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Abstract 
Diatoms are a group of photosynthetic microorganisms that play important roles in aquatic food webs and global biogeochem-
ical cycles. They reside in the upper layer of oceans and lakes, and their interactions with the dissipation scales of turbulence 
govern a variety of processes, such as nutrient acquisition, prey–predator interactions, and aggregation. Interactions of cells 
with turbulence may also alter vertical motions and spatial distributions. However, observations of these interactions remain 
scarce because of the difficulty of generating ecologically relevant flows in the lab or tracking microscopic cells in the field. 
Here, we present an experimental system capable of measuring trajectories and spatial distributions of live diatom cells in 
turbulence. The small-volume turbulence tank uses stochastic forcing to restrict mean flow while producing homogeneous 
turbulence statistics at relatively high Reynolds number. Individual cell trajectories are tracked in three dimensions with a 
volumetric particle imager that uses the principle of defocused imaging combined with a double-pinhole aperture mask to 
obtain particle positions in three dimensions using a single camera. We conducted experiments at two different turbulence 
intensities and our results show that while root-mean-square velocities of diatoms are similar to those of tracer particles, 
their spatial distributions indicate enhanced clustering at the dissipation scales in comparison with tracer particles. This 
clustering behaviour is surprising both because diatom cells are characterised by a very low Stokes number and because 
clustering decreases when the turbulence intensity (and dissipation rate) increases. Several mechanisms could explain this 
result, including cell shape effects and active regulation of cell density in response to the ambient turbulence.
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1  Introduction

Diatoms are key players in aquatic ecosystems, carrying 
out up to one-fifth of the photosynthesis on Earth, gen-
erating organic carbon that serves as the base of marine 
food webs, and playing a significant role in global bio-
geochemical cycles of carbon and silica (Armbrust 2009; 
Bowler et al. 2010; Ragueneau et al. 2006; Malviya et al. 
2016). The upper layer of oceans and lakes, where diatoms 
reside, is characterised by turbulent flows, and interac-
tions of diatoms with the ambient turbulence are central 
to understanding almost every aspect in the life of this 
important group of photosynthetic microorganisms. Dia-
toms cells lack flagella or cilia, which makes them non-
motile, but their cell density slightly exceeds that of the 
surrounding water, and hence they tend to sink through 
the water column.

Observations in a Taylor–Couette device and an oscil-
lating grid turbulence tank showed enhanced diatom set-
tling velocities in turbulence relative to quiescent water 
(Ruiz et  al. 2004). Trajectory biasing and preferential 
sweeping (Maxey 1987) were proposed as potential 
mechanisms to explain these observations. While recent 
numerical simulations of sinking diatoms in turbulence 
have shown evidence of trajectory biasing and the prefer-
ential sweeping mechanism for non-spherical body shapes 
(Niazi Ardekani et al. 2017), the overall effect was too 
small to explain the enhanced settling velocities reported 
in Ruiz et al. (2004).

Separately, experiments have shown that diatoms can 
actively alter their settling velocity in quiescent water in 
response to nutrient availability and local shear by regulat-
ing their buoyancy (Gemmell et al. 2016; Du Clos et al. 
2019; Du Clos et al. 2021; Arrieta et al. 2020). Comple-
mentary numerical modelling has shown that such active 
regulation of buoyancy in response to turbulence-induced 
mechanical cues at the dissipation scales could result in 
clustering and alter settling velocities (Borgnino et al. 
2019; Arrieta et al. 2020). When subjected to oscillating 
grid turbulence over extended periods of time, studies have 
also shown that chain-forming diatoms may alter their 
morphology (Amato et al. 2017; Dell’Aquila et al. 2017). 
Thus, while it is clear that diatoms can and do respond 
to both physical and chemical cues in their environment 
over multiple time scales, their response to turbulence is 
not well understood.

Experimental observations and measurements of live 
diatoms at the dissipation scales of turbulence are scarce 
because it is difficult to generate ecologically relevant 
flows in the lab and track motions of individual cells in 
three dimensions. Large-volume turbulence tanks are typi-
cally impractical for phytoplankton experiments because 

massive culturing efforts are required to get high numbers 
of cells that can be tracked to generate data with sufficient 
statistical power, while smaller turbulence tanks have dif-
ficulty generating high-Reynolds-number turbulence with 
homogeneous statistics. Additionally, turbulence tanks 
typically used for phytoplankton studies (oscillating grids 
and orbital shakers, Guadayol et al. 2009) are subject to 
strong mean flow patterns that make tracking of individual 
cells difficult and data prone to misinterpretation due to 
significant gradients in velocity and dissipation statistics.

Here, we fill this gap in experimental investigations of 
diatom cells in turbulence. We describe an experimental 
system with a small-volume turbulence tank that is capable 
of generating turbulent flow with low mean flow and homo-
geneous statistics at reasonable Reynolds numbers (Sect. 2), 
and a volumetric particle imager that is able to track indi-
vidual diatom cells in three dimensions (Sect. 3). After pre-
senting tests of particle trajectory analyses using synthetic 
data (Sect. 4), we report measurements and results with two 
species of diatoms and compare the statistics of trajectories 
and spatial distributions to those of tracer particles at two 
different turbulence intensities (Sect. 5). We find that turbu-
lence induces a much greater clustering in the diatom cells 
than in tracer particles and that this difference in clustering 
diminishes when the turbulence intensity increases.

2 � Turbulence tank

2.1 � Tank design

We designed and constructed a small-volume turbulence 
tank made out of polycarbonate plastic that measures 12.25 

Fig. 1   Schematic diagram of turbulence tank and volumetric particle 
imager (VoPI)
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cm (length) by 8.25 cm (height) by 6.25 cm (width), as 
shown in Fig. 1. Flow is generated in the tank by four rotat-
ing paddles in the four corners of the tank, where each pad-
dle is a rigid mesh with square holes of side-length 2 mm. 
Each paddle is driven by a Lego Robotics motor (Model 
NXT, production year 2006, 9 VDC, 2 A, 0.5 Nm maximum 
torque). The paddles are separated from the central volume 
of the tank by 2 screens with an opening area ratio of 58% 
and holes of diameter 5 mm. The paddles and screens are 
acrylonitrile butadiene styrene (ABS) plastic, making the 
entire system metal free, nontoxic, and therefore suitable for 
studies with seawater and live organisms.

Flow in the tank is controlled by the number of paddles 
simultaneously in motion, the direction of rotation for each 
paddle, and the motor power level for each paddle. From sys-
tematic investigations of multiple stochastic algorithms, we 
found that the algorithm that produced the lowest mean flow 
relative to the turbulence intensity was the ‘figure-skating 
algorithm’: each paddle, operating independently of the oth-
ers, rotates for a period of time Ton1 , then switches direction 
and rotates in the opposite direction for a period of time 
Ton2 , and then remains motionless for a period of time Toff . 
The parameters Ton1 , Ton2 , and Toff are all random numbers 
drawn from a uniform distribution spanning 1000–3000 ms.

We used the tank in two different modes of operation: a 
low-intensity (Low-Int) mode, where the motor power was 
50% of its maximum value, and a high-intensity (High-Int) 
mode, where the motor power was at its maximum value.

2.2 � Turbulence characteristics

To characterise the flow generated by the figure-skating 
algorithm in Low-Int and High-Int modes, we performed 
velocity measurements using stereoscopic particle image 
velocimetry (SPIV). The tank was filled with filtered water 
(Milli-Q) seeded with hollow glass spheres (diameter = 9–13 
μ m, �=1.10±0.05 g cm−3 , Sphericel, Potter Industries) that 
acted as tracer particles. We created a laser sheet of 1 mm 
nominal thickness in the x − y plane with a pulsed Nd:YAG 
laser (emission wavelength of 532 nm; New Wave Research) 
and took images from two stereoscopically arranged Imager 
Intense cameras (1376 × 1040 pixel resolution) that were 
operated in double-frame mode with a frame separation time 
(dt) of 8 ms. Images were processed using DaVis v8 soft-
ware (LaVision), where the first pass was performed using 
sub-windows of 64 × 64 px, followed by three passes at 32 × 
32 px. Velocity data were taken at a rate of 0.5 Hz for 1200 s, 
which resulted in 600 independent snapshots of the velocity 
field for ensemble averaging.

We took SPIV data in x − y planes at different z values 
( z = 0 , ±1 , and ±2 cm) to check the sensitivity of flow sta-
tistics to wall effects. We did not observe strong variations 

within this observation volume, and therefore, only present 
results from the z = 0 plane here.

One-point statistics and mean flow To analyse SPIV 
velocity data, we decompose the velocity into a mean and 
fluctuating quantity using a Reynolds decomposition:

where ⟨�⟩ is the ensemble mean velocity (calculated by aver-
aging over time) and �′ is the turbulent fluctuation. The root-
mean-square (RMS) values for the turbulent fluctuations 
of each component quantify the strength of the turbulence 
velocity in each direction, and we define an overall turbu-
lence velocity scale as: uRMS =

�
(⟨u�2⟩ + ⟨v�2⟩ + ⟨w�2⟩)∕3

�1∕2 . 
Spatially averaged values of uRMS and RMS values of each 
component are given in Table 1.

Spatial variation of mean and root-mean-square veloci-
ties (Fig. 2) show that the central region of the tank has 
low mean flow and relatively homogeneous turbulent 
velocity fluctuations. The turbulent velocity fluctuations 
show a degree of anisotropy with the ⟨u�2⟩1∕2 and ⟨w�2⟩1∕2 
being larger than ⟨v�2⟩1∕2 , likely due to the paddle forcing 
generating velocities predominantly in the x − z plane. 
To quantify the strength of the mean flow relative to the 
turbulent fluctuations, we follow Variano and Cowen 
(2008) and calculate the ratios � = �⟨�⟩�∕�RMS and 
M∗ = (⟨u⟩2 + ⟨v⟩2 + ⟨w⟩2)∕(⟨u�2⟩ + ⟨v�2⟩ + ⟨w�2⟩) . Spatially 
averaged values of � and M∗ are listed in Table 1 and dem-
onstrate that mean flow is weak compared with turbulent 
fluctuations under both modes of tank operation.

An important consideration when studying the effects of 
turbulence on the mean settling velocity of particles is the 

(1)� = ⟨�⟩ + �
�,

Table 1   Parameters of turbulent flow

Low-Int High-Int

⟨u�2⟩1∕2 (mm/s) 7.0 18.7

⟨v�2⟩1∕2 (mm/s) 4.6 14.9

⟨w�2⟩1∕2 (mm/s) 8.0 32.3
uRMS (mm/s) 6.5 21.7
M1 0.052 0.028
M2 0.461 0.047
M3 0.024 0.005
M∗ 0.098 0.018
⟨�⟩ (mW/kg) 0.0069 0.16
� (mm) 0.62 0.28
�
�
 (ms) 381 78

u
�
 (mm/s) 1.6 3.6

λ (mm) 9.8 6.6
L (mm) 25.2 22
ReL 164 480
Reλ 64 142
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structure of the mean flow. The mean flow in our tank does 
not have a stationary structure as shown by splitting the 600 
snapshots of the velocity field into three equal time seg-
ments and calculating the mean flow for the first (Fig. 3a, 
d) and the last segment (Fig. 3b, e). The difference in mean 
flow between the first and last segments is of the same order 
as the mean flow itself (Fig. 3c, f). Previous investigations 
have found that stochastic forcing continually disrupts tank-
scale recirculations, helping to lower the magnitude of the 
mean flow (Variano and Cowen 2008; Pérez-Alvarado et al. 
2016). Here, we also show this produces a non-stationary 
mean flow.

Two-point statistics We characterise the spatial structure 
of turbulence using two-point statistics. We calculate the 
spatial correlation functions:

and the second-order structure functions:

in which s is the spatial lag and ek is the unit vector in the 
direction in which the spatial lag is taken (Pope 2000).

(2)a(s)ij,k =
⟨u�

i
(�) ⋅ u�

j
(� + s ek)⟩

�
⟨u�

i
⟩2⟨u�

j
⟩2
�1∕2

,

(3)Dij,k(s) =

⟨(
u�
i
(�) − u�

j
(� + s ek)

)2
⟩
,

We calculate the mean turbulent energy dissipation rate, 
⟨�⟩ , by using Kolmogorov theory (1941a; b; K41), which 
states that DLL = C2(⟨�⟩s)2∕3 in the inertial subrange, where 
DLL is the longitudinal structure function and C2 = 2.0 is the 
Kolmogorov constant (Pope 2000). We estimate the extent 
of the inertial subrange via the compensated longitudinal 
structure function, s−1D3∕2

11,1
 , with the inertial subrange being 

where the value of s−1D3∕2

11,1
 is within 5% of its maximum 

value. The mean dissipation rate is then calculated with 
the average value of D11,1 over this inertial subrange using 
⟨�⟩ = s−1(D11,1∕C2)

3∕2 (Fig. 4a, c), which gives 6.9 × 10−6 
W/kg and 1.6 × 10−4 W/kg for the Low-Int and High-Int 
modes, respectively (Table 1).

Based on the mean dissipation rates, we calculate the Kol-
mogorov (dissipation) scales via the relations: 

where � , �
�
 , and u

�
 are the Kolmogorov length, time, and 

velocity scales, respectively, and � is the kinematic viscosity. 
These scales are given in Table 1.

(4a)� = (�3∕⟨�⟩)1∕4,

(4b)�
�
= (�∕⟨�⟩)1∕2,

(4c)u
�
= (�⟨�⟩)1∕4,

Fig. 2   One-point statistics for 
Low-Int mode (a–f) and High-
Int mode (g–l). Panels in the top 
row for each mode are absolute 
values of the mean velocity: 
�⟨u⟩� (a, g); �⟨v⟩� (c, i); �⟨w⟩� (e, 
k). Panels in the bottom row for 
each mode are the RMS values 
of the turbulent fluctuations: 
⟨u�2⟩1∕2 (b, h); ⟨v�2⟩1∕2 (d, j); 
⟨w�2⟩1∕2 (f, l)



Experiments in Fluids          (2021) 62:149 	

1 3

Page 5 of 15    149 

Fig. 3   Mean flow ( ⟨u⟩,⟨v⟩ ) in the z = 0 plane for Low-Int mode (a–c) 
and High-Int mode (d–f). Left panels (a, d) show mean flow for first 
segment of data, middle panels (b, d) show mean flow for last seg-

ment of data, and right panels (c, f) show the differences between the 
first and last segments of data. Scales shown in c and f are consistent 
over their respective rows

Fig. 4   Two-point statistics for 
Low-Int mode (a, b) and High-
Int mode (c,d). Left panels 
(a, c) show the compensated 
second-order structure function 
(solid line) used to calculate 
mean dissipation rate. Right 
panels (b, d) show the spatial 
correlation function (solid line), 
a parabola fit near s = 0 to com-
pute the Taylor scale (dashed 
line), and a model function (Eq. 
(G19) in Pope 2000) fit in the 
inertial subrange to calculate 
the integral scale (dashed-dotted 
line). Dotted vertical lines 
indicate the inertial subrange. In 
panel b, only the lower bound 
of the inertial subrange is shown
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We also calculate the Taylor length scale and the integral 
length scale from the spatial correlation function. We fit an 
osculating parabola to the first 3 points of a11,1(s) , excluding 
the point at s = 0 , and find the Taylor scale, λ , as the posi-
tive root of this parabola (Eq. (6.53) in Pope 2000) (Fig. 4b, 
d). This gives Taylor length scales of λ = 9.8 mm (Low-Int) 
and λ = 6.6 mm (High-Int) and Reynolds numbers based 
on the Taylor length scale of Reλ = 64 (Low-Int mode) and 
Reλ = 142 (High-Int) (Table 1). These Reλ values indicate 
that the flow is in the fully developed turbulence regime 
typical of laboratory experiments and direct numerical simu-
lations. The spatial extent of the SPIV field of view was 
not sufficiently large to calculate the integral length scale 
directly via computing the integral

Thus, following Bellani and Variano (2014), we fit a model 
of the correlation function in the inertial subrange where 
the integral length scale is a fitting parameter (Eq. (G.19) 
in Pope 2000) (Fig. 4b, d). This gives integral length scales 
of L = 25.2 mm (Low-Int) and 22 mm (High-Int) (Table 1).

We further investigate the scale-dependent turbulence 
structure in the flow by comparing different second-order 
structure functions and spatial correlation functions (Fig. 5). 
The longitudinal structure functions ( D11,1 and D22,2 ) show 
that flow stretching in the Low-Int mode occurs more in 
the x-direction than the y-direction at all scales, but this 

(5)Lij,k = ∫
∞

0

a(s)ij,k ds.

difference diminishes in the High-Int mode. The corre-
sponding spatial correlation functions ( a11,1 and a22,2 ) show 
that the integral scale is smaller in the y-direction than the 
x-direction, but this difference is again reduced in the High-
Int mode compared to the Low-Int mode. The transverse 
structure functions quantifying flow rotations about z-direc-
tion ( D11,2 and D22,1 ) show that the flow anisotropy observed 
in the one-point statistics is present at all scales. D11,2 is 
larger than D22,1 in both Low-Int and High-Int modes. This 
behaviour is also reflected in the corresponding spatial cor-
relation functions ( a11,2 and a22,1 ), which show that the u 
velocity stays correlated with itself over a larger distance in 
the y-direction compared to the v velocity in the x-direction. 
Overall, the turbulence structure is weakly anisotropic.

3 � Volumetric particle imager

Overview We used the volumetric particle imager (VoPI; Tse 
and Variano 2013) to take Lagrangian data of particle posi-
tions and velocities in the turbulence tank. Briefly, the VoPI 
measures 3D positions of particles within its measurement 
volume using the principle of defocused imaging (Willert 
and Gharib 1992; Pereira and Gharib 2002). Images are 
taken with a borescope (Pro Hardy 12″, 0.25” diameter, Gra-
dient Lens Corporation) that is coupled to a digital camera 
(Prosilica GE680, Allied Vision Technologies) via a double-
pinhole aperture mask. The measurement volume is lit with 
white light (Luxxor 24W LS, Gradient Lens Corporation) 

Fig. 5   All two-point statistics 
for Low-Int mode (a, b) and 
High-Int mode (c, d). Left 
panels (a, c) show the compen-
sated second-order structure 
functions: D11,1 (solid black 
line), D22,2 (dashed black line), 
D22,1 (thick solid blue line), and 
D11,2 (thick dashed blue line). 
Right panels (b, d) show the 
spatial correlation functions: 
a11,1 (solid black line), a22,2 
(dashed black line), a22,1 (thick 
solid blue line), and a11,2 (thick 
dashed blue line)
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that is delivered though optical fibres around the edge of 
the borescope. Figure 6 shows the VoPI and provides an 
overview of its concept, with further details available in Tse 
and Variano (2013). Here, we focus on the updates to its 
calibration and data analyses.

Image processing summary In the images collected by the 
VoPI camera, each particle appears as 2 objects (or a ‘dou-
blet’) due to the double pinhole in the aperture mask. The 
image processing algorithm removes the background noise, 
identifies doublets, and calculates the location of the dou-
blet centre (x� , y�) , separation distance between objects in a 
doublet d, widths of the 2 objects in the doublet (x�

w
, y�

w
) , and 

intensity of the doublet (m) using user-defined thresholds. 
The separation distance, d, is computed by identifying the 
secondary peak in the autocorrelation function of the doublet 
(see Fig. 6 and accompanying text in Tse and Variano 2013 
for a detailed description).

Calibration Doublet data in image coordinates (x�, y�, d) 
are converted to a 3D particle position in the laboratory 
frame (x, y, z) via calibration functions. We determined 
these calibration functions using calibration data acquired 
by taking repeated images of a calibration plate at dif-
ferent distances away from the borescope tip. The cali-
bration plate consisted of a matrix of 0.15-mm-diameter 
dots separated by a known distance (0.5 or 1 mm, depend-
ing on the setting of the boroscope) with a reference dot 
marked for ease of orientation. We mounted the calibra-
tion plate perpendicular to the axis of the boroscope on a 
XY microstage for precise control of its distance from the 
boroscope. Starting with the calibration plate just touch-
ing the distal tip of the boroscope, we moved the tip of 
the boroscope away from the plate in increments of 1 mm, 

taking a new image each time. This calibration procedure 
was performed in seawater to match refractive indices of 
the media for experiments with phytoplankton cells in the 
turbulence tank. We fitted this data to the following cali-
bration functions for in-plane (x, y) and out-of-plane (z) 
particle positions: 

Here, (x, y, z) is the dot position relative to the VoPI’s dis-
tal tip in the laboratory coordinate system, r =

√
(x2 + y2) 

is the radial distance from the borescope axis, and C1–C7 
are calibration coefficients. Since these calibration coeffi-
cients are unique to the borescope’s focal setting, the VoPI 
only needs to be calibrated once.

We performed the calibration procedure for two dif-
ferent focal settings, which we call ‘A’ (a higher optical 
magnification to allow imaging of tracer particles of size 
≈ 10 μ m) and ‘E’ (a lower optical magnification to allow 
imaging of diatoms of size ≈ 100 μm). The calibration data 
and calibration functions are shown in Fig. 7 with values 
of calibration coefficients given in Table 2.

When using the VoPI in turbulence tank experiments, 
we exclude data that fall outside the measurement vol-
ume as defined by the convex hull of the calibration data 
of each focal setting. Thus, the calibration fits are not 
extended beyond the data originally used to generate them 
and the uncertainty in experimental data is characterised 
by the RMS values of the errors in the calibration data. 
This uncertainty is greatest in the z-position and increases 
slightly with distance away from the distal tip.

Particle tracking To obtain Lagrangian statistics from 
data of particle positions in each frame, we implemented a 
particle-tracking algorithm. We use the 4-frame best-esti-
mate (4BE) algorithm in Ouellette et al. (2006), which is 
summarised in their Fig. 8. Briefly, this algorithm uses the 
nearest-neighbour heuristic from two consecutive frames 
to start building tracks and uses a 4-frame method to con-
tinue each track. The 4-frame method seeks candidate par-
ticles for a track within a predefined search radius of the 
predicted location in the next frame. Of all particles that 
match this criterion, the particle that is chosen to be part 
of the track is the one that finds a particle closest to the 
predicted location in the fourth frame, where this predicted 
location is calculated with finite-difference estimates of 
velocity and acceleration from the particle positions over 
the first three frames. We set the search radius to 0.5 mm 

(6a)x = C1 + C2x
� + C3d + C4x

�d,

(6b)y = C1 + C2y
� + C3d + C4y

�d,

(6c)z = −C5 exp

(
−
r4

C6

)
dC7 .

Fig. 6   VoPI components and an overview of 3D particle position 
measurements
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in the x and y directions and 2.5 mm in the z direction, fol-
lowing the recommendation by Malik et al. (1993) to use 
(3 × expected particle displacement) + (3 × uncertainty in 
particle position). The performance of this particle track-
ing method is quantified in Sect. 4.

Particle velocity To calculate the Lagrangian particle veloc-
ities, we convolve the particle positions along their trajectories 
with a kernel that simultaneously performs Gaussian smooth-
ing and differentiation (Mordant et al. 2004; Ouellette et al. 
2006):

 with the filter width fw = 1 frame and the filter support 
fL = 3 frames. These filter parameters provide a good com-
promise between smoothing and minimum required track 

(7)k(�) =
� exp

�
−

�
2

fw
2

�

�
fLf

2
w
exp

�
−

fL
2

fw
2

�
−

f 3
w

2

√
�erf

�
fL

fw

�� ,

length ( 2fL ) while still ensuring that numerical convolu-
tion with a constant or  a line of constant slope produce the 
expected results to within 1%.

We calculate statistics of particle velocity, such as mean 
and variance, from the particle velocities along their trajec-
tories. Using all velocity samples from Lagrangian particle 
velocity data to calculate Eulerian velocity statistics results 
in biased values since slower particles produce longer tracks 
and hence more data (e.g., Buchhave et al. 1979). We avoid 
this bias by first computing averages for each track and then 
averaging across all tracks so that each track contributes 
equally regardless of its length. 95% confidence intervals 
are calculated by applying the bootstrap technique to this 
procedure with randomly selected tracks.

Clustering Particle clustering is typically quantified 
using the radial distribution function (RDF; e.g., Salazar 
et al. 2008). However, computing the RDF was not possible 
for our data because: (1) particle concentrations (number 

Fig. 7   Calibration data and errors associated with measuring particle 
position for focal setting ‘A’ x-positions (a), focal setting ‘A’ z-posi-
tions (b), focal setting ‘E’ x-positions (c), and focal setting ‘E’ z-posi-

tions (d). Positions (x and z) and errors in predicting those predictions 
(e_i) are in units of mm. Data for y is similar to that for x 
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of particles per unit volume) were intentionally kept low 
to avoid particle–particle interactions, which meant that 
individual frames contained insufficient data to compute 
the RDF; and (2) the RDF is a function of the measure-
ment volume, which in our case was anisotropic and did 

not have periodic boundary conditions, making it difficult 
to normalise the histograms of particle-pair separation dis-
tances without introducing ad hoc assumptions. Instead of 
using the RDF, we quantified particle clustering by com-
puting a probability density function (PDF) of pair-wise 

Table 2   Parameters of the volumetric particle imager (VoPI) calibration with with 95% confidence intervals in brackets

Focal setting ‘A’ Focal setting ‘E’
Measurement volume (mm3) 38.8 40.7

Calibration coefficients for x-position (Eq. 6a)
C1

−3.57 [ −3.73 −3.42] −4.74 [ −5.00 −4.47]
C2 0.0104 [0.0100 0.0109] 0.0147 [0.0139 0.0154
C3 0.0503 [0.0442 0.0564] 0.0777 [0.0684 0.0871]
C4

−1.45 [ −1.63 −1.28] ( ×10−4) −2.42 [ −2.71 −2.13] ( ×10−4)
Calibration coefficients for y-position (Eq. (6b))
C1 2.85 [2.72 2.99] 3.49 [3.09 3.88]
C2

−0.0109 [ −0.0114 −0.0105] −0.0131 [ −0.0147 −0.0115]
C3

−0.0433 [ −0.0485 −0.0380] −0.0514 [ −0.0655 −0.0374]
C4 1.58 [1.39 1.76] ( ×10−4) 1.93 [1.35 2.51] ( ×10−4)
Calibration coefficients for z-position (Eq. 6c)
C5 87.29 [71.3 103] 252 [127 376]
C6 100 [54.4 147] 135 [67.6 202]
C7

−0.754 [ −0.816 −0.692] −0.993 [ −1.14 −0.844]
Uncertainties in particle position
ex,RMS (mm) 0.17 0.13
ey,RMS (mm) 0.12 0.14
ez,RMS (mm) 1.1 1.0

Fig. 8   Synthetic data analysis 
showing PDF of track-averaged 
velocities for a the u com-
ponent, b v component, c w 
component, and d the cluster-
ing analysis. Black circles are 
analysis of noiseless data and 
red asterisks are analysis of 
noisy data. In panels a–c, the 
solid line is the distribution 
from the OU process. In panel 
d, the shaded region shows the 
95% confidence intervals for the 
no-clustering scenario
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particle separation distances, with 95% confidence inter-
vals computed using the bootstrap technique (Efron and 
Tibshirani 1993). These PDFs were computed for the data 
(excluding cases when tracks overlapped) and compared to 
a Monte Carlo simulation of the PDF expected for a case of 
no clustering. To generate the Monte Carlo simulation data 
of particles that uniformly sample the measurement volume, 
we drew samples of particle positions from a uniform dis-
tribution in a square box and excluded particles outside the 
VoPI’s measurement volume so that the size and shape of 
our measurement volume were taken into account. We also 
matched the number of particles in the Monte Carlo simu-
lation to the real data. We generated many sample sets to 
compute 95% confidence intervals of this no-clustering PDF. 
If particles were to cluster, the PDFs of pair-wise distances 
for the data would lie outside the range of the no-clustering 
Monte Carlo PDFs.

4 � Synthetic data

Before describing the experiments with diatoms and tracer 
particles in the turbulence tank and their results, we first 
describe the generation and analysis of a synthetic dataset 
that replicates the type of data we gather in the experiments. 
This allows us to demonstrate the ability of our data analysis 
algorithms to accurately reproduce known statistics of par-
ticle velocity and clustering.

We generated synthetic particle tracks by modelling the 
Lagrangian velocity using an Ornstein–Uhlenbeck (OU) 
process, where each component of velocity is independent 
and evolves according to (Gillespie 1996):

where U∗(t) is the Lagrangian velocity time series, �t is the 
time step, TL is the Lagrangian integral scale, n is a random 
number drawn from a Gaussian distribution with zero mean 
and unit variance, and U∗

RMS
 is the RMS velocity. The OU 

process produces a Gaussian one-time PDF of velocity and 
an exponential Lagrangian velocity autocorrelation func-
tion. Overall, these properties compare reasonably well with 
data from moderate Reynolds number turbulence (pp. 485 
in Pope 2000). Parameters of the synthetic data were chosen 
to match the parameters of our system in High-Int mode: 
U∗

RMS
= 20 mm/s; TL = 1 s; �t = 0.005 s. Velocity time series 

for each velocity component were integrated using a 2 nd-
order Runge–Kutta algorithm to give particle positions for 
each track. We generated 100,000 such tracks in a 3D cube 
of size 100 mm with periodic boundary conditions and then 
used data for tracks that entered a cuboid measurement vol-
ume of side length 2 mm and height 10 mm in the centre of 
the cube, which approximated the measurement volume of 

(8)U∗(t + �t) = U∗(t)e−(�t∕TL) + nU∗
RMS

[
1 − e−(2�t∕TL)

]1∕2
,

the VoPI. To understand the effects of measurement noise, 
we added Gaussian random noise to the particle positions 
in the synthetic dataset with a noise structure that mimicked 
the VoPI measurement noise ( ex,RMS = ey,RMS = 0.15 mm, 
ez,RMS = 1 mm; Table 2). The noiseless and noisy synthetic 
data were fed into the data analysis pipeline to evaluate the 
performance of each step.

Defining a correctly recovered track as one that begins 
at the same frame as the synthetic data tracks and contains 
no spurious particles but may end earlier (Ouellette et al. 
2006), the particle-tracking algorithm correctly recovered 
97.6% of the tracks in the noiseless data, whereas it per-
formed poorly in the noisy data because tracks never began 
at the same frame as the synthetic data tracks. The velocity 
PDFs calculated from particle tracks showed that the noise-
less data matched the synthetic data closely for all compo-
nents of velocity, whereas the noisy data matched the syn-
thetic data only for the u and v components for which the 
noise levels were lower (Fig. 8a–c). For the noiseless data, 
the RMS particle velocities and their 95% confidence inter-
vals were ⟨u2⟩1∕2 = 22.2 ± 0.5 mm/s, ⟨v2⟩1∕2 = 21.9 ± 0.5 
mm/s, and ⟨w2⟩1∕2 = 20.8 ± 0.5 mm/s, whereas for the noisy 
data the corresponding values were ⟨u2⟩1∕2 = 24.5 ± 1.7 
mm/s, ⟨v2⟩1∕2 = 23.5 ± 2.0 mm/s, and ⟨w2⟩1∕2 = 100 ± 8 . 
For comparison, the synthetic data were generated using 
⟨u2⟩1∕2 = ⟨v2⟩1∕2 = ⟨w2⟩1∕2 = 20 mm/s. Thus, the effect of 
adding noise was to increase the RMS velocities. Finally, the 
clustering analysis showed no clustering for both noiseless 
and noisy datasets (Fig. 8d), conforming to the expectation 
that a Gaussian stochastic process wherein particle trajecto-
ries are independent would not generate particle clustering.

Overall, the synthetic data analysis allows us to conclude 
that the algorithms for particle tracking, calculating the sta-
tistics of particle velocity, and quantifying particle cluster-
ing are capable of reproducing known results. Measurement 
noise makes tracking more difficult and leads to poor repro-
duction of statistics for the w component where the noise is 
highest. However, measurement noise does not affect the 
clustering analysis.

5 � VoPI measurements of tracers 
and diatoms

5.1 � Experimental methods

We used the VoPI to record the motions of tracer particles 
and live diatom cells in the turbulence tank. For tracer parti-
cles, silver-coated hollow glass spheres (conduct-o-fil, Potter 
Industries) with a median diameter of 21 μ m and a mean den-
sity of 1.03 g/cm3 (Table 3) were used. For experiments with 
diatoms, two different species of the genus Coscinodiscus 
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were used: C. wailesii and C. radiatus (Fig. 9). Cells of both 
C. wailesii and C. radiatus species have a cylindrical shape, 
but they differ in size and density. Cells were grown in L1 
seawater media at 15.7 ◦ C under 14:10 light:dark cycle and 
cell culture in an exponential growth phase was used in the 
experiments. Measurements showed (Ayres  2017) that the 
C. wailesii cells had a mean cell diameter of 136 μ m and 
mean cell density of 1.07 g/cm3 ( n = 30 ), whereas the C. 
radiatus cells had a mean cell diameter of 58 μ m  and mean 
cell density of 1.25 g/cm3 ( n = 31 ) (Table 3).

The terminal Stokes settling velocity, the settling num-
ber, and the particle Stokes number for the different particle 
types are given by (Table 3):

where dp is the particle diameter and �p is the particle den-
sity. These expressions assume a spherical particle whose 
motion relative to the fluid is characterised by a small Reyn-
olds number, which are reasonable assumptions here. The 
Reynolds number based on the particle settling velocity in 
quiescent fluid is (Vsdp∕�) ≤ 0.1 for all particles.

(9)Vs =
[(�p∕�) − 1]d2

p
g

18�
,

(10)Svp =
Vs

u
�

,

(11)Stp =
[1 + 2(�p∕�)]d

2
p

36�2
,

In experiments with both tracer particles and diatoms, 
particles were introduced to the tank carefully and the 
flow–particle mixture was allowed time to come to an equi-
librium state before measurements began. The following 
procedure was followed to achieve this. The tank was ini-
tially filled with filtered seawater until water level reached 
approximately 3/4 of its height. Particles were then added 
to the tank in the form of a suspension of tracer particles or 
diatom culture, filling the rest of the tank volume, and gen-
tly mixed. The culture media and the filtered seawater that 
initially filled the tank were from the same stock of seawa-
ter. For the tracer particles, suspensions of the tracers were 
agitated in a test-tube vortex mixer prior to experiments to 
break up aggregates. Flow was then initiated at desired tur-
bulence level and particles were allowed to mix in the tank 
for 30 min before data collection started. The flow was also 
allowed continue between recording of replicate datasets.

Data were taken with the VoPI’s measurement volume 
positioned 15 mm below the geometric centre of the tank. 
Each experiment consisted of taking images with the VoPI 
at 200 Hz for 20 s and repeating this procedure 20 times to 
generate a total of 40,000 images that were subsequently 
processed and analysed. We performed separate experiments 
for each particle type (tracers and cells of the two species of 
diatoms) in each mode (Low-Int and High-Int) to generate a 
total of six different datasets.

5.2 � Experimental results

In each dataset, O(104) particles were identified from which 
O(103) tracks (e.g., Fig. 10) were found (Table 4). When 
comparing the RMS velocities from the SPIV measurements 
(Table 1) to those from VoPI measurements (Table 4), we 
see that the RMS velocities for tracer particles and diatoms 
are similar in both sets of measurements. This shows that 
noise in the particle’s positions, which is highest in the 
VoPI’s out-of-plane direction, is smoothed out when we 
calculate the particle velocity using convolution with a 
smoothing and differentiating kernel (Eq. (7)). From a par-
ticle–turbulence interaction point of view, this consistency in 
the RMS velocities across all particle types is not surprising 
since particle velocities are dominated by the largest scales 
of turbulent motion and therefore insensitive to the changes 

Table 3   Particle parameters computed with the following values for 
seawater: � = 1.025 g/cm3 and � = 1.02 mm2/s. For diatoms, dp is 
taken to be the diameter of the diatom’s cylindrical cross section

Tracers C. wailesii C. radiatus

dp ( μm) 21 136 58
�p (g/cm3) 1.03 1.07 1.25
Svp (Low-Int) 7 × 10−4 3 × 10−1 2 × 10−1

Svp (High-Int) 3 × 10−4 1 × 10−1 1 × 10−1

Stp (Low-Int) 1 × 10−4 4 × 10−3 8 × 10−4

Stp (High-Int) 5 × 10−4 2 × 10−2 4 × 10−3

Fig. 9   Images of a Coscinodiscus cells. C. wailesii: a Valve (top) view and b Girdle (side) view. C. radiatus: c Valve (top) view and d Girdle 
(side) view during cell division
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in particle size, Reynolds number, and Stokes number in 
these experiments.

Across different datasets in the VoPI measurements, we 
observe that the mean velocities of diatom cells are different 
to those from tracers (Table 4). The mean vertical velocity 
( ⟨v⟩ ) becomes more negative in the High-Int mode relative 
to the Low-Int mode, but this should not be interpreted as 
suggesting a turbulence-induced enhancement of the set-
tling velocity because the mean horizontal velocities also 
show increases in magnitude. The observed differences in 
the mean vertical velocity could be related to particle–turbu-
lence interactions, but will also be influenced by the struc-
ture of the mean fluid velocity in the tank, which is known 

to be non-stationary with > O(1) mm/s changes over time 
(Fig. 3). Since the magnitude of the mean velocity varia-
tion is of the same order as the expected settling velocity 
of the particles, it is not possible to conclusively state what 
effects particle–turbulence interactions at the dissipation 
scales have on the mean settling velocity in these data. How-
ever, we can rule out the extreme enhancement of settling 
reported by Ruiz et al. (2004).

At the dissipation scales, we observe that both tracer 
particles and diatoms are likely to be found in the vicin-
ity of other particles and cells with a higher likelihood 
compared to a random, uniform distribution of particles 
within the same volume (Fig. 11). Patchiness in the spatial 

Fig. 10   Example trajectories from High-Int mode: a tracers, b C. wailesii, and c C. radiatus. The start of each track is marked with a black circle 
and the trajectories do not overlap in time

Table 4   Results of VoPI measurements of tracer particles and diatom cells in turbulence tank

Tracers C. wailesii C. radiatus

Low-Int High-Int Low-Int High-Int Low-Int High-Int

No. of particles 88,566 39,149 28,457 16,480 27,675 8075
No. of tracks 5351 5188 1002 1876 1280 1151
Mean velocities (mm/s) with 95% confidence intervals
⟨u⟩ −0.6 [ −0.8 −0.4] 4.8 [4.3 5.4] −0.7 [ −1.0 −0.5] 2.3 [1.6 3.1] 2.4 [1.9 2.8] 4.3 [3.2 5.5]
⟨v⟩ −1.0 [ −1.1 −0.8] −1.3 [ −1.7 −0.9] −1.6 [ −1.9 −1.3] −3.3 [ −3.9 −2.7] −2.0 [ −2.3 −1.7] −2.8 [ −3.6 −2.0]
⟨w⟩ −0.2 [ −0.6 0.3] −1.1 [ −1.8 −0.4] 1.4 [0.5 2.3] 2.9 [1.9 3.9] −0.1 [ −0.8 0.6] 1.7 [0.3 3.1]
RMS velocities (mm/s) with 95% confidence intervals
⟨u2⟩1∕2 8.5 [8.3 8.6] 20.8 [20.4 21.2] 5.2 [5.0 5.4] 16.9 [16.3 17.5] 8.8 [8.4 9.1] 20.5 [19.8 21.3]

⟨v2⟩1∕2 5.4 [5.2 5.5] 14.6 [14.3 14.8] 4.5 [4.3 4.8] 13.6 [13.3 13.9] 5.8 [5.6 6.0] 14.7 [14.2 15.4]

⟨w2⟩1∕2 22.1 [21.1 23.1] 30.4 [29.7 31.1] 26.6 [25.0 28.1] 32.0 [31.0 33.0] 20.6 [19.8 21.5] 30.4 [28.6 32.7]
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distribution of planktonic organisms at small scales has also 
been observed in the field (Malkiel et al. 1999, 2006), but the 
mechanisms that control this are not understood. In our data, 
tracers appear to show a weak clustering at small scales that 
is independent of turbulence intensity. While any clustering 
at this Stokes number ( Stp = O(10−4) ) is surprising, previous 
experiments have reported similar behaviour (e.g., Ouellette 
et al. 2008).

For diatoms, clustering is weak and similar to that 
observed for the tracers in the High-Int mode, but stronger 
than that observed for the tracers in the Low-Int mode 
(Fig. 11). This trend in clustering is not consistent with 
the Stokes number (stronger clustering is observed for a 
lower Stokes number). Thus, other effects besides particle 
inertia could be causing clustering, and future work must 
investigate alternate mechanisms. Here, we propose three 
such alternate mechanisms. First, effects of particle shape 
could be important. Numerical simulations have shown 
that particles settling in turbulence can cluster even in the 
inertialess limit if the particle shape is non-spherical (Niazi 
Ardekani et al. 2017). Second, flow–particle interactions that 
lead to clustering in this regime may be better character-
ised by the settling number rather than the Stokes number. 
Our results would be consistent with this hypothesis, since 
we observe stronger clustering when Svp is closer to unity. 
Last, changes in cell density as a response to the turbulent 
flow could explain the clustering behaviour. Recent stud-
ies have shown that diatoms have the ability to modulate 
their buoyancy and settling speed in response to changes in 
light and nutrient concentrations (Du Clos et al. 2019, 2021). 
Under this hypothesis, our results would be consistent with 
the expected response: At higher energy dissipation rates, 
a decrease in cell density towards neutral buoyancy would 
decrease clustering and avoid enhanced settling via the pref-
erential sweeping mechanism. However, further investiga-
tions are necessary before these mechanisms can be verified.

6 � Conclusions

We have presented a new turbulence tank that produces 
homogeneous turbulence at moderate Reynolds number, yet 
is small enough to allow experiments with cultures of phyto-
plankton cells (Sect. 2). Using a volumetric particle imager 
(Sect. 3), we measured 3D trajectories of small, tracer parti-
cles and two species of diatoms (C. wailesii and C. radiatus) 
in this tank. This experimental system provides a way to 
systematically study small-scale interactions between dia-
tom cells and turbulence. The results of initial experiments 
showed that diatom cells were more likely to be found in 
closer proximity to each other at dissipation scales of tur-
bulence compared to tracer particles, but that this differ-
ence between diatoms and tracers vanished when turbulence 
intensity increased. This finding is consistent with several 
mechanisms of clustering that require further investigation, 
including effects of cell shape, settling number, and active 
regulation of cell density as a response to the ambient flow 
conditions.

Acknowledgements  The authors would like to acknowledge funding 
from the U.S. National Science Foundation (OCE-1334788 to Evan 
A. Variano and OCE-1334365 to Lee Karp-Boss and Peter Jumars). 
Additionally, we would like to extend our thanks to Peter Jumars for 
extensive discussions at the outset of this project and for providing 
comments on the manuscript, Laura Mazzaro for help with designing 
and constructing the prototype tank, and Morteza Gharib for fruit-
ful conversations regarding the volumetric particle imager. We also 
acknowledge useful comments from anonymous reviewers.

Declaration 

 Conflict of interest  The authors declare that they have no conflict of 
interest.

References

Amato A, Dell’Aquila G, Musacchia F, Annunziata R, Ugarte A, Mail-
let N, Carbone A, Ribera d’Alcalà M, Sanges R, Iudicone D, Fer-
rante MI (2017) Marine diatoms change their gene expression 

Fig. 11   Clustering data for 
tracers and diatoms for Low-Int 
mode (a) and High-Int mode 
(b). Symbols with 95% confi-
dence intervals are data and the 
corresponding shaded regions 
are the 95% confidence interval 
bounds for the no-clustering 
scenario. Each data point for the 
diatoms data at small particle-
pair separations corresponds 
to at least O(102) independent 
observations of particle pairs



	 Experiments in Fluids          (2021) 62:149 

1 3

  149   Page 14 of 15

profile when exposed to microscale turbulence under nutrient 
replete conditions. Sci Rep 7:3826

Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 
459:185–192

Arrieta J, Jeanneret R, Roig P, Tuval I (2020) On the fate of sinking 
diatoms: the transport of active buoyancy-regulating cells in the 
ocean. Philos Trans R Soc A Math Phys Eng Sci 378:20190529

Ayres S (2017) Cell density (mass per unit volume) of diatom cells and 
chains in relation to their size, growth, and nutritional condition. 
Master of science thesis, University of Maine

Bellani G, Variano EA (2014) Homogeneity and isotropy in a labora-
tory turbulent flow. Exp Fluids 55:1646

Borgnino M, Arrieta J, Boffetta G, De Lillo F, Tuval I (2019) Turbu-
lence induces clustering and segregation of non-motile, buoyancy-
regulating phytoplankton. J R Soc Interface 16:20190324

Bowler C, Vardi A, Allen AE (2010) Oceanographic and biogeochemi-
cal insights from diatom genomes. Annu Rev Mar Sci 2:333–365

Buchhave P, George WK, Lumley JL (1979) The measurement of tur-
bulence with the laser-doppler anemometer. Annu Rev Fluid Mech 
11:443–503

Dell’Aquila G, Ferrante MI, Gherardi M, Lagomarsino MC, d’Alcalà 
MR, Iudicone D, Amato A (2017) Nutrient consumption and 
chain tuning in diatoms exposed to storm-like turbulence. Sci 
Rep 7:1828

Du Clos KT, Karp-Boss L, Villareal TA, Gemmell BJ (2019) Cosci-
nodiscus wailesiimutes unsteady sinking in dark conditions. Biol 
Lett 15:20180816

Du Clos KT, Karp-Boss L, Gemmell BJ (2021) Diatoms rapidly alter 
sinking behavior in response to changing nutrient concentrations. 
Limnol Oceanogr 66:892–900

Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chap-
man & Hall, London

Gemmell BJ, Oh G, Buskey EJ, Villareal TA (2016) Dynamic sinking 
behaviour in marine phytoplankton: rapid changes in buoyancy 
may aid in nutrient uptake. Proc R Soc B Biol Sci 283:20161126

Gillespie DT (1996) Exact numerical simulation of the Ornstein–
Uhlenbeck process and its integral. Phys Rev E 54:2084–2091

Guadayol Ò, Peters F, Stiansen JE, Marrasé C, Lohrmann A (2009) 
Evaluation of oscillating grids and orbital shakers as means to 
generate isotropic and homogeneous small-scale turbulence in 
laboratory enclosures commonly used in plankton studies. Limnol 
Oceanogr Methods 7:287–303

Kolmogorov AN (1941a) The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds numbers. Dokl 
Akad Nauk SSSR 30:299–303

Kolmogorov AN (1941b) Dissipation of energy in locally isotropic 
turbulence. Dokl Akad Nauk SSSR 32:16–18

Malik NA, Dracos T, Papantoniou DA (1993) Particle tracking veloci-
metry in three-dimensional flows. Exp Fluids 15:279–294

Malkiel E, Alquaddoomi O, Katz J (1999) Measurements of plankton 
distribution in the ocean using submersible holography. Meas Sci 
Technol 10:1142–1152

Malkiel E, Abras JN, Widder EA, Katz J (2006) On the spatial dis-
tribution and nearest neighbor distance between particles in the 
water column determined from in situ holographic measurements. 
J Plankton Res 28:149–170

Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, 
Wincker P, Iudicone D, de Vargas C, Bittner L, Zingone A, Bowler 
C (2016) Insights into global diatom distribution and diversity in 
the world’s ocean. Proc Natl Acad Sci USA 113:E1516–E1525

Maxey MR (1987) The gravitational settling of aerosol particles in 
homogeneous turbulence and random flow fields. J Fluid Mech 
174:441–465

Mordant N, Crawford AM, Bodenschatz E (2004) Experimental 
Lagrangian acceleration probability density function measure-
ment. Physica D Nonlinear Phenomena 193:245–251

Niazi Ardekani M, Sardina G, Brandt L, Karp-Boss L, Bearon RN, 
Variano EA (2017) Sedimentation of inertia-less prolate sphe-
roids in homogenous isotropic turbulence with application to non-
motile phytoplankton. J Fluid Mech 831:655–674

Ouellette NT, Xu H, Bodenschatz E (2006) A quantitative study of 
three-dimensional Lagrangian particle tracking algorithms. Exp 
Fluids 40:301–313

Ouellette NT, O’Malley PJJ, Gollub JP (2008) Transport of finite-sized 
particles in chaotic flow. Phys Rev Lett 101:174504

Pereira F, Gharib M (2002) Defocusing digital particle image veloci-
metry and the three-dimensional characterization of two-phase 
flows. Meas Sci Technol 13:683–694

Pérez-Alvarado A, Mydlarski L, Gaskin S (2016) Effect of the driving 
algorithm on the turbulence generated by a random jet array. Exp 
Fluids 57:20

Pope SB (2000) Turbulent flows. Cambridge University Press, 
Cambridge

Ragueneau O, Schultes S, Bidle K, Claquin P, Moriceau B (2006) Si 
and C interactions in the world ocean: importance of ecological 
processes and implications for the role of diatoms in the biological 
pump. Glob Biogeochem Cycles 20:GB4S02

Ruiz J, Macías D, Peters F (2004) Turbulence increases the average 
settling velocity of phytoplankton cells. Proc Natl Acad Sci USA 
101:17720–17724

Salazar JPLC, de Jong J, Cao L, Woodward SH, Meng H, Collins LR 
(2008) Experimental and numerical investigation of inertial par-
ticle clustering in isotropic turbulence. J Fluid Mech 600:245–256

Tse IC, Variano EA (2013) Lagrangian measurement of fluid and par-
ticle motion using a field-deployable Volumetric Particle Imager 
(VoPI). Limnol Oceanogr Methods 11:225–238

Variano EA, Cowen EA (2008) A random-jet-stirred turbulence tank. 
J Fluid Mech 604:1–32

Willert CE, Gharib M (1992) Three-dimensional particle imaging with 
a single camera. Exp Fluids 12:353–358

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Nimish Pujara1,2   · Kevin T. Du Clos3,4   · Stephanie Ayres3 · Evan A. Variano1   · Lee Karp‑Boss3 

 *	 Nimish Pujara 
	 npujara@wisc.edu

	 Evan A. Variano 
	 variano@berkeley.edu

	 Lee Karp‑Boss 
	 lee.karp-boss@maine.edu

1	 Department of Civil and Environmental Engineering, 
University of California, Berkeley, CA 94720, USA

http://orcid.org/0000-0002-0274-4527
https://orcid.org/0000-0002-3017-7777
https://orcid.org/0000-0001-5102-238X
https://orcid.org/0000-0003-2851-1921


Experiments in Fluids          (2021) 62:149 	

1 3

Page 15 of 15    149 

2	 Present Address: Department of Civil and Environmental 
Engineering, University of Wisconsin-Madison, Madison, 
WI 53706, USA

3	 School of Marine Sciences, University of Maine, Orono, 
ME 04473, USA

4	 Present Address: Institute for Ecology and Evolution, 
University of Oregon, Eugene, OR 97403, USA


	Measurements of trajectories and spatial distributions of diatoms (Coscinodiscus spp.) at dissipation scales of turbulence
	Abstract 
	Graphic abstract
	1 Introduction
	2 Turbulence tank
	2.1 Tank design
	2.2 Turbulence characteristics

	3 Volumetric particle imager
	4 Synthetic data
	5 VoPI measurements of tracers and diatoms
	5.1 Experimental methods
	5.2 Experimental results

	6 Conclusions
	Acknowledgements 
	References




