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ABSTRACT
Scientists use imaging to identify objects of interest and infer properties of these objects. The locations
of these objects are often measured with error, which when ignored leads to biased parameter estimates
and inflated variance. Current measurement error methods require an estimate or knowledge of the
measurement error variance to correct these estimates, which may not be available. Instead, we create
a spatial Bayesian hierarchical model that treats the locations as parameters, using the image itself to
incorporate positional uncertainty. We lower the computational burden by approximating the likelihood
using a noncontiguous block design around the object locations. We use this model to quantify the
relationship between the intensity and displacement of hundreds of atom columns in crystal structures
directly imaged via scanning transmission electron microscopy (STEM). Atomic displacements are related
to important phenomena such as piezoelectricity, a property useful for engineering applications like
ultrasound. Quantifying the sign and magnitude of this relationship will help materials scientists more
precisely design materials with improved piezoelectricity. A simulation study confirms our method corrects
bias in the estimate of the parameter of interest and drastically improves coverage in high noise scenarios
compared to non-measurement error models.
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1. Introduction

A common task in the physical sciences is to identify the
location and movement of objects of interest via imaging.
The locations of these objects often provide information about
properties of some system containing the object, so if these
location measurements are inaccurate then estimates of these
properties will be as well. For instance, astronomers use light
intensity at star locations over time to plot light curves and
infer rotation periods from these curves (Aigrain, Parviainen,
and Pope 2016; Douglas et al. 2016), or trace orbits of star
locations around black holes (Schödel et al. 2002). Another
example is estimating a source’s contribution of air pollution
where the source’s location is uncertain, such as Larsen et
al.’s (2018) study of forest fire emissions on ambient air pol-
lution. Materials scientists study atomic-scale material prop-
erties through imaging techniques like scanning transmis-
sion electron microscopy (STEM). STEM images of properly
aligned crystalline materials show a projection of columns of
atoms (Figure 1). The locations of these columns are measured
with error, which can impact our understanding of material
properties.

From the analysis of atomic resolution STEM images,
researchers can determine atom column locations and intensi-
ties that reveal a material’s local atomic structure and chemical
composition, which can govern material properties. Recently,
STEM investigations have illustrated how changes in chemical
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composition of a material modifies its chemical distribution
and atomic structure, thereby significantly modifying the mate-
rial properties (Kumar et al. 2020). Engineering and control-
ling material behavior require accurate and precise charac-
terization of chemical and structural relationships (Keen and
Goodwin 2015), so it is important that these relationships
are properly modeled. In particular, in relaxor ferroelectric
materials like the one shown in Figure 1, local polarization
in the material corresponds to macro-level properties that
make the material useful in a variety of applications, includ-
ing ultrasound imaging, sensors and actuators (Kumar et al.
2020).

Polarization is related to displacement of atom columns
from their expected position, which in turn may be related
to the chemistry of neighboring atom columns. We use a
Bayesian framework to model and quantify the uncertainty
of the relationship between neighboring chemistry and atom
column displacement. While materials have an average chem-
ical composition, locally the chemical distribution can devi-
ate from this average. This is known as chemical disorder
(Keen and Goodwin 2015). If a material is perfectly ordered,
then we expect the intensity of each atom column in a STEM
image to have the same intensity because the intensity of
an atom column is determined by the atoms in the column
(both the type and number of atoms). For example, if an
atom column contains more higher atomic-number atoms in

© 2021 American Statistical Association and the American Society for Quality
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Figure 1. Left: STEM image of Lead Magnesium Niobate (PMN), with larger red boxes placed around the A-site columns and smaller blue boxes around the B-sites columns.
Bottom Right: Zoomed in view of atom columns with plotted centers of the columns found from nonlinear least squares, where ŝBj and ŝAk are the estimated locations of
the jth B-site column and kth A-site column, respectively. Top Right: Rendering of the crystal structure of PMN, showing the A-sites as columns of lead (gray) and the B-sites
as alternating columns of niobium (green) and magnesium (yellow).

a column than the average composition would suggest, then
the intensity will be greater in some imaging modes (LeBeau
and Stemmer 2008). This deviation in local composition can
push or pull the neighboring atom columns and cause them
to move, leading to an association between local chemical dis-
order and local structural disorder (i.e., displacement). These
displacements are of particular interest because they can lead to
changes in the local polarization, and thus macroscopic material
properties.

While the model we develop is in the setting of crystalline
materials and STEM microscopy, the underlying techniques
could apply to any image containing objects with locations that
are measured with error. Our analysis tests hypotheses about
and estimates a parameter representing the relationship between
the positions of neighboring atom columns shown in Figure 1.
Error from these location measurements can alter this analysis.
Therefore, it is important that we account for this measurement
error (ME) in our statistical model to make correct conclusions.

ME in covariates in linear regression settings results in biased
parameter estimates that attenuate toward zero (Carroll et al.
2006). There are a variety of methods to correct for this bias
in models with independent error terms, including regression
calibration (Carroll and Stefanski 1990; Gleser 1990), simulation
extrapolation (SIMEX) (Cook and Stefanski 1994), and Bayesian
hierarchical modeling with informative priors on the ME vari-
ance based on expert knowledge or repeated measures. Muff
et al. (2015) provided a review of Bayesian ME models with
several applications and use integrated nested Laplace approxi-
mations to carry out their analysis.

The STEM data in Figure 1 exhibit spatial dependence, and
so we are interested in ME methods for spatial settings. ME
methods for spatial statistics have particularly been developed
for spatially misaligned data where covariates are observed at

locations different from where the response is observed (Szpiro,
Sheppard, and Lumley 2011; Gryparis et al. 2008). Li, Tang, and
Lin (2009) created a spatial linear mixed models ME frame-
work and show that regression coefficient attenuation and vari-
ance inflation occur with naive estimates in spatial settings as
well. Alexeeff, Carroll, and Coull (2016) introduced SIMEX
for spatial settings where either the data is misaligned or the
model is misspecified, and Huque et al. (2016) presented a
spatial analogue to regression calibration. Recently, Tadayon
and Torabi (2018) and Tadayon and Rasekh (2019) have devel-
oped ME models for non-Gaussian settings by incorporating
the ME variance into the spatial covariance. These methods all
require knowledge of the ME variance, the ability to estimate
it, or assumptions about the ME to make the model parameters
identifiable.

Spatial statistical models incorporate observation locations
into the model design via covariates and covariance functions,
and thus ME in the locations themselves will impact prediction
and inference in these models. There has been some work
addressing location ME specifically. Location ME for geostatis-
tics was first explored by Gabrosek and Cressie (2002) and
Cressie and Kornak (2003), who developed kriging equations in
the context of location ME. Fanshawe and Diggle (2011) devel-
oped likelihood-based methods for location ME and Fronterrè,
Giorgi, and Diggle (2018) used a composite likelihood approach
to speed up these methods and apply them to geomasked data.
Again, these methods require knowledge or an estimate of the
location ME variance. In imaging applications, we might not
have access to information about the ME variance. We develop
a model that uses the information in the image itself to infer the
variance.

Instead of including informative priors on the ME vari-
ance, we expand the model into a hierarchical setting that
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incorporates every pixel and treats the locations as parame-
ters of the model. The data layer of the hierarchy treats pixel
intensities as responses and weights each pixel’s contribution to
locations of interest by its distance from the location. In STEM
images, because atom column locations provide information
about material chemistry and structure, ME in these locations
could lead us to believe the relationship between chemistry and
structure is weaker than in reality. Therefore, these images are
natural candidates for the described hierarchical framework.
Spatial correlation between pixels, however, creates computa-
tional issues, as the large size of the image results in an enor-
mous covariance structure and a likelihood that is impossible
to compute. Thus, we must approximate the likelihood or the
covariance matrix (or both) in order to implement a computa-
tionally tractable Bayesian hierarchical model that accounts for
ME in the atom column locations.

Heaton et al. (2019) compared the performance of various
low rank and sparse covariance/precision approximations for
large datasets. Low rank approximations are popular, but Stein
(2014) showed that contiguous independent block likelihood
approximations outperform low rank models when the nugget
variance is small and the observations are dense. He points out
that the independent contiguous block assumption is troubling,
and suggests using composite likelihood methods instead (Vec-
chia 1988; Varin, Reid, and Firth 2011; Katzfuss and Guinness
2017; Fronterrè, Giorgi, and Diggle 2018). These STEM images,
however, are the ideal candidates for independent blocks. The
purpose of using the image is to find the atom column loca-
tions and propagate the uncertainty of those locations through
our model, and the pixels between the atom columns do not
contain information about the center of those columns. We see
in Figure 1 that atom columns appear as bright circles in the
images with dark, low-information areas around them. We put
boxes around the atom columns and treat the observations in
one box as independent from the observations in another. We
discard the observations outside of the boxes since they contain
little information about atom column positions. Thus, we have
a collection of noncontiguous boxes that we can reasonably
assume are independent, as opposed to the contiguous blocks
described by Stein (2014).

This approach differs from other methods because it uses
the data in the image to account for the ME, instead of esti-
mating it or assuming something about the underlying process.
Additionally, the computational time scales linearly with the
number of atom columns, making it feasible to use for very
large datasets. Furthermore, while Den Dekker et al. (2005) and
Van Aert et al. (2005) characterized structural parameters in
atom columns using frequentist methods, they treat residuals as
uncorrelated. We incorporate spatial correlation between pixels
and atom columns into our model, use Bayesian methods to
quantify uncertainty in our parameters, and take advantage of
a hierarchical framework to perform inference on parameters
that characterize physical and chemical relationships between
atoms columns.

The rest of this article proceeds as follows. In Section 2,
we explain how we collected the data, how the intensity of
the atom columns relates to the chemistry of those columns,
and introduce our notation. We describe the hierarchical model
and approximate likelihood of the data layer in Section 3. In

Section 4 we discuss the Markov chain Monte Carlo (MCMC)
setup. We compare the hierarchical model with standard spatial
and simple linear regression models in Section 5 via a simulation
study. We apply and compare these methods on collected STEM
image data in Section 6, finding a negative relationship between
atom column displacement and the weighted intensity of their
neighbors. We conclude in Section 7.

2. STEM Imaging Data and Description

Pb(Mg1/3Nb2/3)O3 (PMN) is a relaxor ferroelectric material
with perovskite structure. Perovskite crystals have two main
types of atom sites, generically called A- and B-sites. In PMN,
the A-sites are exclusively lead, while one-third of the B-sites
contain magnesium and two thirds contain niobium on average.
High angle annular dark-field (HAADF) STEM imaging allows
us to directly view and identify columns of A- and B-sites based
on intensity. The intensity of a pixel is a unitless representation
of the flux of electrons that hit the detector at the pixel. The
intensity is dependent on the atomic number (Z) and the thick-
ness of a sample. Assuming a uniformly thick specimen, an atom
column consisting of Pb (Z = 82) will appear brighter than a
column containing Mg (Z = 12) and Nb (Z = 41) (LeBeau
and Stemmer 2008). B-site pixel intensities increase with the
proportion of the column that is Nb, as it has a higher atomic
number than Mg.

Figure 1 shows a 551 × 551 pixel image with 192 = 361
identified B-site columns (blue boxes) and 182 = 324 identi-
fied A-site columns (red boxes). The supplementary materials
describe the atom column identification and location estima-
tion processes. Atomic arrangement in relaxor ferroelectrics
such as PMN drive their unique material properties. Relaxor
ferroelectrics and their properties are highly sensitive to their
chemical make up as evidenced by a recent study that demon-
strated a material property of interest could be doubled by
substituting <1% of one constituent element for another (Li
et al. 2019). Understanding how individual atoms influence their
surrounding structure is important for understanding the origin
of material properties, and in turn, how to engineer them for
even greater properties (Keen and Goodwin 2015).

We are particularly interested in the relationship between
the intensity of the B-site columns and the displacement of
the neighboring A-site column from its expected location. We
introduce the notation and framework for modeling this rela-
tionship in Figure 2. We denote the jth B-site column location
and the kth A-site column location as sBj and sAk, respectively.
In Figure 2, sB1, . . . , sB4 are the locations of the B-site columns
that are the neighbors of the A-site column at sA1. Here, the
column at sB1 has a higher intensity than the other three B-site
columns. According to the perovskite crystal structure of PMN,
the location of the A-site column should be at the unweighted
mean location of the neighboring B sites, denoted as uA1 in the
figure. We model the displacement of the A-site, sA1 − uA1 as
a function of wA1 − uA1, where wA1 is the intensity-weighted
average of the neighboring B-site locations. In Figure 2, there is
a negative relationship between displacement and wA1 − uA1,
because sA1 is displaced in the opposite direction of wA1 relative
to uA1.
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Figure 2. Diagram of negative A-site displacement in response to the difference in
intensity-weighted and unweighted averages of neighboring B-sites. sBj are the B-
sites neighboring A-site sA1, wA1 is the intensity-weighted average of the locations
of the B-sites and uA1 is the unweighted average. The black B-site is more intense
than the three gray B-sites.

The magnitude of the effect of this relationship may be small,
possibly less than one pixel. Therefore, even small errors in
estimates of atom column locations due to the algorithm or
to the resolution of the image may result in attenuation of the
estimate of this effect. Thus, we develop a hierarchical model to
account for these errors. In the hierarchical model, the estimated
locations are used as initial values and as references to form the
noncontiguous blocks in the approximate likelihood, but are not
treated as the true locations.

Knowing the relationships between local chemistry and
structure can help guide the optimization of composition to
maximize properties, such as piezoelectricity, an important
property present in relaxor ferroelectric materials. While the
composition can be empirically iterated until an optimum is
reached, access to the underlying structural information is
invaluable to gain rational control over the design process. For
example, such relationships can suggest target compositions or
the introduction of alternative elements that can introduce a
stronger correlation.

3. Model Description

We use the Bayesian hierarchical framework for our statistical
model. The data layer encapsulates the relationship between
the intensities associated with each pixel and the atom column
locations and intensities. The process layer models the asso-
ciation between the displacement of the A-site locations from
their expected position and the intensities of neighboring B-
sites. We compare the hierarchical model to the described spatial

and simple linear regression models with fixed atom column
locations. In this section, we explain the model in detail, but also
provide a reference of the names, descriptions and priors of the
parameters in Table 1.

3.1. Data Layer

In the data layer we model the relationship between image
intensity Y(p) at the 2 × 1 pixel location vector p and the
locations of the atom columns. Let sij be the 2 × 1 coordinate
vector of the jth atom column of type i ∈ {A, B} and βij be
the corresponding intensity parameter for that atom column.
Let β0 represent the background intensity, ψi be the bandwidth
parameter that determines the area spanned by type i atom
columns in the image and ε(p) be a spatial error term.

The model for the observed intensities is

Y(p) = β0 +
∑

i∈{A,B}

Ni∑
j=1

βij exp
(

− ||p − sij||2
2ψ2

i

)
+ ε(p), (1)

where ||·|| is the Euclidean norm. The expected intensity decays
from the atom column location following a Gaussian kernel to
place higher intensity value on pixels closer to the center of the
nearest atom column. We use the imaging data from Figure 1 to
justify the use of the Gaussian kernel in our model, and provide
the details for this justification in the supplementary materials.

For the residuals, let σ 2 be the variance, rpix be the proportion
of variance that is spatial, and ρpix be the spatial range. The resid-
uals ε(p) follow a Gaussian process denoted GP(σ 2, rpix, ρpix)
with mean 0 and exponential covariance function

C
(
ε(p), ε(p′)

)
(2)

= σ 2
[
(1 − rpix)I(p = p′) + rpix exp

(
− ||p − p′||

ρpix

)]
,

where I(·) is the indicator function. The exponential covariance
function is a part of the desirable Matérn class of covariance
functions where the smoothness parameter is 1

2 (Gelfand et al.
2010). We use exponential covariance functions in both the data
and process layers after examining empirical variograms of the
residuals of OLS estimates of the data layer model and fitting
exponential covariance functions to the variograms. We provide
the details of this justification in the supplementary materials.

The model in Equation (1) is not feasible from a computa-
tional perspective, so here we present a justifiable approxima-
tion. We approximate our model as independent across win-
dows surrounding the atom columns, as shown in Figure 1. We
only consider pixels within square windows Wij around column
sij, thus moving from the contiguous blocks described by Stein
(2014) to noncontiguous blocks of equal sizes for each atom
column type. Since the atom columns outside of the window are
far from the pixels inside the window, we treat their contribu-
tions as negligible. This is justified for multiple reasons. First,
the bandwidths for the Gaussian kernels are narrow enough
that nearby atom columns will only minimally contribute to
the intensities of the pixels near the atom column centers.
Second, the spatial range in the empirical variograms is small
(see supplementary materials). Third, from an error structure
perspective, we are pooling the information across sites to find
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Table 1. Description of parameters, hyperparameters and associated prior distributions for the hierarchical model.

Parameter(s) Description Prior

β0 Intercept for pixel intensity Normal(0, 10002)

βij Slope associated with pixel intensity for atom j of
type i

Normal(μβi , σ 2
β)

μβA , μβB Hyperparameters; means of the A- and B-site β ’s Normal(0, 10002)

σ 2
βA

, σ 2
βB

Hyperparameters; variance of β ’s InvGamma(ai , bi)

ψA , ψB Bandwidth for A- and B- site intensities LogNormal(0, 100)

σ 2 Pixel intensity variance InvGamma(.01, .01)

r, rpix Proportion of variance that is spatial for atoms and
pixels, respectively

Uniform(0, 1)

ρ, ρpix Spatial range for atoms and pixels, respectively LogNormal(0, 100)

sAj Coordinates of the jth A-site Normal(μAj , σ 2
A I2)

sBj Coordinates of the jth B-site Normal(μ̃Bj , σ 2
B I2)

α0, α1 Intercept and slope for A-site displacement vs
difference of weighted and unweighted B-site
averages

Normal(0, 10002)

σ 2
A , σ 2

B A-site and B-site variance InvGamma(.01, .01)

NOTES: The hyperparameters for the variance of the βij come from setting the mean to be the sample variance of the OLS estimates and the variance to be 252, with

ai = σ̂ 2
βi

252 + 2 and bi = σ̂ 2
βi

(
σ̂ 2
βi

252 + 1). μAj is the mean defined in Equation (6) and μ̃Bj is the grid location described in Section 3.3.

the correlation parameters, so while each individual window
might not be enough to cover these, the combination is. Finally,
the error from approximating via independent blocks is spatial,
so this error will be absorbed into the spatial error term when
fitting the model.

Let Y(pijk) be the intensity of the kth pixel in window Wij and
pijk inside Wij be the 2 × 1 location vector of that pixel. Then,
we approximate our model from (1) as

Y(pijk) = β0 + βij exp
(

− ||pijk − sij||2
2ψ2

i

)
+ ε(pijk). (3)

The covariance for pixels within Wij follows Equation (2), and
is 0 for pixels that are not in the same window. Therefore,
within window Wij there is a single atom column location to
be estimated, sij. As described below, this resolves potential
identifiability issues with the atom column locations.

3.2. Process Layer

The objectives of our study are to test for and quantify the
association between the displacement of the A-sites from the
unweighted center of their neighboring B-sites and the intensity
of those B-sites. For the B neighboring B-sites of the jth A-site,
the unweighted center is

uAj = 1
B

∑
k∼j

sBk. (4)

where k ∼ j denotes the kth neighbor of the jth site. The
parameters βBk in the data layer represent the intensities of the
B-sites, so the intensity-weighted center is

wAj =
∑

k∼j βBksBk∑
k∼j βBk

. (5)

For l ∈ {x, y}, let sAjl, uAjl, and wAjl be the lth coordinates
of sAj, uAj, and wAj, respectively. The process layer models the

A-site column locations, conditioned on all B-site column loca-
tions sB = {sBk for all k}:

sAjl|sB, β , α0, α1, σ 2
A = uAjl +α0 +α1(wAjl −uAjl)+ε(sAjl). (6)

The residuals ε are independent between x- and y- coordinates
and follow a mean-zero Gaussian process GP(σ 2

A, r, ρ) with the
exponential covariance structure defined in Equation (2), where
σ 2

A is the A-site variance, r is the proportion of variance that is
spatial and ρ is the spatial range.

The 2 × 1 vector sAj − uAj is the x- and y-displacement
of the A-site from the central position, and the displacement
resembles simple linear regression with covariate wAj −uAj. The
intercept parameter is α0. The slope parameter α1 models the
linear relationship between displacement of the A-site and the
difference between the weighted and unweighted averages of its
neighboring B-sites. In other words, a relatively high-intensity
B-site is associated with greater A-site displacement. This model
frames the study’s objectives as testing whether α1 = 0 and
quantifying α1.

We model the B-site locations as

sBj|s̃Bj, σ 2
B

ind.∼ N(s̃Bj, σ 2
B I2), (7)

where s̃Bj is the expected location of the B-site based on the
symmetric properties of the crystal structure of the material. σ 2

B
controls B-site displacement from the crystal structure. We treat
the B-sites as uncorrelated because we expect the deviation of
the sites from their expected location on the crystal lattice to
be small. The knowledge of the crystal structure grounds our
model around where the B-sites should be and is propagated
through Equation (6) via the unweighted and weighted averages
of the B-sites in the covariates and the A-site displacement. This
prior structural knowledge ensures the atom column locations
are identifiable, which is confirmed under various conditions in
our sensitivity analysis in the supplementary materials.

3.3. Prior Layer

In general, we choose weakly informative priors for our param-
eters. The means for the B-sites are on an equispaced grid
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μ̃B calculated from the corner sites, which corresponds to the
perovskite structure of PMN (see the supplementary materials
for a visualization). We use OLS estimates of the βij to ground
the hyperparameters σ 2

βi
at reasonable values. In particular, we

set the mean for σ 2
βi

at the sample standard deviation of the
OLS estimates of βij and the variance of σ 2

βi
at 252. We let the

priors for σ 2
i follow inverse Gamma distributions, so we solve for

the shape and rate parameters based on the mean and variance
settings.

4. Computing

We use Gibbs and Metropolis sampling in an MCMC framework
to sample from the joint posterior distribution of the parame-
ters. The description of the prior distributions of the hierarchical
model parameters is in Table 1. For the nonhierarchical models,
the regression coefficients α0 and α1 have conjugate N(0, 10002)
priors. We also use a Gibbs sampler for variance σ 2

A, with an
InverseGamma(0.01, 0.01) conjugate prior. In the spatial linear
regression model, we use Metropolis samplers for the correla-
tion parameters r and ρ with Uniform(0, 1) and LogNormal(0,
10) priors, respectively.

The hierarchical model contains 3(NA+NB)+16 parameters,
where Ni is the number of type-i columns. As such, the number
of parameters scale linearly with the number of atom columns.
To mitigate the large computational burden we break the image
into independent blocks, placing boxes around each column
as described in Section 2. The boxes must not overlap, or we
will count pixels more than once in our analysis and have an
invalid model. Therefore, the size of the boxes is important, as
they must contain the atom column while not overlapping with
the other boxes. It is helpful to orient the image so that it is
not necessary to rotate the boxes to be in line with the rows of
atom columns.

After selecting box half-widths of hA and hB for the A- and B-
sites, respectively, we create the boxes by rounding the estimates
for the atom column locations to the nearest pixel, then adding
and subtracting the half-widths from the x- and y-coordinates
to get the pixels inside of the box. Thus, we have square boxes
of width 2hi + 1 around each atom column of interest, where
i ∈ {A, B}. The approximate likelihood is then

p(Y|�) ≈
∏

i∈{A,B}

Ni∏
j=1

p∗(Yij|sij, �), (8)

where p∗(·) is the density from the approximate model in Equa-
tion (3), Yij is the vector of pixels in window Wij, and 	 is the
vector of parameters other than the location of the jth atom
column of type i.

Because these boxes are the same size for each atom type,
we need only to compute the two pixel–pixel distance matri-
ces (one for A-sites and one for B-sites) for the covariance
matrices in the likelihood, making likelihood calculations very
efficient. See the supplementary materials for the derivations
of the sampler updating steps. The code for our MCMC algo-
rithm, simulations, and figures is available at https://github.
com/reich-group/HierarchicalSTEM and in the supplementary
materials.

5. Simulation Study

We simulate 100 datasets for each model setting, drawing 10,000
posterior samples for each dataset after a 10,000 iteration burn-
in period. We compare the hierarchical model against the spatial
and simple linear regression models with fixed atom column
locations described in Section 5.2. The window half-widths are
6 pixels for the A-sites and 5 pixels for the B-sites.

5.1. Data Generation

We generate data to have similar properties to the real data
plotted in Figure 1. We also consider simulations with slightly
different true parameters to understand the operating charac-
teristics of the proposed method.

5.1.1. Atom Column Locations
We first draw 192 B-sites from a normal distribution where
the mean is a grid of points 40 pixels apart and the standard
deviation σB = 0.25. To simulate the locations of the corre-
sponding 182 A-sites, we first need to generate the β ’s. We set
β0 = 87, and independently draw βij ∼ N(μβi , σ 2

βi
), where

μβA = 3060, μβB = 1425, and σ 2
βA

= σ 2
βB

= 150. Letting the
A-site distance matrix d be defined by the unweighted means of
neighboring B-sites in the mean grid, with α0 = −0.08, α1 =
−0.15 , σA = 0.4, r = 0.73, and ρ = 100, we draw the A-sites
from the distribution defined in Equation (6).

5.1.2. Pixel Intensities
We examine five model settings by fixing correlation parameter
rpix = 0.57 and varying intensity standard deviation σ between
140, 220, and 300 for the first three settings. For the last two,
we fix σ = 140 and change rpix to be 0.7 and 0.9. We set
the bandwidth parameters ψA = 4.3 and ψB = 3.7 and pixel
spatial range ρpix = 5.5. We draw the pixel intensity values
based on Equation (1) for pixels within a 2(hi + 2) + 1 width
box around each atom of type i. The purpose of this is to ensure
that the boxes with half-widths hi drawn around the estimated
atom locations contain pixels that follow the proper distribution.
The remaining pixel intensities come from an iid N(β0, 25)

distribution.

5.1.3. Initial Atom Column Locations
The algorithm described in the supplementary materials
chooses the initial atom column locations by first finding the
intensity-weighted average of the nearby pixels and then using
nonlinear least squares to refine this estimate. Because we
already know the general location of each atom based on the
boxes, we skip the normalized cross-correlation (NCC) step,
using the pixels inside each corresponding box. In most cases,
the nonlinear least-square fit and the intensity-weighted average
produce the same location.

5.2. Nonhierarchical Models

Bayesian spatial and simple linear regression using fixed atom
column locations provide faster and more straightforward anal-
yses at the cost of bias and variance inflation from naive

https://github.com/reich-group/HierarchicalSTEM
https://github.com/reich-group/HierarchicalSTEM
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Table 2. Summary of simulation study performance for estimating α1 = −0.15 under various parameter settings for simple linear regression (SimpLR), spatial linear
regression (SpatLR), and our new Bayesian hierarchical model (Hierarch).

rpix = 0.57 rpix = 0.57, rpix = 0.57, rpix = 0.7, rpix = 0.9
Statistics Model σ = 140 σ = 220 σ = 300 σ = 140 σ = 140

SimpLR 0.037 (0.0013) 0.070 (0.0013) 0.092 (0.0013) 0.042 (0.0013) 0.052 (0.0013)
Bias SpatLR 0.037 (0.0013) 0.069 (0.0013) 0.091 (0.0013) 0.042 (0.0012) 0.052 (0.0012)

Hierarch -0.002 (0.0016) 0.001 (0.0020) 0.046 (0.0020) -0.004 (0.0018) -0.004 (0.0020)

SimpLR 0.016 (0.0001) 0.015 (0.0001) 0.015 (0.0001) 0.016 (0.0001) 0.015 (0.0001)
Mean Post. SD SpatLR 0.012 (0.0001) 0.012 (0.0001) 0.012 (0.0001) 0.012 (0.0001) 0.012 (0.0001)

Hierarch 0.017 (0.0002) 0.023 (0.0003) 0.025 (0.0003) 0.018 (0.0002) 0.020 (0.0002)

SimpLR 37 (4.8) 0 (0) 0 (0) 21 (4.1) 3 (1.7)
% Coverage SpatLR 22 (4.1) 0 (0) 0 (0) 7 (2.7) 0 (0)

Hierarch 95 (2.2) 94 (2.4) 51 (5.0) 97 (2.0) 97 (1.7)

SimpLR 0.15 (0.011) 0.50 (0.018) 0.86 (0.024) 0.20 (0.011) 0.29 (0.014)
M̂SE × 100 SpatLR 0.15 (0.010) 0.49 (0.018) 0.85 (0.023) 0.19 (0.010) 0.28 (0.013)

Hierarch 0.03 (0.004) 0.05 (0.006) 0.25 (0.019) 0.03 (0.005) 0.04 (0.005)

NOTE: We simulated 100 datasets for each parameter setting. Monte Carlo standard errors are in parentheses.

Table 3. Simulation study results for 100 simulated datasets with α1 = −0.15 for simple linear regression (SimpLR), spatial linear regression (SpatLR), and our new Bayesian
hierarchical model (Hierarch).

Mean
Post. Coverage

Parameter Model Truth Bias (SE) SD (SE) (%) (SE) M̂SE (SE)

α0 SimpLR −0.08 0.019 (0.008) 0.018 (0.0001) 40 (4.9) 0.0064 (0.0001)
SpatLR −0.018 (0.007) 0.070 (0.0017) 92 (2.7) 0.0055 (0.0008)

Hierarch −0.034 (0.007) 0.096 (0.0046) 95 (2.2) 0.0061 (0.009)

σA SimpLR 0.4 0.053 (0.002) 0.013 (0.0001) 6 (2.4) 0.0032 (0.0002)
SpatLR 0.064 (0.002) 0.027 (0.0001) 13 (3.4) 0.0045 (0.0003)

Hierarch 0.034 (0.005) 0.049 (0.0002) 94 (2.4) 0.0034 (0.0008)

r SpatLR 0.73 −0.048 (0.008) 0.082 (0.0015) 88 (3.2) 0.0091 (0.0016)
Hierarch −0.114 (0.007) 0.085 (0.0015) 80 (4.0) 0.0174 (0.0020)

ρ SpatLR 100 −5.5 (3.2) 31.0 (1.30) 86 (3.5) 1053 (19.3)
Hierarch 64.5 (9.9) 98.4 (10.11) 97 (1.7) 1385 (386.4)

β0 Hierarch 87 7.59 (0.45) 4.78 (0.014) 67 (4.7) 77.4 (7.67)
βA100 Hierarch 3006.21 63.04 (13.6) 79.4 (0.017) 69 (4.6) 22204 (3571)
σ Hierarch 140 −2.22 (0.13) 1.18 (0.001) 47 (5.0) 6.62 (0.675)
ψA Hierarch 4.3 −0.01 (0.0007) 0.008 (0.0000) 79 (4.1) 0.0001 (0.00002)
rpix Hierarch 0.57 −0.01 (0.0008) 0.008 (0.0000) 48 (5.0) 0.0003 (0.00003)
ρpix Hierarch 5.5 −0.33 (0.024) 0.217 (0.0021) 63 (4.8) 0.17 (0.019)

NOTE: Coverage is the percent of the 95% highest posterior density credible intervals that contain the parameter.

parameter estimates. We estimate the atom locations using the
nonlinear least-square method described in the supplementary
materials, and assume them to be known for the remainder
of the analysis. We modify the models from Cabral (2018) by
combining the x- and y-displacements into one vector. The new
models are of the form

δ(sAj) = α0 + α1�(sAj) + ε(sAj), (9)
where δ(sAj) = sAj−uAj, �(sAj) = w∗

Aj−uAj, and cov(ε(sAj)) =
σ 2

AI2. uAj is defined in Equation (4) and

w∗
Aj =

∑
j∼k Ŷ(ŝBk)ŝBk∑

j∼k Ŷ(ŝBk)
, (10)

which is the analogue for Equation (5) when every pixel is not
in the model. Ŷ(ŝBk) is the intensity found from the nonlinear
least-square fit described in the supplementary materials. The
covariance structure for the spatial linear regression model is
the same as for the hierarchical model and the residuals for the
simple linear regression model are iid normal with mean 0 and
variance σ 2

A.

5.3. Results

We are primarily interested in the slope parameter α1. Table 2
displays the bias of the posterior means, mean posterior stan-
dard deviation, coverage and estimated mean squared error
(M̂SE) for α1 in all model settings. The hierarchical model has
the highest coverage and lowest M̂SE for α1 compared to simple
and spatial linear regression for every setting. The hierarchical
model captures the true regression coefficient, while the pos-
terior mean estimator of α1 in the spatial and simple linear
regression models attenuates toward zero, as expected from the
ME literature. The attenuation contributes to poor coverage in
the naive models, whereas the hierarchical models perform well
until the intensity standard deviation σ increases drastically. We
see the hierarchical model performance decline slightly when
σ = 220, and perform much worse when σ = 300. We
also examined the sensitivity of the model to the choice of ai
and bi, the hyperparameters on the variance σ 2

βi
of the intensity

parameters βij, where i ∈ {A, B}. These parameters depend on
OLS estimates of the intensity parameters as well as a chosen
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Table 4. Posterior mean and the highest posterior density 95% credible intervals for the five common parameters among the hierarchical, spatial linear regression, and
spatial linear regression models.

Hierarchical model Spatial LR Simple LR

Mean Credible int. Mean Credible int. Mean Credible int.

α0 −0.06 (−0.34, 0.21) −0.09 (−0.32, 0.15) −0.09 (−0.12, −0.06)
α1 −0.29 (−0.36, −0.23) −0.19 (−0.22, −0.16) −0.19 (−0.24, -0.13)
σA 0.38 (0.28, 0.53) 0.42 (0.34, 0.52) 0.40 (0.37, 0.42)
r 0.72 (0.56, 0.87) 0.83 (0.73, 0.91) − −
ρ 205 (58, 440) 122 (54, 225) − −

Figure 3. Posterior densities for the five common parameters between the hierarchical, spatial linear regression, and simple linear regression models. The regression
parameter α1 attenuates toward zero in the simple and spatial linear regression models.

variance, and we found model performance to be robust to
increases and decreases of 50% in this variance. We also found
that coverage of α1 slightly dropped when we decreased the
window size from 132 pixels to 112 pixels for A-sites and from
112 pixels to 92 pixels for B-sites (see supplementary materials).

Table 3 displays the results of more parameters from the
initial model setting. For the parameters common between the
three models, the hierarchical model has the best coverage,
though the spatial linear regression model has tighter posteriors
for the correlation parameters, which is reflected in MSE esti-
mates. The data layer parameters have less than 95% coverage,
but the bias and means of the posterior standard deviations
show that they are close to the truth for the most part. The

low coverage may be explained by the pixels inside the windows
not capturing all of the information in the model. However, the
parameters of interest are in the process layer, not the data layer,
and this model sees better performance in the process layer
parameters than the spatial and simple linear regression models.

6. STEM Image Analysis

The PMN image in Figure 1 contains 192 A-sites and 182 B-
sites for analysis. We run the MCMC for each model for 90,000
iterations after a 10,000 iteration burn-in and check convergence
visually via trace plots. We compare the hierarchical model
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with half-width 6 for the A-sites and 5 for the B-sites against
the spatial and simple linear regression models described in
Section 5.2.

The results of the analysis are as expected based on our simu-
lation study findings. Table 4 shows that the posterior means for
α1 in the simple and spatial linear regression models are much
closer to zero than in the hierarchical model, and the variance
is inflated, as we expect because of ME. The magnitude of the
estimated effect is 53% larger for the full model than for the
standard models. We visualize these results in the density plots
in Figure 3. We also see the posterior intervals and means for the
atom column locations in Table 4. The spatial linear regression
model puts a wider interval on the intercept term α0 than the
simple linear regression model, which allows for a narrower
interval around the regression coefficient of interest α1. The
spatial linear regression credible interval for α1 does not overlap
with the interval from the hierarchical model, providing strong
evidence of attenuation.

All three models indicate strong evidence of a negative rela-
tionship between A-site column displacement and B-site inten-
sity through the parameter α1. In other words, A-site column
locations tend to be further from B-sites with higher propor-
tions of niobium. These findings are consistent with observa-
tions made with X-ray diffraction that propose the distribution
of magnesium and niobium directly influences the bonding
between lead and oxygen (Chen, Li, and Wang 1996; Jeong
et al. 2005). In addition to what we present here, we have
found overwhelming evidence α1 �= 0 using Bayes Factors
through stochastic search variable selection. However, marginal
likelihoods in this setup are notoriously sensitive to untestable
model assumptions (Gelman et al. 2013), so we relegate these
results to the supplementary materials.

When interpreting these findings, we need to be careful that
spatial confounding is not biasing our estimate of α1 (Hodges
and Reich 2010; Paciorek 2010). Spatial confounding is most
prevalent when the covariates have strong spatial dependence,
but in our exploratory data analysis, we found no evidence of
spatial correlation in our covariate and no evidence of correla-
tion between the covariate and the residuals of OLS estimates.
Furthermore, the posterior means of α1 for the simple and
spatial linear regression models are equal and the posterior
standard deviation for the spatial linear regression model is
less than that of the simple linear regression model. Finally,
our results align with our simulation study. This leads us to
conclude that the difference in the posterior distributions of
α1 for the hierarchical model compared to the simple and spa-
tial linear regression models is due to measurement error, not
confounding.

7. Discussion

Electron microscopy imaging techniques will continue to
improve and provide us with an ever clearer picture of how local
physical and chemical differences contribute to global material
properties. This article describes a spatial Bayesian hierarchi-
cal model that accounts for ME in locations for atomic-scale
images of crystalline materials. Our new method is a dramatic
improvement over the standard analysis techniques, and as such

Figure 4. 95% posterior regions (circles) and means (points) for atom column
locations from the inset image in Figure 1.

we hope it will become an impactful tool for materials scientists.
We apply this model to real and simulated STEM images of
PMN, and show that it outperforms spatial and simple linear
regression where the estimated locations are treated as the truth.
We find a negative relationship between the displacement of
lead atom columns and the weighted intensity of neighboring
magnesium/niobium columns, which corresponds to the pro-
portion of niobium in those columns. The magnitude of the
parameter associated with this relationship is 53% larger in our
model compared to the non-ME models, which along with our
simulation study strongly suggests attenuation of the parameter
in the non-ME models.

We present a statistical framework that can for both test
and quantify the aforementioned relationship. Both testing and
estimation are important goals in the emerging field of corre-
lated disorder. Testing is important to establish fundamental
physical relationships, and estimation is key for predicting the
performance of a material. For example, the specific value of the
slope parameter would be required to approximate the energy
needed to reverse an electric field in a ferroelectric material such
as PMN. In a recent review article in Nature, Keen and Goodwin
(2015) summarized the value of full characterization of material:

Ultimately, of course, the goal will be to control and exploit
correlated disorder. This reverses the paradigm of seeking to
understand the disorder responsible for interesting physical
properties to one of intentionally employing it as a design
element in its own right, in order to engineer materials with
novel functionalities. But the crucial first step towards that
goal is developing the ability to fully characterize correlated
disorder...

Our simulation study shows that compared to simpler methods,
our procedure gives a more reliable test and reduces bias in
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the parameter estimates. Therefore, we believe this is a valuable
contribution to this rapidly emerging literature.

This method is computationally intensive compared to the
naive models, as the number of parameters scale with the num-
ber of atom columns and the data layer uses intensities at each
pixel as responses. However, using independent noncontiguous
blocks around the atom columns allows the time to scale linearly
with the number of columns. For the type of data explored in our
application, the noncontiguous block method is limited by the
maximum size of the windows around the atom columns. The
blocks cannot overlap, because the information in the overlap-
ping region would be counted twice. Rotating the image so that
the angle of the rows of atom columns aligns with the blocks will
help maximize the block size. We can also modify this model to
apply it to different types of crystal structures and zone axes.
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