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Abstract
We compare the spectrum of the stochastic gravitational wave background produced in several

models of cosmic strings with the common-spectrum process recently reported by NANOGrav. We

discuss theoretical uncertainties in computing such a background, and show that despite such un-

certainties, cosmic strings remain a good explanation for the potential signal, but the consequences

for cosmic string parameters depend on the model. Superstrings could also explain the signal, but

only in a restricted parameter space where their network behavior is effectively identical to that of

ordinary cosmic strings.
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I. INTRODUCTION

The NANOGrav collaboration has recently reported some evidence of a stochastic signal
in their 12.5-year data set on pulsar timing [1]. Their observation of 45 pulsars indicates
the presence of a common-spectrum “red noise” process. It is unclear whether one can
consider these results as a first hint of a gravitational wave background in this frequency
band. In particular, the data so far show only weak evidence of a quadrupole (Hellings-
Downs [2]) spatial correlation, so the NANOGrav collaboration has not claimed a detection
of a gravitational wave signal yet. Further analysis is required in order to confirm this as
a first observation of an stochastic gravitational wave background (SGWB). It is, however,
tantalizing to consider this data seriously and ask ourselves about its possible implications
for astrophysics and cosmology.

Our current understanding of galaxy evolution and merging history leads us to the idea
that there should be a large number of supermassive black hole binaries (SMBHB) through-
out the universe. This incoherent sum of all such SMBHB will in turn produce an SGWB.
The predicted spectrum of this type of source in the nanohertz frequency band has been es-
timated to be close to the current limits of the Pulsar Timing Array (PTA) observatories [3].
Moreover, the frequency dependence of the spectrum is well known: the energy density in
such waves is given by a power law of the form ΩGW

SMBHB ∼ f 2/3. All this makes them the
most likely candidate to explain a potential signal at these frequencies.

There are, however, other potential sources of gravitational waves at these frequencies
which are associated with cosmological processes in the primordial universe. One of the most
natural and promising sources is the stochastic background of gravitational waves created
by a network of cosmic strings. Cosmic strings are effectively one-dimensional topological
defects that may have been produced by a phase transition in the early universe [4, 5]. We
will be interested here in the simple case of Abelian-Higgs strings, or superstrings, with no
couplings to any massless particle other than the graviton. Such a string network is described
by a single quantity that parameterizes the characteristic energy scale of the universe at the
time of string formation. This energy scale specifies the energy per unit length of the string
as well as its tension, µ. Since we are interested in gravitational effects, we will be most
interested in the combination Gµ, where G is Newton’s constant. We will work in units
where c = 1, so that Gµ is dimensionless.

The equality between the energy per unit length of the strings and their tension implies
that the dynamics of these strings are relativistic. Putting all of these facts together, one
can immediately see why cosmic strings are good candidates for gravitational waves: they
are cosmologically large relics that store very high energy densities associated with the early
universe, and they move relativistically under their own tension. This explains why an
accurate computation of the SGWB from strings has been pursued for a long time in the
cosmic string community [6–26].

Because string models are described by a single parameter related to the universe’s energy
at their time of formation, an observation of the SGWB from strings would indicate the
existence of new physics at the string scale. However, the apparent simplicity of the single-
parameter model is deceiving when it comes to detecting strings. The dynamics of the
cosmic string network are complicated, making it difficult to obtain detailed descriptions of
the necessary ingredients to compute the SGWB. One has to resort to large scale simulations
to be able to establish basic facts needed in this calculation, like the number density of cosmic
string loops throughout the history of the universe, or the typical power spectrum of such
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loops.1 These are questions that one would have to answer in any model that produces an
stochastic background: how many emitters are there, and how do they emit? Knowing this,
we can estimate the combined effect of all sources.

Comparisons of some cosmic string models’ predictions with the NANOGrav data have
recently been made in [27–30]. We will focus here on how theoretical uncertainties in the
typical power spectrum of a cosmic string loop impact the amplitude and slope of the SGWB
signal in the NANOGrav window, and therefore how the most-likely µ (and associated
confidence intervals) changes due to this uncertainty. We do not suggest that a confirmed
cosmic string detection would resolve this theoretical uncertainty, as that requires a better
understanding of cosmic string networks and evolution.

II. THE SGWB FROM COSMIC STRINGS

The basic idea behind the string SGWB computation is simple: for any given obser-
vational frequency, collect the contributions from all the different strings throughout the
history of the universe that emit waves with the appropriate frequency such that they are
observed at the observational frequency today. It is customary to present this information
by calculating the critical density fraction of energy in gravitational waves per logarithmic
frequency today,

ΩGW(ln f) =
8πG

3H2
0

fρGW(t0, f) , (1)

whereH0 is the Hubble parameter today, and ρGW denotes the energy density in gravitational
waves per unit frequency.

The calculation of the energy density has been described in detail in [22], and a summary
can be found in Appendix A. Each loop radiates in discrete multiples n of its fundamental os-
cillation frequency 2/l, where l is the invariant loop length, given by the loop energy divided

by µ. We write the power from loop i in harmonic n as P
(i)
n Gµ2, so P

(i)
n is dimensionless.

We write the total radiation power Γ(i)Gµ2, where Γ(i) =
∑

∞

n=1 P
(i)
n . For our purposes here,

we will neglect differences in Γ(i) between loops and just write Γ.
The three main ingredients we need to compute the string SGWB are:

• A cosmological model.

• The number density of non-self-intersecting loops as a function of length at any mo-
ment in time.

• The average power spectrum of gravitational waves from non-self-intersecting loops in
the network, Pn.

We consider a standard cosmological history, and take the loop number density described
in [22] based on the simulations reported in [31]. This leaves the average power spectrum
of non-self-intersecting loops, Pn. This is probably the quantity in the calculation with the
highest uncertainty at this moment, since it depends not only on the gravitational radiation
spectrum of non-self-intersecting loops at formation, but also on their evolution. This is
a challenging problem, since one needs to follow the change in shape of a representative

1 The string network contains both loops and long, horizon-spanning strings, but the contribution of long

strings to the SGWB is subdominant for all µ. We consider only the SGWB due to loops.
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set of non-self-intersecting loops throughout their lifetimes; in other words, one needs to
account for gravitational backreaction. Lacking this information, one can either take an
ansatz for backreaction, or model the power spectrum in some theoretically-motivated way
which should hold true, in general, even after accounting for backreaction.

An early attempt to take gravitational backreaction into account was done in [32]. There,
the authors implemented a toy model for backreaction on a large set of non-self-intersecting
loops obtained from the simulations described in [31]. The idea behind this toy model was
to simulate backreaction by smoothing structures on the loops at different time scales. The
results of this procedure indicated that the distribution of values of the total power was
peaked around Γ ∼ 50, which we will take as the Γ for all SGWB we study. We use PBOS

n

(after the authors’ initials) to indicate the average power spectrum computed by this work,
and will use it as one of the models we study in the following section. It is quite smooth,
and has a long tail describing the emission of a substantial amount of power at the high-
frequency modes of the string. This can be traced to the presence of cusps in the final stages
of the evolution of these smoothed loops. The SGWB spectra arising from this model were
discussed in [22].

Cusps are moments of the loop’s oscillation when a point on the loop formally reaches
the speed of light [33]. Cusp formation leads to the loop emitting a significant amount
of radiation, which is beamed in the direction of motion of the cusp [8].2 Accumulating
radiation from many such events forms a stochastic background whose power spectrum has
a long tail, of the form P cusp

n ∝ n−4/3 [8]. Because cusps are thought to be generic features
of loops, a common model of the power spectrum is one where low modes, which describe
the shape of the loop, are less important than high modes. If we focus on these high-mode
contributions to gravitational waves, then we can use a model where the spectrum is simply
given by P cusp

n . We will choose a constant of proportionality so that
∑

∞

n=1 P
cusp
n = Γ. This

is the second model of Pn we consider when discussing a possible string SGWB.
Another characteristic feature on realistic loops are kinks: points along the string where

there is a discontinuity in its tangent vector. These occur every time two segments of string
intersect one another and exchange partners. Kinks move at the speed of light along the
string, emitting a fan of radiation whose spectrum at high mode number emission goes as
P kink
n ∝ n−5/3 [35]. As with cusps, we can consider a model with only kink radiation. This

is our third model.
A fourth and final model takes the reverse approach: instead of focusing on the high-

harmonic tail, we consider a spectrum consisting only of the fundamental mode,

Pmono
n =

{

Γ if n = 1
0 otherwise

. (2)

Like the pure-cusp and pure-kink spectra, this is not a realistic assumption, but it serves as
a limiting case for strings which radiate primarily in low harmonics.

The real average spectrum should be calculated from a realistic distribution of non-self-
intersecting loops obtained from a scaling simulation and evolved under their own gravity.
This can be done using linearized gravity, since the force that affects each loop’s shape
depends on Gµ, which in our case is always very small. This idea was first developed in [36],
and has recently been advanced both analytically [37–40] and numerically [41]. The results
from these papers indicate that cusps and kinks are smoothed over time. Some of the effects

2 Cusp bursts can be sources of transient events in gravitational wave detectors. See the discussion in [12,

34, 35].
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of backreaction are captured by the smoothing procedure of [32], but there are cases where
this approach is not so accurate. The specific results of the long-term effect of backreaction
on loops produced by a scaling string network are therefore still unclear. Thus we will show
the gravitational wave amplitudes and spectral slopes to be expected for all four models and
compare them with the NANOGrav observations.

III. COMPARISON WITH NANOGRAV 12.5-YEAR DATA

The NANOGrav collaboration presents their data using the characteristic strain of the
form

hc(f) = A

(

f

fyr

)α

= A

(

f

fyr

)(3−γ)/2

, (3)

where fyr = 1/year, A is the strain amplitude, and γ is the spectral index. The energy density
in gravitational waves can be obtained from this characteristic strain using the relation

ΩGW(f) =
2π2

3H2
0

f 2h2
c(f) . (4)

NANOGrav also reports likelihoods in the parameter space of (γ,A), which we will use to
construct confidence regions to use for our analysis of the effect of different Pn.

For a given Gµ and Pn, we can compute the energy density in gravitational waves with
Eq. (1). From this, we approximate the spectral index and amplitude using the two lowest
frequencies seen in NANOGrav, f1 = 1/(12.5 yr) and f2 = 2f1. This process provides a good
fit to compare to the 5-frequency contours because the two lowest frequencies in NANOGrav
are much better determined in comparison to the third through fifth lowest frequencies. Our
method is to calculate

γ = 5−
ln(ΩGW(f2)/ΩGW(f1))

ln(2)
, (5a)

A =

√

3H2
0Ω(f1)f

3−γ
yr

2π2f 5−γ
1

(5b)

for each ΩGW.
Figure 1 shows the curves one obtains in the (γ,A) plane for Gµ ∈ [10−9, 10−11] for our

four models of Pn. All models have been normalized so that the total power is given by
Γ = 50. We report the approximate ranges of logGµ which predict values within the 1σ,
1.5σ, and 2σ confidence range in Table I.

The important general result of Fig. 1 is that the (γ,A) parameters predicted by the dif-
ferent spectra are quite similar over the range we investigate. This means that the theoretical
uncertainty in the average gravitational wave power spectrum from loops will not greatly
affect the conclusions obtained from identifying the NANOGrav result with the SGWB from
cosmic strings. In other words, assuming the actual spectrum of realistic loops is somewhere
close to the models we study here, we can infer that the constraints on Gµ are quite similar
to the ones obtained from this figure. Of course, future data and analysis will likely reduce
uncertainties, shrinking the range of the significance contours, and allowing us to pin down
the most likely value of Gµ. Our ability to do that will depend on reducing our uncertainty
in the loop power spectrum. This is the job of simulation, and a detection consistent with
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FIG. 1. The amplitude vs. spectral index for various cosmic string tensions, Gµ, for four models of

the average power spectrum, Pn. The tic marks show steps of 0.1 in logGµ, from −9 to −11, with

large tics every 0.5. The short, medium, and long dashes show the 1σ, 1.5σ, and 2σ contours (i.e.,

they enclose 68%, 86%, and 95% of the likelihood, respectively) made from the NANOGrav 12.5-yr

5-frequency chain data [42]. We follow the process outlined in the PTA GWB Analysis tutorial [43]

and then extract the contour control points directly from the resulting graphical object [44]. We

use 50 bins in each direction to produce higher-resolution contours than are seen in Fig. 1 of [1].

The vertical gray line shows the spectral index to be expected from SMBHB.

Pn model 1σ range 1.5σ range 2σ range

BOS (−10.08,−10.40) (−9.92,−10.52) (−9.77,−10.62)

cusp (−10.02,−10.39) (−9.85,−10.50) (−9.72,−10.60)

kink (−10.24,−10.52) (−10.08,−10.64) (−9.93,−10.74)

mono (−10.45,−10.67) (−10.27,−10.80) (−10.08,−10.90)

TABLE I. The approximate values of logGµ falling within the 1σ, 1.5σ, and 2σ confidence intervals

of NANOGrav for the four Pn models.

any of the above curves should not be considered evidence for that Pn being the true power
spectrum of loops in nature.

IV. RELATIONSHIP TO PREVIOUS WORK

A. Upper bounds

The authors of [23], including two of us, derived bounds on the possible values of Gµ
from non-observation of a SGWB. We concentrated on the BOS model. Using results from
the Parkes PTA [3, 45], we gave a limit of Gµ < 1.5× 10−11, and using the the NANOGrav
9-year results [46], we gave Gµ < 4.0× 10−11. However, referring to Fig. 1, we see that the
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best fit Gµ is about 5.6× 10−11, 40% larger than the limit based on NANOGrav and about
4 times the limit based on Parkes.

There are two reasons for this discrepancy. First, all pulsar timing arrays include models
of individual pulsar noise. If not treated correctly, this modeling can absorb the effects of
the SGWB, leading to incorrect upper bounds. This is discussed in detail in [47]. In [1],
the authors compare the NANOGrav red noise process detection with their previously given
upper limits.

Second, pulsar timing is dependent on the solar system ephemeris, which tells us how
to remove the earth’s motion through the solar system from the observed data. We do
not know this ephemeris to the accuracy necessary, and thus ephemeris uncertainty is an
additional source of error in gravitational wave measurements. In particular, if one allows the
observations to influence the choice of ephemeris, one may thereby absorb some gravitational
wave power and infer incorrect limits. See [48] for more detailed discussion.

B. Other cosmic string SGWB results

Other recent papers [27–30] have interpreted the NANOGrav 12.5-year data as a cosmic
string signal. We discuss the similarities and differences between their approaches and ours
here, and comment generally on agreements between those approaches.

The majority of the sources mentioned [27, 28, 30] employ the velocity-dependent one-
scale (VOS) model for generating the cosmic string SGWB. This model has an additional
parameter: the loop size at formation as a fraction of horizon size, α, which [27] sets to 0.1
and which [28, 30] allow to vary over some range.3 Reference [29] follows the same approach
as this paper. All of the aforementioned use a cusp power spectrum in creating their SGWB,
and so we can only make meaningful comparisons between their results and our cusp results.

The VOS model and the one we use here are in near-exact agreement when VOS takes
α = 0.1 and one corrects for the overall energy loss into kinetic energy of the loops [49]. We
would therefore expect close agreement between our results and those of [27], and between
our results and those of [28, 30] for α = 0.1.4 Reference [29] considers metastable cosmic
strings, characterized by a parameter κ; we would expect their results to match ours in the
limit κ → ∞, i.e., when the decay rate of cosmic strings due to monopole–antimonopole
pair production goes to zero and the strings decay only via GWs.

There is one additional concern in comparing different results in the γ-logA plane. Sup-
pose two different approaches generate identical SGWB, so they predict the same ΩGW at
some common reference frequency fref, but they use different approaches to determine γ.
When they extrapolate the amplitude from fref to fyr to report A (see Eq. (5b)), the resulting
A will be different. The difference in the reported logarithmic amplitude is

∆(log(A)) = log(A1/A2) =
1

2
(γ2 − γ1) log

(

fref
fyr

)

. (6)

Taking this effect into account, [27] draws very similar conclusions to ours as to the
bounds on Gµ, as does [28] for the α = 0.1 case. Reference [30] does not display their
results for α = 0.1, and so we cannot make a direct comparison. Reference [29] does not

3 When not exploring the effect of varying α, taking α = 0.1 for the VOS model is a typical one, based on

simulations of string networks.
4 Note that [28, 30] conclude that values of α < 0.1 produce better fits to the NANOGrav data.
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display a comparison to their results with a stable string SGWB, but their bounds on Gµ as
κ increases seem to be converging towards results consistent with ours (e.g., the point with
Gµ = 10−10 and largest κ is on the edge of the 1σ contour).

V. COSMIC SUPERSTRINGS

Until now, we have been discussing the gravitational spectrum produced by a network of
cosmic strings that exchange partners whenever they intersect. This is the expected inter-
action of strings that appear as topological defects in field theory (e.g., in the Abelian-Higgs
model [50, 51]). There are, however, other scenarios where a network of cosmologically
interesting string-like objects is produced. In particular, many cosmological models of su-
perstring theory suggest the production of fundamental strings, which are then stretched
to cosmological size by an expanding universe [52–55]. Once stretched, these fundamental
strings have similar dynamics to their classical counterparts, except for the crucial aspect
that their intercommution is different. This is due to the fact that their interactions are
quantum mechanical in origin, and also because the strings in these models may move in a
space with additional dimensions. Both these effects may significantly reduce their chance
to intercommute. That is, the strings sometimes pass through one another, rather than
splitting and rejoining to form sharply-angled kinks. This issue has been studied in [56],
where the conclusion was that the probability p of reconnection could be as low as 10−3.

A decrease in the intercommutation probability should have an effect on the macroscopic
properties of the network. There has been some debate in the literature about how this lower
probability would modify the overall density of the strings [53, 57, 58]. This is important
to the calculation of the SGWB, since the density of loops has a direct impact on the size
of ΩGW. Large scale simulations would be necessary to establish the precise modifications
that this reduced probability will bring to the final scaling distribution of loops presented
earlier, but they have not yet been done. Here, we will assume that the effect of reducing
p is to increase the loop number density by factor 1/p, without changing the properties of
the loops, so that

ΩGW ∝
1

p
. (7)

Lowering the intercommutation probability increases the amplitude of gravitational waves
without changing the slope, and so we may estimate the range of p which is compatible with
the current NANOGrav data. The upward displacement of the curves in the (γ,A) plane
quickly moves them away from the 1σ region, as shown in Fig. 2, in agreement with the
result of [27].

However, the current likelihood data will never completely exclude a superstring network
at the 2σ level. The 1/p enhancement means that for small p we are interested in a smaller
Gµ. This puts us in the low-f region in the cosmic string background spectrum [22], where
ΩGW rises with frequency as f 3/2, giving γ = 7/2. For any small p, there will be some Gµ
giving the A that lies in the 2σ region at the left of Fig. 2. While we only show superstrings
using the BOS model of Pn, the 3/2 rising slope does not depend on Pn, and so this effect
is generally true.

Despite this, the NANOGrav data as currently given is most consistent with p ≈ 1. As
a consequence, superstrings are likely to explain the potential signal only if their network
properties are very similar to those of cosmic strings.
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FIG. 2. The amplitude vs. spectral index for various superstring tensions, Gµ, for the BOS model

of the average power spectrum. The intercommutation probabilities go from 1 to 10−3 in powers of

ten, with lower p moving the curve out of NANOGrav’s significance region (c.f. Fig. 1), represented

by the dashed grey lines. The other models of Pn return similar results. The vertical gray line

shows the spectral index to be expected from SMBHB.

A counterargument to this claim is the idea that strings are wiggly, and so each string
crossing has multiple potential intersection events, increasing the chance that strings in-
tercommute and thus depressing the 1/p enhancement to the energy density. A specific
example of such an argument can be made using the results of [58], which found the energy
density to have very little enhancement down to p ≈ 0.1, after which it follows ΩGW ∝ p−0.6.
This would relax the bounds on p somewhat, allowing superstrings down to p ∼ 10−2 to fall
at the edge of the 1.5σ region, roughly where p = 10−1 lies in Fig. 2.

Our conclusions about superstring viability change slightly if improved statistics moves
the confidence interval contours towards the left, towards the predicted SMBHB signal’s
vertical line at γ = 13/3. There, an enhancement to the amplitude due to p ∼ 0.1 would
cause the string curves presented to overlap with the SMBHB signal around Gµ <∼ 10−10.5.
It may therefore be necessary to distinguish a superstring SGWB from a supermassive black
hole binary SGWB. Because we expect the number of cosmic strings or superstrings that
contribute to the SGWB to be large in the frequency band seen by NANOGrav, this could
be accomplished by studying anisotropies in the reported signal, which we would not expect
if strings are the source.

VI. CONCLUSIONS

Regardless of the model chosen to represent the average power spectrum of a cosmic
string loop, the potential signal reported by NANOGrav could be a cosmic string stochastic
gravitational-wave background. Thus, as long as these models are close to the true average
power spectrum, a confirmation of a cosmic-string signal would predict the existence of a
network of strings with a tension in the range of Gµ ≈ [10−10.0, 10−10.7]. Such Gµ values are
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FIG. 3. The energy density vs. frequency of the SGWB for the four Pn models we consider, as

seen in the LISA band. All curves are for Gµ = 10−10, but the range of tensions which fit the

NANOGrav data produce similar results. The decline in the lines, and its variation, are direct

consequences of changing degrees of freedom in the universe’s past, and so LISA could measure

deviations from a standard cosmological model for such curves [65].

low enough that we would not expect such strings to be visible in the cosmic microwave back-
ground [59] or to produce gravitational wave bursts that can be seen in interferometers [60]5

or pulsar timing arrays [62].
Superstrings are less favorable as an explanation for the signal. They would either have

to have very similar network properties to cosmic strings, due to p ≈ 1, or would have to be
rescued by changes to the confidence interval contours.

If the signal is indeed from cosmic strings, then we can expect to see other parts of the
SGWB in future gravitational wave telescopes. The values of Gµ we consider are too low for
LIGO/VIRGO to observe the SGWB [61]6, but LISA, the Einstein Telescope, or the BBO
are sensitive in the correct frequency and amplitude range. In LISA, for example, we could
measure the section of the SGWB which contains information about cosmological history,
particularly the effect of changing degrees of freedom [22, 49, 64, 65], as shown in Fig. 3.
Such a measurement could be used to quantify deviations from the standard model and thus
probe new physics.
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Appendix A: Computing the gravitational wave energy density

Fundamental to Eq. (1) is ρGW, the energy density in gravitational waves per unit fre-
quency. It can be written

ρGW(t, f) = Gµ2

∞
∑

n=1

CnPn , (A1)

where Pn describes the average gravitational wave spectrum of the cosmic string loops in
the network and

Cn =

∫ t0

0

dt

(1 + z)5
2n

f 2
n(l, t) =

2n

f 2

∫

∞

0

dz

H(z)(1 + z)6
n

(

2n

(1 + z)f
, t(z)

)

, (A2)

where n(l, t) is the loop number density, H(z) is the Hubble parameter and t(z) the age of
the universe at redshift z. We consider a standard cosmological history, so H(z) and t(z) are
given by the usual expressions in terms of the components of the universe, Ωr, Ωm, and ΩΛ,
as well as the number of degrees of freedom at each moment in time (see [22] for a detailed
explanation of these functions).

Finding the form of n(l, t), is equivalent to finding the distribution of non-self-intersecting
loops at all times in the history of the universe. This sounds like a challenging problem since
it will be impossible to simulate the evolution of the network for such a wide range of time
scales. Luckily for us the evolution of a cosmic string network has a scaling solution, where
the energy density of the string remains a small fraction of the background energy density of
the universe. This is an important property of the model since it makes cosmological string
networks compatible with observations. There is a more important aspect of this scaling
solution for our calculation: in a scaling solution, the form of the loop distribution satisfies

n(l, t) = t−4
n(x) , (A3)

where x = l/t is the ratio of the loop size to the age of the universe at some particular time,
and n(x) is the number of loops per unit x in a volume t3. The scaling solution simplifies the
problem, reducing it to finding n(x). Finding this scaling solution from numerical simulations
presents a big challenge, since one has to run for extremely long periods of time before
reaching a true scaling solution for the loop distribution.7 Here, we use the results of the
Nambu-Goto simulations presented in [31] and analyzed in [20], which allow us to write the
distribution for loops as

nr(l, t) =
0.18

t3/2 (l + ΓGµt)5/2
(A4)

for loops existing in the radiation era. Some of these loops will survive until the matter era,
when they will contribute to the number of loops as

nrm(l, t) =
0.18

(

2
√
Ωr

)3/2

(l + ΓGµt)5/2
(1 + z)3 . (A5)

7 See, for example, [66] for a discussion of the existence of transient solutions early in a simulation.
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Finally, loops produced in the matter era contribute as

nm(l, t) =
0.27− 0.45(l/t)0.31

t2(l + ΓGµt)2
, (A6)

for l < 0.18t, but these make no significant contribution to the gravitational wave spectrum
today.

We note that these expressions depend on the parameter Γ, which describes the aver-
age total power of gravitational radiation emitted by the population of non-self-intersecting
loops. The emission of energy into gravitational waves reduces the length of the loop ac-
cording to

l = l0 − ΓGµ(t− t0) , (A7)

which is why the previous expressions depend on Γ.
The final ingredient, Pn, is discussed in the main text.
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