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1 INTRODUCTION

Benchmark Data Sets. The introduction of quantitative performance evaluation on standard
benchmark data sets, with well-defined ground truth, enabled precise comparisons among different
machine learning (ML) algorithms. Classic examples of such standard data sets include MNIST
[40] and CIFAR [41], which are fixed and fully annotated. They are equivalent to the mathematical
concept of universe in set theory, where only values in the universe are considered. A significant
part of ML research is concerned with optimizing ML classifiers and evaluating their performance
within fixed standard data sets.

Optimization within Fixed Data Sets. Etzioni [20] has characterized this classic ML approach as
“function approximation based on a sample.” The evaluation of classifiers restricted to fixed
universes has favored ML approaches (e.g., deep learning algorithms) that are optimized and
specialized for the target data sets, e.g., LeCun’s achieving more than 99% accuracy on MNIST in
1998 [62] using convolutional neural networks. This optimization process also leads to a side effect,
called overfitting, where classifier performance degrades significantly when tested with new data
from outside the original universe.

Artificial Reality. Fixed data sets are the first examples of bounded environments we call artificial
reality, universes populated by well-known ground truth. ML classifiers are trained, optimized, and
evaluated in artificial realities due to their need for ground truth for evaluation. We recognize that
in their own sub-domains, artificial realities are valid sub-models of the actual reality. However,
this recognition also creates the question of degree of validity of each artificial reality as sub-
model—specifically, how much of the actual reality is the artificial reality able to cover? This
coverage question becomes increasingly relevant as the actual reality continues to grow and change
as the real world evolves, while artificial realities are defined by the limited ground truth available
at their creation.

Evolving Actual Reality. In contrast to the static artificial reality, the explosive growth of big data
from the actual reality has been described as “90% of the data in the world today has been created
in the last 2 years” [31]. For example, smartphones became the first device to reach 1B deployments
in 2012, and they generate huge amounts of data through social media and sensors such as cameras.
Twitter reports SO0M new tweets/day [29], and Facebook generates 4PB/day of new content [28].
Another example consists of many millions of surveillance video cameras in cities such as London
and Beijing. While we recognize the validity and importance of fixed knowledge, e.g., images of
apples, the focus of this article is on the new knowledge continuously being generated by the
evolving actual reality.

Coverage of Artificial Reality. The recognition of artificial realities as sub-models of the actual
reality posits the question of how much of the actual reality a sub-model is able to capture. This
coverage question is illustrated by the 2018 fatal accident, when an Uber self-driving car struck and
killed a pedestrian. According to the NTSB preliminary report [6] released in November 2019, the
main issue was the software (ML sub-model) not considering jaywalkers (humans outside of
crosswalks) as high probability events. As the actual reality evolves over time, the initial gap
between fixed data sets and actual reality would be expected to widen.
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Artificial Novelty. Under the methodological explanation that ground truth in fixed data sets is
necessary for precise evaluation, many ML studies have remapped important phenomena in the
actual reality into artificial reality, e.g., concept drift [ 72], which has been studied within fixed data
sets by cycling through subsets [73, 74]. The coverage question, i.c., whether classifiers trained
within an artificial reality would apply to actual reality, remains unanswered. More serious
problems arise when the focus on precisely comparable evaluations result in the exclusion of work
on actual reality, which contains incomplete ground truth, as “lacking in evaluation rigor.”

True Novelty. It is our contention that artificial reality has served the ML research community well
and will continue to be very important, but it is high time to reincorporate actual reality into the
universe of ML research. This inclusion can start from the coverage question—specifically, the
widening gap between the evolving actual reality and the artificial reality, which is bounded by the
original ground truth. Borrowing from signal processing terminology, the gap is filled with both
signal and noise. A major research challenge is distinguishing the signal that we call true novelty
and the “big noise” that surrounds and obscures the true novelty, including random noise,
misinformation, and disinformation in many live real data sources. Examples of big noise in Internet
applications and social media include: email spam (e.g., Reference [42]), web spam (e.g., Reference
[43]), Wikipedia vandalism (e.g., Reference [44]), and social media spam (e.g., References [45—
47)).

Risks of Ignoring True Novelty. From a self-contained artificial reality point of view, true novelty
would be inconsequential, since it lies outside of the universe of artificial reality. For example, k-
fold validation has been considered an acceptable model for many kinds of novelty. We believe this
disregard for true novelty and actual reality by extension could explain the failures of Al systems
when deployed in actual reality. All the attempted deployments, including the Uber autonomous
driving system [6], Microsoft Tay chatbot [8], and Google Flu Trends [1-5], have demonstrated
excellent performance within their own artificial reality, but failed when faced with true novelty
outside the original universe: pedestrian outside of crosswalk that caused the Uber accident, racial
slurs that caused Microsoft Tay inappropriate tweets, and new search terms that caused Google Flu
Trends to make more than 100% prediction error in just four years.

Live Knowledge. Just like the ever-changing actual reality containing it, true novelty is being
continuously generated. We call live knowledge the continuously growing set of validated true
novelty to distinguish the long-term challenge from individual snapshots of actual reality. As an
example, the problem of finding specific cases of unseen items in retrospectively filtered data sets
(which become artificial novelty once the data set is fixed) would not be considered live knowledge
due to their disconnection from actual reality after creation. More concretely, just adding pedestrians
outside crosswalks would not make the Uber autonomous driving system accident-free. Similarly,
just adding racial slurs into Tay’s knowledge base would not prevent other kinds of unforeseen
inappropriate behavior. Live knowledge requires a methodical and automated approach to filter big
noise, find true novelty, and continuously incorporate the new knowledge into a system.

Focus on Event Detection. The issues raised by the recognition of fixed ground truth in artificial
reality, true novelty beyond artificial reality, and continuously growing live knowledge are very
broad. In this article, we focus on the specific case of factual event detection, with knowable ground
truth on the facts. With a concrete example of LITMUS landslide information system [ 14], we show
that live knowledge can be achieved through a judicious integration of complementary live data
sources. We hope that such successes can change the perception of necessity for artificial reality
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into encouragement, or at least tolerance, for more research efforts on true novelty and live
knowledge.

The EBKA Approach. We introduce the evidence-based knowledge acquisition (EBKA) approach
to distinguish true novelty from big noise and continuously accumulate live knowledge. EBKA
automates the process of recognizing true novelty by integrating complementary data sources using
several ML algorithms to handle big noise. The validated true novelty is continuously added to live
knowledge through classifier adaptation. The main idea of EBKA is the separation of data sources
into three groups: (1) primary sources (social sensors with high coverage, and big noise), (2)
deterministic corroborative sources (high reliability, authoritative sources, with relatively low
coverage), and (3) probabilistic supporting sources (adding evidence to likely positive cases). By
judiciously integrating these different sources, EBKA is able to leverage their strengths to
compensate for their limitations.

Event Detection with True Novelty. We built the LITMUS landslide information system [14] to
illustrate the EBKA approach to find true novelty and accumulate live knowledge. The primary
sources of LITMUS consist of social sensors that include Twitter and Facebook, with corroborative
sources (e.g., newspapers) and supporting sources (e.g., NOAA [23]). When processed in real-time,
the social sensors present both big noise and true novelty challenges. Applying the EBKA approach,
LITMUS integrates the corroborative and supporting sources through a teamed classifier to meet
the challenges and achieve high accuracy as well as coverage in the detection and tracking of
landslides.

The rest of the article is organized as follows: Section 2 summarizes the related work on the
various forms of artificial reality. Section 3 outlines the challenges of finding true novelty and live
knowledge. Section 4 highlights the LITMUS landslide information system as a live knowledge
real-world application. Section 5 describes the EBKA approach to address big noise and concept
drift challenges simultaneously, illustrated by LITMUS. Section 6 suggests future research and
development opportunities on live knowledge. Section 7 concludes the article.

2 RELATED WORK ON ARTIFICIAL REALITY
2.1 Fixed Data Sets That Constitute Artificial Reality

The performance of supervised ML algorithms depends critically on the quality of training data: the
purer the ground truth, the more accurate the classifier. Fixed data sets are considered to have full
ground truth, and thus they became idealized environments in which to test many ML algorithms.
There are several alternative ways to concentrate ground truth for evaluation, and we summarize
three major variants according to the assumption they make about data sources: Fixed Data,
Clustered Cata, and Continuity of sensor source.

Fixed Data Sets as Artificial Reality. We start from a recap of fixed data sets, popularized by TREC
[38] data sets for IR, MNIST [40] and CIFAR [41] for ML, and many more [39]. High-quality
ground truth data have favored deep learning (DL) algorithms, e.g., LeCun’s more than 99%
accuracy on MNIST in 1998 [62]. Fixed data sets are the first group of valid testing environments
that form an artificial reality, with potentially widening gaps from the actual reality.

Retrospectively Clustered Data Sets. To apply ML algorithms to real-world data sets, an active area
of research focuses on retrospectively filtered data sets, e.g., from social media, usually clustered
on specific events [69] or a theme. For example, Sakaki et al. [63] studied Twitter reports on
carthquakes by filtering out the noise (irrelevant tweets). A survey on this class of studies [69]
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mentions examples of noise, including meaningless messages, polluted content, and rumors, all of
which negatively affect the performance of ML classifiers. The filtering techniques include
unsupervised learning, k-means clustering [84], customized filters for tweets [63, 64], social media
analysis [65, 66], and cross-domain classification [88—90].

Clustered Data Sets Become Fixed. Although the clustered data sets typically started from realworld
data streams, once created they became fixed data sets. As a result, clustered data sets also belong
to artificial reality category. One possible explanation of this transformation is that the majority of
current ML algorithms require ground truth for quantitative evaluation. In addition to retrospective
clustering of event data (usually from social media), the transformation into fixed data sets also
affects several initiatives aimed at real-world data streams, including never-ending learning[ 18],
lifelong learning [19], open set recognition [ 15], and open world recognition [ 16, 17]. Their analyses
mainly used fixed data sets or retrospectively filtered clusters transformed into fixed data, both in
artificial reality.

Continuity in Data Streams. The area of data streaming [67, 68] usually refers to physical sensor
data processing, e.g., readings of temperature and atmospheric pressure. Physical sensors in the real
world produce time series data and data streaming work often assuming the data come from the
same sensors, with predictable variations bounded by physical models of the real world. When the
actual reality evolves beyond the known physical models, e.g., the appearance of unprecedented
ozone hole over Antarctica since 1979, the discovery was delayed to 1985 [7] due to data
assimilation algorithms that filtered out such “physically impossible” data from the Nimbus-7
satellite. Streaming data with filtering based on continuity assumptions from previous known
models would fall into the artificial reality category when the actual reality evolves beyond the
previous models.

Ground Truth and True Novelty. The dependency of supervised ML algorithms on ground truth
(and the dependency of unsupervised algorithms on low noise levels) leads to a confined artificial
reality, with three representative groups outlined above: fixed data sets, retrospective clusters, and
continuity. While they are able to capture the knowledge within an artificial reality, the coverage
question illustrates the gap between an artificial reality and an (evolving) actual reality. This gap
will be called true novelty.

2.2 Terms Redefined in Artificial Reality

A major difficulty in true novelty and live knowledge consists of the double meaning of several
keywords when their original interpretation from the actual reality becomes restricted by a much
smaller artificial reality. An example of this double meaning happened to the term “real-time” in
the context of artificial reality, instead of the computer science normal meaning of “real-time.”
Concretely, “real-time event detection” is part of the title of a highly cited retrospective study [63]
in the context of clustered data sets (artificial reality). Their paper uses the term to refer to the
relative distance between the timestamp of an event and the timestamps of tweets that enabled their
classifier to decide on the event.

A second example is in the area of concept drift [ 72], which is a real-world problem due to gradual
changes in the real world (the actual reality). However, typical papers on concept drift [ 73, 74] study
the drift problem and solutions based on adaptation within the artificial reality of fixed data sets by
rotating through subsets. Despite a significant number of papers on concept drift in artificial reality,
the gap between the artificial concept drift and the actual concept drift in the real world (the
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coverage question) has yet to be addressed. Concept drift will be elaborated in more detail in Section
3.2.

A similar redefinition happened with “novelty,” which has different meanings within artificial
reality compared to actual/true novelty. Some recent papers have focused on real-time novelty in
the actual reality, e.g., TwitterNews [77] and GeoBurst [79], using clustering algorithms related to
unsupervised learning. Unfortunately, their tweets appear to be lacking in corroboration, and thus
their systems would be vulnerable to disinformation such as fake news.

23 Related ML Approaches to Acquiring Knowledge

Some of the ML techniques have an explicit goal of acquiring knowledge. Without entering into the
discussion on artificial general intelligence, we mention four such ML techniques here to illustrate
their purpose and limitations.

Reinforcement Learning. With the success of AlphaGo [92] and AlphaZero, reinforcement learning
[91] has demonstrated super-human capability in well-defined games such as Go. However, their
ability to exceed human capability in depth does not address the coverage question. In fact, game-
playing programs represent stylized and limited artificial reality, with adaptation to game rule
changes as open research challenges. Using the Uber accident example, it is unclear how
reinforcement learning would handle unbounded true novelty beyond the specific case of human
crossing a road outside of crosswalks.

Transfer Learning. Although more of a knowledge amplification approach instead of new
knowledge acquisition, transfer learning (survey by Pan [70], with an update by Weiss [71]) aims
at automating the creation of classifiers in the target domain by reusing (parts of) the classifier from
a source domain. However, knowledge transfer process based on functional mapping also
transfers/maps the limitations of the source. For example, consider a source domain classifier
trained within the artificial reality of a fixed data set, or retrospective clustered data, and therefore
incapable of detecting true novelty. It is inevitable that the target classifier will inherit the same
limitations of the source classifier, within the confines of artificial reality.

Active Learning. In ML, human input has been considered the gold standard in the generation of
ground truth. Specifically, active learning [85] uses human experts or crowdsourcing to manually
label new training data. There are two general limiting factors of active learning: accuracy problems
and (human) resource scarcity. First, the accuracy of human labeling depends heavily on the level
of expertise and other human factors such as fatigue, and adding incentives does not necessarily
help [86]. Second, human resources remain extremely limited compared to the rapidly growing big
data being generated by physical and social sensors. ImageNet [94] illustrates both the success and
limitations of human labeling: It has achieved order-of-magnitude improvements in labeled image
collection size, but it is unlikely that it can be extended to capture true novelty from exponentially
growing new big data.

Automated Machine Learning (AutoML). The many steps involved in typical ML work have
spurred the efforts to automate the ML process (AutoML). As described in a recent book [93], the
automation has occurred in several areas, including hyperparameter optimization and learning about
the search process for the best classifiers, with useful software tools such as Auto-WEKA and
Hyperopt-Sklearn. Perhaps as expected, these areas of successful AutoML start from the
assumptions of artificial reality and well-defined ground truth, enabling the algorithmic
optimization of search process to find the best approximation function.
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3 CHALLENGES IN FINDING AND MAINTAINING LIVE KNOWLEDGE
3.1 Finding and Validating True Novelty

The first step in the quest for live knowledge is the automated discovery of true novelty in the midst
of big noise that includes random data, misinformation, and disinformation. A traditional way to
avoid the big noise challenge is to remap the novelty discovery problem back into artificial reality
by making assumptions such as Fixed Data, Clustered Data, and Continuity (Section 2.1). However,
these assumptions also preclude true novelty. First, classifiers trained under Fixed Data Sets have
inherent difficulties with true novelty beyond the original fixed training data, as shown by Microsoft
Tay chatbot. Second, analyses on Clustered Data have difficulties when applied to different clusters
and indistinct clusters in true novelty, in addition to fixed data set constraints. Third, algorithms
relying on Continuity would disallow the outliers considered by their physical model as noise. This
would “throw out the baby with the bath water,” since true novelty often appears (at least initially)
as outliers.

Live knowledge requires the detection of true novelty whether they arise suddenly or grow
gradually over a long period of time. There are similarities and differences in the handling of true
novelty over different time scales. This section outlines the problem of short-term true novelty that
arises suddenly. In the next section (3.2) the long-term growth of true novelty (a.k.a. concept drift)
will be described.

Meaningful Outliers. The first challenge in finding true novelty in social sensors is that the discrete
data items from millions of social media accounts are independent of each other. Therefore, there
is no Continuity in social channels. Furthermore, some standard statistical assumptions, e.g., all
noise being randomly generated with signals following well-behaved distributions such as
Gaussian, would discard all outliers as noise. Instead of making Continuity and such statistical
assumptions, true novelty detection on social sensor data need to carefully consider potentially
meaningful outliers (e.g., first posting of an event), which may become a trend.

Meaningful True Novelty. The excellent accuracy of deep learning (DL) algorithms on fixed data
sets reflects their being optimized approximation functions for fixed training data. This optimization
also introduces instabilities (e.g., overfitting), leading to DL classifiers considering unseen new data
irrelevant due to their being outside of training data. Instead of assuming Fixed Data, true novelty
detection on social sensor data needs to carefully consider new data beyond the original training
data.

Actionable Real-time Information. The “novelty” contained in retrospectively generated fixed data
sets reflects only the ground truth covered by artificial reality. When true novelty arises, e.g., in the
Uber accident and Microsoft Tay chatbot, the classifiers trained within artificial reality have
reliability issues. To achieve actionable real-time information in actual reality, we need to find true
novelty outside the traditional assumptions of Fixed Data or Clustered Data.

3.2 Long-term True Novelty Challenge (Concept Drift)

According to a survey [69], reports on event detection from real social sensors typically have
followed the Clustered Data approach by analyzing retrospectively filtered data on large events
[63]. This was feasible for events with many tweets (sometimes called bursts). The classifiers and
models trained from large clusters on such events have been less successful when applied elsewhere,
probably due to the coverage question, and also the differences among the clusters from different

ACM Transactions on Internet Technology, Vol. 20, No. 1, Article 2. Publication date: March
2020.



2:8 C.Puetal.

events, e.g., earthquake vs. hurricane. More fundamentally, the long-term contextual changes in
social media would have affected the accuracy of classifiers trained from fixed data sets.

The contextual changes have been called concept drift [72], defined as a change (over time) of
class conditional probability p(X,y), where X is the set of input variables and y the target variable.
Technically, changes in data (both X and y) may change the prior probabilities of classes p(y), the
class conditional probabilities p(X/y), and posterior probabilities of classes p(y/X), affecting the
prediction. Informally, concept drift is analogous to generation gap, where an “old” classifier has
difficulties understanding “young” social postings containing new social slang and jargon that
appeared after the older generation training data were created.

Concept Drift Challenge. Concept drift [72] describes the evolution of contextual content in actual
reality over a period of time, typically years. Examples include the language used in social media
and seasonal changes in scenery. Concept drift affects all ML classifiers trained by fixed training
data, but tested over real-world data sets that span a long time. An early example was Google Flu
Trends [1], which initially reported very high accuracy (more than 97% in 2009), when predicting
flu pandemic areas using (millions of) browser search items associated with the flu. By 2013, the
original model’s predictions degraded by more than 100% due to changes in the search
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Fig. 1. Sample Screenshot of Landslides Reported by LITMUS.

terms that people used [2—5]. The LITMUS data we collected confirm serious concept drift (see
Figure 3). Concept drift represents a major difficulty for the reproducibility of ML classifier
performance on evolving social media: strong correlations today may—and almost invariably
will— become weaker tomorrow.

4 LIVE KNOWLEDGE ON ACTUAL EVENTS REPORTED IN SOCIAL MEDIA
4.1 Tllustrative Application: Live Knowledge on Landslides
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Natural disasters are important real events with significant social and economic impact (billions of
dollars per year) around the world. Some disasters have dedicated physical sensors for their
detection, e.g., earthquakes are measured accurately by USGS Global Seismographic Network
(GSN [21]). However, events such as landslides are more difficult to detect physically due to their
localized impact, and humans are often the first finders (and responders) of landslides. In recent
years, social sensors (e.g., Twitter) have become increasingly important and timely sources of
landslide reports, making them a good illustrative live knowledge application.

LITMUS Demo System. LITMUS landslide information system [13] demonstrates effectively the
Evidence-Based Knowledge Acquisition (EBKA) approach, described in more detail in Section 5.
Figure 1 shows a sample screenshot of the LITMUS demo system, with landslides reported during
the last month. Clicking on a pin brings up the “Details” tab, and clicking the Details tab opens a
list of relevant tweets (left side of Figure 2). Clicking an item on the list opens the posting itself
(right side of Figure 2). LITMUS integrates several primary social sources (Twitter, Facebook, and
YouTube), which contain significant noise. In addition, LITMUS utilizes EBKA integration of
corroborative sources (e.g., reputable newspapers) and supporting sources (e.g., NOAA [23]) to
filter big noise and find true novelty, achieving excellent accuracy and coverage [60, 61] (more
details of evaluation in Section 5.5).

Twitter —'—K : sevem-vgﬁfﬁer 2L Follow v
show[10 -] entries A series of landslides and debris flows hit
Date Location Sogn og Fjordane, Norway on July 30th. At
\xfO\x9f\x87\xb3\xf0\x9f\ |east 1 fatality reported. Report via Maycol
2019-07-31 NORWAY trigger disruptions in J\xc3 Checchlnato
https://t.co/LIfBOxFmp
2019-08-02 South west Floods and \angj{s\ldefs trigg
Norway Norway,https://t.co/2Jgsk
2019-08-02 south west Floods and land<iudes trigg

Norway Norway, http=.://t.co/LxbSN

Floods zind landslides trigg

2019-08-02 Norway httett i /t.colreDT :.:.W\
ood ndslides trigc
2019-08-02 SOUth west - Floods ‘{“% landsiides trigg
Norway https://t.co/qHIOUhXjLG #

ies of landslides and ¢

2015-08-05 Norway h. At least 1 fatalit
. ceries of landslides and ¢

2019-08-05 Norway July 30th! At least 1 fafalit
/hglgs9ju3

Showing 1 to 7 of 7 entries.

Fig. 2. Tweets found on Norway landslides and an example (2019-08-05).

Table 1. LITMUS Data Sets as [llustrative Example of Live Knowledge

LITMUS data 2014 (monthly) 2015 — 17 (monthly) 2018 (monthly)
Relevant ~5K to ~50K ~5K to ~45K ~5K to ~50K
Samples

Landslides Found | Hundreds Hundreds About a thousand

Positive Example | [Aug. 22, 2016] Train derails in Tokyo after landslide (URL: photo of
derailed train)
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Negative [Aug. 2016] Tropical Strom #Chanthu dropped 47mm in Tokyo. Moving
Example north fast with landslide threat. @cnntoday @cnni (URL: radar image of
tropical storm Chanthu)

4.2 Challenges in Finding True Novelty in Social Media

Live Social Sensor Data. LITMUS illustrates well the technical challenges in acquiring live
knowledge from live social sensors, since the real-world social sensor data do not follow the
common assumptions (discussed in Section 2):

1. No Continuity: Social postings come from millions of different accounts, not time
seriesfrom the same sensor;

2. Not Fixed: true novelty arrives continuously from growing social sensor channels;

3. Real-Time: New data must be processed in near real-time for early detection and trackingof
landslides of all sizes, not waiting for large events to unfold that enables clustering of data.

Big Noise in LITMUS Data. In the LITMUS data set, 90+% of tweets containing the keywords

“landslides/mudslides” refer to non-disaster topics, e.g., landslide victories in elections and sports
matches and a popular rock song entitled “Landslide.” Table 1 shows the approximate size of
LITMUS collected relevant data sets from 2014 to 2018 (top two rows), plus a positive example of

2014

.« by }W Event Detection Deterioration
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1

+  septembe
+ actober

v N
Direction of drift N\

Wi

0.8

0.6

0.4

Event Detection Accuracy

2014-Data  Jul-2018 Aug-2018  Sept-2018

=Precision ®Recall “-Score
Fig. 3 . Degradation of Static Classifier Due to Concept Drift (from 2014 to 2018).

relevant tweet and a negative example (bottom two rows). Classic ML algorithms are able to handle
big noise adequately, without reliance on Continuity, Fixed Data, or Clustered Data assumptions.

Concept Drift in LITMUS Data. The LITMUS data set confirms a clear concept drift and longterm
true novelty, with data sets showing monthly oscillations in landslide data as well as true drift on
the scale of a few years [61]. The right side of Figure 3 shows the significant accuracy loss of the
same classifier (trained with a manually labeled subset of 2014 data) from 2014 (left column) to
2018 (three columns on the right). The left side of Figure 3 shows a direct visualization of terms
often used in tweets on landslides. The graph is obtained by converting the tweets to numbers using
word2vec [33], followed by dimensional reduction through principal component analysis (PCA)
normalized to the interval [-1, +1]. In Figure 3, the light orange dots (upper left) represent the 2014
data, and terms in 2018 have migrated towards the lower right (dark red, green, purple, and blue
dots) with a clearly visible drift.
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In summary, LITMUS is a good real-world application with big noise and concept drift
challenges that cannot be satisfied under artificial reality assumptions such as Fixed Data, Clustered
Data, and Continuity. To provide real-time, actionable landslide information, LITMUS needs live
knowledge from automated discovery, validation, and incorporation of true novelty. These
requirements are achieved through the EBKA approach described in the next section.

5 FROM TRUE NOVELTY TO LIVE KNOWLEDGE THROUGH EBKA

In this article, a real event (e.g., a landslide) is characterized by a triple in the space-time continuum:
a label (e.g., landslide), a physical location (e.g., Oso, Washington State of USA), and a time
window (March 22, 2014). A real event has a meaningful topic label and may have varied (non-
zero) sizes in space and time. We are primarily interested in single events at human scales due to
the social media reporting. Events at microscopic or astronomical scales are left for future research
topics. Most natural disasters fall into the range of interest, including hurricanes and landslides.

5.1 Evidence-Based Knowledge Acquisition (EBKA)

EBKA Information Integration. The main idea of EBKA is to integrate diverse information sources
to address both the big noise challenge and the true novelty challenge simultaneously. LITMUS has
three kinds of sources. First, the primary sources (social sensors including Twitter, Facebook, and
YouTube) have wide coverage, but big noise problems. Second, deterministic corroborative sources
(e.g., reputable news reports [26, 27] on landslides) have high reliability, but low

Corroborative Supporting PR
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Fig. 4. Evidence-Based Knowledge Acquisition (EBKA) and LITMUS Data Integration.

coverage. Third, probabilistic supporting sources add likelihood estimations with physical sensor
data and models. For example, earthquakes (USGS GSN [21]) and rainfall (NASA TRMM [22])
increase the probability of landslides, and NOAA provides a risk model of landslides [23].

EBKA Data Flow and Filtering. Figure 4 illustrates the LITMUS implementation of EBKA. The
primary sources appear on the left, with corroborative sources and supporting sources on the top.
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The social sensor data (with big noise) go through two filtering stages. The first stage consists of a
sequence of ML filters (marked as “social sensor filter pipeline” in the middle left of Figure 4)
that use classic ML classification algorithms (e.g., the WEKA toolkit [36]) to filter big noise
adequately [42, 48-59].

Capturing True Novelty. The second stage consists of a teamed classifier (to be elaborated in
following sections) that incorporates the knowledge acquired from the corroborative and supporting
sources. The combination achieves high accuracy on detecting short-term true novelty. On the 2014
landslide data [59], which was improved by deep learning (DL) tools such as Keras [35] and
TensorFlow [34], LITMUS achieved about 98% precision and recall [60] for 2014 data. However,
addressing the concept drift challenge (Figure 3) required teamed classifiers, elaborated in
following sections.

5.2 Teamed Classifiers for Live Knowledge

Teamed Classifier in LITMUS. To avoid confusion with the broad area of ensemble learning [83],
we adopt the term teamed classifier (also called committee classifier) to denote the LITMUS
classifier, which contains several sub-models for a variety of reasons, including location finding
(part of the social sensor filter pipeline) and EBKA (middle right of Figure 4). The function of
submodels may differ for each source and their weights may vary for each posting. Specific sub-
models of interest (e.g., EBKA) will be described in Section 5.4.

Goals of Teamed Classifier Design. Teamed classifiers [67-81] have improved the management of
knowledge on complex classification problems such as IBM Watson [37] and restricted versions of
concept drift [67]. A simple example of concept drift is the change of scenery due to the four seasons
(e.g., snow in winter and flowers in spring). Typically, each sub-model handles a narrow case (e.g.,
a single season), achieving better decisions with high confidence while maintaining relative
simplicity through specialization. As we find validated true novelty, sub-models trained by the new
ground truth are added into the teamed classifier. A growing teamed classifier becomes the
repository of live knowledge, in addition to the data set. The LITMUS example is explained in
Section 5.4.

Optimizing Teamed Classifiers. A major technical challenge in teamed classifiers is the
management and integration of specialized sub-models through one or more weight functions that
optimize the group decision, e.g., by minimizing the error in classification. As illustration, consider
Equation (1) with a multi-dimensional metric state space of real-world events, denoted by ev; and
sub-model x; evaluating the likelihood of evi actually occurring; the potential classification error is
calculated as the distance between decision; (sub-model’s estimate of x;) and actual event
occurrence: err; (xi,evi) = disty (decision(xi,evr), actual(evy)), where actual(evi) represents the ground
truth on evy, and dist; the amount of error made by sub-model x;. The objective of the teamed
classifier evaluation becomes the search for weight functions weioht; that minimize (or approximate
the minimal) total error over the entire team: totale.i (x;) =i err; (xi,evi)

Equation (1) Optimization Process to Find Best Weight Functions for Ensemble Classifiers

min err; (xi,evi)

sub-model i

ACM Transactions on Internet Technology, Vol. 20, No. 1, Article 2. Publication date: March 2020.



Beyond Artificial Reality: Finding and Monitoring Live Events from Social Sensors 2:13

* ,evr), actual(evy)) .
=min weioht; disty (decision(x;

sub-model i k=1

An informal interpretation of Equation (1) is that the error minimization process will converge
by giving lower weioht; to sub-models {x;} that make bigger mistakes (large err; (x;,evi) on the right
side of equation).

Equation (1) shows both the strength and weaknesses of common ML assumptions (e.g., Fixed
Data Set and Clustered Data). On the positive side, given well-defined ground truth from these
assumptions, the optimization converges. However, the ground truth based on known past data
would ignore new events due to true novelty challenges (Figure 3). This is the problem to be
addressed by EBKA, which is capable of recognizing and acquiring true novelty reliably.

5.3  LITMUS Teamed Classifiers Using EBKA

Corroboration and Support. In the LITMUS teamed classifier, there is a dedicated sub-model for
each corroborative and supporting source. For example, there is a sub-model that maintains all
CNN.com reports on landslides. A landslide tweet that matches a corroborated location-time (e.g.,
in the CNN.com sub-model) is considered positively identified. In contrast, a supporting source
sub-model (e.g., coincidental heavy rain) only increases the probability of a co-located landslide.

Sources of New Knowledge. The high confidence placed on corroborative sources is due to the
publication requirements in reputable news organizations. A typical newspaper requirement
consists of confirmed corroboration from multiple independent sources. Newspapers such as The
New York Times and The Guardian have good reputations due to the very low error rates in their
articles. If they report an event, it is highly likely to have occurred. The main contribution of
corroborative sources to LITMUS (and EBKA more generally) consists of the new knowledge they
generate, which is used as ground truth in the selection of training data for new sub-models at team-
level adaptation (described in Section 5.4 and Figure 5).
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Table 2. Improved F-score with EBKA under Imbalanced Learning

Static Adaptive | Primary Corroborative Percent of Improvement
(DL) (DL) Source items Confirmed on F-score
items Data
2014 Data 0.91 0.96 NA NA NA NA
Jul-2018 0.70 0.88 7205 189 2.62% 125.5%
Aug-2018 0.56 0.90 14245 106 0.74% 159.2%
Sep-2018 0.57 0.90 4867 193 3.97% 156.7%
Oct-2018 0.70 0.88 15847 249 1.57% 126.1%
Nov-2018 0.38 0.86 7084 885 12.49% 225.7%
Dec-2018 0.75 0.99 4873 223 4.58% 132.0%
Table 3. Improved Coverage (# landslides) with EBKA and Imbalanced Learning
LITMUS Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18
Static DL 480 644 365 501 508 149
Adaptive DL | 4804398 | 644+681 | 365+513 | 501+646 | 508+772 | 149+370
Improved 82.92% | 105.75% | 140.55% | 128.94% | 151.97% | 248.32%
Coverage

Limitations of Corroborative Sources. Given their high reliability, a question that arises is whether
they can be used as sole sources. The answer is negative, due to delay and limited coverage. First,
their requirement for independent corroboration causes some delay before publication (usually
hours to days). Second, typical newspapers only publish events of interest to a wide audience,
ignoring small events of limited impact. Tables 2 and 3 show that corroborative sources only publish
a few percent of all landslides found (and verified) by LITMUS from social sensors.
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LITMUS Teamed Classifier Output Categories. Through EBKA, LITMUS teamed classifier divides
social postings into one of four categories: (1) very low probability postings, considered definitely
irrelevant and marked as HC Negatives (high confidence) in Figure 4; (2) very high probability
events (HC Positives); (3) corroborated and confirmed landslides; and (4) uncertain postings with
intermediate probability (apparently serious tweets, but insufficient supporting evidence).

Accuracy of Teamed Classifier. The LITMUS teamed classifier is able to achieve high precision
and recall (Table 3 and Table 4) by recognizing the clearly irrelevant items (category 1) and clearly
relevant items (categories 2 and 3). At the same time, the boundary/uncertain cases (category 4) are
sent back to the teamed classifier for reconsideration. As more evidence and corroboration are
accumulated by the adaptive teamed classifier (see Section 5.4), a higher confidence decision can
be made with better knowledge.

5.4 Automated EBKA through Adaptive Teamed Classifier

Two-level Adaptation of Teamed Classifier. EBKA incorporates new knowledge from
corroborative sources at two levels. At the sub-model level, new events from corroborative sources
are added into their databases, which increase the number of confirmed events and new knowledge.
Similar adaptation happens with supporting sources. At the team level, new sub-models are created
with new training data and added to the team. The sub-model adaptation increases the realtime
landslide detection capability of LITMUS, and the team-level adaptation handles long-term concept
drift.

Sub-model-level Adaptation. In LITMUS, each corroborative sub-model maintains a database of
confirmed events, indexed by location-time. As new events are published, they are inserted into the
database, providing corroboration to all co-located landslide postings (that match the same location-
time). Similarly, each supporting sub-model (e.g., NOAA [23]) maintains a database of landslide
probability, indexed by location-time. When a location-time receives an updated probability, co-
located landslide postings also update their probabilities. The sub-model adaptation is particularly
effective in immediately incorporating supporting evidence, e.g., a new earthquake that occurred in
Nepal would increase the probability of landslides occurring in that area during that time.

Team-level Adaptation. To address the long-term concept drift challenge (shown on the left side of
Figure 3), EBKA incorporates new knowledge by introducing new sub-models into the teamed
classifier. In LITMUS, the social postings on the new confirmed landslides of each month are used
as positive training data set (with corresponding negative data) for creating new sub-models. The
weighting function is carefully tuned to optimize the impact of new sub-models. The team-level
adaptation process is illustrated in Figure 5. Although the corroborative sources only provide a few
percent of verified landslides (Table 3), they are sufficient for handling concept drift, as shown on
the right side of Figure 3.

EBKA Architecture. Taken together, Figure 4 (adaptive sub-models for classifying each social
posting) and Figure 5 (team-level adaptation) illustrate the EBKA architecture to detect new events
and capture true novelty. The two-level adaptation handles the different time scales of
environmental change: sub-model adaptation for discovering new events (new landslides, from
hours to days) and team-level adaptation for handling concept drift (social media language
evolution, from months to years).

ACM Transactions on Internet Technology, Vol. 20, No. 1, Article 2. Publication date: March
2020.



2:16 C.Puetal.

Better Decisions. A distinctive feature of the EBKA approach consists of the fourth category of
output: uncertain postings with intermediary probability. Figure 4 shows that uncertain postings are
sent back to the classification process. This recycling make sense for adaptive classifiers, since the
decision may change (to better) when new information arrives at corroborative or supporting
sources. For example, the first tweet on a new real landslide normally would be sent back for lack
of supporting evidence, and its probability would increase by subsequent tweets due to EBKA. The
tweets that are irrelevant to landslides would not receive additional support, and eventually they get
filtered out.

5.5 Evaluation of EBKA in LITMUS

Accuracy Achieved by LITMUS. We have very encouraging experimental evaluation results in
LITMUS that confirm the effectiveness of EBKA approach. Table 3 shows that a modest amount
of confirmed data (second column from the right, typically a few percent) is sufficient for improving
the F-score of Teamed Classifier by more than 100%. The largest improvement (more than 200%
in November 2018) appears to be correlated to the largest percent of confirmed data (12.5%), which
indicates more data as well as more research would be warranted.

Improved Coverage. In classic ML, improved accuracy often requires a trade-off in coverage. By
acquiring external evidence, the EBKA approach achieves significant improvements in F-score
(rightmost column in Table 3) while maintaining wide coverage. Table 4 shows that Adaptive DL
classifier achieves a strict superset of Static DL classifier. We believe that the EBKA approach is
able to bypass the classic ML trade-off between false positives (FP) and false negatives (FN),
because of the additional knowledge from corroborative and supporting sources.

6 FUTURE RESEARCH AND DEVELOPMENTS ON LIVE KNOWLEDGE
6.1 Smarter Applications Enabled by Live Knowledge

Smart Applications within Artificial Reality. Many of current smart (or intelligent) applications
have made assumptions similar to those discussed in Section 2 (Continuity, Fixed Data, and
Clustered Data). For example, projects that built custom sensors [9] have developed applications
such as air monitoring, with both Continuity and Fixed Data assumptions. They work well in the
artificial reality of testbed environments but have difficulties with deployment in the open realworld
environment. The transition difficulties have often been attributed to scalability issues such as cost
or heterogeneity, but we believe that a more fundamental issue is the coverage question: Algorithms
that work well within artificial reality may be missing important knowledge about the actual reality,
as illustrated by the Uber accident.

Bridging the Gap. From the coverage question point of view, the growth of new big data from the
actual reality is much faster than the (mainly human-annotated) ground truth in the artificial reality.
While the work under the assumptions of Fixed Data, Clustered Data, and Continuity remain valid
within artificial reality, their impact on the actual reality will be reduced by failures arising from
the widening gap. Although traditional approaches such as active learning have limitations, we
believe that an effective utilization of live knowledge through EBKA could reduce and eventually
bridge the gap between smart applications and live real data.

Real-time Incident Detection. Widespread video cameras offer real-time monitoring, but their
practical usage has been limited (mostly) to after-the-fact crime investigations and forensics.
Similarly, smart transportation (e.g., incident detection and assistance) has relied on NASA-style
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command centers (monitored by human operators). Effective acquisition of live knowledge would
alleviate the current need for human intervention and enable the next generation of automated smart
applications. Examples of live real applications that can benefit substantially from automatically
acquired live knowledge include: responsive disaster management (e.g., accurate and timely
detection of landslides and sudden rains), efficient transportation (e.g., real-time automated
detection of congestions and accidents), and proactive public safety (e.g., real-time crime detection).

Video Event Detection and Tracking. Automated real-time object recognition and tracking for
applications such as smart transportation and proactive public safety can be enabled by live
knowledge from the live video data. We plan to apply EBKA with object tracking techniques [ 75—
82] on the live video data from USP [11]. An illustrative example of complex incident detection is
the case of a stolen vehicle that had its license plate replaced with another from a parked car. The
LPR capability would not be able to detect such changes by itself. However, adding the contextual
information (make and color of vehicle) to each license plate as live knowledge will enable the real-
time detection of a stolen vehicle despite plate switch.

Informative Guidance during Disasters. Navigation systems gained a significant new capability with
the launch of Google Maps Live View AR (Augmented Reality) on Pixel in March 2019 and
available for Android and iOS smartphones since August 2019. An example of guidance systems
during disasters [12] integrated 3D models, crowd behavior videos, and tweets from historical
events to show good escape paths from Osaka underground shopping malls that would be quickly
inundated by a tsunami caused by earthquake. One of the difficulties with traditional AR is their
static view of environment, which may be changed by a disaster, e.g., buildings may have been
toppled by an earthquake and roads covered by landslides. Live knowledge from uploaded videos
(supported by many social media channels) and public safety apps such as USP Campus [10, 11]
can provide fresh views of a changed landscape. Combined with AR navigation, live knowledge
can enable the generation of up-to-date or new escape routes during and after disasters.

6.2  Improving EBKA with More Evidence

Looking forward to wider acquisition of live knowledge, particularly research and practice through
EBKA, one of the important questions is the availability of reliable sources from which EBKA
extracts live knowledge. For example, the reputable news sources used by LITMUS for information
gathering on landslides can be reasonably expected to work well for the detection of many real
events as they unfold. In addition, there are quite a few more reliable sources that EBKA can draw
upon.

Authoritative Sources on Specific Areas. In many specific areas, there are mission-oriented agencies
in charge that publish authoritative information on their areas of expertise. In epidemics, for
example, the CDC (Centers for Disease Control and Prevention) publishes authoritative information
(e.g., Ebola data [25]). For some areas of commercial interest, an increasing number of online
services have been improving their accuracy, reliability, and coverage. An example relevant to live
knowledge is accurate real-time micro-area weather forecasts with increasingly higher quality
service providers such as weather.com and accuweather.com.

Measures of Reputation and Trust. Generally, there are several kinds of measures of reputation, e.g.,
number of followers for a Twitter account, number of downloads for a YouTube video, and Alexa’s
top 500 global sites ranking [30], where popularity suggests trust from the crowd. Although there
are known threats to these measures (e.g., fake Twitter follower accounts), they may contribute as
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supporting evidence. We believe the ongoing research efforts on trust and reputation [87] will help
us improve the distinction of reputable sources.

Local Sources for Local Events. As an example of interesting topics in the reputation and trust
area, local newspaper reporting of local events tends to have higher reliability [26, 27]. This kind
of specialization is supported by EBKA through careful weight assignment as a function of event
and source co-locality.

Human Input. Expert input in active learning [85] and general crowdsourcing (e.g., data entry
through mobile apps [10, 11]) can add more corroborative and supporting evidence. The EBKA
approach can benefit from direct human input (e.g., from mobile apps), particularly since it would
not require real-time labeling, allowing for cross-checking and improvement of accuracy and
coverage.

6.3 Practical Issues with Live Knowledge Acquisition

EBKA is a principled and practical approach to acquiring live knowledge from real-world social
sensors. However, working with real-world sources means resolving some operational issues that
can impede access to live knowledge. We mention three examples to illustrate these non-trivial
technical issues that are stepping stones and building blocks towards live knowledge.

Instability of Real-world Data Sources. One of the limitations of sensor testbeds is their limited
lifespan: They often depreciate when their research budget ends. In contrast, a big advantage of
real-world sources such as social media is that they are maintained by other sources. However, live
production sources also evolve and change over time outside of our control. For example, Instagram
was one of the main sources for the original LITMUS, but an access policy change in June 2016
disallowed public data collection. Another example is the USGS official listing of landslides [24],
which shut down in 2016. Flexible adaptation to changes in real data sources is an integral part of
live knowledge acquisition process, not just EBKA.

Location-time Determination. An event is defined by its topic and location-time. On the time
dimension, typical social sensor postings (e.g., tweets) are timestamped, and it is often reasonable
to assume close time proximity to the event reported. In contrast, few tweets contain the GPS
location of their origin, and few tweets are sent from the epicenter of an event. Fortunately, many
social postings that refer to a real event also include an identifying term on its location, which is
used by LITMUS to determine the location-time (primary key) of the event through tools such as
CoreNLP [32] and localized software libraries for each country.

Live Knowledge in Multiple Languages. Although this article focused on social sensors in English,
the knowledge of the world consists of the union of many languages. The integration of knowledge
from multiple languages would enable much better EBKA performance, but such integration still
requires significant research [57].

7 LIVE KNOWLEDGE VISION

Because “90% of the data in the world today has been created in the last 2 years” [31],
unprecedented opportunities are being created by new big data, including social media, e.g., S00M
tweets/day and millions of video cameras in many cities. However, the primary consumers of the
explosively growing new big data have been humans. In our view, the ML focus on artificial reality,
e.g., through Fixed Data, Clustered Data, and Continuity assumptions, caused the gap between the
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artificial reality and the actual reality. While the artificial reality remains a valid research approach
on a subset of actual reality, the growing gap demands our attention, as shown by the Uber fatal
accident, the Microsoft Tay chatbot misbehavior, and Google Flu Trends shutdown.

Beyond artificial reality, we envision the research and development efforts on /ive knowledge,
which automatically acquire real-time, validated, and actionable information for smart applications
that must work in the actual reality, including smart transportation and disaster response. Live
knowledge contains significant research challenges such as big noise and concept drift. From the
new data, we need to distinguish and validate true novelty from random noise, misinformation, and
disinformation that derailed the Tay chatbot. For the long term, we need to accumulate true novelty
into live knowledge and keep incorporating it into smart applications that work in the actual reality.

To demonstrate the feasibility of achieving live knowledge, we describe the EBKA
(evidencebased knowledge acquisition) approach to integrate information and find true novelty in
the LITMUS landslide information system. LITMUS integrates three kinds of complementary data
sources: primary sources with wide coverage (e.g., tweets on landslides), corroborative sources with
high reliability (e.g., news reports), and probabilistic supporting sources (e.g., landslide likelihood
model from NOAA). Through EBKA, LITMUS distinguishes true novelty and acquires new
knowledge on landslides from this automated integration, and it is independent of the Fixed Data,
Clustered Data, and Continuity assumptions. LITMUS achieves both high accuracy and wide
coverage through four years of data, demonstrating the feasibility and promise of the EBKA
approach towards live knowledge.
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