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Statistical approach to obtaining vacancy formation energies in high-entropy crystals from first
principles calculations: Application to a high-entropy diboride
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A reduced pair approximation model for vacancy formation energy in multicomponent materials is proposed
as an alternative to the commonly used cluster expansion method. By imposing physical constraints to the
interaction coefficients, lower rank models are obtained with improved accuracy as measured by Bayesian
information criterion and cross validation. Additionally, reduced models can outperform the full parametrization
in high-entropy compounds with as much as 50% less training data. The results are presented for cation vacancies
in the high-entropy diboride Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2B2 calculated by density functional theory simulations of
large cell special quasirandom structures. Further, the calculation of vacancy concentrations from a distribution
of energies is considered, wherein the chemical disorder on lattice sites gives rise to non-Arrhenius temperature
dependence. Preferential clustering and the possibility of short-range order in the high-entropy lattice are
explored through pair affinities derived from model coefficients.
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I. INTRODUCTION

High-entropy ceramics, a relatively recent variation on
high-entropy alloys, have emerged as a new class of ma-
terial with unique and potentially important functional and
structural properties. Possible applications for these materi-
als include catalysis, barriers for thermal and environmental
protection, substrates for water splitting, and as energy stor-
age materials [1]. The high-entropy ceramics reported to date
have two sublattices: an ordered sublattice with one or two
species, and a second sublattice with multiple, randomly ar-
ranged species. High-entropy rocksalt oxides [2] and carbides
[3], for example, consist of an fcc sublattice occupied by
oxygen or carbon, respectively, and a chemically disordered
interpenetrating fcc sublattice containing multiple metallic
species. Other examples of high-entropy ceramics include
spinel and perovskite oxides, metal diborides, nitrides, and
silicides [2–22].

While the presence of multiple species is important for
thermochemical stability as well as structural and functional
properties, their presence also creates special challenges to
predicting phase stability and defect properties. In general,
as the number of species in a given phase increases, the
availability of reliable thermodynamic phase data tends to
decrease. This has led to the development of quantities such
as the entropy forming ability [23] introduced by Curtarolo
and coworkers that can be used to efficiently screen for po-
tentially stable high-entropy compounds from first principles
data. Similarly, the calculation of vacancy formation ener-
gies becomes complex due to the range of compositions and
configurations available to a vacancy site on the chemically
disordered lattice. Unlike in chemically ordered crystals, va-
cancies in crystals with random mixing cannot be represented
by a single defect energy. Each vacancy must instead be

treated individually with respect to not only the species re-
moved, but also the corresponding occupations of the local
environment [24,25]. The number of possible occupations
can be exceedingly large for these systems, particularly when
multiple neighbor shells need to be considered to accurately
represent the vacancy formation energies. Furthermore, the
way in which diverse vacancies influence the bulk vacancy
concentration must be carefully considered where a single
energy would have otherwise been used in the relevant ther-
modynamic equations.

Much of the literature on vacancies in disordered sys-
tems has centered on the cluster expansion method and its
application to the simplest case of binary systems [24–27].
This method takes the linear sum of interactions for every
atom cluster in a material to a given distance and accuracy
(e.g., pair, triplet, or n-tuple) to calculate the relative energy
of ordering in the local atomic structure. When applied to
vacancies, the vacancy can be treated as an N + 1 species in
the cluster expansion. While the cluster expansion method can
predict accurate energies across the configurational and com-
positional space, the number of coefficients generally scales as
roughly Nx with N as the number of components and x as the
number of atoms in the highest-order cluster [28]. For a high-
entropy compound with five or more principal components,
this rapidly becomes intractable, requiring a tremendous num-
ber of simulations to properly fit the interaction coefficients.

This work proposes a simplified neighbor interaction
model derived from generalizations of the physical interac-
tions in the local environment and guided by parameter space
statistics to enable efficient prediction of cation vacancy for-
mation energies, vacancy concentrations, and cluster affinities
in many-component materials. The model is applied to the
high-entropy diboride Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2B2, which has
a crystalline planar AlB2 structure with one plane containing
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boron and the other plane containing the randomly arranged
metal cations. Parameter sets within this model were deter-
mined using the Bayesian information criterion (BIC) [29]
through a goodness of fit to first principles calculations com-
bined with a penalty imposed on the size of the parameter
space. The predictive performance of the model was tested
via regression across a range of training sample sizes through
repeated k-fold and leave-one-out cross validation (LOOCV).
Using the model, a dense sampling of the discrete distribution
of cation vacancy formation energies was generated and used
to estimate vacancy concentrations as a function of tempera-
ture. The method, which includes uncertainty estimates for the
interaction parameters, is general and therefore can be applied
to other high-entropy compounds.

II. METHODS

DFT energies of bulk and vacancy structures were calcu-
lated using plane-wave projector-augmented wave pseudopo-
tential methods [30] implemented in the Vienna Ab initio
Simulation Package [31–33]. The generalized gradient ap-
proximation as parameterized by Perdew et al. [34] was used
for the exchange-correlation potential. The cutoff energy for
the plane-wave basis was set to 415 eV with a 3 × 3 × 3 !-
centered k-point mesh. Five distinct configurations of a 135
atom (45 cation) special quasirandom structure (SQS) [35]
were constructed on a skewed hexagonal lattice such that
vacancy-vacancy distances were greater than 10 Å and ar-
tifacts from periodic lattice strains on tiled vectors were
minimized. Vacancy simulations were relaxed with respect to
their structures while fixing the supercell volume to that of the
bulk in order to capture the relevant strains in the local lattice.

Vacancy formation energies E v f were calculated for each
cation site in the five SQS configurations and for each con-
stituent binary diboride using the expression

E v f = E v − Ebulk + µ. (1)

Here, E v is the energy of the vacancy-containing supercell,
Ebulk is the energy of the bulk supercell, and µ is the chemical
potential of the vacating species taken as the DFT energy per
atom of the elemental solid phase. Interaction parameters were
fit to 225 vacancies simulated at every cation site in the SQS
supercells (45 vacancies for each cation type).

A. Pair approximation model

Unlike the cluster expansion method, which references
the summation to the total energy, solving explicitly for the
vacancy formation energy allows one to consider instead the
contribution of each neighbor interaction to the vacancy for-
mation directly. Following the pair approximation model in
Ref. [36], the vacancy formation energy can be represented as

E v f = nEb + Er − µ, (2)

where Eb is the energy required to break each of n bonds
between the atom and its neighbors, Er is the electronic and
structural relaxation of the local environment surrounding the
vacancy, and µ is the chemical potential of the vacating atom
(alternatively in this framework, the atom can be placed on
the surface of an infinite bulk with half of its bonds restored).

In the case of a multicomponent system, a linear contribution
from each neighbor is assumed and the equation is rewritten
as

E v f =
N∑

j=1

n j
(
Eb

i j + Er
j

)
+ Er0

i − µi (3)

or, for multiple neighbor shells,

E v f =
N∑

j=1

K∑

k=1

n jk
(
Eb

i jk + Er
jk

)
+ Er0

i − µi. (4)

Here, i represents the atomic species of the removed atom, j
is the species of a given neighboring atom, and k is the index
of the neighbor shell. Each bond Eb

i jk is represented by an
i j pair in shell k, whereas the relaxation component Er

jk is
independent of the vacating atom i, and Er0

i is independent of
any bonds.

In the case of the diboride (or for any other ionic and cova-
lent materials), the terms in the equation also have embedded
in them the neighbor-dependent contributions to the i-type
bonding with the anion sublattice, as this cannot be isolated in
the DFT energies. Because the boron sites are compositionally
invariant, they do not need to be considered explicitly. Rather,
the bonding and relaxation terms can be considered as the
effective interactions of the variants in the composition.

With Eq. (4) as a starting point, physical constraints can be
applied to reduce the parameter space. First, the bond energy
between two atoms in the compound must be nondirectional,
i.e.,

Eb
i jk = Eb

jik . (5)

Additionally, while bonded interactions are unlikely to
extend beyond the first few neighbor shells, structural and
electronic relaxation contributions can be longer ranged. From
this, the vacancy interactions of distant neighbors can be re-
duced to only their relaxation components by imposing

Eb
i jk = 0 (6)

for any shell k that is determined to have a noninfluential
bonded interaction.

A final reduction of the coefficients is made with the intro-
duction of semiarbitrary parameters for each interaction term.
Specifically, it can be shown that for any vector U :

U + U T = M, (7)

where U T is the transpose of U and M is a symmetric matrix
Mi j = Mji. Thus,

A + U + U T = B

and

A + U = B − U T (8)

for some arbitrary symmetric matrices A and B. Applied to the
bond matrices for a given shell, this yields

Eb + Er = Eb∗ − [Er]T , (9)

where Eb∗ − [Er]T is an equivalent solution to the pair ap-
proximation model with the relaxation terms indexed over
vacating atom i. Defining the set of neighbor shells B such
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that bonding parameters Eb
i jk are symmetric and nonzero for

all k ∈ B, the relaxation terms can now be summed to a single
i-wise vector with elements Er∗

i such that

Er∗
i = Er0

i − µi −
N∑

j

∑

k∈B

n jkEr
ik . (10)

Because
∑

j n jk is constant for each shell k in a given crystal
structure, Er∗

i is independent of the neighbor shell composi-
tions.

Applying these assumptions to the pair approximation in
Eq. (4), the total parametrization for the five-cation case (N =
5) is reduced to

E v f =
5∑

j=1

(
∑

k∈B

n jkEb∗
i jk +

∑

k∈R

n jkEr
jk

)

+ Er∗
i (11)

for neighbor shells B that involve energy contributions from
broken bonds, and for shells R that only contribute to the
relaxation energy. The determination of shells included in B
and R is made through statistical evaluation of the model with
different parameter sets. In the form presented in Eq. (11),
there remains an additional degree of freedom for each con-
tributing neighbor shell. These can be set as constant for a
fixed reference point in the results, e.g., by setting each Eb∗

11k
and Er

1k equal to zero.
This reduced pair approximation (RPA) model considers

only the composition of neighbor shells, representing a sim-
plification of other common methods that introduce additional
coefficients to account for the configurations of neighbor
pairs, triplets, and n-tuples. In the case of the five-cation high-
entropy diboride, this model can represent the 3.45 × 1016

possible compositions of the first seven neighbor shells of
a vacancy (cutoff radius of 7 Å) with as few as 53 linear
degrees of freedom. As demonstrated in the following sec-
tion, imposing the generalized physical constraints allows for
an accurate representation of vacancy formation energies in
high-entropy systems without the need to consider the many
possible decorations of the local environment.

III. RESULTS AND DISCUSSION

For the selection of bonded and relaxation sets B and R in
Eq. (11), the BIC is compared for each disjoint combination of
k ∈ B, k ∈ R, and k ∈ reject including all shell indices k ! 8.
The BIC for a given set of parameters is calculated from the
goodness of fit of the DFT results with a penalty imposed on
the size of the parameter space, specifically

BIC = kM ln n − 2 ln L̂, (12)

for sample size n, model dimension kM , and maximum likeli-
hood L̂. For BIC calculation in this work, errors are assumed
to be independent and identically distributed. For the Gaus-
sian case, the log likelihood is calculated from the variance
estimate σ̂ 2 of multiple linear regression as

L̂ = − 1
2 n[ln 2π + ln σ̂ 2 + 1]. (13)

Further, the formulation in Eq. (11) is expanded to include
k ∈ U for unconstrained parametrization of neighbor shells
wherein the assumptions in Sec. II are ignored in favor of

FIG. 1. Selection frequency of each parameter set in the top 50
models by BIC.

the formulation in Eq. (4). This allows for rejection of the
proposed framework for any shell k during model selection.

Within the 50 best models (as ranked by BIC) in the 65536
parameter set combinations up to eight neighbor shells, the
selection frequency of each shell classification is calculated
and plotted in Fig. 1. In a given shell, a high rate of uncon-
strained parameters might suggest that the proposed model
assumptions are flawed, while a low but nonzero rate points to
the information contained in that shell being valuable enough
to outweigh an inefficient parametrization. The selection fre-
quencies show that the reduced parametrizations dominate in
the models with the best expected performance, as well as a
trend toward parameter sets without a bond energy term (and,
eventually, rejected parameters) with increasing distance from
the vacancy site.

To quantify the predictive performance of the selected
models for Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2B2, cross-validation
scores were calculated on models fit to the DFT results using
multiple regression across a range of training sample sizes
through repeated k-fold cross validation and LOOCV. Plotted
in Fig. 2 is the performance and convergence behavior of an
optimized parametrization (B = {1, 2, 3, 4}, R = {5, 6, 7},
U = ∅, and reject = {8}) compared against the rest of
the top 50 models and the fully unconstrained model for
K = 7. Additionally, cross-validation error is plotted against
the largest shell K for the optimized and unconstrained
models. This shows improved predictive performance with
the inclusion of each of the first seven neighbor shells, in
agreement with the parameter selection frequency in Fig. 1.

For all sample sizes and cutoff radii, the RPA outper-
forms the unconstrained model. In particular, the RPA model
is shown to be more resilient to overfitting when including
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FIG. 2. (a) Convergence of the reduced pair approximation
model (B = {1, 2, 3, 4}, R = {5, 6, 7}, and U = ∅) and the uncon-
strained model (U = {1, . . . , 7}) as a function of training sample
size for 5× k-fold cross validation up to and including LOOCV;
and (b) cross-validation error as a function of largest shell K in the
model for fourfold and LOOCV (training sample size of 169 and 224,
respectively). Cross-validation errors for the 50 top models by BIC
shown in gray.

distant pairs, even with smaller sample sizes. The resilience
of the model is, in part, gained from the symmetry of the
parameters linking the coefficients from different vacancy
types. Whereas the unconstrained parametrization acts as sep-
arate, independent models for each i-type vacancy, the RPA
coefficients are symmetric across i j terms, effectively increas-
ing the size of the training set available to each parameter
while removing unnecessary degrees of freedom. Of note for
models with K = 2 and relatively few parameters, the uncon-

FIG. 3. A sample construction of the SRO structure in which a
near-neighbor shell (red) is replaced with a single element.

strained model is only able to approach the performance of
the optimized RPA, not surpass it, suggesting that the RPA
assumptions do not remove information from the model.

The optimizations of the RPA model converge quickly to
root mean square prediction errors on the order of 20 meV
across a 2 eV range of calculated formation energies. RPA
models yield 30% lower LOOCV errors than those of the
unconstrained model for training size n = 224, and 50% lower
fourfold cross-validation errors (n = 169). Comparing the fit-
ting errors and LOOCV prediction errors within each model,
the RPA values are overfit by less than 50%, compared to
185% overfitting in the unconstrained case. Model parameters
and fitness metrics are presented in Table I.

The RPA model is shown to predict the DFT results for the
stoichiometric and maximally disordered SQS; however, that
result says little about the applicability of the model to non-
ideally mixed local arrangements. By its formulation, every
site in the SQS should closely approximate ideal mixing in a
random compound. To investigate if the model can be extrap-
olated to atomic clusters that do not follow the assumptions
imposed by the SQS formulation, a set of pseudo-ordered
structures is constructed in which the nearest-neighbor shells
are selectively replaced, in turn, with each constituent metal
species to approximate certain short-range order (SRO) clus-
ters as illustrated in Fig. 3.

Due to supercell size constraints, each shell is calculated
separately, and the surrounding bulk is left unchanged from
the SQS, that is, we do not impose a deficient region surround-
ing the SRO shell to maintain the equimolar stoichiometry
of the high-entropy compound. As a result, the supercells
are no longer fully consistent with the assumptions of our
model, most importantly that the chemical potential reference
assumes the compound to be compositionally invariant. It
might also be expected that any ignored cluster interactions
would play a larger role when present in such large con-
centrations, in addition to any volume or strain effects of
the composition changes. These measurements are, as such,
only useful as a qualitative guide to assess the applicability
of the model as configurations deviate from ideal mixing.
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TABLE I. Root mean squared error (in meV) from least squares fitting as well as cross-validation errors from LOOCV and 5× k-fold CV
for unconstrained and RPA models. SRO is the prediction error for the set of pseudo-ordered simulations. Sets B and R denote the indices of
shells modeled as bonded and relaxation interactions, respectively.

Assumption Parameters BIC RMSE LOOCV fourfold CV SRO

U = {1, ..., 7} 145 −601.7 11.0 31.4 52.8 101.4
B = {1, 2, 4} ; R = {3, 5, 6, 7} 63 −878.6 15.9 22.3 24.4 77.0
B = {1, 2, 5} ; R = {3, 4, 6, 7} 63 −876.6 16.0 22.4 24.2 74.3
B = {1, 2, 3, 6} ; R = {4, 5, 7} 73 −869.3 14.4 21.4 23.2 90.6
B = {1, 2} ; R = {3, ... , 7} 53 −864.9 18.5 24.3 25.8 79.4
B = {1, 2, 3, 4} ; R = {5, 6, 7} 73 −863.1 14.6 21.7 23.6 81.2

Despite the deficiencies of both the model and the simula-
tions for representing these SRO cases, the predictions are
largely in agreement with the simulated results. The mod-
eled vacancy formation energies and the SRO predictions are
plotted against the DFT energies in Fig. 4. RMSE around
75–80 meV for the SRO structures across 3 eV of predictions
suggests reasonable extensibility of the RPA model beyond
the explicitly formulated case.

Based on this result, the remaining analysis is conducted
across the entire range of local compositions. Any errors that
might emerge as the local order deviates from the ideal ran-
dom SQS structures are omitted for the purposes of this work.

A. Vacancy concentration

Because the vacancy formation energy in disordered mul-
ticomponent compounds does not take on a single value, the
traditional formalisms for calculating the vacancy concentra-
tion in a material are no longer straightforward. In the case of
the proposed neighbor model for a five-component diboride,

FIG. 4. DFT simulated vacancy formation energies (◦) fit to the
RPA model with B = {1, 2, 3, 4} and R = {5, 6, 7}. SRO predictions
(+) included to illustrate an extrapolation of the model.

there are over 3.45 × 1016 possible compositions of the first
seven neighbor shells. Each of these neighbor environments
should be considered in the derivation of the vacancy concen-
tration.

In Fig. 5 the histogram of vacancy formation energies from
the 225 DFT calculations, representing a set of ideal random
arrangements, is compared to the predicted distribution of
formation energies across all combinatorial compositions of
the local environment. The binary diboride cation vacancy
formation energies of each constituent metal are included for
reference. Using only the explicitly calculated SQS structures
results in a clear bias of the formation energy distribution
toward the peaks. The peaks of the distribution represent the
most abundant configurations in an ideally mixed compound;
however, these are not the most energetically favorable con-
figurations and therefore may not be the largest contributors
to the total vacancy concentration. By applying the model
across the entire composition space, a complete picture of the
vacancy formation energy distribution can be used to calculate
the precise contributions to the global vacancy concentration.

FIG. 5. Vacancy formation energies of all simulations and the
predicted total distribution using the RPA model. Here, the parameter
set of B = {1, 2, 3} is used for illustrative purposes. The shaded
region represents the vacancy configurations, which account for 99%
of the total concentration at 2000 K. Vertical lines indicate the binary
diboride vacancy formation energies of each constituent element.
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An important issue when dealing with a multicomponent
system is how to reconcile the identity of a vacancy. When
approaching the issue from a bulk reference, as in the case of
the cluster expansion method, it can be stated that vacancies
do not have an identity. While this is ostensibly true in all
cases, when using a chemical potential reference it becomes
critical to consider what previously occupied the vacancy
site.

Further, Zhang and Sluiter have suggested that the compo-
sition can be constrained such that the vacancy concentration
can be solved with the use of Lagrange multipliers [25].
While it might be mathematically convenient to impose such
constraints (and in the case of the cluster expansion method,
perhaps necessary), it is not necessarily an accurate represen-
tation of a system that interacts with its environment.

Alternatively, a framework can be constructed in which
each local environment (as defined by the RPA model) is
considered to be a distinct lattice site, and the occupation of
each lattice site is calculated independently. Applying tradi-
tional Boltzmann statistics to each site configuration yields an
equation for the total vacancy concentration:

Xv =
∑

σ

p(σ )e
−E (σ )

kT , (14)

summed over all configurations σ , where p(σ ) and E (σ )
represent the probability and vacancy formation energy,
respectively, of a given site. Here, p(σ ) is calculated using the
purely combinatorial approach, however, it would be trivial
to add another layer of Boltzmann statistics to this term to
reflect the relative probabilities of certain clusters in the case
where SRO is a significant factor. This approach is similar to
the method employed by Ruban [24], differing only in the use
of a discrete distribution over a continuous approximation.

The vacancy concentrations derived from the predicted dis-
tribution were converged by random sampling of the available
configuration space for 2 × 1011 arrangements. The temper-
ature dependence of Xv is plotted in Fig. 6. Due to the
unequal contributions of the varied energies, the total va-
cancy concentration deviates from Arrhenius behavior. The
logarithm of Xv now takes on a nonlinear dependence on
inverse temperature wherein the lower-energy vacancies dom-
inate at low temperature and the concentration converges to
that of the mean formation energy at ultrahigh temperatures.
From this behavior, the calculation of the entire energy dis-
tribution becomes critical, as the energies in the left tail of
the distribution have the largest contribution to the vacancy
characteristics of the bulk. To further illustrate this uneven
contribution of the different local environments, Fig. 5 plots
the vacancy configurations that contribute 99% of the total
vacancies in the bulk at 2000 K, all of which occur below the
first peak of the distribution (primarily Nb and Ta vacancies).

Generally, whether by this isolated site method or by an al-
ternative approach explored in the literature [24,25,37,38], the
vacancy concentration in a high-entropy system is expected to
be within the range of the constituent compounds, but above
the average. Early experimental results from a recent positron
annihilation study of a high-entropy alloy support this finding
[39].

FIG. 6. Cation vacancy concentration of the high-entropy di-
boride structure as a function of inverse temperature, calculated by
individual site contributions as compared to the vacancy concentra-
tion of the uniform mean formation energy and the concentration in
each of the binary transition-metal diborides.

B. Configurational entropy

An additional factor in calculating the concentration of
vacancies in a disordered material is the effect of a disor-
dered multicomponent lattice on the entropic contribution to
vacancy formation. This contribution was incorrectly derived
in Ref. [40] as scaling with a factor of e(N−1)/N for an N-
component system. Rather, the entropic contribution scales
with 1/N for small concentrations as derived in the Appendix.

This solution is intuitive if the vacancy is considered to
be an N + 1 species, as suggested in Refs. [25,26], due to
the reduced configurational entropy contribution of the nth
species as illustrated for high-entropy oxides in the supple-
mental materials of Ref. [2]. Specifically, for each additional
component added to a compound, there is a smaller gain in
configurational entropy for the equivalent increase in concen-
tration, always reaching a maximum entropy at the equiatomic
composition. The decrease in the entropic contribution to the
vacancy formation energy, in turn, results in a lower vacancy
concentration, calculated as

Xv = 1
N

∑

σ

p(σ )e
−E (σ )

kT . (15)

This decrease is significant, though not as large as the differ-
ences in concentration between frameworks for addressing the
enthalpy distribution.

C. Pair affinities

Because the pair approximation method implemented in
this work is compositionally invariant and fixed to a chemical
potential reference, it does not provide the same insight as
the cluster expansion method into the bulk energies across the
composition space of high-entropy materials. It does, how-
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TABLE II. Atom pair affinities (meV/bond) and standard deviations (±2σ ) for cation near neighbors in the first four shells of the RPA
model with B = {1, 2, 3, 4} and R = {5, 6, 7}.

(i, j,1) Ti Zr Hf Nb Ta

Ti 4.6 ± 5.3 20.1 ± 3.9 8.2 ± 4.4 −13.3 ± 3.8 −19.6 ± 3.7
Zr −5.2 ± 5.8 0.5 ± 4.1 −5.2 ± 4.0 −10.1 ± 4.5
Hf 7.5 ± 4.5 −7.5 ± 3.9 −8.8 ± 3.5
Nb 12.2 ± 6.6 13.9 ± 3.9
Ta 24.5 ± 5.0
(i, j,2)
Ti 5.7 ± 7.6 14.5 ± 6.6 9.9 ± 6.2 −11.1 ± 5.7 −19.1 ± 5.5
Zr 0.9 ± 9.4 0.0 ± 6.9 −2.1 ± 6.0 −13.2 ± 5.8
Hf 11.6 ± 5.8 −13.3 ± 6.1 −8.2 ± 5.9
Nb 14.7 ± 9.1 11.9 ± 5.9
Ta 28.6 ± 8.3
(i, j,3)
Ti 4.5 ± 5.2 −0.2 ± 3.3 −2.8 ± 2.9 −1.8 ± 3.0 0.3 ± 2.9
Zr 4.1 ± 3.7 2.8 ± 2.7 −1.5 ± 3.0 −5.3 ± 2.9
Hf 0.8 ± 2.9 2.0 ± 2.9 −2.8 ± 2.9
Nb −0.2 ± 4.7 1.5 ± 3.4
Ta 6.3 ± 4.0
(i, j,4)
Ti −4.2 ± 7.1 9.0 ± 4.4 2.0 ± 4.4 −2.6 ± 3.9 −4.2 ± 4.1
Zr −4.8 ± 7.0 −6.3 ± 4.1 1.2 ± 4.1 0.9 ± 4.7
Hf −6.1 ± 4.7 5.3 ± 4.2 5.1 ± 4.0
Nb 1.5 ± 5.0 −5.4 ± 3.7
Ta 3.6 ± 5.4

ever, retain the ability to approximate pair affinities from the
interaction coefficients within the constraints of the formula-
tion. The pseudo-ordered structure calculations in this work
demonstrate that while the prediction accuracy may suffer
to some extent with varying composition and cluster order,
the constraints on disorder and composition are not overly
restrictive for application of the model to configurations that
deviate from the ideally mixed SQS structure.

To find any pair affinities that might lead to short-range
order in the compound, the relative energy of two configura-
tions is taken as the bonds gained minus the bonds lost. To
form an arbitrary additional i j bond, an iX and a jX bond
must be broken, restoring an XX bond in the process (where X
matches the composition of the bulk). Recalling from Eq. (9)
that for each fitted bonding parameter

Eb∗
i jk = Eb

i jk + Er
ik + Er

jk , (16)

it is apparent that the relaxation terms will cancel out in any
redistribution of bonds, so long as composition is conserved.
As such, the arbitrary parameters Eb∗

i jk can be used directly for
this analysis.

Furthermore, variances of the pair affinities can be com-
puted using approximated local sensitivities. The covariance
matrix of the parameters is found using

V = σ 2
0 [ST S]−1 (17)

for model variance σ 2
0 from the sample size n, number of

parameters p, and residuals matrix R as

σ 2
0 = 1

n − p
RRT (18)

and local sensitivity matrix S, calculated as the partial deriva-
tives of the n samples with respect to each parameter. The
terms of the local sensitivity matrix are defined as

Snp = dE v f
n

dθp
(19)

for each simulated vacancy formation energy E v f
n and each

interaction parameter θp. Applied to the linear RPA model,
the terms reduce to the parameter coefficients for each config-
uration, i.e., the number of each neighbor interaction ni jk and
n jk in Eq. (11). The variances are extended to pair affinities
using the expression

σ 2
i j = cT V c, (20)

where c is a vector representing the linear combination of the
total bonds added and removed. The derived pair affinities and
uncertainties are presented in Table II.

The largest positive affinities are noted for Ti-Zr, Ta-Nb,
and Ta-Ta pairs in both the first and second shells, as well as
negative affinities for the first and second Ti-Nb, Ti-Ta, and
Zr-Nb pairs. While the magnitude of pair affinities generally
decreases after the first and second neighbors, there is not
a simple distance dependence of the interactions. Given the
similar bond radii of the in-plane and out-of-plane neighbors
that comprise the first two neighbor shells (3.1 Å and 3.4
Å, respectively), orientational and boron sublattice bonding
effects likely play a role.

A separate analysis would be necessary to determine the
degree of short-range order that could result from these rel-
ative energies. Above a certain magnitude, one might expect
to see clustering among high affinity pairs and segregation of
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negative affinity pairs; however, the tradeoff between entropic
stabilization and short-range order is beyond the scope of this
work.

IV. CONCLUSIONS

An efficient method for prediction of diverse vacancy
formation energies across the vast composition space of high-
entropy materials is applied to the high-entropy diboride
Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2B2. A reduced set of bonding and
relaxation coefficients with 73 linear degrees of freedom
is shown to outperform the unconstrained parametrization,
achieving an RMSE for k-fold cross validation of less than
25 meV on training sets as small as 150 vacancy simulations.
This model framework enables rapid evaluation of vacancies
in compounds across the high-entropy composition space.

Accurate evaluation of the vacancy formation energy distri-
bution, particularly with respect to the left tail, is presented as
critical for the calculation of vacancy concentrations in disor-
dered materials. The bulk vacancy concentration is estimated
as the combined total of the isolated contributions across a
dense sampling of the available vacancy configurations.

Pair affinities derived from pair interaction coefficients in
the RPA model are presented as a means to investigate pos-
sible short-range order in high-entropy materials and likely
cluster pairs are highlighted. Further derivation of the inter-
play between entropy and clustering interactions is left for
future analyses.
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APPENDIX: CONFIGURATIONAL ENTROPY
DERIVATION

The derivation for vacancy concentration in a multicompo-
nent material mirrors the classical thermodynamic derivation,
starting from the configurational entropy Sc for an equiatomic
compound as

Sc = k
[

ln N! − m ln
(

N − n
m

)
! − lnn!

]
(A1)

for number of atoms N , number of species m, and number of
vacancies n where composition is maintained. Applying Ster-
ling’s approximation and taking the derivative with respect to
n:

Sc = k
[

N ln N − (N − n) ln
(

N − n
m

)
− n ln n

]
(A2)

%Sc = k
[

ln
(

N − n
m

)
− ln n

]
, (A3)

and for small n:

%Sc = −k ln
(

mn
N − n

)
≈ −k ln

(
mn
N

)
. (A4)

Setting the free energy equal to zero and rearranging to solve
for vacancy concentration Xv ,

%H + kT ln
(

mn
N

)
= 0 (A5)

Xv = 1
m

exp
−%H

kT
. (A6)
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