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Abstract—In this paper we derive a key rate expression
for the extended version of the B92 quantum Kkey distribution
protocol that takes into account, for the first time, the effects of
operating with finite resources. With this expression, we conduct
an analysis of the protocol in a variety of different noise and key-
length settings, and compare to previous bounds on comparable
protocols.

I. INTRODUCTION

Quantum Key Distribution is becoming an increasingly
practically driven field of research [1] [2]. As advances in this
and other fields make commercial implementations of QKD
devices more desirable, it is necessary that more work is done
to understand the capabilities and limitations of these protocols
in practice, as opposed to under ideal circumstances. The B92
protocol [3] has been well researched in the asymptotic setting,
where it has been shown to be tolerant to up to 6.5% noise
in the channel [4]. An extended variant of B92 was proposed
[5], in which, in addition to the two encoding, non-orthogonal
states used in B92, Alice and Bob utilize two additional non-
encoding, non-orthogonal states to achieve a tighter bound on
Eve’s information. Analysis of the extended B92 protocol has
shown it to be tolerant to up to 11% noise in the asymptotic
setting [5]. In this paper we will present what is, to our
knowledge, the first analysis of the key rate for the extended
B92 protocol in the finite key setting.

We conduct a finite-length, information theoretic security
analysis, assuming collective attacks, and rigorously evaluate
lower bounds on the key rate and noise tolerance. We evaluate
assuming a depolarization channel, though the equations we
arrive at hold for arbitrary channels. We do this by following
the well established key-rate computations put forth in [9],
as well as the methods for utilizing mismatched measurement
given in [10]. In this work we will only consider ideal qubits,
and as such we will not make considerations for the effect
that loss might have on the security of the protocol. On the
subject of loss, we note that the original B92 protocol is highly
susceptible to the unambiguous state discrimination attack [6]
[7] [8], while the extended version, which we analyze here,
protects against such attacks [5].

After conducting our security analysis, we will optimize
over a number of parameters and discuss optimal trends, as
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A. Notation

Let A be a random variable, we will denote by H(A) the
Shannon entropy of A. We will use both H(p) and h(p) to
refer to the binary entropy function, and they should both be
understood to be equal to H(p,1 — p).

Given a pure state |¢)) , € H 4 we will use both [¢)] , and
P(|1))a to mean |¢)) ()| ,. Given a density operator pap we
will write pp to mean the state obtained by taking the partial
trace over the A system of pap. By a classical quantum or
CQ state, we will mean a quantum state that can be described
by some pap = ) ,Pala] ® pg) for an orthonormal basis
{la)}.

Given a density operator p4 acting on H 4, we will mean
by S(A), the von-Neumann entropy of pa, equivalent to
—tr(palogpa), where here and elsewhere in this paper log
is base 2 unless otherwise stated. We will mean by S(A|B),
the von-Neumann entropy of the A register of p conditioned
on the B register, where S(A|B), = S(AB),— S(B),. If the
context is clear, for entropy as well as state description, we
will often drop the subscript.

Later we will evaluate key rates in a number of channel
scenarios, all symmetric channels, by which we mean that the
channel which connects Alice on Bob (and where Eve’s attack
takes place), parameterized by quantum noise level (), can be
described by the depolarization channel

Eq(p) = (1-2Q)p+QI. (1)

To find a lower bound of the key rate, we make use of the
key rate equation, Equation 2, presented in [9], which states
that in the finite realm, the key rate, r/, of a protocol, under
collective attacks, can be calculated as below. We note that
as we utilize a different sampling method than was used in
[9], we must utilize a larger confidence interval than was used
in [9]. Our confidence interval, Equation 4, is derived from
Hoeffding’s inequality. In [9] it was shown that for a protocol
that has run for N rounds, and resulted in n < N raw key
bits, the key rate 7/, can be computed to be

v @ = S¢(A|E) — (leakEC' — A) /n, ()

well as compare the key rates achievable through our analysis where
w1t111 the key rates achievable with standard B92 in previous Se(A|E) = I,n,igr S(A|E),, (3)
analysis. CAE
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with I' consisting of all & which we could expect to induce
statistics that differ by no more than £(m;), except with
some probability epr > 0, for any of {p;}¥_, statistics, each
gathered over m; samples, for:

N O )
§(m) = 5

m

; 4)

where we take leakEC' as the number of bits leaked due to
error correction of n raw key bits for a given quantum bit error
rate; A = 2loga(1/[e—e—€pc)])+T7v/nloga(2/(€ — € are
bits lost due to finite key effects; €, egc are user parameters
that denote the security parameter of the key and the failure
probability of error correction respectively; and €, epg, obey-
ing constraints € — egc > € > epg > 0, can be be chosen so
as to maximize the key rate.

To evaluate the von-Neumann entropy in Equation 3, we
will additionally make use of the following theorem:

Theorem 1. (From [10]): Let pag be a CQ state acting on
H 4 ® HEg that can be written as

pap = % ([01,4 EDPICIPEIEDY [gHE) O

Then

1 il
S(A|E) > Z( go|go <91|91>> S,
1=0

o (90190) _p(n) (96196)>0
g =%i=h (i) —h0w) - Gz
S; = 0 else
where
. 2 S
o1,V Ushlab) + tailod)” + are (o)
b2 2 ((gblgb) + (gila))

II. THE PROTOCOL AND KEY-RATE COMPUTATION

The protocol we analyze is actually a simplified version of
the Extended B92 protocol that operates as follows. Alice and
Bob utilize the bases Z = {|0),]|1)} and A = {|a),|a)}
where |a) = «|0) + 8]1) and |@) = B[0) — a|1), 0 < a <
1 is a publicly known parameter of the protocol, and g =
/(1 — a2). On an iteration of the protocol, with probability
P.,., also a parameter, this round is a key round, and Alice
randomly prepares and transmits either the state |0) or |«) to
Bob. Otherwise, with probability (1— P.,.) she sends state |1).
Bob chooses to measure his received state in the Z or A basis
with equal probability. At the end of a round, Alice notifies
Bob if the round was a key round, and, if Bob measured either
|&) or |1), Bob notifies Alice that the round was conclusive,
otherwise that it was inconclusive. On a conclusive key round,
Alice’s key bit is 0 if she sent |0) and 1 if she sent |«), and
Bob’s key bit is 0 if he measured |@), and 1 if he measured
|1). If a round is not conclusive, or not a key round, the results
are used for channel tomography.

Following N rounds of this protocol, Alice and Bob will
share a correlated but noisy raw key string of length n < N,
as well as m < N —n samples that we will show can be used
to estimate various channel statistics, obtained from rounds
that did not contribute to the key. At this point Alice and Bob
follow standard post processing procedures, conducting error
correction and privacy amplification to distill an {(n) bit secret
key [1] [2].

In this section we model the state of the system at the end
of a key round so that we may find a lower bound on S(A|E),
in order to compute the key rate. Towards this end, we also
discuss how to estimate the parameters of Eve’s attack with
statistics that are observed during the course of the protocol,
as well as how to calculate the confidence interval that must be
minimized over for each of those statistics in the finite case.

A. Bounding the Conditional Entropy

To bound the quantity S(A|E) we must first compute a
density operator for the system at the end of a key round.
Because we are considering collective attacks, Eve’s attack
can be modeled by unitary operator U, acting on a qubit and
her ancillary space, initialized as |xg), as follows:

U ‘07XE> = |0760> + ‘1761>7
U‘laXE> — |0762> + ‘1,63> .

For ease of notation we will make explcit the action
Ula, xg) = |, fo) + |@, f1) where

|fo) = a?leo) + aBle2) + aBler) + B les),  (6)
|f1) = aBleo) + B |e2) — a?ler) — aBles).  (7)

As we are interested in the entropy of Alice’s key, we
condition on this round of the protocol being a key round.
As such, Alice begins the protocol by preparing the transit
space Hr as either |0) or |a) and storing her key bit in the
register H 4. Eve attacks with U acting on Hr ® H g, resulting
in the joint state:

—_

pare = =[0], @ P(|0,e0) + |1,€1))7E

=

+ 5[1}A
Bob now chooses to make a measurement of H in either the
Z or A basis, each with equal probability. Again conditioning
on this round being a key round, he observes either |1) or
|), corresponding to his key register 7 being set as 1 or
0 respectively. Tracing out the spaces Hp and Hp after we
condition on a conclusive measurement, we are left with:

® P(|la, fo) + 1@, f1))re

pap = 7201, @ (P(le1)) + P(Bleo) — aler)))

+ 27 Ha @ (P(f1) + P(Bfo) — alfi)g

S
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where M is a normalization term we will define shortly. In
accordance with Theorem 1, we can then represent this state
in the form given in Equation 5, with:

M = Z (96196)

+ (gilgl) (8)
lg90) = | > )
lgo) = Bleo) — acler), (10)
l90) = | /1), (an
lg1) = Blfo) — a|fi) = aler) + Bles) . (12)

B. Parameter Estimation

With an operator determined it remains to estimate the
various inner products of Eve’s states as functions of the
observable statistics we gather. It is trivial to find the following
identities based on Eve’s attack operator:

= Poo,
:Ploa

= Pou,
= Py;.

(ex]e1)
(es]es)
Where P;; denotes the probability of Bob measuring |j) after
Eve’s attack, conditioned on Alice sending the state |é).

Next we consider the information that can be gained by
gathering mismatched statistics [10] [11] [12], gathered from
rounds in which Alice and Bob chose to prepare and mea-
sure states in mismatched bases. For example, by computing
the probability Py, we are able to compute the quantity
Re (epler). Indeed, tracing the evolution of the qubit in that
case, we find:

[0) — |0, e0) + |1,€1)
=) ® (aeo) + Bler))+
|@) @ (Bleo) + le1))
= Py =02 (egleg) + B2 (e1]er)
+ 2aBRe (eoler)

(eoleo)

(e2]e2)

— Releoler) = o= o <e”;?;_ B2 {erlen) (13)
Similarly we can also find:
Re (eales) = D2 = <e2;jg_ Flesles) )
2 2
Re {eqleg) = 7202 <€0;;;_ Flele) s
2 2
Re (e1]es) = Po1 —a <€1;€0[1;—5 <€3|€3>. (16)

Through much the same method, utilizing the states given in
Equations 6 and 15, we are able to find the following identity
using P,g.
202 % Re ({egles) + (e1]es)) =

a?B? ({eoleo) + (esles)) +

B (ealea) + o (erler) +

2a°BRe ({e1les) — (eoler)) +

2a4% Re ((eglea) —

<€2|€3>) — Paa~ (17)
19

With the last of our identities described, we can now apply
Theorem 1 to find a lower bound on the entropy of Eve’s
system to be:

(18)

st s (Bl

=0

i)+ Eni ])Sz

if Eoli]>0
and E1[i]>0

_ i] )
s = {Si=n(mitEm) — O
S; = 0 else

where A[i] denotes indexing into any of the ordered sets A
given below, and

\/(Eo[ | 4+ E1li])® + 4Re2Ai]

No= <4
2 2 (Eoli] + E1[i)) ’
= {(90190) » (90190)} = {Por,1 — Poa}, (19)
Er = {(lg7) s (91191)} = {Poja: 1 = Pao},  (20)
A= {{g0lg?) » (95191)},
ALO] = aBRe ({eoler) + (e1les)) — a2 {eler)
+ B?Re (e1]es) (21)
A[1] = afRe ({egler) + (e1les)) — o (er]er)
+ B?Re {egles) . (22)

We note that all of the inner products above, with the exception
of (e1]e2) in Equation 21, can be estimated by the statistics
gathered in this protocol, either having been made explicit
in earlier discussion or, in the case of Equations 19 and
20, can be computed to be as we claim by further tracing
of the evolution of the state. We can now compute the
bound given in Equation 18 by minimizing over the sole free
variable, which itself can be bounded by Cauchy-Schwartz

as (erles) € [=/ferler) ezlea), /Terlen) (eale) |, with
(egles) obtained by Equation 17.

C. Finite Key Effects

To calculate the key rate in the finite case, we must account
for uncertainty in our observed statistics, and consider all
possible attacks Eve may have used that induce statistics
within the relevant confidence interval, as given by Equation
4. Let each statistic F;; have been sampled over C;; samples,
then, following the work done in [9], we find that to calculate
a worst case bound on Eve’s information we must further
minimize the entropy expression given in Equation 18, now
replacing all observed P;; used in parameter estimation with

Pij € (Pyj — &(Cyj), Py + £(Cij)),

save for PE)O, P;h and P, ol which we take to be equal to
1— P01, 1— Plo, and 1 — P,q respectively. This minimization
results in a new worst case bound on Eve’s uncertainty, correct
with probability 1 — epg, which we denote S¢(A|E).

With this, we can now calculate the finite key-length rate, r’

4 gvith Equation 2, with the constraints discussed with Equation
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2, though, for our purposes, we are more concerned with
evaluating the effective key rate,
r'n
N’
rather than the key rate itself, where n is the number of raw
key bits.

T =

(23)

III. EVALUATION AND COMPARISON

With a key rate equation finalized, we now consider the
key rates that are realizable at various noise and signal size
scenarios. We consider a symmetric channel, as defined in
Equation 1 parameterized on quantum noise level (), though
we note the equations we have derived thus far hold for arbi-
trary channels. We calculate the expected number of samples
C; that contribute to statistic F;;, for a given o and Py, over
N rounds as:

O = o = Py
= U= T2y
oo = Cop = Pl @ 022010
o = 1= P @+ 1 =200 —02)
0= Pel@+1-2Q)1 =),

where we use C) to denote the number of samples that
contribute to the raw key. We also note that in practice these
values would be observed, and we utilize these expressions
only to calculate what they might be expected to be for the
purposes of our evaluation.

We will conduct our analysis with leakEC =
1.2h(QBER) to account for practical inefficiencies in
error correction protocols, where QBER is the error rate of
the raw key string, for which we will use a worst case upper
bound of:

Po1 +€£(Co1) + Poa + £(Caa)

QBER < :
pacc

(24)

where

Dace = Po1 + 5(001) + Poa + f(Ca&)
+ 2— (P0a + 5(00a> + Pal + f(Cal))-

Further, in our analysis, we fix the user parameters ¢ =
1 x 1079 and egc = 1 x 10719, Additionally, we fix the
optimizable parameters € = 8 x 10710 and epp = 7 x 10710,
Finally, we numerically optimized over « and P,,. in each
case to find an optimal effective key rate in various noise level
and signal number. In Figure 1 we show the optimal effective
key rate at various noise levels, increasing with N, appearing
to numerically approach the asymptotic bound (not shown) at
each noise level. In Figure 2, we show the effective key rate for

various N as noise increases, where we can see an increasin%9

Effaciiive Key Rate
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Fig. 1. This figure depicts the effective key rate, optimized over o and Pen.c
for quantum noise levels @ € {.01,.03,.05} and evaluated at N = 1 x 10™
and N =5 x 10" for n € {6,7,8,9}.
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Fig. 2. This figure depicts the effective key rate, optimized over o and Penc
for various IV, as well as the asymptotic case (the top line), as noise in the
channel increases.

Effective Key Rate
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Fig. 3. This chart shows effective key rate as « varies for a fixed Pene = .8
at noise level @@ = .02 for various N. We found that while in the asymptotic
case, the optimal « approaches 0 as shown in [5], while in the finite case
there is an advantage in optimizing over « (and indeed over Pen.) in each
scenario
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effective key rate and noise tolerance as IV increases, again
approaching the asymptotic bound.

In our analysis, we observed that the values of « and P,
that led to the optimal key rate (Equation 2) did not nec-
essarily result in the optimal effective key rate. Additionally
we observed that, as IV increased, the optimal « decreased
while the optimal P, increased, approaching the asymptotic
optimal values of 0 and 1 respectively [5]. Further, we found
that for a given P.,., the key rate varied with a as shown
by the curves in Figure 3, reaching no more than one positive
maximum.

A. Comparisons

As this is the first analysis of extended B92 in the finite
setting, we instead compare our results to the performance of
standard B92 and BB84 in finite settings. Our analysis shows
that the extended variant of B92, which utilizes additional
quantum states to better bound S(A|E), results in higher noise
tolerance and effective key rates in the finite setting than can
be obtained with standard B92. A recent analysis [13] showed
that with 10® signals, standard B92 achieves a positive key
rate up to at least 6.4% noise while our analysis shows that
extended B92 has a noise tolerance of at least 7%. Conversely,
while the work done in [9] shows that at 5% noise BB84 can
achieve positive key rates with as few as 10° signals, we do
not achieve positive rates at that noise until 108 signals.

IV. CLOSING REMARKS

In this work we have, with a rigorous, information theoretic
finite key-length analysis, bounded the key rate of the extended
B92 protocol under collective attacks on arbitrary channels.
We have evaluated that bound under various scenarios for
a symmetric channel, and shown that the key rate can be
improved by optimizing over F,,. and «, noting that the
optimal choices for those parameters obey interesting trends.

Future areas of interest in this area include refactoring this
analysis to utilize a single POVM for gathering statistics, so
as to obtain a tighter confidence interval in Equation 4 as
was done in [9]. Further, it may be possible to achieve higher
key rates with a tighter bound on QBER than was given in
Equation 24. An analysis of achievable key rates and optimal
choices under arbitrary channels may also lead to interesting
results, as would an investigation of where optimal values
for € and egc lie, which we held fixed in our optimization.
Likewise, in the future it may be worthwile to extend this
analysis to the include additional test states, rather than the
simplified set we use in this work.

Expanding our analysis to include additional practical fac-
tors would also be worthwile. In this work we consider
idealized photons, in the future it may be interesting to
extend our analysis to more practical channel models, perhaps
using techniques such as those discussed in [14]. Further
such expansions could be made to account for additional
imperfections in the channel, source, and detectors used.
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