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With billions of active social media accounts and millions of live video cameras, live new big data offer many 

opportunities for smart applications. However, the main consumers of the new big data have been humans. We 

envision the research on live knowledge, to automatically acquire real-time, validated, and actionable 

information. Live knowledge presents two significant and diverging technical challenges: big noise and 

concept drift. We describe the EBKA (evidence-based knowledge acquisition) approach, illustrated by the 

LITMUS landslide information system. LITMUS achieves both high accuracy and wide coverage, 

demonstrating the feasibility and promise of EBKA approach to achieve live knowledge. 
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1 INTRODUCTION 

Benchmark Data Sets. The introduction of quantitative performance evaluation on standard 

benchmark data sets, with well-defined ground truth, enabled precise comparisons among different 

machine learning (ML) algorithms. Classic examples of such standard data sets include MNIST 

[40] and CIFAR [41], which are fixed and fully annotated. They are equivalent to the mathematical 

concept of universe in set theory, where only values in the universe are considered. A significant 

part of ML research is concerned with optimizing ML classifiers and evaluating their performance 

within fixed standard data sets. 

Optimization within Fixed Data Sets. Etzioni [20] has characterized this classic ML approach as 

“function approximation based on a sample.” The evaluation of classifiers restricted to fixed 

universes has favored ML approaches (e.g., deep learning algorithms) that are optimized and 

specialized for the target data sets, e.g., LeCun’s achieving more than 99% accuracy on MNIST in 

1998 [62] using convolutional neural networks. This optimization process also leads to a side effect, 

called overfitting, where classifier performance degrades significantly when tested with new data 

from outside the original universe. 

Artificial Reality. Fixed data sets are the first examples of bounded environments we call artificial 

reality, universes populated by well-known ground truth. ML classifiers are trained, optimized, and 

evaluated in artificial realities due to their need for ground truth for evaluation. We recognize that 

in their own sub-domains, artificial realities are valid sub-models of the actual reality. However, 

this recognition also creates the question of degree of validity of each artificial reality as sub-

model—specifically, how much of the actual reality is the artificial reality able to cover? This 

coverage question becomes increasingly relevant as the actual reality continues to grow and change 

as the real world evolves, while artificial realities are defined by the limited ground truth available 

at their creation. 

Evolving Actual Reality. In contrast to the static artificial reality, the explosive growth of big data 

from the actual reality has been described as “90% of the data in the world today has been created 

in the last 2 years” [31]. For example, smartphones became the first device to reach 1B deployments 

in 2012, and they generate huge amounts of data through social media and sensors such as cameras. 

Twitter reports 500M new tweets/day [29], and Facebook generates 4PB/day of new content [28]. 

Another example consists of many millions of surveillance video cameras in cities such as London 

and Beijing. While we recognize the validity and importance of fixed knowledge, e.g., images of 

apples, the focus of this article is on the new knowledge continuously being generated by the 

evolving actual reality. 

Coverage of Artificial Reality. The recognition of artificial realities as sub-models of the actual 

reality posits the question of how much of the actual reality a sub-model is able to capture. This 

coverage question is illustrated by the 2018 fatal accident, when an Uber self-driving car struck and 

killed a pedestrian. According to the NTSB preliminary report [6] released in November 2019, the 

main issue was the software (ML sub-model) not considering jaywalkers (humans outside of 

crosswalks) as high probability events. As the actual reality evolves over time, the initial gap 

between fixed data sets and actual reality would be expected to widen. 
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Artificial Novelty. Under the methodological explanation that ground truth in fixed data sets is 

necessary for precise evaluation, many ML studies have remapped important phenomena in the 

actual reality into artificial reality, e.g., concept drift [72], which has been studied within fixed data 

sets by cycling through subsets [73, 74]. The coverage question, i.e., whether classifiers trained 

within an artificial reality would apply to actual reality, remains unanswered. More serious 

problems arise when the focus on precisely comparable evaluations result in the exclusion of work 

on actual reality, which contains incomplete ground truth, as “lacking in evaluation rigor.” 

True Novelty. It is our contention that artificial reality has served the ML research community well 

and will continue to be very important, but it is high time to reincorporate actual reality into the 

universe of ML research. This inclusion can start from the coverage question—specifically, the 

widening gap between the evolving actual reality and the artificial reality, which is bounded by the 

original ground truth. Borrowing from signal processing terminology, the gap is filled with both 

signal and noise. A major research challenge is distinguishing the signal that we call true novelty 

and the “big noise” that surrounds and obscures the true novelty, including random noise, 

misinformation, and disinformation in many live real data sources. Examples of big noise in Internet 

applications and social media include: email spam (e.g., Reference [42]), web spam (e.g., Reference 

[43]), Wikipedia vandalism (e.g., Reference [44]), and social media spam (e.g., References [45–

47]). 

Risks of Ignoring True Novelty. From a self-contained artificial reality point of view, true novelty 

would be inconsequential, since it lies outside of the universe of artificial reality. For example, k-

fold validation has been considered an acceptable model for many kinds of novelty. We believe this 

disregard for true novelty and actual reality by extension could explain the failures of AI systems 

when deployed in actual reality. All the attempted deployments, including the Uber autonomous 

driving system [6], Microsoft Tay chatbot [8], and Google Flu Trends [1–5], have demonstrated 

excellent performance within their own artificial reality, but failed when faced with true novelty 

outside the original universe: pedestrian outside of crosswalk that caused the Uber accident, racial 

slurs that caused Microsoft Tay inappropriate tweets, and new search terms that caused Google Flu 

Trends to make more than 100% prediction error in just four years. 

Live Knowledge. Just like the ever-changing actual reality containing it, true novelty is being 

continuously generated. We call live knowledge the continuously growing set of validated true 

novelty to distinguish the long-term challenge from individual snapshots of actual reality. As an 

example, the problem of finding specific cases of unseen items in retrospectively filtered data sets 

(which become artificial novelty once the data set is fixed) would not be considered live knowledge 

due to their disconnection from actual reality after creation. More concretely, just adding pedestrians 

outside crosswalks would not make the Uber autonomous driving system accident-free. Similarly, 

just adding racial slurs into Tay’s knowledge base would not prevent other kinds of unforeseen 

inappropriate behavior. Live knowledge requires a methodical and automated approach to filter big 

noise, find true novelty, and continuously incorporate the new knowledge into a system. 

Focus on Event Detection. The issues raised by the recognition of fixed ground truth in artificial 

reality, true novelty beyond artificial reality, and continuously growing live knowledge are very 

broad. In this article, we focus on the specific case of factual event detection, with knowable ground 

truth on the facts. With a concrete example of LITMUS landslide information system [14], we show 

that live knowledge can be achieved through a judicious integration of complementary live data 

sources. We hope that such successes can change the perception of necessity for artificial reality 
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into encouragement, or at least tolerance, for more research efforts on true novelty and live 

knowledge. 

The EBKA Approach. We introduce the evidence-based knowledge acquisition (EBKA) approach 

to distinguish true novelty from big noise and continuously accumulate live knowledge. EBKA 

automates the process of recognizing true novelty by integrating complementary data sources using 

several ML algorithms to handle big noise. The validated true novelty is continuously added to live 

knowledge through classifier adaptation. The main idea of EBKA is the separation of data sources 

into three groups: (1) primary sources (social sensors with high coverage, and big noise), (2) 

deterministic corroborative sources (high reliability, authoritative sources, with relatively low 

coverage), and (3) probabilistic supporting sources (adding evidence to likely positive cases). By 

judiciously integrating these different sources, EBKA is able to leverage their strengths to 

compensate for their limitations. 

Event Detection with True Novelty. We built the LITMUS landslide information system [14] to 

illustrate the EBKA approach to find true novelty and accumulate live knowledge. The primary 

sources of LITMUS consist of social sensors that include Twitter and Facebook, with corroborative 

sources (e.g., newspapers) and supporting sources (e.g., NOAA [23]). When processed in real-time, 

the social sensors present both big noise and true novelty challenges. Applying the EBKA approach, 

LITMUS integrates the corroborative and supporting sources through a teamed classifier to meet 

the challenges and achieve high accuracy as well as coverage in the detection and tracking of 

landslides. 

The rest of the article is organized as follows: Section 2 summarizes the related work on the 

various forms of artificial reality. Section 3 outlines the challenges of finding true novelty and live 

knowledge. Section 4 highlights the LITMUS landslide information system as a live knowledge 

real-world application. Section 5 describes the EBKA approach to address big noise and concept 

drift challenges simultaneously, illustrated by LITMUS. Section 6 suggests future research and 

development opportunities on live knowledge. Section 7 concludes the article. 

2 RELATED WORK ON ARTIFICIAL REALITY 

2.1 Fixed Data Sets That Constitute Artificial Reality 

The performance of supervised ML algorithms depends critically on the quality of training data: the 

purer the ground truth, the more accurate the classifier. Fixed data sets are considered to have full 

ground truth, and thus they became idealized environments in which to test many ML algorithms. 

There are several alternative ways to concentrate ground truth for evaluation, and we summarize 

three major variants according to the assumption they make about data sources: Fixed Data, 

Clustered Cata, and Continuity of sensor source. 

Fixed Data Sets as Artificial Reality. We start from a recap of fixed data sets, popularized by TREC 

[38] data sets for IR, MNIST [40] and CIFAR [41] for ML, and many more [39]. High-quality 

ground truth data have favored deep learning (DL) algorithms, e.g., LeCun’s more than 99% 

accuracy on MNIST in 1998 [62]. Fixed data sets are the first group of valid testing environments 

that form an artificial reality, with potentially widening gaps from the actual reality. 

Retrospectively Clustered Data Sets. To apply ML algorithms to real-world data sets, an active area 

of research focuses on retrospectively filtered data sets, e.g., from social media, usually clustered 

on specific events [69] or a theme. For example, Sakaki et al. [63] studied Twitter reports on 

earthquakes by filtering out the noise (irrelevant tweets). A survey on this class of studies [69] 



Beyond Artificial Reality: Finding and Monitoring Live Events from Social Sensors 2:5 

ACM Transactions on Internet Technology, Vol. 20, No. 1, Article 2. Publication date: March 

2020. 

mentions examples of noise, including meaningless messages, polluted content, and rumors, all of 

which negatively affect the performance of ML classifiers. The filtering techniques include 

unsupervised learning, k-means clustering [84], customized filters for tweets [63, 64], social media 

analysis [65, 66], and cross-domain classification [88–90]. 

Clustered Data Sets Become Fixed. Although the clustered data sets typically started from realworld 

data streams, once created they became fixed data sets. As a result, clustered data sets also belong 

to artificial reality category. One possible explanation of this transformation is that the majority of 

current ML algorithms require ground truth for quantitative evaluation. In addition to retrospective 

clustering of event data (usually from social media), the transformation into fixed data sets also 

affects several initiatives aimed at real-world data streams, including never-ending learning[18], 

lifelong learning [19], open set recognition [15], and open world recognition [16, 17]. Their analyses 

mainly used fixed data sets or retrospectively filtered clusters transformed into fixed data, both in 

artificial reality. 

Continuity in Data Streams. The area of data streaming [67, 68] usually refers to physical sensor 

data processing, e.g., readings of temperature and atmospheric pressure. Physical sensors in the real 

world produce time series data and data streaming work often assuming the data come from the 

same sensors, with predictable variations bounded by physical models of the real world. When the 

actual reality evolves beyond the known physical models, e.g., the appearance of unprecedented 

ozone hole over Antarctica since 1979, the discovery was delayed to 1985 [7] due to data 

assimilation algorithms that filtered out such “physically impossible” data from the Nimbus-7 

satellite. Streaming data with filtering based on continuity assumptions from previous known 

models would fall into the artificial reality category when the actual reality evolves beyond the 

previous models. 

Ground Truth and True Novelty. The dependency of supervised ML algorithms on ground truth 

(and the dependency of unsupervised algorithms on low noise levels) leads to a confined artificial 

reality, with three representative groups outlined above: fixed data sets, retrospective clusters, and 

continuity. While they are able to capture the knowledge within an artificial reality, the coverage 

question illustrates the gap between an artificial reality and an (evolving) actual reality. This gap 

will be called true novelty. 

2.2 Terms Redefined in Artificial Reality 

A major difficulty in true novelty and live knowledge consists of the double meaning of several 

keywords when their original interpretation from the actual reality becomes restricted by a much 

smaller artificial reality. An example of this double meaning happened to the term “real-time” in 

the context of artificial reality, instead of the computer science normal meaning of “real-time.” 

Concretely, “real-time event detection” is part of the title of a highly cited retrospective study [63] 

in the context of clustered data sets (artificial reality). Their paper uses the term to refer to the 

relative distance between the timestamp of an event and the timestamps of tweets that enabled their 

classifier to decide on the event. 

A second example is in the area of concept drift [72], which is a real-world problem due to gradual 

changes in the real world (the actual reality). However, typical papers on concept drift [73, 74] study 

the drift problem and solutions based on adaptation within the artificial reality of fixed data sets by 

rotating through subsets. Despite a significant number of papers on concept drift in artificial reality, 

the gap between the artificial concept drift and the actual concept drift in the real world (the 
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coverage question) has yet to be addressed. Concept drift will be elaborated in more detail in Section 

3.2. 

A similar redefinition happened with “novelty,” which has different meanings within artificial 

reality compared to actual/true novelty. Some recent papers have focused on real-time novelty in 

the actual reality, e.g., TwitterNews [77] and GeoBurst [79], using clustering algorithms related to 

unsupervised learning. Unfortunately, their tweets appear to be lacking in corroboration, and thus 

their systems would be vulnerable to disinformation such as fake news. 

2.3 Related ML Approaches to Acquiring Knowledge 

Some of the ML techniques have an explicit goal of acquiring knowledge. Without entering into the 

discussion on artificial general intelligence, we mention four such ML techniques here to illustrate 

their purpose and limitations. 

Reinforcement Learning. With the success of AlphaGo [92] and AlphaZero, reinforcement learning 

[91] has demonstrated super-human capability in well-defined games such as Go. However, their 

ability to exceed human capability in depth does not address the coverage question. In fact, game-

playing programs represent stylized and limited artificial reality, with adaptation to game rule 

changes as open research challenges. Using the Uber accident example, it is unclear how 

reinforcement learning would handle unbounded true novelty beyond the specific case of human 

crossing a road outside of crosswalks. 

Transfer Learning. Although more of a knowledge amplification approach instead of new 

knowledge acquisition, transfer learning (survey by Pan [70], with an update by Weiss [71]) aims 

at automating the creation of classifiers in the target domain by reusing (parts of) the classifier from 

a source domain. However, knowledge transfer process based on functional mapping also 

transfers/maps the limitations of the source. For example, consider a source domain classifier 

trained within the artificial reality of a fixed data set, or retrospective clustered data, and therefore 

incapable of detecting true novelty. It is inevitable that the target classifier will inherit the same 

limitations of the source classifier, within the confines of artificial reality. 

Active Learning. In ML, human input has been considered the gold standard in the generation of 

ground truth. Specifically, active learning [85] uses human experts or crowdsourcing to manually 

label new training data. There are two general limiting factors of active learning: accuracy problems 

and (human) resource scarcity. First, the accuracy of human labeling depends heavily on the level 

of expertise and other human factors such as fatigue, and adding incentives does not necessarily 

help [86]. Second, human resources remain extremely limited compared to the rapidly growing big 

data being generated by physical and social sensors. ImageNet [94] illustrates both the success and 

limitations of human labeling: It has achieved order-of-magnitude improvements in labeled image 

collection size, but it is unlikely that it can be extended to capture true novelty from exponentially 

growing new big data. 

Automated Machine Learning (AutoML). The many steps involved in typical ML work have 

spurred the efforts to automate the ML process (AutoML). As described in a recent book [93], the 

automation has occurred in several areas, including hyperparameter optimization and learning about 

the search process for the best classifiers, with useful software tools such as Auto-WEKA and 

Hyperopt-Sklearn. Perhaps as expected, these areas of successful AutoML start from the 

assumptions of artificial reality and well-defined ground truth, enabling the algorithmic 

optimization of search process to find the best approximation function. 
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3 CHALLENGES IN FINDING AND MAINTAINING LIVE KNOWLEDGE 

3.1 Finding and Validating True Novelty 

The first step in the quest for live knowledge is the automated discovery of true novelty in the midst 

of big noise that includes random data, misinformation, and disinformation. A traditional way to 

avoid the big noise challenge is to remap the novelty discovery problem back into artificial reality 

by making assumptions such as Fixed Data, Clustered Data, and Continuity (Section 2.1). However, 

these assumptions also preclude true novelty. First, classifiers trained under Fixed Data Sets have 

inherent difficulties with true novelty beyond the original fixed training data, as shown by Microsoft 

Tay chatbot. Second, analyses on Clustered Data have difficulties when applied to different clusters 

and indistinct clusters in true novelty, in addition to fixed data set constraints. Third, algorithms 

relying on Continuity would disallow the outliers considered by their physical model as noise. This 

would “throw out the baby with the bath water,” since true novelty often appears (at least initially) 

as outliers. 

Live knowledge requires the detection of true novelty whether they arise suddenly or grow 

gradually over a long period of time. There are similarities and differences in the handling of true 

novelty over different time scales. This section outlines the problem of short-term true novelty that 

arises suddenly. In the next section (3.2) the long-term growth of true novelty (a.k.a. concept drift) 

will be described. 

Meaningful Outliers. The first challenge in finding true novelty in social sensors is that the discrete 

data items from millions of social media accounts are independent of each other. Therefore, there 

is no Continuity in social channels. Furthermore, some standard statistical assumptions, e.g., all 

noise being randomly generated with signals following well-behaved distributions such as 

Gaussian, would discard all outliers as noise. Instead of making Continuity and such statistical 

assumptions, true novelty detection on social sensor data need to carefully consider potentially 

meaningful outliers (e.g., first posting of an event), which may become a trend. 

Meaningful True Novelty. The excellent accuracy of deep learning (DL) algorithms on fixed data 

sets reflects their being optimized approximation functions for fixed training data. This optimization 

also introduces instabilities (e.g., overfitting), leading to DL classifiers considering unseen new data 

irrelevant due to their being outside of training data. Instead of assuming Fixed Data, true novelty 

detection on social sensor data needs to carefully consider new data beyond the original training 

data. 

Actionable Real-time Information. The “novelty” contained in retrospectively generated fixed data 

sets reflects only the ground truth covered by artificial reality. When true novelty arises, e.g., in the 

Uber accident and Microsoft Tay chatbot, the classifiers trained within artificial reality have 

reliability issues. To achieve actionable real-time information in actual reality, we need to find true 

novelty outside the traditional assumptions of Fixed Data or Clustered Data. 

3.2 Long-term True Novelty Challenge (Concept Drift) 

According to a survey [69], reports on event detection from real social sensors typically have 

followed the Clustered Data approach by analyzing retrospectively filtered data on large events 

[63]. This was feasible for events with many tweets (sometimes called bursts). The classifiers and 

models trained from large clusters on such events have been less successful when applied elsewhere, 

probably due to the coverage question, and also the differences among the clusters from different 
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events, e.g., earthquake vs. hurricane. More fundamentally, the long-term contextual changes in 

social media would have affected the accuracy of classifiers trained from fixed data sets. 

The contextual changes have been called concept drift [72], defined as a change (over time) of 

class conditional probability p(X,y), where X is the set of input variables and y the target variable. 

Technically, changes in data (both X and y) may change the prior probabilities of classes p(y), the 

class conditional probabilities p(X/y), and posterior probabilities of classes p(y/X), affecting the 

prediction. Informally, concept drift is analogous to generation gap, where an “old” classifier has 

difficulties understanding “young” social postings containing new social slang and jargon that 

appeared after the older generation training data were created. 

Concept Drift Challenge. Concept drift [72] describes the evolution of contextual content in actual 

reality over a period of time, typically years. Examples include the language used in social media 

and seasonal changes in scenery. Concept drift affects all ML classifiers trained by fixed training 

data, but tested over real-world data sets that span a long time. An early example was Google Flu 

Trends [1], which initially reported very high accuracy (more than 97% in 2009), when predicting 

flu pandemic areas using (millions of) browser search items associated with the flu. By 2013, the 

original model’s predictions degraded by more than 100% due to changes in the search 

 

Fig. 1. Sample Screenshot of Landslides Reported by LITMUS. 

terms that people used [2–5]. The LITMUS data we collected confirm serious concept drift (see 

Figure 3). Concept drift represents a major difficulty for the reproducibility of ML classifier 

performance on evolving social media: strong correlations today may—and almost invariably 

will— become weaker tomorrow. 

4 LIVE KNOWLEDGE ON ACTUAL EVENTS REPORTED IN SOCIAL MEDIA 

4.1 Illustrative Application: Live Knowledge on Landslides 
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Natural disasters are important real events with significant social and economic impact (billions of 

dollars per year) around the world. Some disasters have dedicated physical sensors for their 

detection, e.g., earthquakes are measured accurately by USGS Global Seismographic Network 

(GSN [21]). However, events such as landslides are more difficult to detect physically due to their 

localized impact, and humans are often the first finders (and responders) of landslides. In recent 

years, social sensors (e.g., Twitter) have become increasingly important and timely sources of 

landslide reports, making them a good illustrative live knowledge application. 

LITMUS Demo System. LITMUS landslide information system [13] demonstrates effectively the 

Evidence-Based Knowledge Acquisition (EBKA) approach, described in more detail in Section 5. 

Figure 1 shows a sample screenshot of the LITMUS demo system, with landslides reported during 

the last month. Clicking on a pin brings up the “Details” tab, and clicking the Details tab opens a 

list of relevant tweets (left side of Figure 2). Clicking an item on the list opens the posting itself 

(right side of Figure 2). LITMUS integrates several primary social sources (Twitter, Facebook, and 

YouTube), which contain significant noise. In addition, LITMUS utilizes EBKA integration of 

corroborative sources (e.g., reputable newspapers) and supporting sources (e.g., NOAA [23]) to 

filter big noise and find true novelty, achieving excellent accuracy and coverage [60, 61] (more 

details of evaluation in Section 5.5). 

 

Fig. 2. Tweets found on Norway landslides and an example (2019-08-05). 

Table 1. LITMUS Data Sets as Illustrative Example of Live Knowledge 

LITMUS data 2014 (monthly) 2015 – 17 (monthly) 2018 (monthly) 

Relevant 

Samples 

∼5K to ∼50K ∼5K to ∼45K ∼5K to ∼50K 

Landslides Found Hundreds Hundreds About a thousand 

Positive Example [Aug. 22, 2016] Train derails in Tokyo after landslide (URL: photo of 

derailed train) 
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Negative 

Example 

[Aug. 2016] Tropical Strom #Chanthu dropped 47mm in Tokyo. Moving 

north fast with landslide threat. @cnntoday @cnni (URL: radar image of 

tropical storm Chanthu) 

4.2 Challenges in Finding True Novelty in Social Media 

Live Social Sensor Data. LITMUS illustrates well the technical challenges in acquiring live 

knowledge from live social sensors, since the real-world social sensor data do not follow the 

common assumptions (discussed in Section 2): 

1. No Continuity: Social postings come from millions of different accounts, not time 

seriesfrom the same sensor; 

2. Not Fixed: true novelty arrives continuously from growing social sensor channels; 

3. Real-Time: New data must be processed in near real-time for early detection and trackingof 

landslides of all sizes, not waiting for large events to unfold that enables clustering of data. 

Big Noise in LITMUS Data. In the LITMUS data set, 90+% of tweets containing the keywords 

“landslides/mudslides” refer to non-disaster topics, e.g., landslide victories in elections and sports 

matches and a popular rock song entitled “Landslide.” Table 1 shows the approximate size of 

LITMUS collected relevant data sets from 2014 to 2018 (top two rows), plus a positive example of 

 

Fig. 3 . Degradation of Static Classifier Due to Concept Drift (from 2014 to 2018). 

relevant tweet and a negative example (bottom two rows). Classic ML algorithms are able to handle 

big noise adequately, without reliance on Continuity, Fixed Data, or Clustered Data assumptions. 

Concept Drift in LITMUS Data. The LITMUS data set confirms a clear concept drift and longterm 

true novelty, with data sets showing monthly oscillations in landslide data as well as true drift on 

the scale of a few years [61]. The right side of Figure 3 shows the significant accuracy loss of the 

same classifier (trained with a manually labeled subset of 2014 data) from 2014 (left column) to 

2018 (three columns on the right). The left side of Figure 3 shows a direct visualization of terms 

often used in tweets on landslides. The graph is obtained by converting the tweets to numbers using 

word2vec [33], followed by dimensional reduction through principal component analysis (PCA) 

normalized to the interval [–1, +1]. In Figure 3, the light orange dots (upper left) represent the 2014 

data, and terms in 2018 have migrated towards the lower right (dark red, green, purple, and blue 

dots) with a clearly visible drift. 
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In summary, LITMUS is a good real-world application with big noise and concept drift 

challenges that cannot be satisfied under artificial reality assumptions such as Fixed Data, Clustered 

Data, and Continuity. To provide real-time, actionable landslide information, LITMUS needs live 

knowledge from automated discovery, validation, and incorporation of true novelty. These 

requirements are achieved through the EBKA approach described in the next section. 

5 FROM TRUE NOVELTY TO LIVE KNOWLEDGE THROUGH EBKA 

In this article, a real event (e.g., a landslide) is characterized by a triple in the space-time continuum: 

a label (e.g., landslide), a physical location (e.g., Oso, Washington State of USA), and a time 

window (March 22, 2014). A real event has a meaningful topic label and may have varied (non-

zero) sizes in space and time. We are primarily interested in single events at human scales due to 

the social media reporting. Events at microscopic or astronomical scales are left for future research 

topics. Most natural disasters fall into the range of interest, including hurricanes and landslides. 

5.1 Evidence-Based Knowledge Acquisition (EBKA) 

EBKA Information Integration. The main idea of EBKA is to integrate diverse information sources 

to address both the big noise challenge and the true novelty challenge simultaneously. LITMUS has 

three kinds of sources. First, the primary sources (social sensors including Twitter, Facebook, and 

YouTube) have wide coverage, but big noise problems. Second, deterministic corroborative sources 

(e.g., reputable news reports [26, 27] on landslides) have high reliability, but low 

 

Fig. 4. Evidence-Based Knowledge Acquisition (EBKA) and LITMUS Data Integration. 

coverage. Third, probabilistic supporting sources add likelihood estimations with physical sensor 

data and models. For example, earthquakes (USGS GSN [21]) and rainfall (NASA TRMM [22]) 

increase the probability of landslides, and NOAA provides a risk model of landslides [23]. 

EBKA Data Flow and Filtering. Figure 4 illustrates the LITMUS implementation of EBKA. The 

primary sources appear on the left, with corroborative sources and supporting sources on the top. 
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The social sensor data (with big noise) go through two filtering stages. The first stage consists of a 

sequence of ML filters (marked as “social sensor filter pipeline” in the middle left of Figure 4) 

that use classic ML classification algorithms (e.g., the WEKA toolkit [36]) to filter big noise 

adequately [42, 48–59]. 

Capturing True Novelty. The second stage consists of a teamed classifier (to be elaborated in 

following sections) that incorporates the knowledge acquired from the corroborative and supporting 

sources. The combination achieves high accuracy on detecting short-term true novelty. On the 2014 

landslide data [59], which was improved by deep learning (DL) tools such as Keras [35] and 

TensorFlow [34], LITMUS achieved about 98% precision and recall [60] for 2014 data. However, 

addressing the concept drift challenge (Figure 3) required teamed classifiers, elaborated in 

following sections. 

5.2 Teamed Classifiers for Live Knowledge 

Teamed Classifier in LITMUS. To avoid confusion with the broad area of ensemble learning [83], 

we adopt the term teamed classifier (also called committee classifier) to denote the LITMUS 

classifier, which contains several sub-models for a variety of reasons, including location finding 

(part of the social sensor filter pipeline) and EBKA (middle right of Figure 4). The function of 

submodels may differ for each source and their weights may vary for each posting. Specific sub-

models of interest (e.g., EBKA) will be described in Section 5.4. 

Goals of Teamed Classifier Design. Teamed classifiers [67–81] have improved the management of 

knowledge on complex classification problems such as IBM Watson [37] and restricted versions of 

concept drift [67]. A simple example of concept drift is the change of scenery due to the four seasons 

(e.g., snow in winter and flowers in spring). Typically, each sub-model handles a narrow case (e.g., 

a single season), achieving better decisions with high confidence while maintaining relative 

simplicity through specialization. As we find validated true novelty, sub-models trained by the new 

ground truth are added into the teamed classifier. A growing teamed classifier becomes the 

repository of live knowledge, in addition to the data set. The LITMUS example is explained in 

Section 5.4. 

Optimizing Teamed Classifiers. A major technical challenge in teamed classifiers is the 

management and integration of specialized sub-models through one or more weight functions that 

optimize the group decision, e.g., by minimizing the error in classification. As illustration, consider 

Equation (1) with a multi-dimensional metric state space of real-world events, denoted by evk and 

sub-model xi evaluating the likelihood of evk actually occurring; the potential classification error is 

calculated as the distance between decisioni (sub-model’s estimate of xi) and actual event 

occurrence: erri (xi,evk) = distk (decision(xi,evk), actual(evk)), where actual(evk) represents the ground 

truth on evk, and distk the amount of error made by sub-model xi. The objective of the teamed 

classifier evaluation becomes the search for weight functions weiдhti that minimize (or approximate 

the minimal) total error over the entire team: totalerri (xi) =i erri (xi,evk) 

Equation (1) Optimization Process to Find Best Weight Functions for Ensemble Classifiers 

min erri (xi,evk) 

sub−model i 

n 
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  ∗ ,evk), actual(evk)) . 

 = min weiдhti distk (decision(xi 

 sub−model i  k=1  

An informal interpretation of Equation (1) is that the error minimization process will converge 

by giving lower weiдhti to sub-models {xi} that make bigger mistakes (large erri (xi,evk) on the right 

side of equation). 

Equation (1) shows both the strength and weaknesses of common ML assumptions (e.g., Fixed 

Data Set and Clustered Data). On the positive side, given well-defined ground truth from these 

assumptions, the optimization converges. However, the ground truth based on known past data 

would ignore new events due to true novelty challenges (Figure 3). This is the problem to be 

addressed by EBKA, which is capable of recognizing and acquiring true novelty reliably. 

5.3 LITMUS Teamed Classifiers Using EBKA 

Corroboration and Support. In the LITMUS teamed classifier, there is a dedicated sub-model for 

each corroborative and supporting source. For example, there is a sub-model that maintains all 

CNN.com reports on landslides. A landslide tweet that matches a corroborated location-time (e.g., 

in the CNN.com sub-model) is considered positively identified. In contrast, a supporting source 

sub-model (e.g., coincidental heavy rain) only increases the probability of a co-located landslide. 

Sources of New Knowledge. The high confidence placed on corroborative sources is due to the 

publication requirements in reputable news organizations. A typical newspaper requirement 

consists of confirmed corroboration from multiple independent sources. Newspapers such as The 

New York Times and The Guardian have good reputations due to the very low error rates in their 

articles. If they report an event, it is highly likely to have occurred. The main contribution of 

corroborative sources to LITMUS (and EBKA more generally) consists of the new knowledge they 

generate, which is used as ground truth in the selection of training data for new sub-models at team-

level adaptation (described in Section 5.4 and Figure 5). 
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Fig. 5. EBKA Architecture (with LITMUS as Illustration). 

Table 2. Improved F-score with EBKA under Imbalanced Learning 

 Static 

(DL) 
Adaptive 

(DL) 
Primary 
Source 

items 

Corroborative 

items 
Percent of 
Confirmed 

Data 

Improvement 

on F-score 

2014 Data 0.91 0.96 NA NA NA NA 

Jul-2018 0.70 0.88 7205 189 2.62% 125.5% 

Aug-2018 0.56 0.90 14245 106 0.74% 159.2% 

Sep-2018 0.57 0.90 4867 193 3.97% 156.7% 

Oct-2018 0.70 0.88 15847 249 1.57% 126.1% 

Nov-2018 0.38 0.86 7084 885 12.49% 225.7% 

Dec-2018 0.75 0.99 4873 223 4.58% 132.0% 

Table 3. Improved Coverage (# landslides) with EBKA and Imbalanced Learning 

LITMUS Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 

Static DL 480 644 365 501 508 149 

Adaptive DL 480+398 644+681 365+513 501+646 508+772 149+370 

Improved 

Coverage 

82.92% 105.75% 140.55% 128.94% 151.97% 248.32% 

Limitations of Corroborative Sources. Given their high reliability, a question that arises is whether 

they can be used as sole sources. The answer is negative, due to delay and limited coverage. First, 

their requirement for independent corroboration causes some delay before publication (usually 

hours to days). Second, typical newspapers only publish events of interest to a wide audience, 

ignoring small events of limited impact. Tables 2 and 3 show that corroborative sources only publish 

a few percent of all landslides found (and verified) by LITMUS from social sensors. 
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LITMUS Teamed Classifier Output Categories. Through EBKA, LITMUS teamed classifier divides 

social postings into one of four categories: (1) very low probability postings, considered definitely 

irrelevant and marked as HC Negatives (high confidence) in Figure 4; (2) very high probability 

events (HC Positives); (3) corroborated and confirmed landslides; and (4) uncertain postings with 

intermediate probability (apparently serious tweets, but insufficient supporting evidence). 

Accuracy of Teamed Classifier. The LITMUS teamed classifier is able to achieve high precision 

and recall (Table 3 and Table 4) by recognizing the clearly irrelevant items (category 1) and clearly 

relevant items (categories 2 and 3). At the same time, the boundary/uncertain cases (category 4) are 

sent back to the teamed classifier for reconsideration. As more evidence and corroboration are 

accumulated by the adaptive teamed classifier (see Section 5.4), a higher confidence decision can 

be made with better knowledge. 

5.4 Automated EBKA through Adaptive Teamed Classifier 

Two-level Adaptation of Teamed Classifier. EBKA incorporates new knowledge from 

corroborative sources at two levels. At the sub-model level, new events from corroborative sources 

are added into their databases, which increase the number of confirmed events and new knowledge. 

Similar adaptation happens with supporting sources. At the team level, new sub-models are created 

with new training data and added to the team. The sub-model adaptation increases the realtime 

landslide detection capability of LITMUS, and the team-level adaptation handles long-term concept 

drift. 

Sub-model-level Adaptation. In LITMUS, each corroborative sub-model maintains a database of 

confirmed events, indexed by location-time. As new events are published, they are inserted into the 

database, providing corroboration to all co-located landslide postings (that match the same location-

time). Similarly, each supporting sub-model (e.g., NOAA [23]) maintains a database of landslide 

probability, indexed by location-time. When a location-time receives an updated probability, co-

located landslide postings also update their probabilities. The sub-model adaptation is particularly 

effective in immediately incorporating supporting evidence, e.g., a new earthquake that occurred in 

Nepal would increase the probability of landslides occurring in that area during that time. 

Team-level Adaptation. To address the long-term concept drift challenge (shown on the left side of 

Figure 3), EBKA incorporates new knowledge by introducing new sub-models into the teamed 

classifier. In LITMUS, the social postings on the new confirmed landslides of each month are used 

as positive training data set (with corresponding negative data) for creating new sub-models. The 

weighting function is carefully tuned to optimize the impact of new sub-models. The team-level 

adaptation process is illustrated in Figure 5. Although the corroborative sources only provide a few 

percent of verified landslides (Table 3), they are sufficient for handling concept drift, as shown on 

the right side of Figure 3. 

EBKA Architecture. Taken together, Figure 4 (adaptive sub-models for classifying each social 

posting) and Figure 5 (team-level adaptation) illustrate the EBKA architecture to detect new events 

and capture true novelty. The two-level adaptation handles the different time scales of 

environmental change: sub-model adaptation for discovering new events (new landslides, from 

hours to days) and team-level adaptation for handling concept drift (social media language 

evolution, from months to years). 
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Better Decisions. A distinctive feature of the EBKA approach consists of the fourth category of 

output: uncertain postings with intermediary probability. Figure 4 shows that uncertain postings are 

sent back to the classification process. This recycling make sense for adaptive classifiers, since the 

decision may change (to better) when new information arrives at corroborative or supporting 

sources. For example, the first tweet on a new real landslide normally would be sent back for lack 

of supporting evidence, and its probability would increase by subsequent tweets due to EBKA. The 

tweets that are irrelevant to landslides would not receive additional support, and eventually they get 

filtered out. 

5.5 Evaluation of EBKA in LITMUS 

Accuracy Achieved by LITMUS. We have very encouraging experimental evaluation results in 

LITMUS that confirm the effectiveness of EBKA approach. Table 3 shows that a modest amount 

of confirmed data (second column from the right, typically a few percent) is sufficient for improving 

the F-score of Teamed Classifier by more than 100%. The largest improvement (more than 200% 

in November 2018) appears to be correlated to the largest percent of confirmed data (12.5%), which 

indicates more data as well as more research would be warranted. 

Improved Coverage. In classic ML, improved accuracy often requires a trade-off in coverage. By 

acquiring external evidence, the EBKA approach achieves significant improvements in F-score 

(rightmost column in Table 3) while maintaining wide coverage. Table 4 shows that Adaptive DL 

classifier achieves a strict superset of Static DL classifier. We believe that the EBKA approach is 

able to bypass the classic ML trade-off between false positives (FP) and false negatives (FN), 

because of the additional knowledge from corroborative and supporting sources. 

6 FUTURE RESEARCH AND DEVELOPMENTS ON LIVE KNOWLEDGE 

6.1 Smarter Applications Enabled by Live Knowledge 

Smart Applications within Artificial Reality. Many of current smart (or intelligent) applications 

have made assumptions similar to those discussed in Section 2 (Continuity, Fixed Data, and 

Clustered Data). For example, projects that built custom sensors [9] have developed applications 

such as air monitoring, with both Continuity and Fixed Data assumptions. They work well in the 

artificial reality of testbed environments but have difficulties with deployment in the open realworld 

environment. The transition difficulties have often been attributed to scalability issues such as cost 

or heterogeneity, but we believe that a more fundamental issue is the coverage question: Algorithms 

that work well within artificial reality may be missing important knowledge about the actual reality, 

as illustrated by the Uber accident. 

Bridging the Gap. From the coverage question point of view, the growth of new big data from the 

actual reality is much faster than the (mainly human-annotated) ground truth in the artificial reality. 

While the work under the assumptions of Fixed Data, Clustered Data, and Continuity remain valid 

within artificial reality, their impact on the actual reality will be reduced by failures arising from 

the widening gap. Although traditional approaches such as active learning have limitations, we 

believe that an effective utilization of live knowledge through EBKA could reduce and eventually 

bridge the gap between smart applications and live real data. 

Real-time Incident Detection. Widespread video cameras offer real-time monitoring, but their 

practical usage has been limited (mostly) to after-the-fact crime investigations and forensics. 

Similarly, smart transportation (e.g., incident detection and assistance) has relied on NASA-style 
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command centers (monitored by human operators). Effective acquisition of live knowledge would 

alleviate the current need for human intervention and enable the next generation of automated smart 

applications. Examples of live real applications that can benefit substantially from automatically 

acquired live knowledge include: responsive disaster management (e.g., accurate and timely 

detection of landslides and sudden rains), efficient transportation (e.g., real-time automated 

detection of congestions and accidents), and proactive public safety (e.g., real-time crime detection). 

Video Event Detection and Tracking. Automated real-time object recognition and tracking for 

applications such as smart transportation and proactive public safety can be enabled by live 

knowledge from the live video data. We plan to apply EBKA with object tracking techniques [75– 

82] on the live video data from USP [11]. An illustrative example of complex incident detection is 

the case of a stolen vehicle that had its license plate replaced with another from a parked car. The 

LPR capability would not be able to detect such changes by itself. However, adding the contextual 

information (make and color of vehicle) to each license plate as live knowledge will enable the real-

time detection of a stolen vehicle despite plate switch. 

Informative Guidance during Disasters. Navigation systems gained a significant new capability with 

the launch of Google Maps Live View AR (Augmented Reality) on Pixel in March 2019 and 

available for Android and iOS smartphones since August 2019. An example of guidance systems 

during disasters [12] integrated 3D models, crowd behavior videos, and tweets from historical 

events to show good escape paths from Osaka underground shopping malls that would be quickly 

inundated by a tsunami caused by earthquake. One of the difficulties with traditional AR is their 

static view of environment, which may be changed by a disaster, e.g., buildings may have been 

toppled by an earthquake and roads covered by landslides. Live knowledge from uploaded videos 

(supported by many social media channels) and public safety apps such as USP Campus [10, 11] 

can provide fresh views of a changed landscape. Combined with AR navigation, live knowledge 

can enable the generation of up-to-date or new escape routes during and after disasters. 

6.2 Improving EBKA with More Evidence 

Looking forward to wider acquisition of live knowledge, particularly research and practice through 

EBKA, one of the important questions is the availability of reliable sources from which EBKA 

extracts live knowledge. For example, the reputable news sources used by LITMUS for information 

gathering on landslides can be reasonably expected to work well for the detection of many real 

events as they unfold. In addition, there are quite a few more reliable sources that EBKA can draw 

upon. 

Authoritative Sources on Specific Areas. In many specific areas, there are mission-oriented agencies 

in charge that publish authoritative information on their areas of expertise. In epidemics, for 

example, the CDC (Centers for Disease Control and Prevention) publishes authoritative information 

(e.g., Ebola data [25]). For some areas of commercial interest, an increasing number of online 

services have been improving their accuracy, reliability, and coverage. An example relevant to live 

knowledge is accurate real-time micro-area weather forecasts with increasingly higher quality 

service providers such as weather.com and accuweather.com. 

Measures of Reputation and Trust. Generally, there are several kinds of measures of reputation, e.g., 

number of followers for a Twitter account, number of downloads for a YouTube video, and Alexa’s 

top 500 global sites ranking [30], where popularity suggests trust from the crowd. Although there 

are known threats to these measures (e.g., fake Twitter follower accounts), they may contribute as 
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supporting evidence. We believe the ongoing research efforts on trust and reputation [87] will help 

us improve the distinction of reputable sources. 

Local Sources for Local Events. As an example of interesting topics in the reputation and trust 

area, local newspaper reporting of local events tends to have higher reliability [26, 27]. This kind 

of specialization is supported by EBKA through careful weight assignment as a function of event 

and source co-locality. 

Human Input. Expert input in active learning [85] and general crowdsourcing (e.g., data entry 

through mobile apps [10, 11]) can add more corroborative and supporting evidence. The EBKA 

approach can benefit from direct human input (e.g., from mobile apps), particularly since it would 

not require real-time labeling, allowing for cross-checking and improvement of accuracy and 

coverage. 

6.3 Practical Issues with Live Knowledge Acquisition 

EBKA is a principled and practical approach to acquiring live knowledge from real-world social 

sensors. However, working with real-world sources means resolving some operational issues that 

can impede access to live knowledge. We mention three examples to illustrate these non-trivial 

technical issues that are stepping stones and building blocks towards live knowledge. 

Instability of Real-world Data Sources. One of the limitations of sensor testbeds is their limited 

lifespan: They often depreciate when their research budget ends. In contrast, a big advantage of 

real-world sources such as social media is that they are maintained by other sources. However, live 

production sources also evolve and change over time outside of our control. For example, Instagram 

was one of the main sources for the original LITMUS, but an access policy change in June 2016 

disallowed public data collection. Another example is the USGS official listing of landslides [24], 

which shut down in 2016. Flexible adaptation to changes in real data sources is an integral part of 

live knowledge acquisition process, not just EBKA. 

Location-time Determination. An event is defined by its topic and location-time. On the time 

dimension, typical social sensor postings (e.g., tweets) are timestamped, and it is often reasonable 

to assume close time proximity to the event reported. In contrast, few tweets contain the GPS 

location of their origin, and few tweets are sent from the epicenter of an event. Fortunately, many 

social postings that refer to a real event also include an identifying term on its location, which is 

used by LITMUS to determine the location-time (primary key) of the event through tools such as 

CoreNLP [32] and localized software libraries for each country. 

Live Knowledge in Multiple Languages. Although this article focused on social sensors in English, 

the knowledge of the world consists of the union of many languages. The integration of knowledge 

from multiple languages would enable much better EBKA performance, but such integration still 

requires significant research [57]. 

7 LIVE KNOWLEDGE VISION 

Because “90% of the data in the world today has been created in the last 2 years” [31], 

unprecedented opportunities are being created by new big data, including social media, e.g., 500M 

tweets/day and millions of video cameras in many cities. However, the primary consumers of the 

explosively growing new big data have been humans. In our view, the ML focus on artificial reality, 

e.g., through Fixed Data, Clustered Data, and Continuity assumptions, caused the gap between the 
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artificial reality and the actual reality. While the artificial reality remains a valid research approach 

on a subset of actual reality, the growing gap demands our attention, as shown by the Uber fatal 

accident, the Microsoft Tay chatbot misbehavior, and Google Flu Trends shutdown. 

Beyond artificial reality, we envision the research and development efforts on live knowledge, 

which automatically acquire real-time, validated, and actionable information for smart applications 

that must work in the actual reality, including smart transportation and disaster response. Live 

knowledge contains significant research challenges such as big noise and concept drift. From the 

new data, we need to distinguish and validate true novelty from random noise, misinformation, and 

disinformation that derailed the Tay chatbot. For the long term, we need to accumulate true novelty 

into live knowledge and keep incorporating it into smart applications that work in the actual reality. 

To demonstrate the feasibility of achieving live knowledge, we describe the EBKA 

(evidencebased knowledge acquisition) approach to integrate information and find true novelty in 

the LITMUS landslide information system. LITMUS integrates three kinds of complementary data 

sources: primary sources with wide coverage (e.g., tweets on landslides), corroborative sources with 

high reliability (e.g., news reports), and probabilistic supporting sources (e.g., landslide likelihood 

model from NOAA). Through EBKA, LITMUS distinguishes true novelty and acquires new 

knowledge on landslides from this automated integration, and it is independent of the Fixed Data, 

Clustered Data, and Continuity assumptions. LITMUS achieves both high accuracy and wide 

coverage through four years of data, demonstrating the feasibility and promise of the EBKA 

approach towards live knowledge. 
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