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Abstract

Due to the rise of COVID-19 cases, many mathematical models have been developed to study
the disease dynamics of the virus. However, despite its role in the spread of COVID-19, many
SEIR models neglect to account for human behavior. In this project, we develop a novel
mathematical modeling framework for studying the impact of mixing patterns and social
behavior on the spread of COVID-19. Specifically, we consider two groups, one exhibiting
normal behavior who do not reduce their contacts and another exhibiting altered behavior who
reduce their contacts by practicing non-pharmaceutical interventions such as social distancing
and self-isolation. The dynamics of these two groups are modeled through a coupled system
of ordinary differential equations that incorporate mixing patterns of individuals from these
groups, such that contact rates depend on behavioral patterns adopted across the population.
Additionally, we derive the basic reproduction number, perform numerical simulations, and
create an interactive dashboard.

Keywords: COVID-19, Compartmental Models, Social Behavior, Mixing Patterns, Non-
Pharmaceutical Interventions

1 Introduction

In late 2019, the novel coronavirus disease COVID-19 was
traced to Wuhan, China. Since then, the disease has
spread such that by March of 2020, the World Health
Organization declared it was a pandemic [17, 16]. As a
result, much research has been focused on understand-
ing the nature of COVID-19. Mathematical models, in
particular, have been used to predict the spread of the
disease, or more importantly, estimate the influence of
certain interventions on reducing the spread.

In fact, several epidemiological models for infectious
diseases are based on classical compartmental models
that use an ordinary differential equation system, such
as the Susceptible-Exposed-Infected-Recovered (SEIR)
structure [1]. In the case of COVID-19, many researchers
have adapted the SEIR model to study the effects of
public health interventions based on certain assumptions
[14, 15]. Some researchers have also accounted for the in-
fluence of specific key factors, such as containment strate-
gies [12]; undetected infected people [10]; and mobility
patterns [15]. Though they may have been effective in
modeling the nature of COVID-19, however, several mod-
els do not account for other relevant factors, especially the

1The Governor’s School at Innovation Park, Manassas, VA,
2George Mason University, Fairfax, VA

influence of social behavior.

Yet, the pandemic has had a strong effect on the way in-
dividuals live and interact with each other. For instance,
the rapid spread of COVID-19 has prompted government
lock-downs and business closures. Furthermore, individ-
uals are encouraged to avoid public gatherings, wear face
masks, and practice basic hygiene, such as hand wash-
ing. In turn, these measures help protect people from
COVID-19 and reduce the disease burden. Some re-
searchers have accounted for the impact of behavior, par-
ticularly in relation to lock-down measures and social dis-
tancing. For example, an SIR-based model can be devel-
oped with a time-dependent transmission rate that ac-
counts for lock-down time and other key behaviors, like
riots [19]. The impact of social distancing can also be
represented as a time-dependent function that is applied
on the transmission rate, as found in [5].

Our previous work focused on studying the effects of
human behaviors through three novel SEIR-based mod-
els: a baseline model, an explicit intervention model, and
an implicit intervention model. The implicit model, in
particular, considers two types of behaviors within the
susceptible sub-population: normal behavior, indicating
they do not limit their contacts, and altered behavior,
indicating they practice interventions such as social dis-
tancing and confinement. In addition, for this model, the
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overall transmission rate is a function of the proportion
of susceptible individuals with normal behavior, which is
also modeled as a differential equation [13]. However, it
is important to consider that it is not just susceptible in-
dividuals who can exhibit these behaviors, but rather the
entire population. As seen in the COVID-19 pandemic,
the population as a whole generally consists of individu-
als who have normal or altered behavior. Therefore, the
interactions between these two groups must be accounted
for to understand how they affect each group and the
entire population as a whole.

Ultimately, the main purpose of this paper is to present
a novel mathematical framework that accounts for the in-
teractions between individuals who have different behav-
iors. Our model expands on our previous model as well
as earlier SIR/SEIR models that have been developed to
include mixing patterns between two groups [13, 2]. Fur-
thermore, we aim to study the effects of mixing patterns
and behavior on the disease dynamics of COVID-19.

The paper is outlined as follows. In Section 2, we in-
troduce the mathematical model. We also review three
major types of mixing patterns and derive the basic re-
production number using the Next Generation Matrix. In
Section 3, we present the results of our numerical compu-
tations for our model. Section 4 describes a user-friendly
dashboard we created for our model. Finally, in Section 5,
we summarize our work and future directions.

2 The Mathematical Model and
Governing Equations

2.1 An Implicit Behavior Mixing Model

In this work, we present an extended SEIR mathemati-
cal model that considers two groups of individuals within
a population: a normal behavior group and an altered
behavior group. Normal behavior indicates the individ-
ual does not limit their social contacts, whereas altered
behavior indicates the individual reduces their contacts
through interventions such as social distancing and self-
isolation. This model excludes natural birth and death
rates for simplicity.

Figure 1 depicts the model, which is organized as fol-
lows. Within each behavior group, Nn and Na, there
is a Susceptible (S), Exposed (E), Asymptomatic (IA),
Symptomatic (IS), and Quarantine (Q) sub-population.
In this paper, we denote which group a sub-population
belongs to with a subscript n for the normal behavior
group and a subscript a for the altered behavior group.
The susceptible sub-population consists of individuals
who have not contracted COVID-19. Exposed individ-
uals are those who are in the incubation stage of dis-
ease progression. Asymptomatic individuals are infec-

tious individuals who are not exhibiting symptoms of
COVID-19. Symptomatic individuals are infectious in-
dividuals who do exhibit symptoms of COVID-19. In
this model, we assume that symptomatic and asymp-
tomatic individuals are equally infectious and have equal
periods of infectiousness. Lastly, quarantined individu-
als are symptomatic individuals who are isolated from
the population and no longer spread the disease. Our
model also contains Hospitalized (H), Recovered (R), and
Dead (D) sub-populations, which are not associated with
any particular group. Hospitalized individuals are symp-
tomatic infectious individuals who show severe symptoms
of COVID-19 and are in a hospital. The recovered class
consists of individuals who survived the disease, whereas
the dead class contains hospitalized individuals who did
not survive.

Furthermore, we allow susceptible individuals, S =
Sn+Sa, where Sn and Sa represent susceptible individuals
with normal and altered behavior, respectively, to switch
behaviors and mix with infected individuals from either
group. We also introduce y, which is defined as the pro-
portion of susceptible individuals with normal behavior or
y = Sn/(Sn +Sa). Please note that the coupling between
Sn and Sa through y is represented as red arrows in Fig-
ure 1. We define fij as the fraction of contacts made by
an individual in group i with group j and ci as the num-
ber of contacts made by an individual in group i. Thus,
we write the dynamics of the two susceptible groups as
follows:

Ṡn = −fnncny
SIn
Nn
− fnacny

SIa
Na

, (1)

Ṡa = −fanca(1− y)
SIn
Nn
− faaca(1− y)

SIa
Na

. (2)

Note that y changes over time to represent the change in
the susceptible with normal behavior and susceptible with
altered sub-populations. A decrease in y, for instance,
corresponds with an increase in the altered behavior pop-
ulation as more susceptible individuals with normal be-
havior switch to having altered behavior. Therefore, we
can consider four different transmission rates that encap-
sulate both group mixing and behavioral changes:

bnn(y) = fnncny

bna(y) = fnacny

baa(y) = faaca(1− y)

ban(y) = fanca(1− y)

Notice that each transmission rate is a function of be-
havior. Also, note that fnn + fna = fan + faa = 1, so
bnn(y)+bna(y) = cny and baa(y)+ban(y) = ca(1−y). Ad-
ditionally, y changes based on a natural selection process
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and is modeled with the following differential equation:

dy

dt
= y(1− y)

[
(ban − bnn)In

Nn
+

(baa − bna)Ia
Na

]
. (3)

In the first part of equation (3), y(1 − y) represents in-
dividuals with normal behavior and individuals with al-
tered behavior interacting with each other. The rate at
which individuals with normal behavior change to altered
behavior is proportional to the difference in the transmis-
sion associated with altered behavior and the transmis-
sion associated with normal behavior. Within the normal
behavior group, this is (ban−bnn), since ban indicates the
transmission rate from individuals with altered behavior
interacting with normal behavior and bnn indicates the
transmission rate from individuals with normal behavior
interacting with other individuals with normal behavior.
Similarly, within the altered behavior group, the differ-
ence is (baa − bna).

The overall model is then governed by the following
system of differential equations:

dSn

dt
= −bnn(y)

SIn
Nn
− bna(y)

SIa
Na

,

dEn

dt
= bnn(y)

SIn
Nn

+ bna(y)
SIa
Na
− σEn,

dIAn
dt

= (1− p)σEn − ωIAn ,

dISn
dt

= pσEn + (1− ν)ωIAn − ξISn ,

dQn

dt
= ξISn − γQn,

dSa

dt
= −ban(y)

SIn
Nn
− baa(y)

SIa
Na

,

dEa

dt
= ban(y)

SIn
Nn

+ baa(y)
SIa
Na
− σEa,

dIAa
dt

= (1− p)σEa − ωIAa ,

dISa
dt

= pσEa + (1− ν)ωIAa − ξISa ,

dQa

dt
= ξISa − γQa,

dH

dt
= qγQ− ((1− x)αR + xαD)H,

dR

dt
= νωIA + (1− q)γQ+ (1− x)αRH,

dD

dt
= xαDH,

dy

dt
= y(1− y)

(
bnIn
Nn

+
baIa
Na

)
.

(4)

Here Q = Qn + Qa, bn = ban − bnn and ba = baa − bna.

Also, note that

Nn = Sn + En + IAn + ISn +Qn + δRnR+ δHn H,

Na = Sa + Ea + IAa + ISa +Qa + δRa R+ δHa H,

where δRn and δHn indicates the fraction of recovered and
hospitalized individuals in the normal behavior group and
δRa and δHa indicates the fraction of recovered and hospi-
talized individuals in the altered behavior groups. We
exclude the dead (D) compartment from the total popu-
lation, so N = Nn +Na.

Within both Nn and Na, susceptible individuals (S)
become exposed (E) by interacting with an infected indi-
vidual at a transmission rate that is modeled with bij(y).
Exposed individuals (E) become either asymptomatic in-
fectious or symptomatic infectious at a rate proportional
to the incubation rate, σ, such that a fraction (1 − p) of
exposed individuals become asymptomatic and a fraction
p become symptomatic. Asymptomatic individuals (IA)
either recover or become symptomatic (IS) infectious at
a rate proportional to ω, where a fraction (1− ν) become
symptomatic infectious and a fraction ν become recov-
ered. Symptomatic individuals (IS) enter the quarantine
(Q) sub-population at a rate of ξ. At a rate proportional
to γ, a fraction q of quarantined individuals become hos-
pitalized while a fraction (1 − q) become recovered. Fi-
nally, hospitalized individuals who die and recover leave
their sub-population at a rate of x and (1 − x), respec-
tively. Hospitalized individuals who die are hospitalized
for 1/αD days and hospitalized individuals who recover
remain for 1/αR. The death rate, x, is a function of time:

x(t) =


x̂ if H(t) ≤ B,
x̂B +H(t)−B

H(t)
if H(t) > B,

(5)

where B represents the number of ICU beds and x̂ is the
lethality rate associated with severe cases of COVID-19 in
the scenario where all hospitalized individuals have access
to a bed. When there are enough beds to supply all hos-
pitalized individuals, the death rate, x, is assumed to be
equal to x̂, which is indicated in the first part of the func-
tion. However, the second part of the function represents
a shortage of beds in which there are more hospitalized
individuals than the number of beds. In Figure 2, we
show the relationship between x and H. We summarize
all the model parameters in Table 1.

2.2 Mixing Patterns

In this section, we briefly discuss types of mixing patterns,
which were outlined by [2]. We describe three types of
mixing: proportionate, preferred, and like-with-like.

In proportionate mixing, the fraction of contacts, fij ,
is equal to the ratio of the total number of contacts from
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Figure 1: Flow Diagram of the Implicit Behavior Mixing Model.

Table 1: Definition and Value of Parameters in the COVID-19 Model.

Parameter Definition Value References

bij Transmission Rate Function of y N/A
fij The fraction of contacts made by members

of group i with group j
Varies Assumed

ci The number of contacts made by members group i Varies Assumed
σ Incubation Rate 1/6 [18]
ω Rate at which asymptomatic individuals become

symptomatic or recovered
1/14 [18]

ξ Rate at which symptomatic individuals become quarantined 0.5 Assumed
γ Rate at which quarantined individuals become

hospitalized or recovered
1/5 [7]

1/αR Duration at which hospitalized individuals who
recover remain hospitalized

12 [3, 4]

1/αD Duration at which hospitalized individuals who
die remain hospitalized

14 [3, 4]

x(t) Death rate of hospitalized individuals Function of time N/A
x̂ Lethality rate of hospitalized individuals with

access to an ICU bed
0.04 Assumed

p Fraction of exposed individuals who became symptomatic 0.6 Assumed
q Fraction of quarantined individuals who become hospitalized 0.19 [3, 4]
ν Fraction of asymptomatic individuals who recover 0.8 Assumed
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Figure 2: Relationship between the number of hospital-
ized individuals (H) and the death rate (x). The red dot
indicates where H = B, or when bed capacity has been
reached. Up to this point, x = x̂ Beyond this point, the
death rate increases above x̂ as it approaches 1.

all members of group i to the combined total number of
contacts from both groups. In other words,

fnn = fan =
cnNn

cnNn + caNa
,

fna = faa =
caNa

cnNn + caNa
.

In preferred mixing, a portion of individuals, πi, mixes
only with others that share their behavior while the re-
maining (1 − πi) performs proportionate mixing. Thus,
let

fi =
(1− πi)ciNi

(1− πn)cnNn + (1− πa)caNa
, i = n, a.

fi can be thought of as the ratio of the total number of
contacts from just members of group i who mix propor-
tionately to the total number of contacts from members of
both groups who mix proportionately. Note that propor-
tionate mixing occurs when πn = πa = 0. For preferred
mixing,

fnn = πn + (1− πn)fn,

fan = (1− πa)fn,

faa = πa + (1− πa)fa,

fna = (1− πn)fa.

Finally, in like-with-like mixing, all individuals in a
group randomly mix exclusively within their own group.
Therefore, πn = πa = 1, fn = fa = 0,

fnn = faa = 1,

fna = fan = 0.

2.3 Derivation of the Basic Reproduction
Number R0

In this section, we derive a basic reproduction number R0

that can be used to measure the transmission potential
of COVID-19 as proposed by the system (4). R0 is the
average number of secondary infections produced by a
typical case of an infection in a population where everyone
is susceptible [6].

Recall that the proposed mathematical model for
COVID-19 includes sub-populations with different infec-
tious states. We will employ a general approach called the
Next Generation Matrix [1] to find the basic reproduction
number R0 which is given by the following theorem.

Theorem 2.1. For i = n, a, the basic reproduction num-
ber R0 is given by

Ri
0 = R1,i

0 +R2,i
0 +R3,i

0 (6)

with

R1,i
0 = βii ·

p

ξ
(7)

R2,i
0 = βii ·

(1− p)
ω

(8)

R3,i
0 = βii ·

(1− ν)(1− p)
ξ

(9)

where

βnn = bnn(y)
N

Nn
, βaa = baa(y)

N

Na
.

Proof. Given the infectious states En, IAn , ISn , Ea, IAa , ISa
in the system (4), we create a vector F that represents
the new infections flowing only into the exposed compart-
ments given by

F = {βnnIn + βnaIa, 0, 0, βanIn + βaaIa, 0, 0} , (10)

where IAn + ISn = In and IAa + ISa = Ia. We have also
assumed that initially most of the susceptible popula-
tion (S) is approximately the entire population (N).

Along with F , we will also consider V which denote the
outflow from the infectious compartments in the system
(4) which is given by

V = {A, B, C, D, E, F} , (11)

where

A = σEn,

B = ωIAn − (1− p)σEn,

C = ξIsn − pσEn − (1− ν)ωIAn ,

D = σEa,

E = ωIAa − (1− p)σEa,

F = ξIsa − pσEa − (1− ν)ωIAa .
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Next, we compute the Jacobian F from F given by

F =


0 βnn βnn 0 βna βna
0 0 0 0 0 0
0 0 0 0 0 0
0 βan βan 0 βaa βaa
0 0 0 0 0 0
0 0 0 0 0 0


and the Jacobian V from V given by

V =


σ 0 0 0 0 0
G ω 0 0 0 0
H I ξ 0 0 0
0 0 0 σ 0 0
0 0 0 G ω 0
0 0 0 H I ξ


where

G = −(1− p)σ, H = −pσ, I = −(1− ν)ω.

We can then compute the inverse of the matrix V to be

V −1 =


J 0 0 0 0 0
K L 0 0 0 0
M N O 0 0 0
0 0 0 J 0 0
0 0 0 K L 0
0 0 0 M N O


where

J =
1

σ
, M =

(1− ν)(1− p)
ξ

+
p

ξ
,

K =
1− p
ω

, N =
1− ν
ξ

,

L =
1

ω
, O =

1

ξ
.

Using matrices F and V one can then compute the
Next Generation Matrix FV −1 given by

FV −1 =


βnnP βnnQ βnnO βnaP βnaQ βnaO
0 0 0 0 0 0
0 0 0 0 0 0

βanP βanQ βanO βaaP βaaQ βaaO
0 0 0 0 0 0
0 0 0 0 0 0


where

P = H + J, Q = I +K.

Note that (i, j) entry of the Next Generation Matrix
FV −1 is the expected number of secondary infections in
compartment i produced by individuals initially in com-
partment j assuming that the environment seen by the

individual remains homogeneous for the duration of its in-
fection. Also, matrix FV −1 is non-negative and therefore
has a non-negative eigenvalue. The basic reproduction
number can then be computed as R0 = ρ

(
FV −1

)
which

is the spectral radius of the matrix. This non-negative
eigenvalue is associated with a non-negative eigenvector
which represents the distribution of infected individuals
that produces the greatest number R0 of secondary in-
fections per generation. The basic reproduction number
R0 corresponds to the dominant eigenvalue and is given
by R0 = max{Rn

0 ,Ra
0} where for i = n, a,

Ri
0 = R1,i

0 +R2,i
0 +R3,i

0

Here,

R1,i
0 = βii ·

p

ξ

R2,i
0 = βii ·

(1− p)
ω

R3,i
0 = βii ·

(1− ν)(1− p)
ξ

.

Note that Theorem 2.1 yields a general result for
the basic reproduction number R0 corresponding to the
COVID-19 disease transmission model given by the sys-
tem of equations (4). Note that R0 denoted with a su-
perscript n or a corresponds to the basic reproduction
number within a group, whereas R0 without a superscript
represents the basic reproduction number for the overall
population. In addition, the basic reproduction number
for a group, Ri

0 is written the sum of three expressions,
R1,i

0 , R2,i
0 , and R3,i

0 , for simplicity. Each of these ex-
pressions are the product of the transmission rate, the
probability of entering an infectious state (symptomatic
or asymptomatic), and the mean duration of that infec-
tious state respectively. Thus, each expression represents
the average number of secondary cases produced by an
infectious individual in a certain infectious state during
their infectious period.

3 Numerical Computations

In this section, we implement the implicit behavior mixing
model and perform numerical simulations. We implement
our model in Python using the Runge-Kutta method for
solving systems of ODEs.

The set of parameter values we used for our computa-
tions are found in Table 1.

First, we consider the basic reproduction number that
was derived in Theorem 2.1, and we assume Nn = Na =
5,000,000 and cn = ca = 0.5.

In Figures 3 and 4 we show the influence of y and π on
Rn

0 and Ra
0 . Both y and π are related to the transmission

www.sporajournal.org 2021 Volume 7(1) page 51

http://www.sporajournal.org


Mathematical Modeling, Analysis, and Simulation of the COVID-19 Pandemic Ohajunwa, Seshaiyer

Figure 3: Influence of y and πn on Rn
0 . The colors range

from dark blue to yellow to indicate the value of Rn
0 . In

addition, the white line in the heat plot indicates where
Rn

0 = 1. Note that Rn
0 < 1 when y is roughly less than 0.2.

Figure 4: Influence of y and πa on Ra
0 . The colors range

from dark blue to yellow to indicate the value of Ra
0 . In

addition, the white line in the heat plot indicates where
Ra

0 = 1. Note that Ra
0 < 1 when y is roughly greater

than 0.8.

rates, bij . Varying π and y allows us to see the impact
of different mixing patterns and proportion of susceptible
individuals with normal behavior on the basic reproduc-
tion number, especially since Rn

0 and Ra
0 are functions

of y. Notice that in both figures, πn values correspond
to a greater basic reproduction number for both the nor-
mal behavior and the altered behavior group. This is
particularly true when y > 0.2 for Rn

0 and y < 0.8 for
Ra

0 . Recall from Theorem 2.1 that R0 = max{Rn
0 , R

a
0},

from which we can assume R0 = Rn
0 for the entire pop-

ulation. Thus, as seen in Figure 3, to keep the overall
R0 below 1, at least roughly 80% of the susceptible sub-
population must have altered behavior, regardless of the
amount of mixing. This demonstrates that a higher pro-
portion of susceptible individuals with normal behavior
and a higher proportion of inner-group mixing furthers
the spread within both groups.

Next, we explore the effects of mixing patterns on
the disease dynamics of the two groups by varying π
and c. Here, we assume a total initial population,
N(0) of 10,000,000. We assume that S(0) = 9,999,990,
E(0) = 10, y(0) = 0.99, such that Sn(0) = S(0) × y,
Sa(0) = S(0) × (1 − y), En(0) = 5, and Ea(0) = 5. The
remaining compartments are assumed to have an initial
population of zero.

In Figure 5, we show the effects of changing πi on
the peak number of infections in the normal behav-
ior and altered behavior group. We let cn = 1 and
ca = 0.25. Already, the altered behavior group has
a significantly lower peak number of infections (asymp-
tomatic and symptomatic) compared to the normal be-
havior group, since it has a reduced number of contacts.
In fact, at πn = πa = 0, the peak number of infected
individuals from the normal behavior group consist of
roughly 0.22 of the initial total population whereas the
peak number of infected individuals from the altered be-
havior consist of only roughly 0.0016 of the initial total
population. Nonetheless, as πi increases, the peak num-
ber of infections decreases for the altered behavior group.
At πa = πn = 1, the peak number of infections in the
altered behavior group is very close to 0% of the total
population. Given that members of the altered behavior
group have a much lower number of contacts, infected in-
dividuals with altered behavior are less likely to spread
their disease. Thus, limiting their contacts to just other
individuals with altered behavior at πa = 1 reduces the
chance for susceptible individuals with altered behavior
to become infected. On the other hand, susceptible in-
dividuals in the normal behavior group are more likely
to encounter infected individuals from either group, re-
gardless of their mixing patterns. Hence, increasing πi
has a negligible impact on the peak number of Infected
individuals with normal behavior.

We expand on this by also changing ca in Figures 6,
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Figure 5: Subplots A and B show the peak proportion of infections with respect to πi for the normal behavior
and altered behavior group, respectively. Asymptomatic cases are represented in blue and symptomatic cases are
represented in orange. Note that cn = 1 and ca = 0.25.

7, and 8. As expected, a similar relationship between
πi and the peaks is shown in these figures. In addition,
increasing the number of contacts for the altered behav-
ior group also increases the number of infections in that
group, especially when πn = πa = 1. When ca = 0.75 and
πn = πa = 1, as seen in Figure 8, the number of peak in-
fections in the altered behavior group is roughly 0.0010 of
the total population, which is much higher compared to
the number of peak infections for ca = 0.25 and ca = 0.5,
as found in Figures 6 and 7. For a higher number of con-
tacts, mixing with other individuals who share the same
behavior becomes more riskier. Therefore, this empha-
sizes the importance of both reducing one’s contacts as
well as being careful with who one interacts with.

4 Dashboard as a Graphical User
Interface

In this section, we show a dashboard we created for our
model. For this dashboard, we used a framework for cre-
ating web-based applications called Dash, which is made
by Plotly. Our dashboard gives users the ability to inter-
act with the model and change various parameter values.
This dashboard will not only help share our work, but
may also aid in informing public decisions. In Figure 9,
we show the topmost portion of our dashboard, which
contains three graphs corresponding to the normal be-
havior group, altered behavior group, and the remaining
hospitalized, recovered, and dead sub-populations. Users

may hover over a point on the graph to receive informa-
tion about the time and value of the plot. In addition,
the user can isolate certain plots by clicking in the legend
to the right of each graph.

In Figure 10, there is an image of another portion of the
dashboard directly below the graphs in Figure 9. Here,
users may change the initial conditions by typing in input
boxes. They may also drag sliders corresponding to cn,
ca, πn, and πa. As users change these values, the graphs
alter immediately to reflect these changes. Similarly, Fig-
ure 11 shows the bottom-most portion of the dashboard,
where there are more sliders and input boxes for the other
parameters values, including the number of days and the
number of beds.

The dashboard is currently available here: https://

covid-19-mixing-dashboard.herokuapp.com/. In the
future, this dashboard may be improved to include more
features as we continue our work.

5 Conclusions and Future Work

In this work, we considered a novel epidemiological model
that includes two groups with different behaviors: nor-
mal and altered. We also derived the basic reproduction
number using the Next Generation Matrix. Moreover,
we performed numerical simulations to study the effects
of behavior and mixing patterns. We demonstrated how
having a higher proportion of susceptibles with normal
behavior and a higher proportion of inner-group mixing
increases the basic reproduction number for the total pop-
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Figure 6: Subplots A and B correspond to the total proportion of infected individuals (asymptomatic and symp-
tomatic) in the normal and altered behavior groups, respectively. The blue curves correspond to πn = πa = 0
(proportionate mixing), the orange curves correspond to πn = πa = 0.5 (preferred mixing), and the green curves
correspond to πn = πa = 1 (like-with-like mixing). In this figure, cn = 1 and ca = 0.25. In Subplot A, the peak
number of infections are roughly 20% of the total population for all tested πi values. In Subplot B, the peak number
of infections are close to 0.15%, 0.11%, and 0.00% of the population for πi = 0, πi = 0.5, and πi = 1, respectively.

Figure 7: Subplots A and B correspond to the total proportion of infected individuals (asymptomatic and symp-
tomatic) in the normal and altered behavior groups, respectively. The blue curves correspond to πn = πa = 0
(proportionate mixing), the orange curves correspond to πn = πa = 0.5 (preferred mixing), and the green curves
correspond to πn = πa = 1 (like-with-like mixing). In this figure, cn = 1 and ca = 0.5. In Subplot A, the peak
number of infections are roughly 20% of the total population for all tested πi values. In Subplot B, the peak number
of infections are close to 0.18%, 0.15%, and 0.00% of the population for πi = 0, πi = 0.5, and πi = 1, respectively.
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Figure 8: Subplots A and B correspond to the total proportion of Infected individuals (asymptomatic and symp-
tomatic) in the normal and altered behavior groups, respectively. The blue curves correspond to πn = πa = 0
(proportionate mixing), the orange curves correspond to πn = πa = 0.5 (preferred mixing), and the green curves
correspond to πn = πa = 1 (like-with-like mixing). In this figure, cn = 1 and ca = 0.75. In Subplot A, the peak
number of infections are roughly 20% of the total population for all tested pii values. In Subplot B, the peak number
of infections are close to 0.20%, 0.17%, and 0.10% of the population for pii = 0, pii = 0.5, and pii = 1, respectively.

Figure 9: Three graphs found in top portion of Dashboard.
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Figure 10: Portion of dashboard with input boxes for initial values and sliders for behavior-related parameters.

Figure 11: Portion of dashboard for input boxes and sliders for parameter values.
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ulation. Furthermore, we showed that mixing patterns
had little effect on the normal behavior group. On the
contrary, greater proportions of inner-group mixing and
a lower number of contacts improved the disease dynam-
ics of COVID-19 within the altered behavior group. In
fact, out of the three types of mixing, like-with-like mix-
ing resulted in the lowest maximum number of infected
cases. Furthermore, in this paper, we present an inter-
active dashboard for our model. In the future, we may
expand our model to include risk perception and irra-
tional behavior. We will also incorporate stochasticity,
especially in our behavior terms, to explore the influence
of randomness on our model. Moreover, in the future, we
will use our model to study the effects of COVID-19 on
other public health concerns.

Appendix: Literate Programming

Literate programming is a style of documenting computer
code developed by Donald E. Knuth. The goal of liter-
ate programming is to produce a program that is under-
standable to the reader by weaving text to explain the
code [9]. In this section, we use literate programming to
demonstrate how we develop the code to implement our
model.

First, we import specific packages related to our im-
plementation, specifically numpy and scipy, which are
commonly used Python pacakages for data and mathe-
matical analysis. For our work, numpy is used to manage
and manipulate arrays and scipy is used to implement
the Runge-Kutta method.

import numpy as np
from s c ipy import i n t e g r a t e

Next, we define certain parameters for our model from
system (4).

t i , t f = 0 , 210 #i n i t i a l time , f i n a l time

sigma = 1/6
omega = 1/14
gamma = 1/5
alphaR = 1/12
alphaD = 1/14

p = 0 .6
q = 0.19
v = 0 .8
x hat = 0.04
x i = 0 .5

p i n = 0
p i a = 0
c n = 0 .8

c a = 0 .5

i f p i n == 1 :
f n = 0

else :
f n = (1− p i n )∗ c n ∗N n/
((1− p i n )∗ c n ∗N n + (1− p i a )∗ c a ∗N a )

i f p i a == 1 :
f a = 0

else :
f a = (1− p i a )∗ c a ∗N a/
((1− p i n )∗ c n ∗N n + (1− p i a )∗ c a ∗N a )

f nn = pi n + (1− p i n ) ∗ f n
f na = (1− p i n ) ∗ f a
f an = (1− p i a )∗ f n
f a a = p i a + (1− p i a )∗ f a

b nn = f nn ∗ c n ∗ y
b na = f na ∗ c n ∗ y
b an = f an ∗ c a ∗ (1−y )
b aa = f a a ∗ c a ∗ (1−y )

b n = b an − b nn
b a = b aa − b na

We also define our initial conditions for the simulation,
which are set inside a numpy array called compartments.
This array will be treated as a vector and used to initialize
our integrator.

S = 9 999 990
y = 0.99

S n = S∗y #su s c e p t i b l e ( normal )
E n = 5 #exposed ( normal )
Ia n = 0 #asymptomatic ( normal )
I s n = 0 #symptomatic ( normal )
Q n = 0 #quarant ined ( normal )

S a = S∗(1−y ) #su s c e p t i b l e ( a l t e r e d )
E a = 5 #exposed ( a l t e r e d )
I a a = 0 #asymptomatic ( a l t e r e d )
I s a = 0 #symptomatic ( a l t e r e d )
Q a = 0 #quarant ined ( a l t e r e d )

H = 0 #ho s p i t a l i z e d
R = 0 #recovered
D = 0 #dead

compartments = np . array ( [ S n , E n , Ia n , I s n ,
Q n , S a , E a , Ia a , I s a , Q a ,
H, R, D, y ] )
#vec tor o f compartment va lue s

Afterwards, we write the system of equations (4) as a
function called behavior_mixing, which takes in time t
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and a vector of values corresponding to each compart-
ment. For simplicity, we define each element within the
vector, so we can write the equations for our model in
familiar terms.

def behavior mix ing ( t , vec to r ) :
””” D i f f e r e n t i a l Equations f o r the
Soc i a l Behaviors Model”””

S n = vecto r [ 0 ]
E n = vecto r [ 1 ]
Ia n = vecto r [ 2 ]
I s n = vecto r [ 3 ]
Q n = vecto r [ 4 ]
S a = vecto r [ 5 ]
E a = vecto r [ 6 ]
I a a = vecto r [ 7 ]
I s a = vecto r [ 8 ]
Q a = vecto r [ 9 ]
H = vecto r [ 1 0 ]
R = vecto r [ 1 1 ]
D = vecto r [ 1 2 ]
y = vecto r [ 1 3 ]

S = S n + S a
Ia = Ia n + Ia a
I s = I s n + I s a
E = E n + E a
Q = Q n + Q a

Since x is a function of time t, we must also define x(t)
within behavior_mixing.

def x ( t ) :
x hat = 0.04
B = 2700

i f H <= B:
return ( x hat )

else :
return ( ( x hat ∗B+H−B)/H)

We write out the system of differential equations (4)
and end behavior_mixing with a statement that returns
these values as an array.

dS n = −(beta nn ∗ S ∗ ( Ia n + I s n )/N n
+ beta na ∗ S ∗ ( I a a + I s a )/N a )

dE n = −dS n − sigma∗E n
dIa n = (1−p)∗ sigma∗E n − omega∗ Ia n
dI s n = p∗ sigma∗E n + (1−v )∗omega∗ Ia n

− x i ∗ I s n
dQ n = xi ∗ I s n − gamma∗Q n

dS a = −(beta an ∗ S ∗ ( Ia n + I s n )/N n
+ beta aa ∗ S ∗ ( I a a + I s a )/N a )

dE a = −dS a − sigma∗E a
dIa a = (1−p)∗ sigma∗E a − omega∗ I a a

d I s a = p∗ sigma∗E a + (1−v )∗omega∗ I a a
− x i ∗ I s a

dQ a = xi ∗ I s a − gamma∗Q a

dH = q∗gamma∗Q − (((1−x ( t ) )∗ alphaR )
+ (x ( t )∗ alphaD ))∗H

dR = v∗omega∗ Ia + (1−q )∗gamma∗Q
+ (1−x ( t ) )∗ alphaR∗H

dD = x( t )∗ alphaD∗H

dy = y∗(1−y ) ( b n ∗( Ia n + I s n )/N n
+ b a ∗( I a a + I s a )/N a )

return (np . array ( [ dS n , dE n , dIa n , dIs n ,
dQ n , dS a , dE a , dIa a ,
dIs a , dQ a , dH, dR,
dD, dy ] ) )

Finally, we create a solver function to numerically solve
our model using the Runge-Kutta method. We define
this function ode_solver to take in an initial time value,
ti, final time value, tf, and the initial conditions for
the model. Ultimately, at the end of ode_solver, we
want to return an array of time values and an array
of compartment values. Within ode_solver, we cre-
ate a object using SciPy’s integrate.RK45 class called
solver. The solver object accepts various parameters,
including a system of equations, time bounds, and initial
conditions. Thus, we input behavior_mixing, ti, tf,
initial_values.

def od e s o l v e r ( t i , t f , i n i t i a l v a l u e s ) :
s o l v e r = i n t e g r a t e .RK45( behavior mixing , t i ,

i n i t i a l v a l u e s , t f )

We create two empty arrays for time (t_values) and
Compartmental values (c_values). The t_values ar-
ray contains the times and the c_values values for each
sub-population at each time step. In order to fill these
arrays, we create a while loop to perform a series of in-
tegration steps. The while loop runs as long as the in-
tegration is incomplete and terminates when the solver
is complete. To perform one integration step, we write
solver.step(). Once this step is complete, we add our
new time value solver.t and new compartment values
solver.y to t_values and c_values, respectively. How-
ever, we want the array of compartmental values to be
two-dimensional, so that the number of rows correspond
to the number of integration steps and the number of
columns correspond to the number of compartments, 14.
We want a two-dimensional array because it would make
it easier to manipulate it later for generating graphs. So,
we count the number of integration steps with the vari-
able steps. Each iteration of the while loop increases
steps by 1. Thus, after the while loop, we can reshape
c_values with the number of integration steps and 14.
Lastly, we return t_values and c_values.

t v a l u e s = np . array ( [ ] )
c va l u e s = np . array ( [ ] )
s t ep s = 0
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while s o l v e r != ’ f i n i s h e d ’ :
s o l v e r . s tep ( )
t v a l u e s = np . append ( t va lue s , s o l v e r . t )
c va l u e s =
np . append ( c va lue s , s o l v e r . y )
s t ep s+=1
i f s o l v e r . s t a tu s == ’ f i n i s h e d ’ :

break
c va l u e s=c va l u e s . reshape ( steps , 14)
return ( t va lue s , c va l u e s )

Now, whenever we call ode_solver, we can have an
array of time values and solutions, which we can analyze.
In fact, for the figures discussed in Section 3, we used
Matplotlib package to create graphs.
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