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ABSTRACT

Item nonresponse is frequently encountered in practice. Ignoring missing data can lose efficiency and lead
to misleading inference. Fractional imputation is a frequentist approach of imputation for handling missing
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data. However, the parametric fractional imputation may be subject to bias under model misspecification. In

this article, we propose a novel semiparametric fractional imputation (SFI) method using Gaussian mixture
models. The proposed method is computationally efficient and leads to robust estimation. The proposed
method is further extended to incorporate the categorical auxiliary information. The asymptotic model
consistency and /n-consistency of the SFI estimator are also established. Some simulation studies are
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presented to check the finite sample performance of the proposed method. Supplementary materials for

this article are available online.

1. Introduction

Missing data are frequently encountered in survey sampling,
clinical trials, and many other areas. Imputation can be used
to handle item nonresponse and several imputation meth-
ods have been developed in the literature. Motivated from a
Bayesian perspective, Rubin (1996) proposed multiple imputa-
tion to create multiple complete datasets. Alternatively, under
the frequentist framework, fractional imputation (Kim and
Fuller 2004; Kim 2011) makes one complete data with multi-
ple imputed values and their corresponding fractional weights.
Little and Rubin (2002) and Kim and Shao (2013) provided
comprehensive overviews of the methods for handling missing
data.

For multivariate missing data with arbitrary missing pat-
terns, valid imputation methods should preserve the corre-
lation structure in the imputed data. Judkins et al. (2007)
proposed an iterative hot deck imputation procedure that is
closely related to the data augmentation algorithm of Tanner
and Wong (1987) but they did not provide variance estima-
tion. Other imputation procedures for multivariate missing data
include the multiple imputation approaches of Raghunathan
et al. (2001) and Murray and Reiter (2016), and parametric
fractional imputation (PFI) of Kim (2011). The approaches of
Judkins et al. (2007) and Raghunathan et al. (2001) are based
on conditionally specified models and the imputation from
conditional model is generically subject to the model compat-
ibility problem (Chen 2010; Liu et al. 2013; Bartlett et al. 2015).
Conditional models for the different missing patterns calculated
directly from the observed patterns may not be compatible
with each other. The PFI uses the joint distribution to create

imputed values and does not suffer from model compatibility
problems.

Note that parametric imputation requires correct model
specification. Nonparametric imputation methods, such as ker-
nel regression imputation (Cheng 1994; Wang and Chen 2009),
are robust but may be subject to the curse of dimensionality.
Hence, it is important, often critical, to develop a unified, robust
and efficient imputation method that can be used for general
purpose estimation. The proposed semiparametric method fills
in this important gap by considering a more flexible model for
imputation.

In this article, to achieve robustness against model mis-
specification, we develop an imputation procedure based on
Gaussian mixture models (GMMs). GMM is a very flexible
model that can be used to handle outliers, heterogeneity, and
skewness. McLachlan and Peel (2004) and Bacharoglou (2010)
argued that any continuous distribution can be approximated
by a finite Gaussian mixture distribution. The proposed method
using GMM makes a nice compromise between efficiency and
robustness. It is semiparametric in the sense that the number of
mixture components is chosen automatically from the data. The
computation for parameter estimation in our proposed method
is based on EM algorithm and its implementation is relatively
simple and efficient.

We note that Elliott and Stettler (2007) and Kim et al. (2014)
developed multiple imputation using mixture models. Multiple
imputation using Rubin’s formula, however, requires congenial-
ity and self-efficiency (Meng 1994), which is not necessarily
satisfied for general-purpose estimation (Yang and Kim 2016).
Instead of multiple imputation, we use fractional imputation
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which does not require the congeniality and self-efficiency
assumptions for general-purpose estimation. Di Zio, Guarn-
era, and Luzi (2007) also considered using GMM to impute
missing data. They developed single imputation using either
the conditional mean imputation or random draw. Any theo-
retical properties of their imputed estimator such as variance
estimation is not discussed in Di Zio, Guarnera, and Luzi
(2007). We provide a completely theoretical justification for
consistency of the proposed imputation estimator. The variance
estimation and the model selection for the number of mixture
component are also carefully discussed and demonstrated in
numerical studies. The proposed method is further extended
to handle mixed type data including categorical variable in
Section 5. By allowing the proportion vector of mixture com-
ponent to depend on categorical auxiliary variable, the pro-
posed fractional imputation using GMMs can incorporate the
observed categorical variables and provide a very flexible tool for
imputation.

The article is structured as follows. The setup of the problem
is introduced and a short review of fractional imputation are
presented in Section 2. In Section 3, the proposed semipara-
metric method and its algorithm for implementation are intro-
duced. Some asymptotic results are presented in Section 4. In
Section 5, the proposed method is further extended to handle
mixed type data. Some numerical studies and a real data appli-
cation are presented to show the performance of the proposed
method in Sections 6 and 7, respectively. In Section 8, some
concluding remarks are made. The technical derivations and
proof are presented in the Appendix.

2. Basic Setup

Consider a p-dimensional random vector Y = (Y1, Y2, .. ., Yp)’.
Suppose that y1,y2,...,y, are n independent and identically
distributed realizations of the random vector Y. Assume that
we are interested in estimating parameter 6 which is defined
through E{U(0;Y)} = 0, where U(;Y) is the estimating
function of 8. With no missingness, a consistent estimator of 0
can be obtained by the solution to

1 n
=Y Uy =0. (1)
n

i=1

To avoid unnecessary details, we assume that the solution to (1)
exists uniquely almost everywhere.

However, due to missingness, the estimating equation in
(1) cannot be applied directly. To formulate the multivariate
missingness problem, we define the response indicator vector
3 = (81,52, v ,(Sp)/ as

5 — 1 if Y; is observed,
771 0 otherwise,

where j = 1,2,...,p. We assume that the response mecha-
nism is missing at random in the sense of Rubin (1976). We
decompose Y = (Yobs> Ymis)> where Yops and Ypis represent the
observed and missing parts of Y, respectively. Thus, the missing-
at-random assumption is described as

P(‘; € B | Yobss Ymis) = P(8 € B Yobs) » (2)

for any measurable set B € o (8), the sigma-field generated by é.

Under the missing-at-random assumption, a consistent esti-
mator of 6 can be obtained by solving the following estimating
equation:

1 n
=Y E{UG:Y) | yiows} =0, (3)

i=1

where it is understood that E{U(0;Y)) | yiobs] = U(6sYy) if
Viobs = Yi- To compute the conditional expectation in (3), the
PFI method of Kim (2011) can be developed. To apply the PFI,
we can assume that the random vector Y follows a parametric
model in that Fy(y) € {F; (y):¢ e Q} In the PFI, M imputed

values for Y; mis, say {y;ﬁi)s, er(ji)s’ ceo yifﬁ) }, are generated from

a proposal distribution with the same support of Fy(y) and are
assigned with fractional weights, say {w};, w}, ..., W}, }, so that
a consistent estimator of 6 can be obtained by solving

1 & ]
; Z Z WZ- U, Yi,obs> YI*I’(Z!)IS) =0,
i=1 j=1

where the fractional weights are constructed to satisfy

M
> WU Yiobs Vi) = E{U 6:Y0) | Yiobs)
j=1

as closely as possible, with Z]Ail w:.']‘. = 1. In Kim (2011), the
fractional weights are computed using the idea of importance
sampling.

However, the PFI is based on the assumption of Fy(y) €
{F;(y) : ¢ € Q} and it is not always easy to find the joint dis-
tribution family {F; (y) : ¢ € Q} correctly. If the joint distribu-
tion family {F;(y) : ¢ € Q} is misspecified, the PFI can lead
to biased inference. All aforementioned concerns motivate us
to consider a more robust fractional imputation method using
GMMs, which cover a wider class of parametric models.

3. Proposed method

To formulate the proposal, we first assume that the sam-
ple is decomposed into G mutually exclusive and exhaus-
tive groups. We then define the group indicator vector Z =
(Z1,2Zy,...,7¢g), where Zs =1 if the sample unit belongs to
the gth group, and Z;, = 0 otherwise. We assume that the
conditional distribution of Y given Z; = 1 follows a multivariate
normal distribution with parameter { Hgs Eg} and X, can be
structured in the sense that ¥, = X(¢g) for some ¢,. For
example, if Y1,...,Y), are repeated measurement over p time
period, one may impose the first-order autoregressive model to
get

Yy = ng {1 = 09Ty + pJp}

for some ag2 and pg € (—1,1), where I, and J,, are the p x p
identity matrix and matrix of ones, respectively. In this case, the
variance-covariance matrix ¥ is determined by ¢, = (ng, 0Pg)-
For the unstructured case, ¢q is equal to .



Under this setup, the marginal distribution of Y follows a
GMM with density

G
fpe0) =Y agf(y |z = 1;g), (4)

g=1
where G is the number of mixture component, ag = P(Z; =
1) € (0,1) is the mixture proportion satisfying Z 10 =1,
and f(- | zz = 1;¢g) is the density function of normal with
parameter {g = (i4g, X (dg)). We assume that the GMM in (4)
satisfies the strong first-order identifiability assumption (Chen
1995; Liu and Shao 2003; Chen and Khalili 2008), where the
first-order derivatives of f(y; &, {) respect to all parameters are

linearly independent.

To handle item nonresponse, we first estimate the parameters
from the marginal distribution of the observed data and then
apply the fractional imputation from the estimated prediction
model. Under model (4) and MAR, the marginal distribution of
the observed data is also GMM in the sense that

G
Sobs(Yobss &, £) = Zagf(YObs | Zg = 1§§g)a
g=1
where f(yobs | 2g = 1;5) = [f(y | 25 = 15¢¢)dymis is also
Gaussian. Thus, the EM algorithm maximizing the observed

log-likelihood Iops(a, &) = Y 7 108 fobs(Yiobs; @ ¢) can be
described as follows:

E-step: Using the current parameter values (a'?,¢®),
compute

Pl(gt) = (Zig =1] Yi,obs;a(t),é“(t))

FWiobs | 2ig = 152)a”

Y f (Fiobs | zig = 1565)ary”
where f(yiobs | zig = 1;&g) is the marginal density of y; ops

derived fromy; | (zig = 1) ~ N(ug, X).
M-step: Update the parameters by maximizing

Qe i, | ¥, ®) = ZZP‘”

i=1 g=1
{log oy + log f(yi,obs | zg = 15 g, E(d’g))} (5)

with respect to (o, 4, ¢) € . For unstructured case, the
solution is

o = ZP(” (©)
®) ®)
Zz lpz E(Y; | Yi,obs> Zig = 1;§g )
LD =
g ®
Zlﬂ 1p1g
(H—l) _ (t)
x ) ZP

g
Zl lng i=1
{(Yi—ug“’)(Y ug“)) | Viobs: 2ig = 1s §(”},

where the conditional expectations can be easily derived
from the normality in the conditional distribution of y; mis
given y; ops and zjp = 1.
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Repeat E-step to M-step until the convergence is achieved.

Once the parameters are estimated, we use the fractional
imputation method to impute the missing values. Note that the
prediction model (=imputation model) for Y is also GMM in
that

f(Yi,mis | Yi,obs§&7 2) (7)
G
=Y " P(zig = 1| Yiobsi& O)f (Vimis | Yiobs: 2ig = L0,
g=1
where
. F(Yiobs | 2ig = 1;8)é .
P(zig = 1| Yobs; @, ) = R gL = Dig

Zg=1f(Yi,0bs | zig =1 é-g)&g

and Yimis | (Viobs> Zig = 1) is also normal. Generating imputed
values from (7) involves a two-step procedure. In the first step,
imputed values for latent variable z; are generated using the con-
ditional probability pj,. In the second step, imputed values for
Yimis are generated from the conditional distribution f(yimis |
Yi.obs z;fg =1; ;: ) given the imputed value z;"g. Thus, in fractional
imputation, we generate M imputed values from (7) in two steps.

[Step 1] Generate (Mll, B e

where p; = (Pi1, . . .» piG)-
[Step 2] For each g = 1,2,...,

)
of Yi,mis> Say IYz n(fis’] =1L.

distribution f (yimis | Yiobs> 2¢ = 15 ¢g), which is also normal.

, M) ~ Multinomial(M; p;),

G, we generate M;; samples

M;"g], from the conditional

Then, the final estimator, say Osgr, of @ can be obtained by
solving the fractionally imputed estimating equation, given by

1 n G M::g )
S DD WUy =0, ®)

i=1 g=1 j=1
where w = Dig/ M, * are the final fractional weights assigned
to yl = (y;, 0bs,ylmls) forj = 1 ig,g =1,...,G. The

fractional weights satisfy 5 o1 Z j:l wlg]. = 1. By construction,

G M:g
g=l1j=1 g=1 ’gf 1
G
=" pigE(U®: Y1) | Yiobs 2zig = 1;C)
o=1

E{U(9 Yi) | Yiobs: & C}

and the fractionally imputed estimating equation in (8) approx-
imates

1 2
;ZE{U(93Yi) |Yi,obs§0‘)§} =0.
i=1

Asymptotic properties of the imputation estimator obtained
from (8) will be covered in Section 4. For variance estimation of
fsg1, we use the grouped jackknife variance estimator described
in Shao and Wu (1989).
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4. Asymptotic theory

In our proposed fractional imputation method using GMM:s in
Section 3, we have assumed that the size of mixture components,
G, is known. In practice, G is often unknown and we need to
estimate it from the sample data. If G is larger than necessary,
the proposed mixture model may be subject to overfitting and
increase its variance. If G is small, then the approximation of the
true distribution cannot provide accurate prediction due to its
bias. Hence, we can allow the model complexity parameter G
to depend on the sample size n, say G = G(#n). The choice of G
under complete data has been well explored in the literature. The
popular methods are based on Bayesian information criterion
(BIC) and Akaike’s information criterion (AIC). See Wallace
and Dowe (1999), Windham and Cutler (1992), Schwarz (1978),
Fraley and Raftery (1998), Keribin (2000), and Dasgupta and
Raftery (1998). The alternative way of using SCAD penalty (Fan
and Li 2001) is studied in Chen and Khalili (2008) and Huang,
Peng, and Zhang (2017).

In this article, under IID setup, we consider using the BIC
to select G. For simplicity of presentation, we consider the same
values of X, = X across all components to get a parsimonious
model. The proposed joint model in (4) can be easily extended
to use the group-dependent variance Xg, as in Di Zio, Guarnera,
and Luzi (2007). Under multivariate missingness, we use the
observed log-likelihood function in computing the information
criterion, in the sense that

n G
BIC(G) = —2 ) "log { > ef (yiobs | 2ig = 15 &)
i=1 g=1
+ (logn)¢ (G), )
under the assumption of X, = X, where (&,E) are the
estimators obtained from the proposed method and ¢(G) is
a monotone increasing function of G. In (9), $(G) = G +

Gp if ignoring constant terms. However, our model selection
framework and theoretical results can be directly applied to any
general penalty function ¢ (G). Using GMMs, the observed log-
likelihood function is expressed as a closed-form.

In this section, we first establish the consistency of model
selection using (9) under the GMM assumption. After that, we
establish some asymptotic results when the GMM assumption
is violated.

To establish the first part, assume that the true density func-
tion of Y is fy(y) Zgil oté’f(y |z 1; Cgo), where
(G° «° ¢°) are true parameter values. For §g" = (pcg, %), we
need the following regularity assumptions:

(A1) The mean vectors for each mixture component is
bounded uniformly, in the sense of || u§|| < Cy, forg =
1,2,...,G°.

(A2) ||Z°]| < C,. Furthermore, £ is nonsingular.

The first assumption means the first moment is bounded.
Assumption (A2) is to make sure that X° is bounded and
nonsingular. Both assumptions are commonly used.

To establish the model consistency, we furthermore make the
additional assumptions on the response mechanism:

(A3) The response rate for y; is bounded below from 0, say
lim, n~' Y7, 8; > C3,forj=1,2,...,p, where C3 > 0 is
a constant.

(A4) The response mechanism satisfies the missing-at-
random condition in (2).

The following theorem shows that the true number of mix-
ture components can be selected by minimizing BIC(G) in (9)
consistently.

Theorem 1. Assume the true density f, belongs to the GMMs,
satistying (A1) and (A2). Let G be the minimizer of BIC(G) in
(9). Under assumptions (A3) and (A4), we have

P(G =G — 1,

asn — 00, where G° is the true number of mixture components.

The proof of Theorem 1 is shown in the supplementary mate-
rials. Theorem 1 states that minimizing BIC(G) consistently
selects the true mixture components under the assumption that
the true distribution is in the GMM.

Now, in the second scenario, the true distribution does not
necessary belong to the class of GMMs. Thus, we first establish
the following lemma to measure how well GMM can approx-
imate the arbitrary density function. We furthermore make
additional assumptions about the true density function fy. Use
Ey to denote the expectation respect to fp.

(A5) Assume fo(y) is continuous and Eo||Y||> < oo, where
IYI2 = Y24+ + V2.

(A6) Assume E, {8f(Y)/80(} < o0 and Ey {8f(Y)/8pL} <
00, where f(y) = Z§=1 agf (y; g, £). Moreover, assume
Eo {f(Y)?} < o0.

Assumption (A5) is satisfied for any continuous random
variable with bounded second moments. Assumption (A6) is
true for any finite GMM and fy has a valid moment generating
function.

Lemma 1. Under assumptions (A5) and (A6) and missing at
random, for any € > 0, there exists y > 0 such that for
G=0(e7),

o —Flh = OGe), (10)
var(fy —f) =0 "nh, (11)
Zg=1 &gf(y; ﬂg, ﬁ:) is
obtained from the proposed method, and ||fo — f’ Ih=/lfy-
flo(yady.

The proof of Lemma 1 is presented in the supplementary
materials. If fy is a density function of the GMM, then y = 0and
by Theorem 1, our proposed BIC(G) can select the true model
consistently. For any fy satisfying (A5) and (A6), the bias can
goes to 0 as G — oo from (10). The variance will increase as
G — oo from (11) for fixed n. There is a trade-off between bias
and variance for the divergence case (y > 0,G — 00).

Using Lemma 1, we can further establish the /n-consistency
of éSFI. The following assumptions are the sufficient conditions
to obtain the /n-consistency.

with probability one, where f(y) =



(A7) Eo {U%(6;Y)} < oo.
(A8) y €(0,2).
(A9) € = O(n~ /2D for any A € (0,2).

Theorem 2. Under assumptions (A5)-(A9), y + A < 2 and
MAR, we have

1 n G M:fe .
;ZZZW;;].U(QW;"‘X’) =] +o,(n V%), (12)

i=1 g=1 j=1

where 1 = 1 'YL Eo{U®G;Y) | yiobs)> if M =
Zi,g{Mig} — 00. Furthermore, we have
V(s — 6p) = N(0, D), (13)

for some X which is positive definite and 6y satisfies
Eo{U(0p; Y)} = 0.

The proof of (12) is shown in the supplementary materials and
(13) can be directly derived from (12). From Theorem 2, we have
G = O(n?/?=2)) = o(n) — oo with the rate smaller than 7.
Thus, even under non-Gaussian mixture families, our proposed
method still enjoys /n-consistency.

5. Extension

In Section 3, we assume that Y is fully continuous. However, in
practice, categorical variables can be used to build imputation
models. We extend our proposed method to incorporate the
categorical variable as a covariate in the model.

To introduce the proposed method, we first introduce the
conditional GMM. Suppose that (X,Y) is a random vector
where X is discrete and Y is continuous. We further assume
that X is always observed. To obtain the conditional GMM, we
assume that Z satisfies

fY1X.2) =f(Y|Z), (14)
in the sense that Z is a partition of the sample such that Y is
homogeneous within each group defined by Z. Furthermore, we
assume thatf(y | Z; = 1) follows a Gaussian distribution. Com-

bining these assumptions, we have the following conditional
GMM

G
fy 10 =Y agf(y| Z=1), (15)

g=1

where ag(x) = P(Z;, = 1 | x) and f(y | Z; = 1) is the
density function of the normal distribution with parameter {; =
{ig> Z¢}. We also assume that the identifiability conditions in
(15) hold.

Using the argument similar to (7), the predictive model of
Yimis under (14) can be expressed as

f(Yi,mis | Yi,obs> X;) (16)

G
= > P(Zig = 1| Yiobs X)f (Vimis | Yiobss 2ig = 1),
g=1
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where f(yimis | YiobssZig = 1) can be derived from
(Yiobs> Yimis) | (zig = 1) ~ N(ug, Xg). The posterior proba-
bility of zj, = 1 given the observed data is

f(Yi,obs | Zig = I)P(Zig =1]|x)
Yot f iobs | 2ig = DP(zig = 1] %)

P(Zig =1| Yi,obs> X;) =
Therefore, the proposed fractional imputation using condi-
tional GMM:s can be summarized as follows:

E-step: Using the current parameter values, compute

FWiobs | zig = 12 (%)

® _
E T f(iebs | g = LM (x0)

M-step: Update the parameter values by maximizing

Qa, ¢ | a®,¢c®)

1 n G ®
= ;Zzpig {

i=1 g=1

IOgOlg(Xi) + log f (yiobs | zig =1; é‘g)} >

respect to (o, ¢).

Repeat E-step to M-step iteratively until convergence is
achieved. The final estimator of 6 can be obtained by solving
the fractionally imputed estimating equation in (8). Note that
the proposed method builds the proportion vector of mixture
components into a function of auxiliary variable and assumes
that the mixture components share the same mean and variance
structure. Thus, the proposed method can borrow information
across different X values. Moreover, the auxiliary information is
incorporated to build a more flexible class of joint distributions.

Remark 1. If assumption (14) does not hold, we can use, instead
of (15),

G
fy 1% =) a®f(y %2, =1), (17)

§=1

where f(y | x,Z; = 1) is the density function of the normal
distribution with mean Byx and variance X,. In this case, we
can write {; = {Bg, Xg} and the EM algorithm for parameter
estimation can be developed similarly by replacing f(yiobs |

zig = 13 5g) with f (yi,obs | Xj, Zig = 15 8g).

6. Numerical Studies

We consider two simulation studies to evaluate the performance
of the proposed methods. The first simulation study is used
to check the performance of the proposed imputation method
using GMMs under multivariate continuous variables. The sec-
ond simulation study considers the case of multivariate mixed
categorical and continuous variables. To save space, we only
present the first simulation study. The second simulation study
is presented in the supplementary materials.

In the first simulation study, we consider the following mod-
els for generating Y; = (Yj1, Yi2, Yi3).
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1. M1: A mixture distribution with density f(y) =
Zzzl ogfe(y), where (a1, 02, 3) = (0.3,0.3,0.4) and f, (y)
is a density function for multivariate normal distribution
with mean g and variance

o

Let p = 0.7and u; = (—3,-3,
(5,5,5).

2. M2: Use the same model as M1 except for f,(Y), where f>(Y)
is a product of the density for the exponential distribution
with rate parameter 1.

3. M3:Y;; = 1461, Yp = 05Y;1 +ep,and Vi3 = Yo + ei3,
where e;1, ej», e;3 are independently generated from N(0, 1),
Gamma(1, 1) and x{ distributions, respectively.

4. M4: Generate (Yj;, Yi2) independently from a Gaussian dis-
tribution with mean (1, 2) and variance

1 05
051 )/°

Let Y3 = Yizz + ej3, where e;3 ~ N(0,1).

1 pp?
Xp)=|p1lp
p 1

-3,

),,LLZ = (1)1)1))”'3 =

In M1, a GMM with G = 3 is used to generate the samples.
A non-Gaussian mixture distribution is used in M2 to check
the robustness of the imputation methods. M3 and M4 are used
to check the performance of the imputation methods under
skewness and nonlinearity, respectively.

The size for each realized sample is # = 500. Once the
complete sample is obtained, for y;;, j = 2, 3, we select 25% of the
sample independently to make missingness with the selection
probabilities equal to 7;;, where logit(rp) = —0.8 + 0.4y;,
logit(mi3) = 0.4 — 0.8;1, and logit(u) = exp(u)/ {1 + exp(u)}.
Since we assume y;; are fully observed, the response mechanism
is missing at random.

The overall missing rate is approximate 55%. For each real-
ized incomplete samples, we apply the following methods:

[Full]: As a benchmark, we use the full samples to estimate
parameters.

[CC]: Use the complete cases only to estimate parameters.
[MICE]: Apply multivariate imputation by chained equations
(Buuren and Groothuis-Oudshoorn 2011). The predictive
mean matching is used as a default.

[MIGM]: Multiple imputation using GMM with 50 compo-
nents from Kim et al. (2014), where 50 is the upper bound of
the size G of mixture components as recommended by Kim et
al. (2014). The variance estimators are obtained using Rubin’s
formula and the confidence intervals are constructed using
Wald method.

[PFI]: Parametric fractional imputation method of Kim
(2011). We assume that the joint distribution is a multivariate
normal distribution and M = 2000 imputed values are
generated for each missing value.

[SFI]: The proposed semiparametric fractional imputation
method using GMMs, where the number of components G
is selected using the BIC in (9), where G € {1,...,10}, and
M = 2000 imputed values are generated for each missing
value. The confidence intervals are computed using the group
jackknife variance estimator with the group size equal to 10.

Table 1. The coverage rates of the proposed method (SFI) and its most comparable
estimator (MIGM) based on B = 2000 Monte Carlo samples.

Model Method 0 03 Py P3
Mi MIGM 94.9 949 93.2 951
SFI 94.3 94.2 94.7 941
M2 MIGM 95-4 94.8 919 94.8
SFI 95.2 94.7 95-2 94.5
M3 MIGM 96-7 95-1 951 93-4
SFI 96-8 95-2 96-6 957
M4 MIGM 95.5 94.9 96-4 89-0
SFI 94.5 94.6 94.7 94-8

The parameters of interest are the true means and proportions
associated with Y, and Y3. Specifically, we are interested in 6, =
E(Y3),63 = E(Y3),P; = pr(Y2 < ¢3),and P3 = pr(Y3 < c3),
where (¢, ¢3) = (—2,—2) for M1 and M2, (¢, c3) = (2, 3) for
M3, (c2, c3) = (2,5) for M4. The estimating functions for ¢; and
Pj are given by U1(0;3Y) = Y; — 6; and Up(P3Y) = I(Y; <
) — Pj, forj =2,3.

Figures 1 and 2 present the estimation simulation results
based on 2000 Monte Carlo samples for the four parameters
under each data generating setup. The estimators using only
complete cases (CC) and PFI present large biases across data
generating models for some parameters as expected. On the
other hand, SFI is comparable to the Full estimator across data
generating models and type of parameters. Under M1, MICE is
comparable to the Full and SFI estimators for each parameter,
however, for skewed-distributions (M2 and M3) or nonlinear
distribution (M4), it shows significant biases for the propor-
tions. MIGM shows better overall performances than MICE. It
is almost unbiased for each parameter under both M1 and M3.
It, however, still shows significant biases for some proportion
parameters under M2 and M4.

The coverage rates of the SFI estimator and its most compa-
rable estimator, MIGM, are presented in Table 1. While the SFI
estimator shows overall coverage rates around the nominal level
95% across data generating models, MIGM shows about 89%
and 92% coverage rates for some proportion parameters under
M2 and M4.

Figure 3 presents the histograms of the number of mixture
components selected by using the proposed BIC for the SFI
method. Under M1, the proposed BIC selected G = 3, for most
of the Monte Carlo samples, which is the true number of mixture
components of the GMM. For non-GMMs which are skewed
or have nonlinear mean structure, the proposed BIC selected G
greater than 4 or 5 for most of the Monte Carlo samples.

7. Application

In this section, we apply the proposed method in Section 3
to a synthetic data that mimics monthly retail trade survey
data at the U.S. Census Bureau. The synthetic data were
created by U.S. Census Bureau to be used for one of the contests
sponsored by the fifth international conference on establishment
surveys. More information can be found in https://ww2.amstat.
org/meetings/ices/2016/contests.cfm. The sampling scheme
is a stratified simple random sample without replacement
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Figure 1. Estimation results from 2000 Monte Carlo samples for the four parameters under data generating models M1 and M2; the dashed lines indicate the true parameter
values under each model.
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Figure 2. Estimation results from 2000 Monte Carlo samples for the four parameters under data generating models M3 and M4; the dashed lines indicate the true parameter
values under each model.
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Figure 3. The histograms of selected G values using the proposed BIC.

sample with six strata: one certain (take-all) and five non-
certainty strata. The sample sizes are computed using Neyman
allocation.

The dataset is incomplete due to item nonresponse, where the
current month sales and inventories are subject to missingness
and the overall response rate is approximately 71%. We aim to
complete the dataset, providing imputed values for the missing
cases by using the proposed imputation method. The boxplots
in Figure 4 illustrate the distributions of the log-transformed
variables across strata for the CC in the data.

Let Y denote the random vector of seven variables where Y;
and Y, denotes the current month sales and inventories, respec-
tively. The parameters of our interest are the population mean
and variance of Y, denoted by jux and o, respectively, for k =
1,2, and the correlation coeflicient between the two variables,
denoted by p. The estimating functions are U(ug; Y) = Yi— ik,

10

U0 Y) = (Ve — ) — of, and U(ps Y) = (Y1 — ) (Y2 -
H2) — pO102.

As in the simulation study, we compute the estimates of the
parameters using only CC, multiple imputation using GMM
(MIGM), parameter fractional imputation using a multivariate
normal distribution (PFI), and the proposed semiparametric
fractional imputation (SFI) for comparison. MICE failed to
converge due to high correlations among the survey items. The
estimation results are shown in Table 2.

As expected, the estimates using CC only have signif-
icant biases for some parameters. Interestingly, we found
that MIGM also shows significant biases for the parame-
ters such as variances and correlation coefficient. The MIGM
suffers from overfitting problem for this data application
which attenuates the correlation structure leading to signifi-
cant biased estimation. Both PFI and SFI perform properly
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Figure 4. Overview for log-transformed variables of the synthetic monthly retail trade survey data:"mos” is frame measure of size; “Sales00” denotes current month sales
for unit (subject to missing); “asales00” is current month administrative data value for sales; “Sales01” means prior month sales for unit; “Inventories00” is current month
inventories for unit (subject to missing); “ainventories00”is current month administrative data value for inventories; “Inventories01” s prior month inventories for unit.

Table 2. Imputation results for the synthetic monthly retail trade survey data.

Method wq (x107%) wa (x1079) o2 (x10713) o?(x1071% )
True 230 481 438 1.19 0.97
- 2.86 578 6.86 1.77 097
(2.58,3.14) (5.24,6.32) (0.91,12.80) (0.42,3.12) (0.94,1.00)
MIGM 234 480 5.16 139 0.82
(2.13,2.53) (4.30,5.33) (4.28,6.03) (1.18,1.60) (0.71,0.93)
- 232 483 436 1.15 097
(2.12,2.51) (4.46, 5.20) (0.72, 8.00) (0.32,1.99) (0.94,1.00)
- 2.29 4.76 437 117 097
(2.13,2.45) (4.37,5.15) (0.79,7.95) (0.35,1.98) (0.93, 1.00)

NOTE: Parameter point estimation with 95% confidence intervals and true values are presented.

for all the parameters, but SFI has overall better performance
than PFL

8. Discussion

Fractional imputation has been proposed as a tool for frequen-
tist imputation, as an alternative to multiple imputation. Mul-
tiple imputation using Rubin’s formula can be biased when the

model is uncongenial or the point estimator is not self-efficient
(Meng 1994; Yang and Kim 2016). In this article, we have pro-
posed a SFI method using GMMs to handle arbitrary multivari-
ate missing data. The proposed method automatically selects the
size of mixture components and provides a unified framework
for robust imputation. Even if the group size G increases with
the sample size n, the resulting estimator enjoys 4/n-consistency.
While the theory is mainly developed under the special case
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of ¥g = X, it can be easily extended to the heterogeneous
GMM using different X¢. In this case, however, the number
of parameters can be quite large when G is large. We have
also extended the proposed method to incorporate categorical
auxiliary variable. The flexible model assumption and efficient
computation are the main advantages of our proposed method.
An extension to a more robust mixture model is a topic of future
research. An R software package for the proposed method is
under development.

Supplementary Materials

The online supplementary material contains all technical proofs of the the-
orems and a simulation study for the case of multivariate mixed categorical
and continuous variables.
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