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Abstract—With the rapid development of the Internet of
Things (IoT), computational workloads are gradually moving
toward the internet edge for low latency. Due to significant
workload fluctuations, edge data centers built in distributed
locations suffer from resource underutilization and requires
capacity underprovisioning to avoid wasting capital investment.
The workload fluctuations, however, also make edge data
centers more suitable for battery-assisted power management
to counter the performance impact due to underprovisioning.
In particular, the workload fluctuations allow the battery to
be frequently recharged and made available for temporary
capacity boosts. But, using batteries can overload the data
center cooling system which is designed with a matching
capacity of the power system. In this paper, we design a
novel power management solution, DeepPM, that exploits the
UPS battery and cold air inside the edge data center as
energy storage to boost the performance. DeepPM uses deep
reinforcement learning (DRL) to learn the data center thermal
behavior online in a model-free manner and uses it on-the-fly to
determine power allocation for optimum latency performance
without overheating the data center. Our evaluation shows that
DeepPM can improve latency performance by more than 50%
compared to a power capping baseline while the server inlet
temperature remains within safe operating limits (e.g., 32°C).

Keywords-Edge data center, power management, deep rein-
forcement learning

I. INTRODUCTION

With the emerging Internet of Things (IoT), 5G network

and embedded artificial intelligence, computation workloads

are gradually moving from the cloud toward Internet edge

[3]. Edge data centers can provide computing services with

ultra-low latencies, offering great opportunities for latency-

critical applications, such as smart cities, augmented reality

and intelligent video acceleration [14], [27]. According to

Cisco’s report [4], approximately 30% of internet workloads

will be processed in edge data centers by 2022.

To achieve user proximity and provide low latency com-

puting services, edge data centers are geographically spread

to many locations. However, due to the loss of multiplexing

at the aggregate (i.e., random fluctuations canceling out each

other), it also results in more workload fluctuations in the

edge data center as compared to that of a large centralized

one. As an example of typical edge data center workload,

we look at Uber’s rideshare requests in ten different regions

of the Boston area [32]. The rideshare requests in each

region in the Uber data set can be seen as the typical

workload pattern of an edge data center dedicatedly serving

0 4 8 12 16 20 24
Time (h)

0.0
0.2
0.4
0.6
0.8
1.0

S
in

g
le

 R
e

g
io

n

0.0
0.2
0.4
0.6
0.8
1.0

A
v

e
ra

g
e

 o
f

A
ll

 R
e

g
io

n

Single region All regions

(a)

1 2 3 4 5 6 7 8 9 10
# of regions

0

1

2

3

V
a

ri
a

n
ce

 o
f

R
e

q
u

e
st

 (
%

)

0.0

0.2

0.4

0.6

A
v

e
ra

g
e

 o
f

R
e

q
u

e
st

Variance
Average

(b)

Figure 1. (a) Normalized Uber rideshare requests in a single region vs
average of all regions in the Boston area [32]. (b) Change in variance and
average number of requests with region aggregation.

the regional users. Fig. 1(a) shows the rideshare request for

a single region (Haymarket Square) as well as the average

for all the regions normalized to the single region peak. Here

we see a staggering variation in regional user requests (i.e.,

workload) compared to the aggregated of the entire area.

Fig. 1(b) further shows that the variation in the workload

decreases as we combine more regions together.

These rapid workload fluctuations can have a detrimental

effect on efficient data center management. It leads to

resource underutilization and wasted power and cooling

capacities when the edge data center is sized to meet the

peak demand [16]. Consequently, resource underprovision-

ing (i.e., allocating less capacity than the peak demand) has

been widely adopted in modern data centers to improve effi-

ciency [1], [9]. However, underprovisioning requires power

capping to avoid infrastructure overloads when the demand

exceeds the capacity. But, since power capping may also

adversely affect the latency performance, we need a graceful

dynamic power management to facilitate underprovisioning

without severely affecting the response latency [1], [9].

In this work, we identify that the rapid fluctuations in

edge data center workloads are particularly suitable for em-

ploying capacity-constrained energy storage devices such as

batteries to temporarily increase the infrastructure capacity

during overloads and counter the performance impact due to

power capping. More specifically, in edge data centers, the

workload spikes are short-lived (Fig. 1(a)) which, if done

judiciously, allows the battery to be frequently recharged

between overload events and be made available for sup-

plementing the data center capacity. The same, however, is

not applicable for larger data centers where slowly changing

workload results in extended capacity overloads (e.g., tens

of minutes) that the battery cannot sustain (i.e., running out

of energy due to the lack of recharging opportunity).

In particular, we aim at using the batteries in data center’s
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uninterruptible power supply (UPS) unit which provides

backup power during utility power outages [12], [13]. The

main idea here is to store energy (i.e., recharge) in the

UPS battery when the power demand is low and use (i.e.,

discharge) it later at a suitable time, for example when the

demand exceeds the capacity. While prior works have also

studied using UPS battery for data center power manage-

ment, a key unwanted pitfall of cooling system overload

has been mostly overlooked [12], [13]. Data center cooling

system is typically designed with capacity matching that

of the power system. Hence, using the extra power from

the UPS battery also drives the corresponding server heat

generation beyond the cooling system’s capacity. When

overloaded, the cooling system cannot remove all the heat

generated, leading to rapid temperature build-up inside the

data center due to heat accumulation. According to [20],

the server inlet temperature may increase by more than

10°C if the cooling system is overloaded for 10 minutes.

Such cooling system overloads and the ensuing temperature

increase can lead to automatic server shutdown to avoid

permanent damage and fire hazard. For instance, Dell EMC

server will perform a protective shutdown once the server

inlet temperature exceeds the threshold of 32°C [6].

Our contributions. In this paper, we develop a novel

power management solution for edge data centers to use UPS

batteries to boost capacity while also keeping the data center

cool. While we exploit the rapid fluctuations and short-lived

spikes of edge data center workloads to utilize UPS batteries,

we tackle the cooling system overload by exploiting the

cold air inside the data center as a heat buffer that absorbs

transient heat spikes. Concretely, we use the cold supply air

(e.g., at 27°C) within the data center as an energy storage

by exploiting its temperature difference from the server safe

operating limit (e.g., 32°C) to temporarily hold the extra heat

generated due to the battery usage.

However, developing a power management solution that

effectively exploits both the data center cold air and UPS bat-

tery is challenging. First, both the energy stored in the batter-

ies and the temperature of the cold air have memories. That

is, using the battery now to supplement the power capacity

diminishes the available battery for future use. Similarly, an

increase in cold air temperature due to absorbing heat spike

will leave less room for temperature increase to handle future

heat spikes without overheating (e.g., temperature exceeding

32°C). Hence, our power management incorporating the

battery and cold air needs to consider future demand in its

decisions. Second, to allow safe heat spikes due to battery

usage, we also need to accurately predict the impact of heat

spikes on cold air temperature by extracting the data center’s

thermal dynamics. However, thermal modeling for every

edge data centers individually is impractical due to their

large number and diverse physical locations and operating

environments. Not to mention, such thermal models need to

be updated every time there is a change in the data center
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Figure 2. (a) Edge data center power delivery system. (b) Edge data
center cooling system with cold and hot aisle containment. 1©: server inlet
temperature Tin, 2©: server outlet temperature Tout.

environment (e.g., data center/server layout).

To solve the aforementioned challenges, we propose a

deep reinforcement learning (DRL) based algorithm —

DeepPM. We are motivated to use a DRL based solution

since it can autonomously learn and incorporate both the

future requirements (e.g., capacity boosts from the battery)

and dynamics of the data center environment (e.g., tempera-

ture change) in its decisions. Moreover, using DRL’s model-

free approach we can capture greater details of our problem

and overcome simplifying assumptions made in existing

model-based data center management approaches [30]. In

DeepPM, we formulate the power management problem

as a Markov decision process (MDP) where the power

demand for incoming workload, battery energy, and cold

air temperature at the server inlet constitute different MDP

states while the action space is the total power allocation.

We formalize a parameterized reward function that penalizes

for the increase in latency, cold air temperature, and battery

energy usage. We use deep Q-learning with long short-term

memory (LSTM) network to learn the optimum action at

each MDP state. Our MDP formulation together with the

LSTM network allows DeepPM to make a decision based

on only the current state (i.e., power demand, battery energy

level, and cold air temperature), while the deep Q-learning

allows us to learn and utilize on-the-fly the data center

thermal dynamics in a model-free manner.

To evaluate DeepPM, we compare it with three other

baseline algorithms. Our results show that DeepPM can

effectively exploit the data center cold air and the UPS

battery to provide more than 50% improvement in latency

performance while keeping server inlet temperature within

32°C. We also conduct a sensitivity study to see how

different settings affect DeepPM’s performance.

II. PRELIMINARIES

Power infrastructure. A typical edge data center’s capac-

ity ranges from a few kilowatts to a few tens of kilowatts.

The data center connects to the power utility and typically

also has a backup generator that serves as a secondary power

source. An automatic transfer switch (ATS) reroutes the data

center power connection from the utility to the generator

during a power outage. However, it may take few tens of

seconds to a few minutes to bring the generator online [12].
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Hence, to support uninterrupted operation during the power

switchover, the data center is equipped with a UPS with

battery backup. The server racks get power from a power

distribution unit (PDU). For small edge data centers, the

PDU can be collocated with the UPS and ATS. Finally, the

power the distributed to each server form their respective

rack PDUs. We show a generic power infrastructure hierar-

chy for an edge data center in Fig. 2.

Cooling infrastructure. Data centers need dedicated

cooling systems to remove the heat generated by servers.

Since almost the entire power consumption of the servers

converts into heat, data center cooling systems are pro-

visioned with capacity matching the power infrastructure

capacity. Due to smaller size, edge data center usually uses

a computer room air conditioner (CRAC) as the cooling

system. Fig. 2(b) illustrates a typical CRAC cooling system

in edge data centers. Here, the CRAC supplies cold air at

temperature Tin to the server inlet and collects hot exhaust-

ing air at temperature Tout from the server outlet. To improve

CRAC’s efficiency, the hot and cold aisle containment can

be installed to avoid heat pollution (i.e., hot air mixing

with the cold air) [25]. The hot air from the hot aisle

is recirculated through the CRAC unit which removes the

heat and cool it down to supply cold air to the cold aisle

at temperature Tin. For improved cooling efficiency, the

server inlet temperature is typically conditioned at 27°C, as

recommended by ASHRAE [29].

III. POWER MANAGEMENT USING DeepPM

A. Problem Definition

In this work, we focus on an edge data center hosting

multiple server racks, a UPS with battery backup, and a

CRAC cooling system. We consider the data center has a

total power capacity of C0. The cooling system capacity

is provisioned for the designed power capacity and can

supply cold air at temperature T0 (e.g., 27°C) when the

data center power consumption does not exceed C0. The

UPS battery has a maximum recharge rate of Rmax which is

imposed to safeguard against damaging the battery cells. We

consider the data center capacity C0 can be supplemented

by discharging the UPS battery using techniques similar to

prior work [12], [13].

We use a discrete-time model with a time step Δt (e.g.,

10 seconds) where the power management decisions are

updated at the beginning of each time step. The server power

allocation decision is made based on the power demand from

the incoming workloads/requests and the available energy in

the battery. Whenever the power allocation is lower than the

power demand, the data center utilizes power capping to curb

the server power consumption. The decision also takes into

account the server inlet temperature to avoid overheating the

data center. At time step t, we denote the power demand as

ptD, the power allocation as pta, battery energy level as bt,
and server inlet temperature as T t

in.

Objective. The target of the data center operator is to

dynamically allocate power to improve the data center’s

overall performance (e.g., latency/response time) without

overheating the data center. We formalize the power manage-

ment as the following optimization problem OPA (Optimum

Power Allocation).

OPA : minimize
pt
a

∑
t

L(ptD, pta) (1)

subject to T t+1
in (pta, T

t
in) ≤ Tth (2)

pta − C0 ≤ bt (3)

(4)

Here, L(ptD, pta) is the total latency increase due to a

power allocation pta against a demand of ptD and Tth

is the overheating threshold for server inlet temperature.

Constraint (2) restricts data center from overheating and

constraint (3) limits using the battery beyond its current

energy. In addition, whenever the power allocation is less

than the capacity, the battery is recharged at the rate of

min(Rmax, C0 − pta).
Challenges. Solving OPA is challenging because the bat-

tery energy and the cold air temperature both have memories.
Specifically, the change in battery energy and/or cold air

temperature due to the power allocation decision made in

the current time slot affect the available battery and/or heat

absorption capacity of cold air in future time slots. Further,

constraint (2) requires that we estimate the server inlet

temperature T t+1
in in the next time slot based on power

allocation (pta) and server inlet temperature (T t
in) of the

current time slot. However, modeling the edge data center’s

thermal behavior using techniques like computational fluid

dynamics (CFD) is exhaustive since it requires CFD analysis

of a large number of edge data centers operating in diverse

environments. Not to mention the update required every time

the data center’s environment (e.g., server layout) changes.

In what follows, we formulate our problem using a MDP

followed by a deep Q-learning based algorithm to solve OPA
in a model-free manner.

B. MDP Formulation

As the foundation of reinforcement learning-based solu-

tion, we first model our problem using a discrete-time MDP

where the entire time horizon is divided into time slots

t = 0, 1, · · · ,∞. Our system state st at time t includes

the power demand ptD, battery state bt, and the server inlet

temperature T t
in while the action is defined by the power

allocation pta. The MDP formulation of our problem can be

summarized as follows:

• System state: st = (ptD, bt, T t) ∈ S
• Action: pta ∈ A(st)
• State transition probability: P (st, pta, s

t+1)
• Reward function: rt = R(st, pta, s

t+1)
• Discount factor: γ ∈ (0, 1)
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Here, the action space A is determined by the current state

st. The tuple (st, pta, s
t+1) means that the system transitions

from state st to st+1 when action pta is taken. State transition

probability function P (st, pta, s
t+1) describes the probability

that the system state moves from st to st+1 given action pta
is taken at st. The reward function R(st, pta, s

t+1) defines

the immediate reward under state-action tuple (st, pta, s
t+1).

Action Space. In our MDP formulation, we consider

a continuous action space for power allocation with two

distinct cases. First, when the power demand is below

the data center power capacity, we allocate power for the

entire demand, i.e., pta = ptD. Second, when the demand

exceeds capacity, we may supplement the power allocation

with battery up to its maximum available capacity, i.e.,

pta ≤ C0 + min(ptD − C0, b
t). The eligible action space

A for the current system state st can be defined as

A =

{
pta = ptD, when ptD ≤ C0

pta ≤ C0 +min(ptD − C0, b
t), when ptD > C0

(5)

State transitions and Markovian assumptions. For our

problem, the battery level bt and server inlet temperature

T t
in both evolve based on the power allocation action taken.

The battery level bt perfectly follows the Markovian process

since it changes only when the power allocation action pta
exceeds the capacity C0 and requires battery supplement for

catering the demand. However, since the temperature change

is a slow process, the time granularity Δt in our problem

formulation needs to be sufficiently large for temperature

changes to take place to satisfy the MDP assumption.

Nonetheless, such restriction on Δt can be lifted at the

expense of a larger state-action space by using an augmented

multi-level MDP where the next state depends on both the

current and recently visited states and actions [15].

The changes in the power demand ptD, on the other hand,

mainly depends on user behavior and may not correlate

with the current state and action, thereby violating the MDP

assumption. To facilitate the MDP formulation, we consider

that the power demand of next time slot pt+1
D is known at

time t through workload estimation [5]. This enables our

solution to determine the next state based on current state

and action. We add an LSTM network in our design to

automate the power demand estimation process.

Reward function. To attain the optimization goals of

OPA, we devise our reward function as follows:

rt = R(st, pta, s
t+1) =− L(ptD, pta)− β1(T

t+1
in − Tth)

+

− β2(b
t − bt+1)

(6)

where (T t+1
in − Tth)

+ = max(T t+1
in − Tth, 0) is the temper-

ature violation, bt − bt+1 is the battery usage in time slot t,
and β1 and β2 are wight parameters.

In (6) a decrease in latency is positively rewarded as in

OPA’s optimization objective. Also, since the battery energy

Agent

Environment
Arriving Workload

State,
Reward

Action

Figure 3. Reinforcement learning system: the agent observes system state,
makes action, and receives reward from the environment.

and cold air temperature both have memories, we penalize

for battery usage and temperature violation to incorporate

their impacts on future decisions. In addition to acting as unit

conversion coefficients1, values of β1 and β2 can be tuned to

change the emphasis of the optimization goal. For instance,

larger values of β1 will be more restrictive of the temperature

violation while increasing β2 will result in more conservative

use of the battery. Note that, the power allocation constraints

(3) is satisfied by our action space A(st). The objective of

the MDP problem is to find the optimal action policy A∗ for

maximizing the long term reward
∑

t γ · rt with a discount

factor γ ∈ (0, 1). The discount factor γ is introduced here

to have a tractable problem.

C. Reinforcement Learning and DeepPM

Reinforcement learning is a widely used approach to

solve MDP problems. Q-learning is one of the reinforcement

learning algorithms for solving problems with an unknown

environment [31], [34]. Fig. 3 shows the building blocks for

reinforcement learning in the context of data center power

management. Here, the reinforcement learning agent takes

input from the environment to determine its current state

which evolves based on the action taken and arriving work-

load. Next, we briefly discuss Q-learning and then introduce

the DRL based power allocation algorithm DeepPM which

is implemented with a deep neural network [24].

Q-learning. It is an off-policy reinforcement learning

algorithm that can solve model-free MDP problems. In

other words, Q-learning can effectively learn the optimal

strategy without any prior knowledge of the environment.

The learned strategy is represented as a discrete Q value

table, which stores Q values for all possible state-action

pairs. Then the Q policy πQ can be extracted as choosing

an action with the highest Q value in Eqn. (7).

πQ(st) = argmax
pt
a∈A(st)

Q(st, pta) (7)

The critical task for Q-learning focuses on the estimation

of Q values from the environment response. Typically, the Q

values can be trained offline with a fixed-point iteration of

Bellman equation (Eqn. (8)) for MDP with a known envi-

ronment. Then, the conventional Q-learning with a learning

rate α can be presented as

Q(st, pta) = Q(st, pta) + α[rt + γQ(st+1, π
Q(st+1))] (8)

1Units of battery level and temperature violation are converted to the
unit of latency by multiplying with β1 and β2, respectively.
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Figure 4. DeepPM using deep neural network. Here, FC stands for fully-
connected layer, LSTM stands for Long Short-Term Memory cell, and ht

is the history states of LSTM. It takes the state and action as input and
provides the corresponding Q value.

Other methods (e.g., batched Q-learning [36]) have also

been investigated to solve specific model-free MDP prob-

lems and accelerate the convergence of Q-learning. Usually,

Q-learning works well with a small state-action space. It

becomes intractable when the state-action space is large or

continuous because of either ultra-large Q table or rarely

visited state-action pairs. In our power allocation problem,

both the states (ptD, bt, T t
in) and action (pta) occupy a

continuous space, resulting in an infinitely large Q table.

Since the purpose of the Q table is to provide the Q values

for a given action, the Q table can be replaced by a deep

neural network that acts as an estimator for the Q values.

DeepPM. The basic idea of DeepPM is shown in Fig. 4

where a feed-forward neural network is used to approximate

the Q table. The neural network takes the three state param-

eters (power demand ptD, battery state bt, and server inlet

temperature T t
in) and the action (power allocation pta) as

the input. Now, as discussed in Section III-B, the power

demand ptD depends on the incoming user request and

may well evolve independently from the state and action.

To circumvent the non-MDP nature of the power demand

changes, we add an LSTM layer in the feed-forward neural

network with a vector ht that encodes the history states [5].

We initialize h0 to an all-zero vector. The LSTM layer acts

as a predictor for future power demand using history ht−1

and allows DeepPM to navigate the state transitions for its

actions. In the implementation of DeepPM, we have one

fully-connected layer with 500 hidden neurons, one LSTM

layer with 50 hidden neurons, one fully-connected layer with

50 hidden neurons and one fully-connected layer with Q

value as the output.

The deep neural network is also called Deep-Q-Network

(DQN), which can estimate the Q value as Q(s, pa|θ), where

θ is the weight parameters. Owing to the significant recent

developments in deep learning, we can learn the weight

parameters θ with high precision using a well-developed

gradient descent optimizer (e.g., Adam optimizer [17]). The

input of DQN includes the state and action where the output

of DQN provides the corresponding Q value. According to

(8), the loss functions of DQN are defined in (9) and (10),

on training data set D.

L(θ) =
1

|D|
∑

(st,pt
a,s

t+1)∈D

(
yt −Q(st, pta|θ)

)2
(9)

Algorithm 1: DQN Training Algorithm

Input: Greedy exploration parameter ε, and
mini-batch size B, M , and N .

Randomly initialize DQN network Q(s, pa|θ) with

weights θ.
Initialize an empty replay buffer R.

for Epoch = 1 to M do
Randomly initialize the battery state b1 and

server inlet temperature T 1.

for t=1 to N do
1. Select one power allocation pta based on

current system state st according to

ε-greedy policy

a) randomly select pta ∈ A(st) with

probability ε.
b) otherwise, select pta such that

pta = argmaxpa∈A(st) Q(st, pa|θ)
2. Update battery state bt+1 and server inlet

temperature T t+1 from sensors.

3. Calcuate reward rt based on Eqn. 6.

4. Store the simulation experience

(st, pta, r
t, st+1) into replay buffer R.

5. Randomly sample B experience from

replay buffer R as the training dataset D.

6. Update the DQN network θ via

minimizing total loss L(θ) in Eqn. 9.
end

end
return DQN network with learned weights θ.

yt = rt + γ max
pt
a∈A(st)

Q(st+1, pta|θ) (10)

To calculate the network target yt for each gradient

descent training iteration, we need to find the optimal

action pta (i.e., power allocation) for new state st+1. We

can calculate the optimal action pta for the discrete action

space using, for example, exhaustive comparison. However,

continuous action space is challenging to deal with because

of its complexity in finding the action to maximize Q values.

One straightforward approach is to discretize the continuous

action space and apply standard DQN. An alternative ap-

proach, called Deep Deterministic Policy Gradients(DDPG),

is to use a critic-actor policy [18] with two neural networks

– a DQN and a deterministic policy gradient (DPG) network.

DQN approximates the Q function Q(s, pa), with state-

action as the input and Q value as the output. Whereas

DPG approximates the policy function pa = μ(s), with

states as the input and actions as the output. DDPG is

typically applied with high dimensional continuous action

space. Since we have only one continuous action variable

pa, we use the discretization approach and split the power
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allocation into 200 discrete values with reasonably high

precision for our problem.

On the other hand, to ensure fast convergence during the

DQN training we use experience replay buffer, mini-batch

gradient descent, and ε-state-action exploration. The experi-

ence replay buffer stores all history state-action pairs and can

be used in DQN training. Instead of using the entire replay

buffer, a smaller subset of transitions is used by the mini-

batch gradient descent to minimize the loss in Eqn (9). This

is done to avoid using strongly correlated transitions which

make the training process unstable [5]. In addition, since

the LSTM model is being updated continuously, we cannot

directly use saved history hi−1 for each picked transition i.
Instead we use all the historical states leading up to transition

i as input to our LSTM model to get the correct hi−1 [5],

[28]. For action selection, ε-greedy exploration policy is

utilized to balance the dilemma between exploration and

exploitation. Specifically, with a probability of ε, a random

power allocation pta ∈ A(st) is chosen. Otherwise, the action

is chosen following (7).

In our implementation, we initialize an empty replay

buffer R at the beginning of training. Then the agent

explores a preset number of state-action pairs with a greedy

parameter ε at each time slot t, observes the environment

responses, and then stores the experiences (st, pta, r
t, st+1)

into the replay bufferR. In contrast to traditional Q-learning,

the agent of DRL updates weight parameter θ with a mini-

batch sampling from the replay buffer R. The detail of the

DQN learning algorithm is presented in algorithm 1.

IV. EVALUATION METHODOLOGY

In this section, we present our default edge data cen-

ter settings, thermal dynamics, battery energy model, and

performance model. We then describe the implementation

and parameters for DeepPM. We finally introduce three

benchmark algorithms for the evaluation of DeepPM.

A. Settings

Due to limited access to a real edge data center, we resort

to a simulation-based evaluation for DeepPM where the

power management decisions are updated every 10 seconds.

Data center infrastructure. We consider an edge data

center with two server racks each with 20 servers and

a designed capacity (C0) of 8kW. The data center has a

UPS backup with battery capacity (CB) of 0.2kWh which

can provide 1.5 minutes of backup power at its maximum

discharge rate of 8kW. The maximum recharging rate of the

battery (Rmax) is set to 0.5kW. The data center is cooled

using a CRAC (computer room air conditioning) system

with a matching designed capacity of 8kW. The CRAC can

supply cold air at T0 = 27°C when the data center power

consumption remains within its capacity of 8kW. We set

the threshold temperature (Tth) to 32°C. We also consider
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Figure 5. (a) 2-hour snapshot of workload/power demand trace. (b) CFD
simulation model 1© Air conditioner (AC). 2© Supply air duct. 3© Heat
containment. 4© Server racks. 5© Server room.

the data center employs hot aisle containment to improve

cooling efficiency and avoid heat recirculation.

Workload trace. We use real-world traces to perform

training and evaluation of DeepPM. We use the number of

requests from two popular rideshare applications, Uber and

Lyft, in the Boston, Massachusetts area as our workload [32].

Because of their large geographic service areas, customer

requests from such rideshare applications are good examples

of edge data center workloads. We convert the number of

requests to power demand using the server power consump-

tion model of [33] and scale the power trace to have a peak

demand of 12kW. Fig. 5(a) shows a 2-hour snapshot of the

workload trace used in our simulation.

B. Environment Models

For training and evaluation of DeepPM agent, we simulate

the edge data center which is accessed by the DRL for

learning the state transitions for its state-action pairs.

Thermal model. We use CFD which is one of the most

widely used approaches to analyze the thermal behaviors

of data centers (e.g., Google [11]). However, transient CFD

simulation is slow and computationally exhaustive. Hence,

as outlined in [30], we adopt a short-term CFD approach

using Autodesk CFD where the thermal environment is

modeled using impulse response by creating power spikes.

The 3D model used in Autodesk CFD is shown in Fig. 5(b).

As an illustration, in Fig. 6(a), we show the temperature

change for our data center with a 1.5kW cooling overload

for 10 minutes using our thermal model.

Battery Energy Model We consider a liner battery

charging/discharging model where the battery energy state

bt is adjusted by subtracting discharge power and adding

recharge power as follows:

bt+1 =

{
bt +min(C0 − pta, Rmax), for pta < C0

bt − (pta − C0), otherwise
(11)

Note that, a nonlinear battery model incorporating charg-

ing/discharging loss and leakage can also be considered in

the state transition without loss of generality.
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Figure 6. (a) Thermal model illustration with 10-minute cooling overload.
(b) Latency model for partially satisfied power allocation.

C. Latency Model

We determine the latency increase due to the power cap-

ping based on web search application experiments in [16].

Specifically, we run the web-search benchmark from Cloud-

Suite [10] for different workload levels and CPU speeds

(using DVFS) and collect the 99-th percentile response

times.Then, considering the power consumption at full CPU

speed as the power demand for a given workload, we model

the performance impact (change in response time/latency)

for change in the power allocation as a percentage of the

power demand. We show the performance for different

power allocations in Fig. 6(b) where the response time is nor-

malized to that of without any power capping. Note that, here

we use web-search as an example of performance-power

trade-off while many other applications also have similar

performance-power relationship [16]. Hence, our proposed

approach can be used for a wide range of applications.

D. DRL Parameters

For DRL, we implement the DQN training algorithm us-

ing “Tensorflow” [7]. The DQN (Q(s, a|θ)) is implemented

with a four-layer fully-connected feed-forward neural net-

work, which includes 500 nodes in the first hidden layer, and

50 nodes in the second and third hidden layer. The “ReLU”
is utilized as the activation function for the three hidden

layers to achieve nonlinearity.

For the training process of DQN, we use Adam optimizer

with a learning rate of α = 0.001, and the mini-batch size is

set at B = 1024. The discount factor is set at γ = 0.9. The

weight factors in reward Eqn. (6) are set as β1 = 100 and

β2 = 0.1 for the penalty of overheating and battery usage,

respectively. We perform 6000 training epochs for DQN.

E. Benchmark Policies

We evaluate DeepPM against three benchmark policies –

PowerCap, Greedy, and GreedyT, described as follows.

PowerCap. It does not utilize the UPS battery. When

demand exceeds the capacity, it caps the power at capacity

(i.e., pta = C0 < ptD). Otherwise, it allocates power for the

full demand (i.e., pta = ptD). In our evaluation, PowerCap is

the baseline policy since it does not employ any performance

improvement strategy such as utilizing the UPS battery.

Greedy. It uses the battery greedily without considering

its impact on temperature. When demand exceeds the ca-
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Figure 7. Convergence curve for DQN training: (a)Average training loss.
(b) 2-norm of Q values.

pacity, it uses the battery to cover the deficit amount up to

the available energy in the battery, i.e., pta − C0 ≤ bt.
GreedyT. It has the same power allocation strategy as

Greedy, except, it only uses the battery if he server inlet

temperature is less than 31.5°C.

When the power demand is lower than the capacity, both

Greedy and GreedyT satisfy the demand. They also recharge

the battery with the unused capacity, C0 − ptD.

V. EVALUATION RESULTS

In this section, we present results from DQN training

and compare DeepPM with the three benchmark algorithms.

Then we conduct sensitivity studies on DeepPM.

A. DQN Training

We use the Uber and Lyft workload traces and utilize the

thermal model to train DeepPM for 20,000 epochs (∼ 55

hours or little over 2-days with 10 seconds time slots). We

use three different learning rates: α = 0.01, α = 0.001,
and α = 0.0001 with a mini-batch approach. We sample the

average loss for every ten epochs and show the convergence

curves of in Fig. 7(a). We also show the evolution of 2-norm

of the Q values in Fig. 7(b). We can see that while training

does not converge for α = 0.01, it converges after ∼2000

epochs (∼ 6 hours) for α = 0.001 and ∼13,000 epochs (∼
36 hours) for α = 0.001. We chose α = 0.001 as our default

learning rate since it results in a earlier convergence.

B. Illustration of Power Allocation

We show a 4-hour snapshot of the power allocation under

the three different policies (Greedy,GreedyT, and DeepPM)

in Fig. 8. We include the power demand due to the incoming

workloads, the power allocation, battery energy level, and

server inlet temperature variation. The snapshot starts with

a fully charged battery with 100% energy and a server

inlet temperature of 27°C. Whenever the power allocation

is above the capacity of 8kW, the data center uses its

battery power and the server inlet temperature goes up due

to the extra heat generated beyond the cooling capacity. A

gap between demand (blue line) and allocation (red lines)

indicates that the power allocation does not meet the power

demand, resulting in processing latency.

First, we look at Greedy policy which allocates power

from battery whenever the demand is higher than the capac-

ity. It disregards the temperature increase and ends up with

376

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 21,2021 at 21:55:40 UTC from IEEE Xplore.  Restrictions apply. 



27

29

31

33

35

T i
nl
et

 (
o

C
)

27

29

31

33

35

T i
nl
et

 (
o

C
)

27

29

31

33

35

T i
nl
et

 (
o

C
)

4

6

8

10

12

P
o

w
e

r 
(k

W
) Greedy

4

6

8

10

12

P
o

w
e

r 
(k

W
) GreedyT

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (h)

4

6

8

10

12

P
o

w
e

r 
(k

W
) DeepPM

Power demand Power allocation Cooling Capacity Battery energy Inlet temperature

Figure 8. Policy illustration: 4-hour snapshot of workload allocation and environment response.

PwrCap Greedy GreedyT DeepPM
0.0

0.4

0.8

1.2

A
v

g
. 
N

o
rm

a
li

z
e

d
L

a
te

n
cy

(a)

PwrCap Greedy GreedyT DeepPM
24

28

32

36

40

M
a

x
 T
in
tl
et

 (
℃

)

(b)

0 25 50 75 100
Battery Energy (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Greedy
GreedyT
DeepPM

(c)

Figure 9. Performance evaluation with different algorithms.

server inlet temperature going over 32°C many times (e.g.,

multiple times near 0.5 hours). For DeepPM, on the other

hand, we see that it does not allocate power for the full

demand when the server inlet temperature approaches the

threshold of 32°C, for example near 0.5 hours. Restricting

itself within the temperature limit is the cause of a slight

increase in latency performance for DeepPM.

We also see in Fig. 8 that the battery energy is frequently

replenished due to the rapid fluctuations in power demand.

Also, DeepPM uses the batteries more conservatively and

can maintain a high battery level most of the time while

Greedy nearly depletes it around 0.5 hours.

C. Performance Evaluation

Here we evaluate DeepPM for a period of 24-hours with

a trained DQN discussed in Section V-A.

Average Latency. We calculate the latency following our

latency model in Section IV-C and normalize to that of

PowerCap. We take the average latency performance for the

overload time slots to emphasize the true impact of DeepPM.

We show the average latencies for the four policies in

Fig. 9(a). We see that DeepPM, as compared to the baseline

PowerCap, achieves more than 50% lower latency. Greedy
and GreedyT also enjoy over 30% performance improve-

ments because they use the battery. Nonetheless, both have a

significantly less improvement since they greedily consumes

the limited battery capacity, as opposed to DeepPM which

takes the future needs into account.

Server inlet temperature. Next, we look at the maximum

server inlet temperature resulting from the different policies

in Fig. 9(b). We see that both DeepPM and GreedyT manage

to maintain a server inlet temperature below the threshold

limit of 32°C as opposed to Greedy which results in a

maximum inlet temperature of more than 35°C. This is

because Greedy does not take the temperature into account

during power allocation. PowerCap, on the other hand, has

the lowest inlet temperature as it never uses the battery.

Battery usage. Next, we look at how the three battery

using policies utilize the battery. We show the CDF of

battery energy levels in Fig. 9(c). We see that nearly 20% of

the time both Greedy and GreedyT run without any available

battery to supplement the power allocation. DeepPM, on

the other hand, barely drops below a 40% energy level and

therefore retains the battery energy to use when the power

demand exceeds the data center capacity

D. Sensitivity Analysis

Here we examine the impacts of peak power demand and

weight parameters in the reward function on DeepPM.
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Figure 10. Impact of peak power demand on DeepPM.
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Figure 12. Effects of weight parameters β2.

1) Impact of power demand: We vary the peak power

demand from 8kW to 14kW by scaling the data center

dynamic power. We keep the data center power and cooling

capacity at 8kW and the battery capacity at 0.2kWh. The

results are shown in Fig. 10 where we omit PowerCap
which does not use the battery.We see in Fig. 10(a) that at

power demand of 8kW, the latency of all three benchmark

algorithms are the same as PowerCap since there is no need

for a capacity boost. However, as the demand increases,

using the battery becomes useful in improving the latency

performance. In Fig. 10(b) we see that the maximum server

inlet temperature increases as the peak demand increases

while both DeepPM and GreedyT maintain a temperature

below 32°C. Finally, Fig. 10(c) shows that at 8kW peak

demand (i.e., no underprovisioning) no battery is used while

the battery usage increases with peak demand. Interestingly,

the battery usage goes down for 14kW peak demand. This

is because of the limited recharge opportunity due to higher

power demand.

2) Impact of weight parameters β1 and β2: The weight

parameters in DeepPM’s reward function (6) play important

roles since they determine how much DeepPM emphasizes

on using the battery and violating the temperature constraint

as opposed to allowing an increase in latency due to power

capping during overloads.

First, we vary β1 from 1 to 1000 while β2 is kept

constant at its default value 0.1. Since β1 determines the

relative weight of the data center temperature violation,

a lower value allows DeepPM to violate the temperature

constraint more and vice versa. Consequently, we see in

Fig. 11(b) that the the maximum inlet temperature increases

with decreasing β1. Likewise with the temperature violation

constraint relaxed at lower values of β1, DeepPM uses more

battery and can result in lower latency (Fig. 11(a)).

Next, we vary β2 from 0.01 to 10 while β1 is kept constant

at its default value of 100. Since, β2 is the weight for battery

usage, increasing β2 results in a decrease in the battery

usage and vice versa. We see in Fig. 12(a) that the latency

performance β2 has marginal impact of latency performance.

On the other hand, as shown in Fig. 12(b), the decrease in

battery usage with the increase in β2 leads to reduction in

server maximum inlet temperature.

The take away from our evaluation is that, edge data
center operation can be supplemented with UPS batteries for
significantly improving performance by exploiting the rapid
fluctuations in workloads and cold air as a thermal buffer.

VI. RELATED WORK

Data center management. Managing the data center

infrastructure with limited resources has received significant

attention from the research community in the past decade.

Various techniques have been proposed to aid data center

management such as improving the energy proportionality

[19], [23], jointly managing servers and non-IT support

infrastructure (e.g., power/cooling) [19], [23], and exploiting

geographical diversity to minimize data center operation cost

[26]. Likewise, infrastructure oversubscription is exploited

in other works to improve the data center utilization [35].

[21], [38] use energy storage devices to temporarily increase

the data center power capacity. Such performance-boosting

techniques allow the power consumption to temporarily

exceed the data center capacity to offer a performance

lift. Constrained by the thermal design power (TDP),

[8] proposes temporary power/performance boosts at the

microprocessor level by utilizing phase change material and

heat absorption of thermal packages. As opposed to prior

works, we focus on emerging edge data centers and, instead

of exploiting microprocessor-level thermal inertia, utilize the

data center level thermal mass in coordination with the UPS

battery and propose a DRL-based solution.

Reinforcement learning for resource management.
The autonomous learning and online decision capability

make reinforcement learning a prime choice for solving data
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center resource management problems. Due to the recent ad-

vances in deep neural network-based learning, recent works

focus on DRL based approaches. For instance, [37] pro-

poses a DRL based algorithm to schedule compute-intensive

workloads for energy minimization, while [2] designs a task

scheduler and resource provisioning system for large cloud

service providers. In [22], DRL is used for the job and virtual

machine allocation in the cloud data center and [5] uses DRL

to capture user behavior for profit maximization of a cloud

service provider. Our key novelty is that we focus on edge

data centers with rapidly fluctuating workloads, for which

energy storage – both thermal and battery – is exploited for

performance maximization subject to capacity constraints.

VII. CONCLUSION

In this work, we developed a novel power management

algorithm, DeepPM, for edge data centers that exploits

the data center cold air and workload fluctuations to use

UPS batteries for capacity boosting without overheating

the data center. We used DRL to estimate the data center

thermal behavior in a model-free manner and utilized it for

deciding power allocation to improve latency performance

while keeping server inlet temperature within safe operating

limits. We showed that DeepPM can achieve a performance

improvement of more than 50% compared to the power

capping baseline.
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