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Abstract: Artificial intelligence and neuromorphic computing driven by neural networks has 
enabled many applications. Software implementations of neural networks on electronic platforms 
are limited in speed and energy efficiency. Neuromorphic photonics aims to build processors in 
which optical hardware mimic neural networks in the brain. © 2021 The Author(s)  

 
The field of neuromorphic computing aims to bridge the gap between the energy efficiency of von Neumann 
computers and the human brain. The rise of neuromorphic computing can be attributed the widening gap between 
current computing capabilities and current computing needs [1], [2]. Consequently, this has spawned research into 
novel brain-inspired algorithms and applications uniquely suited to neuromorphic processors. These algorithms 
attempt to solve artificial intelligence (AI) tasks in real-time while using less energy. We posit [3] that we can make 
use of the high parallelism and speed of photonics to bring the same neuromorphic algorithms to applications requiring 
multiple channels of multi-gigahertz analog signals, which digital processing struggles to process in real-time. 
 By combining the high bandwidth and parallelism of photonic devices with the adaptability and complexity 
attained by methods similar to those seen in the brain, photonic neural networks have the potential to be at least ten 
thousand times faster than state-of-the-art electronic processors while consuming less energy per computation [4]. An 
example is nonlinear feedback control; a very challenging task that involves computing the solution of a constrained 
quadratic optimization problem in real time. Neuromorphic photonics can enable new applications because there is no 
general-purpose hardware capable of dealing with microsecond environmental variations [5]. 

Neuromorphic photonics approaches: Neuromorphic photonic [6] approaches can be divided into two main 
categories: coherent (single wavelength) and incoherent (multiwavelength) approaches. Neuromorphic systems based 
on reservoir computing [7], [8] and Mach-Zehnder interferometers [9], [10] are example of coherent approaches. In 
reservoir computing the predefined random weights of their hidden layers cannot be modified. An alternative approach 
uses silicon photonics to design fully programmable neural networks [5], with a so-called broadcast-and-weight 
protocol [11-13]. In this architecture, photonic neurons output optical signals with unique wavelengths. These are 
multiplexed into a single waveguide and broadcast to all others, weighted, and photodetected. Each connection 
between a pair of neurons is configured independently by one microring resonator (MRR) weight, and the wavelength 
division multiplexed (WDM) carriers do not mutually interfere when detected by a single photodetector. 
Consequently, the physics governing the neural computation is fully analog and does not require any logic operation 
or sampling, which would involve serialization and sampling. Thus, they exhibit distinct, favorable trends in terms of 
energy dissipation, latency, crosstalk and bandwidth when compared to electronic neuromorphic circuits [4]. The 
advantage of this approach over the aforementioned approaches is that it has already demonstrated fan-in, inhibition, 
time-resolved processing, and autaptic cascadability [14]. 
 However, the same physics also introduce new challenges, especially reconfigurability, integration, and 
scalability. Information carried by photons is harder to manipulate compared to electronic signals, especially nonlinear 
operations and memory storage. Photonic neurons described here solve that problem by using optoelectronic 
components (O/E/O), which can be mated with standard electronics providing reconfigurability. However, 
neuromorphic photonic circuits are challenging to scale up because they do not benefit from digital information, 
memory units and a serial processor, and therefore requires a physical unit for each element in a neural network, 
increasing size, area and power consumption. Here, integration costs must also be considered, since the advantages of 
using analog photonics (high parallelism and high bandwidth) must outweigh the costs of interfacing it with digital 
electronics (requiring both O/E and analog/digital conversion). 

Advances in Science and Technology to Meet Challenges: In a recent review [3] and roadmap article [15], we 
outlined some scientific and technological advances necessary to meet the challenges to envision a neuromorphic 
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processor outlined in [16]. Photonic processors have light sources, passive and active devices. Currently, there is no 
single commercial fabrication platform that can simultaneously offer devices for light generation, wavelength 
multiplexing, photodetection, and transistors on a single die; state-of-the-art devices in each of these categories use 
different photonic materials (SiN, Ge, InP, GaAs, 2D materials, etc) with incongruous fabrication processes (silicon-
on-insulator, CMOS, FinFETs). Silicon photonics is becoming an ideal platform for integrating these devices while 
offering a combination of foundry compatibility, device compactness, and cost that enables the creation of scalable 
photonic systems on chip.  
 Materials: Energy efficient and fast switching optical and electro-optical materials are needed for non-
volatile photonic storage and weighting, as well as high-speed optical switching and routing, with low power 
consumption. Neural non-linearities are already possible on mainstream platforms using electrooptic transfer functions 
[14], but new materials promise significant performance opportunities. Phase change materials (PCMs), and graphene 
and ITO-based modulators can also be utilized for implementing non-linearities. Plasmonic PCMs can bridge the 
optical and electrical signals, through the dual operation modes [17]. A general material design method is in urgent 
need to develop appropriate photonic materials for different photonic components [18]. 
 Lasers and amplifiers: On-chip optical gain and power will require co-integration with active InP lasers 
and semiconductor optical amplifiers. Current approaches involve either III–V to silicon wafer bonding 
(heterogeneous integration) or co-packaging with precise assembly (hybrid approach) [19]. Quantum dot lasers are 
another promising approach as they can be grown directly onto silicon, but fabrication reliability does not currently 
reach commercial standards [20]. 
 Electrical control: Co-integrating CMOS controller chips with silicon photonics to provide electrical tuning 
control/stabilization will be critical. Candidates include wire-bonding, flip-chip bonding, 2.5D integration 
(interposers), 3D stacking (through-silicon-vias), and monolithic integration. Each has performance and design 
tradeoffs [21].  
 System packaging: A photonic processor must be interfaced with a computer. It would need to be self-
contained, robust to temperature fluctuations, and with electrical inputs/outputs [5]. Currently, manufacturers do not 
assemble electrical/thermal elements and chip-to-fiber interconnects.  
 Algorithms: Significant advances will be required to map abstract neural algorithms to photonic processor 
to usher these platforms into the commercial space. So far, only individual devices and small control circuits are 
described in the literature. The goal is to enable neural network programming tools (TensorFlow) to directly 
reconfigure a neuromorphic photonic processor [5].  

Conclusion: The physical limits of Dennard scaling is galvanizing the community to put forward candidates for next 
generation computing, from bio to quantum computers. Photonics and in particular neuromorphic photonics are a 
formidable candidate for analog reconfigurable processing. We expect the development of this field to accelerate as 
neuroscience makes further leaps towards our understanding of the nature of cognition and artificial intelligence 
demands more computational resources for machine learning. As photonics technology matures and becomes more 
accessible to academic groups and small companies, we hope and expect this acceleration to continue. 
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