model for the same set of
faces were used as the variable Y (i.e., a second social attribute
that was used to fit a model). The ratings of a third social attribute
predicted by another model for the same set of faces were used
as the variable Z (i.e., a third social attribute that was used to fit
another model). To partial out the effect of Z from Y, a simple
bivariate regression of ¥ on Z was performed, and the residuals
were obtained. These residuals quantified the unique variance
in Y that was not linearly associated with or predictable from
Z. Finally, we computed the Spearman correlation coefficient
between X and the residuals.

Results

Generalizability Across Faces, Raters, and Social
Attributes

For each social attribute and each facial feature space, we fit
a ridge regression model with cross-validation to learn the

relationship between the features and human judgments of
this social attribute from faces. Results reported here were
from models fitted to the popular Chicago Face Database
(Ma et al., 2015). We also fit the models using a more recent
database that collected ratings from human subjects on a
much larger number of social attributes for a representa-
tively sampled set of faces (Lin et al., 2021), whose results
corroborated those reported here (see Fig. S3; the models
differed in the attributes that they could predict, because the
two datasets differed in the social attributes on which human
subjects had provided ratings in the first place).

To investigate how well the predictions of these linear
regression models with different feature spaces general-
ized across faces, raters, and social attributes, we tested the
models on multiple out-of-sample datasets. These out-of-
sample datasets consisted of ratings on various social attrib-
utes from independent sets of human subjects for faces that
were different from those used in the training set. While the
training stimuli were all drawn from studio portraits, the
out-of-sample datasets encompassed studio portraits as well
as ambient photos (taken in real-world contexts) that var-
ied in viewpoint, facial expression, and background. Since
the social attributes with available human ratings in the test
datasets were not always identical to those in the training
dataset, we only computed the prediction accuracy for social
attributes in the test datasets that were the same or semanti-
cally highly similar (or the exact opposite) to those in the
training dataset (e.g., predicting submissive ratings in the test
dataset using the models fitted to the dominant ratings in the
training dataset by multiplying the model weights with -1).
Results summarized in Fig. 2 showed that the DCNN-Iden-
tity models significantly predicted judgments of almost all
social attributes across all datasets (except dominant ratings
for ambient photos, Fig. 2d), and yielded a higher prediction
accuracy across social attributes and test datasets (Spear-
man’s correlations 0.55+0.19, mean + SD across all social
attributes and test datasets) than the DCNN-Object models
(0.43 +£0.22) or the Facial-Geometry models (0.38 +0.21).
We also explicitly examined the generalization across raters
only (using a subset of overlapping faces in the training and
one test dataset) and found similar relative performances
across the three feature spaces (Fig. S4). These results dem-
onstrate that, out of our three feature spaces, features from
the pre-trained DCNN for face identification provided the
best generalizable predictions across faces, raters, and social
attributes.

The superior performance of the DCNN-Identity mod-
els over the DCNN-Object and Facial-Geometry models
raises two questions. First, is this superior performance
simply due to the much larger number of features in the
DCNN-Identity models (n=128)? Second, is this superior
performance idiosyncratic to the specific network used to
derive those DCNN-Identity features? To address the first
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Fig.2 Prediction accuracy of three feature spaces across differ-
ent test datasets. All models were fitted to human subject ratings for
183 studio portraits of frontal, neutral, white faces from the Chicago
Face Database (Ma et al., 2015). The x-axis indicates the social judg-
ments measured in the test and training datasets (test-training). a The
prediction accuracy of the models tested on an independent dataset
of 60 novel studio portraits of frontal, neutral, white faces and their
ratings (Lin et al., 2021). The bar height indicates the mean predic-
tion and error bars indicate the standard deviations of the mean pre-
diction accuracy across bootstrap samples (n=10,000). Saturated
colors, asterisks, and p-values indicate statistically significant predic-
tions (p <0.05, assessed with permutation tests, and FDR corrected);
desaturated colors indicate nonsignificant predictions. Dashed black

question, we applied principal component analysis (PCA)
on the DCNN-Identity features and used only the first 30
PCs for fitting the models, a number close to the number
of features in the DCNN-Object (n=26) and the Facial-
Geometry models (n=30). To address the second question,
we fit the models using features from a different DCNN
for face identification that has an architecture distinct from
the DCNN-Identity network, the OpenFace DCNN (Amos
et al., 2016). The performance of the DCNN-Identity PC
models was as good as with the original DCNN-Identity
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lines indicate the chance threshold for the prediction accuracy
(p=0.05, assessed with permutation test). b The prediction accuracy
of the models tested on a different independent dataset of 300 com-
puter-generated white faces and their ratings (Oosterhof & Todorov,
2008). ¢ The prediction accuracy of the models tested on a different
independent dataset of 66 studio portraits of frontal, neutral, white
faces and their ratings (Oh et al., 2020). d The prediction accuracy of
the models tested on a different independent dataset of 504 ambient
photos of white faces in the wild (varied in viewpoint, facial expres-
sion, background, illumination, etc.; White et al., 2017) and their rat-
ings (42 images were used in each bootstrap iteration, see “2”). The
automatic extraction of Facial-Geometry features was not feasible for
these faces.

models, and the superior performance of the original
DCNN-Identity models was not idiosyncratic to the spe-
cific network architecture (Fig. S5).

Comparison Across Feature Spaces

We have shown that models using DCNN-Identity features
predicted social judgments from faces at a higher accuracy
than models using the other two feature spaces across vari-
ous social attributes and test datasets. We next sought to
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Fig.3 Results of variance
partitioning analyses. All
models were fitted to the
Chicago Face Database and
tested on the Lin et al. (2021)
dataset as in Fig. 2a. a Vari-
ance partitioning between the
DCNN-Identity and DCNN-
Object models. Error bars show
bootstrap standard deviations of
the explained variance across
bootstrap samples (n= 10,000
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quantify the variance explained by models using each of
these three feature spaces. We performed a variance par-
titioning analysis (see “2; Cukur et al., 2016; Lescroart &
Gallant, 2019) to identify the proportion of variance in the
social judgments that was uniquely explained by each feature
space and the proportion of variance that was commonly
explained by any two feature spaces. Models were fitted to
the Chicago Face Database and tested using the Lin et al.
(2021) dataset (as in Fig. 2a).

The variance partitioning analysis revealed that the
DCNN-Identity and DCNN-Object models accounted for
almost the same variance in the test datasets (Fig. 3a). The
Facial-Geometry model, on the other hand, was not able to
explain any unique variance beyond that shared with the
other two feature spaces (Fig. 3b—c). These findings indi-
cate that most of the variance in the social judgments that
was explained by any of the three feature spaces could be
explained by the DCNN-Identity feature space alone.

The highly similar explained variance between the
DCNN-Identity and the DCNN-Object feature spaces raises
an interesting question: do the two feature spaces provide
equally robust predictions? To provide insights into this
question, we manipulated the face images in the test data-
set on a set of low-level image properties—their color, hair
region, and mean luminance (Fig. 4). We expected these
changes to have minimal impact on how humans make social
judgments from the faces. We used the previously fitted
regression model weights (i.e., models fitted to the unma-
nipulated version of the faces as in Fig. 2a) and the features
of the manipulated versions of the face images in the test
dataset (extracted using the DCNN-Identity network and the
DCNN-Object network, respectively) to predict the human
ratings of the unmanipulated version of the face images.

We found that the manipulation of these low-level image
properties yielded a larger decline in the prediction accuracy
of the DCNN-Object models (mean accuracy difference Ap
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Fig.4 Prediction accuracy as
a function of low-level image
properties. Models were fitted
to the Chicago Face Database
and tested on the Lin et al.
(2021) dataset as in Fig. 2a. a
An example of a face image
before any manipulation. b An
example of the face image in
(a) manipulated on colors (i.e.,
converted to gray-scale). ¢ An
example of the face image in
(a) manipulated on hair style ok ok
(i.e., hair was removed). d An

example of the face image in (a)

manipulated on mean luminance

(i.e., the face area luminance

histograms were equalized

across cropped gray-scale face

images in the test dataset).
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= (.28 across social attributes, especially in the predictions
of trustworthy, criminal, white, and happy), but only a slight
drop in the prediction accuracy of the DCNN-Identity model
(Ap = 0.05 across social attributes) as shown in Fig. 4e—f.
These results indicate that the DCNN-Identity features carry
face-specific information (e.g., identity and gender) that is
largely robust to the changes in image styles (Hill et al.,
2019; O’Toole et al., 2018). In contrast, the DCNN-Object
features carry substantial information about image-based
characteristics (e.g., illumination and hair parts close to
face area), limiting the generalizability of predicting human
social judgments of the same face in different image styles.

Taken together, these results indicate that DCNNs pre-
trained to recognize face identity produce features that
can be used most successfully to predict social judgments
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made by humans from faces. These predictions generalize
well across faces, raters, social attributes, and image styles.
However, features from the DCNN pre-trained to recognize
objects and the physical and geometric features were less
robust and generalizable for predicting social judgments
from faces.

Non-specific Predictions Across Social Attributes

Having identified the best performing feature space (the
DCNN-Identity features), we next sought to understand
whether the predictions made by our regression models were
based on a specific pattern of weights for each social attrib-
ute. Considerable prior work has shown that the hundreds of
different words people use to describe judgments of others
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from faces could be represented by just a few psychological
dimensions (typically 2—4 dimensions account for>70% of
the variance in ratings; Jones & Kramer, 2021; Lin et al.,
2021; Oosterhof & Todorov, 2008; Sutherland et al., 2013).
These findings highlight the possibility that the individual
models fitted for different social attributes would also be
correlated (Todorov et al., 2013, 2015). Indeed, we found
that social judgments that were correlated in the original
human subject ratings across face images were also corre-
lated in their model weights across features (Fig. S6). None
of the correlations computed with the human subject ratings
was significantly different from the correlation computed
with the estimated model weights for the same pair of social
attributes (bootstrap tests, p>0.05, FDR corrected).

These results raise a concern that the models fitted to
predict a certain social judgment might in fact learn the rep-
resentation of other correlated social judgments. Therefore,
we investigated to which degree a model fitted to predict
a certain social attribute would also predict the judgments
of other social attributes regarding the same face (“cross-
prediction”). We assessed the cross-prediction accuracy with
the Spearman correlation between the ratings predicted by
the model for a certain social attribute (e.g., feminine) and
the ratings collected from human subjects for a different
social attribute (e.g., criminal) regarding the same set of
faces in the test dataset. All analyses in this section used the
same training dataset and test datasets as in Fig. 2 (with one
additional test dataset; Walker et al., 2018).

We found significant cross-predictions across social
attributes in all test datasets (Fig. 5a, Figs. S7a, S8a, S9a, c,
e). For instance, the model fitted to predict feminine judg-
ments from faces not only predicted feminine judgments in
the test dataset as intended (Figs. 5a and 2a) but also pre-
dicted how much human subjects judged the faces in the test
dataset to be aggressive, baby-faced, beautiful, competent,
criminal, happy, etc. (Fig. 5a). What is even more concern-
ing is that some models (e.g., trustworthy in Fig. 5a) pre-
dicted a different social judgment (e.g., feminine and crimi-
nal) at a higher accuracy than the social judgment that they
were fitted to and intended to predict (trustworthy) (see also
Fig. S7a and Fig. S8a). These results indicate that automated
predictions of human social judgments from faces are not
attribute-specific.

Given these cross-predictions (e.g., Fig. 5a), we next
investigated whether there are some social judgments that
play a more important role in leading to the cross-predictions
than others. For each cross-prediction (e.g., using the femi-
nine model to predict ratings of criminal in the test dataset),
we computed the residual cross-prediction accuracy after
partialing out the effect of each remaining social attribute
model (i.e., the 13 social attribute models in the x-axis of
Fig. 5a except for feminine). The residual cross-prediction
accuracy (Fig. 5b, Figs. S7b, S8b, SOb, d, f) was assessed

with the semi-partial Spearman’s correlation between the
human ratings of a social attribute for the faces in a test
dataset (e.g., criminal) and the residuals from a simple
bivariate regression of the predicted ratings of a different
social attribute from a model (e.g., feminine model) on the
predicted ratings of a third social attribute from a remaining
model (e.g., trustworthy model) for the faces in the same
test dataset (these residuals quantify the unique variance in
the predicted feminine ratings that were not associated with
the predicted trustworthy ratings). Figure 6 summarizes the
mean residual cross-prediction accuracy in each test dataset
after partialing out the effect of each remaining model cor-
responding to each social attribute in the x-axis. We found
that models predicting gender (masculine/feminine) played a
more important role for cross-prediction of personality traits
from faces (the “Big-2"" and “Big-5" personality dimensions)
and social judgments of computer-generated faces (Ooster-
hof & Todorov, 2008; Walker et al., 2018). Models predict-
ing trustworthy played a more important role in test datasets
where the photos were neutral and taken for research pur-
poses (Lin et al., 2021; Oh et al., 2020). The model predict-
ing attractiveness was more important for ambient social
media profile photos (White et al., 2017).

Discussion

In this paper, we examined the generalizability, robustness,
and specificity of a recent popular modeling approach for
automatically predicting social judgments made by human
perceivers from faces. This approach trained regularized
linear regression models (ridge regression with cross-
validation) to predict social judgments from faces using
features extracted from the face images based on DCNN5s
pre-trained for other purposes than social judgments from
faces (Fig. 1). We compared the predictive power of these
features to that of the physical and geometric features of
the faces, which are traditionally studied in psychology
research. We tested these regularized linear regression
models built with different feature sets using five inde-
pendent out-of-sample test datasets, which included rat-
ings from different human participants, for various types
of faces, and on a range of social and affective attributes
(Fig. 2).

We found that regression models built with features from
DCNNGss that were pre-trained to distinguish facial identity
(DCNN-Identity) predicted human judgments from faces
most accurately and generalized the best across faces and
raters (Fig. 2 and Fig. S4), compared to the models built
with DCNN features for object recognition (DCNN-Object)
or features based on facial geometry (Facial-Geometry). The
performance of the DCNN-Identity models was robust to
the dataset used to fit the models (Fig. S3), the number of
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«Fig.5 Cross-prediction accuracy across social attributes. a Cross-
prediction accuracy (the Spearman correlations) between the pre-
dicted ratings of the faces in the Lin et al. (2021) dataset on 14 social
attributes (x-axis) and the human subject ratings of the same set of
faces on 15 social attributes available in the test dataset (y-axis). All
social attribute models (x-axis) were fitted to the Chicago Face Data-
base. Statistically significant accuracy values are colored. The satura-
tion of the color indicates the magnitude of the correlation (red for
positive, blue for negative). Numbers indicate the mean and stand-
ard deviation (across bootstrap samples), and the significance of the
correlation (permutation test, FDR corrected). The highest accuracy
per row was highlighted with a solid box (black for significant, gray
for nonsignificant). b An example of the residual cross-prediction
accuracy for the social attributes in the Lin et al. (2021) test dataset
(y-axis) from 13 social attribute models (x-axis) while controlling for
the prediction from the trustworthy model (the third column; shown
here specifically because for this test dataset, the trustworthy model
had the largest impacts on cross-predictions across all 14 models fit-
ted to all 14 social attributes in the Chicago Face Database). Numbers
report the mean bootstrap residual cross-prediction accuracy, boot-
strap standard deviation, and significance level computed via permu-
tation tests and FDR corrected (n= 10,000 iterations)

features included in the regression models (Fig. S5), and
the network architecture used to obtain the identity features
(Fig. S9).

Using variance partitioning analysis, we showed that
the DCNN-Identity models and the DCNN-Object models
explain almost the same variance in the social judgments
from faces (Fig. 3). However, the features extracted by the
two DCNNs from face images that were relevant for pre-
dicting social judgments from the faces differed in predic-
tion robustness. Features extracted using the pre-trained
DCNN-Identity network represented more information
unique to the faces (e.g., identity and gender), whereas
features extracted using the pre-trained DCNN-Object net-
work represented more information about the images in
general (e.g., color and parts of the images), and thus the
predictions from the DCNN-Object network features were
less robust to manipulations of image styles (Fig. 4).

Although the DCNN-Identity features provided the most
accurate, robust, and generalizable predictions of social
and affective judgments from faces, we note that these pre-
dictions were not attribute-specific. Models fitted to pre-
dict judgments of a certain social attribute from faces also
predicted judgments of other unintended social attributes
(Fig. 5a, Figs. S7a, S8a, S9a, c, e). Some models even pre-
dicted other unintended social attributes at a greater accu-
racy than the intended social attributes that the models were
fitted to (Fig. 5a, Fig. S7a, and Fig. S8a). These results indi-
cate that the representation of social judgments from faces
that the models learned might not be specific to the social
judgment that the researchers intend to predict. This finding
is an important cautionary note: one should be aware that
there are likely many other correlated but unintended social
judgments that might explain the predictions.

0.25

Mean prediction
accuracy

©c o o
= = N
o w o
1 I 1

o

0.60 -

©

>

o
1

Mean prediction
accuracy

(g}

Ratio of significant
predictions
o
N
o
1

& &\o"’ ' \(\\0"’ 0@@ . \Q«z,& N

& & ,@‘yﬁ 00@ & &
Controlled attribute prediction

-@- White et al. (2017)

-@ Walker et al. (2018) - Big 2

-®- Walker et al. (2018) - Big 5

-@-Lin et al. (2021)
Oh et al. (2020)
-®@- Oosterhof & Todorov (2008)

Fig.6 Residual cross-prediction accuracy after partialing out
the effect of another social attribute model. a The first column
(“None”) plots the mean cross-prediction accuracy (dots; i.e., mean
absolute Spearman’s correlations) across all cross-predictions in each
test dataset (all cells in Fig. 5a, Figs. S7a, S8a, S9a, c, e). The other
columns plot the mean residual cross-prediction accuracy across all
cross-predictions after partialing out the effect of the model fitted
for the social attributes labeled in the x-axis. The top seven (of the
14) social attributes that had the largest effect on cross-predictions
across test datasets are shown here. The square symbol (rather than
filled circle) indicates the social attribute model (x-axis) that was
the most impactful for cross-predictions in a test dataset (i.e., mini-
mum mean residual cross-prediction accuracy). b The first column
(“None”) plots the mean maximum cross-prediction accuracy (the
absolute maximum correlation per row in Fig. 5a, Figs. S7a, S8a,
S9a, c, e) across all social attributes in a test dataset (y-axis in Fig. 5a,
Figs. S7a, S8a, S9a, c, e). The other columns plot the mean maxi-
mum residual cross-prediction accuracy across all social attributes
in a test dataset after partialing out the effect of the social attribute
model labeled in the x-axis. ¢ The first column (“None”) plots the
ratio of significant cross-predictions across all cross-predictions in
each test dataset. The other columns plot the ratio of significant cross-
predictions after partialing out the effect of the social attribute model
labeled in the x-axis

In this cross-prediction analysis, we also included mod-
els fitted to six affective attributes (happy, afraid, angry,
disgusted, sad, surprised) since this analysis did not require
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the same or highly (dis)similar social attributes to be avail-
able in the out-of-sample test datasets. We examined how
these affective models predicted judgments of other social
attributes from the faces (all with emotionally neutral expres-
sions). Prior research has shown that people’s social judg-
ments from emotionally neutral faces are influenced by the
face’s structural resemblance to emotional expressions (e.g.,
individuals whose emotionally neutral face images look like
they are somewhat angry are judged to be more aggressive;
Said et al., 2009). In line with this research, we found that
models fitted to affective judgments of the faces significantly
cross-predicted other social judgments (e.g., Fig. 5). How-
ever, the number of other social judgments that these affective
models cross-predicted was on average much smaller than the
models fitted to other social attributes (attractive, baby-faced,
dominant, feminine, masculine, prototypic, threatening, trust-
worthy), likely because the faces used in our study were all
intended to be emotionally neutral. The non-affective social
attributes in our study describe more temporally stable char-
acteristics of a person, and therefore their judgments from
faces are more likely to be linked to the structural features of
the face, which were captured by the features from DCNNs
pre-trained for face identification. Since the judgments of
affective attributes from the face are likely to be shaped by
more temporally changeable features of the face (e.g., facial
expression) that are more difficult to be captured by the fea-
tures from DCNNs pre-trained for face identification, this
results in worse prediction (e.g., happy model in Fig. 2) as
well as fewer cross-predictions (e.g., Fig. 5). Future research
directions could address these issues by combining features
from DCNNSs pre-trained for face identification and for emo-
tion categorization, and using faces with strong expressions
(ideally several from the same person).

Finally, we provided a novel analysis, semi-partial cor-
relation analysis, for understanding how different social
attributes contribute to the cross-predictions across social
judgments (e.g., Fig. 5a). We found that the most important
social attribute for cross-predictions varied depending on
the context. For instance, the judgments of trustworthy seem
to play a more important role in test datasets consisting of
neutral face photos taken for research purposes, whereas the
judgment of attractiveness was more important in the test
dataset where the photos were taken for social media pro-
files by the users themselves (Fig. 6). The social attributes
we examined in this analysis were constrained by the social
attributes whose ratings were available in the training data-
set. With datasets that include a more comprehensive set
of social attributes in future studies, our approach could be
applied to these broader social attributes to help understand
the most important social judgments from faces for human
perceivers in different contexts (e.g., photos taken for dif-
ferent purposes, or for different types of decision-making).

@ Springer

Several limitations of our study constrain the generality of
our findings. First, the most important limitation is that the
rating data we used to fit and test our models almost certainly
lack validity. That is, even though there is considerable con-
sensus in the social judgments made by humans from faces
(generating the “ground-truth” labels for training our models;
Rule et al., 2010), the majority of those judgments do not
reflect the actual attribute of the person whose face is shown.
Instead, those judgments mainly reveal our biases and stereo-
types (Sutherland et al., 2020; Todorov, 2017). This limitation
is even more acute given that all stimuli in both the training
and test datasets were isolated faces devoid of context and any
other information about the person. Our results thus show that
it is possible to predict what people judge or believe about
brief glances of a face, but not what is in fact valid about the
person whose face is shown as the stimulus. Needless to say,
itis critical to keep this distinction in mind: we did not predict
anything about the people whose faces were used; instead, we
predicted what human viewers judge about those faces.

Our conclusions were also limited by the small number
of overlapping social attributes between the training dataset
and the different test datasets, and thus the small number of
social attributes for which we could construct meaningful
models. Finally, we only included white faces in our analy-
sis, since these were by far the predominant race available in
the training datasets, and since there are known and impor-
tant race bias effects. Previous work has shown that social
judgments from faces are influenced by the unique facial
features of faces from different races as well as the different
social concepts associated with the different races (Fan et al.,
2020; Stolier & Freeman, 2016). Altogether, the restricted
range of different types of faces and the small number of
social attributes provide results that are not yet comprehen-
sive. Analyses on future datasets that are more complete in
the social judgments and more diverse in the face stimuli
will be valuable to extend the present study.

We conclude with two remarks. First, our analysis pipe-
line could be flexibly applied to other domains of auto-
mated predictions to better understand their generalizabil-
ity, robustness, and underlying mechanisms. This analysis
pipeline includes testing models using multiple independ-
ent out-of-sample datasets, performing variance partitioning
analysis to compare between models, manipulating stimulus
properties to test robustness, and conducting cross-predic-
tion analysis to examine potential correlated predictions.
Second, given that the many social judgments humans make
from faces are highly correlated, future research attempting
to automatically predict social judgments from faces (e.g.,
predicting whether people judge a face to look criminal) or
even the actual characteristics of the people whose faces are
used as stimuli (e.g., predicting who is criminal from their
face) should be cautious when interpreting those predictions.
Specifically, we would recommend that researchers examine
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other potentially correlated social judgments before drawing
conclusions.
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