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Abstract

Diatoms are a group of photosynthetic microorganisms that play important roles in aquatic food webs and global biogeochem-
ical cycles. They reside in the upper layer of oceans and lakes, and their interactions with the dissipation scales of turbulence
govern a variety of processes, such as nutrient acquisition, prey—predator interactions, and aggregation. Interactions of cells
with turbulence may also alter vertical motions and spatial distributions. However, observations of these interactions remain
scarce because of the difficulty of generating ecologically relevant flows in the lab or tracking microscopic cells in the field.
Here, we present an experimental system capable of measuring trajectories and spatial distributions of live diatom cells in
turbulence. The small-volume turbulence tank uses stochastic forcing to restrict mean flow while producing homogeneous
turbulence statistics at relatively high Reynolds number. Individual cell trajectories are tracked in three dimensions with a
volumetric particle imager that uses the principle of defocused imaging combined with a double-pinhole aperture mask to
obtain particle positions in three dimensions using a single camera. We conducted experiments at two different turbulence
intensities and our results show that while root-mean-square velocities of diatoms are similar to those of tracer particles,
their spatial distributions indicate enhanced clustering at the dissipation scales in comparison with tracer particles. This
clustering behaviour is surprising both because diatom cells are characterised by a very low Stokes number and because
clustering decreases when the turbulence intensity (and dissipation rate) increases. Several mechanisms could explain this
result, including cell shape effects and active regulation of cell density in response to the ambient turbulence.
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1 Introduction

Diatoms are key players in aquatic ecosystems, carrying
out up to one-fifth of the photosynthesis on Earth, gen-
erating organic carbon that serves as the base of marine
food webs, and playing a significant role in global bio-
geochemical cycles of carbon and silica (Armbrust 2009;
Bowler et al. 2010; Ragueneau et al. 2006; Malviya et al.
2016). The upper layer of oceans and lakes, where diatoms
reside, is characterised by turbulent flows, and interac-
tions of diatoms with the ambient turbulence are central
to understanding almost every aspect in the life of this
important group of photosynthetic microorganisms. Dia-
toms cells lack flagella or cilia, which makes them non-
motile, but their cell density slightly exceeds that of the
surrounding water, and hence they tend to sink through
the water column.

Observations in a Taylor—Couette device and an oscil-
lating grid turbulence tank showed enhanced diatom set-
tling velocities in turbulence relative to quiescent water
(Ruiz et al. 2004). Trajectory biasing and preferential
sweeping (Maxey 1987) were proposed as potential
mechanisms to explain these observations. While recent
numerical simulations of sinking diatoms in turbulence
have shown evidence of trajectory biasing and the prefer-
ential sweeping mechanism for non-spherical body shapes
(Niazi Ardekani et al. 2017), the overall effect was too
small to explain the enhanced settling velocities reported
in Ruiz et al. (2004).

Separately, experiments have shown that diatoms can
actively alter their settling velocity in quiescent water in
response to nutrient availability and local shear by regulat-
ing their buoyancy (Gemmell et al. 2016; Du Clos et al.
2019; Du Clos et al. 2021; Arrieta et al. 2020). Comple-
mentary numerical modelling has shown that such active
regulation of buoyancy in response to turbulence-induced
mechanical cues at the dissipation scales could result in
clustering and alter settling velocities (Borgnino et al.
2019; Arrieta et al. 2020). When subjected to oscillating
grid turbulence over extended periods of time, studies have
also shown that chain-forming diatoms may alter their
morphology (Amato et al. 2017; Dell’Aquila et al. 2017).
Thus, while it is clear that diatoms can and do respond
to both physical and chemical cues in their environment
over multiple time scales, their response to turbulence is
not well understood.

Experimental observations and measurements of live
diatoms at the dissipation scales of turbulence are scarce
because it is difficult to generate ecologically relevant
flows in the lab and track motions of individual cells in
three dimensions. Large-volume turbulence tanks are typi-
cally impractical for phytoplankton experiments because
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massive culturing efforts are required to get high numbers
of cells that can be tracked to generate data with sufficient
statistical power, while smaller turbulence tanks have dif-
ficulty generating high-Reynolds-number turbulence with
homogeneous statistics. Additionally, turbulence tanks
typically used for phytoplankton studies (oscillating grids
and orbital shakers, Guadayol et al. 2009) are subject to
strong mean flow patterns that make tracking of individual
cells difficult and data prone to misinterpretation due to
significant gradients in velocity and dissipation statistics.
Here, we fill this gap in experimental investigations of
diatom cells in turbulence. We describe an experimental
system with a small-volume turbulence tank that is capable
of generating turbulent flow with low mean flow and homo-
geneous statistics at reasonable Reynolds numbers (Sect. 2),
and a volumetric particle imager that is able to track indi-
vidual diatom cells in three dimensions (Sect. 3). After pre-
senting tests of particle trajectory analyses using synthetic
data (Sect. 4), we report measurements and results with two
species of diatoms and compare the statistics of trajectories
and spatial distributions to those of tracer particles at two
different turbulence intensities (Sect. 5). We find that turbu-
lence induces a much greater clustering in the diatom cells
than in tracer particles and that this difference in clustering
diminishes when the turbulence intensity increases.

2 Turbulence tank

2.1 Tank design

We designed and constructed a small-volume turbulence
tank made out of polycarbonate plastic that measures 12.25

8.25cm

Fig.1 Schematic diagram of turbulence tank and volumetric particle
imager (VoPI)
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cm (length) by 8.25 cm (height) by 6.25 cm (width), as
shown in Fig. 1. Flow is generated in the tank by four rotat-
ing paddles in the four corners of the tank, where each pad-
dle is a rigid mesh with square holes of side-length 2 mm.
Each paddle is driven by a Lego Robotics motor (Model
NXT, production year 2006, 9 VDC, 2 A, 0.5 Nm maximum
torque). The paddles are separated from the central volume
of the tank by 2 screens with an opening area ratio of 58%
and holes of diameter 5 mm. The paddles and screens are
acrylonitrile butadiene styrene (ABS) plastic, making the
entire system metal free, nontoxic, and therefore suitable for
studies with seawater and live organisms.

Flow in the tank is controlled by the number of paddles
simultaneously in motion, the direction of rotation for each
paddle, and the motor power level for each paddle. From sys-
tematic investigations of multiple stochastic algorithms, we
found that the algorithm that produced the lowest mean flow
relative to the turbulence intensity was the ‘figure-skating
algorithm’: each paddle, operating independently of the oth-
ers, rotates for a period of time 7, then switches direction

onl>
and rotates in the opposite direction for a period of time

T,,,, and then remains motionless for a period of time 7.
The parameters T, T,,,, and T, are all random numbers

drawn from a uniform distribution spanning 1000-3000 ms.
We used the tank in two different modes of operation: a
low-intensity (Low-Int) mode, where the motor power was
50% of its maximum value, and a high-intensity (High-Int)
mode, where the motor power was at its maximum value.

2.2 Turbulence characteristics

To characterise the flow generated by the figure-skating
algorithm in Low-Int and High-Int modes, we performed
velocity measurements using stereoscopic particle image
velocimetry (SPIV). The tank was filled with filtered water
(Milli-Q) seeded with hollow glass spheres (diameter = 9—13
pm, p=1.10+0.05 g cm~3, Sphericel, Potter Industries) that
acted as tracer particles. We created a laser sheet of | mm
nominal thickness in the x — y plane with a pulsed Nd:YAG
laser (emission wavelength of 532 nm; New Wave Research)
and took images from two stereoscopically arranged Imager
Intense cameras (1376 x 1040 pixel resolution) that were
operated in double-frame mode with a frame separation time
(dt) of 8 ms. Images were processed using DaVis v8 soft-
ware (LaVision), where the first pass was performed using
sub-windows of 64 X 64 px, followed by three passes at 32 x
32 px. Velocity data were taken at a rate of 0.5 Hz for 1200 s,
which resulted in 600 independent snapshots of the velocity
field for ensemble averaging.

We took SPIV data in x — y planes at different z values
(z =0, 1, and +2 cm) to check the sensitivity of flow sta-
tistics to wall effects. We did not observe strong variations

within this observation volume, and therefore, only present
results from the z = O plane here.

One-point statistics and mean flow To analyse SPIV
velocity data, we decompose the velocity into a mean and
fluctuating quantity using a Reynolds decomposition:

u={(u)+u, (1

where (u) is the ensemble mean velocity (calculated by aver-
aging over time) and u’ is the turbulent fluctuation. The root-
mean-square (RMS) values for the turbulent fluctuations
of each component quantify the strength of the turbulence
velocity in each direction, and we define an overall turbu-
lence velocity scale as: ugys = [((u'2) + (v2) + (w'2)) /3] 2
Spatially averaged values of ugyg and RMS values of each
component are given in Table 1.

Spatial variation of mean and root-mean-square veloci-
ties (Fig. 2) show that the central region of the tank has
low mean flow and relatively homogeneous turbulent
velocity fluctuations. The turbulent velocity fluctuations
show a degree of anisotropy with the (u'2)!/? and (w'?)!/?
being larger than (»'?)!/2, likely due to the paddle forcing
generating velocities predominantly in the x — z plane.
To quantify the strength of the mean flow relative to the
turbulent fluctuations, we follow Variano and Cowen
(2008) and calculate the ratios M = |[(u)|/ugys and
M* = ((u)* + ()7 + (W) /(') + (V) + (w'?)). Spatially
averaged values of M and M* are listed in Table 1 and dem-
onstrate that mean flow is weak compared with turbulent
fluctuations under both modes of tank operation.

An important consideration when studying the effects of
turbulence on the mean settling velocity of particles is the

Table 1 Parameters of turbulent flow

Low-Int High-Int

(u*Y1/? (mm/s) 7.0 18.7
(V)12 (mm/s) 4.6 14.9
(w’z)l/2 (mm/s) 8.0 32.3
Ugys (Mm/s) 6.5 21.7
M, 0.052 0.028
M, 0.461 0.047
M, 0.024 0.005
M* 0.098 0.018
(e) (mW/kg) 0.0069 0.16
n (mm) 0.62 0.28
7, (ms) 381 78

u, (mm/s) 1.6 3.6

A (mm) 9.8 6.6

L (mm) 252 22
ReL 164 480
Re; 64 142
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Fig.2 One-point statistics for
Low-Int mode (a—f) and High-
Int mode (g-1). Panels in the top
row for each mode are absolute
values of the mean velocity:
[{u)| (a, g); [(v)] (e, D); [{w)| (e,
k). Panels in the bottom row for
each mode are the RMS values
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structure of the mean flow. The mean flow in our tank does
not have a stationary structure as shown by splitting the 600
snapshots of the velocity field into three equal time seg-
ments and calculating the mean flow for the first (Fig. 3a,
d) and the last segment (Fig. 3b, e). The difference in mean
flow between the first and last segments is of the same order
as the mean flow itself (Fig. 3c, f). Previous investigations
have found that stochastic forcing continually disrupts tank-
scale recirculations, helping to lower the magnitude of the
mean flow (Variano and Cowen 2008; Pérez-Alvarado et al.
2016). Here, we also show this produces a non-stationary
mean flow.

Two-point statistics We characterise the spatial structure
of turbulence using two-point statistics. We calculate the
spatial correlation functions:

(ui(x) - u]’.(x +5¢€.))

a(s)ljk = 1 s
: /2 2
(¢upycay?)
and the second-order structure functions:
/ / 2
Dy, (s) = <(ui(x) - uj(x + sek)> > , 3)

in which s is the spatial lag and e, is the unit vector in the
direction in which the spatial lag is taken (Pope 2000).
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We calculate the mean turbulent energy dissipation rate,
(€), by using Kolmogorov theory (1941a; b; K41), which
states that D;; = C,({e)s)*/?in the inertial subrange, where
D, is the longitudinal structure function and C, = 2.0 is the
Kolmogorov constant (Pope 2000). We estimate the extent
of the inertial subrange via the compensated longitudinal
structure function, s~1DY?  with the inertial subrange being

11,02
where the value of s‘1D3/ 2 is within 5% of its maximum

value. The mean dissipaltlién rate is then calculated with
the average value of D, ; over this inertial subrange using
(€) = s71(Dy,,/C,)*/* (Fig. 4a, c), which gives 6.9 X 107°
W/kg and 1.6 X 10~* W/kg for the Low-Int and High-Int
modes, respectively (Table 1).

Based on the mean dissipation rates, we calculate the Kol-

mogorov (dissipation) scales via the relations:

n=*/{eNn'?, (4a)
7, = (v/(eD', (4b)
u, = (v{e))V/4, (4¢)

where 7, T, and u, are the Kolmogorov length, time, and
velocity scales, respectively, and v is the kinematic viscosity.
These scales are given in Table 1.
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Fig.3 Mean flow ((u)(v)) in the z = 0 plane for Low-Int mode (a—c)
and High-Int mode (d—f). Left panels (a, d) show mean flow for first
segment of data, middle panels (b, d) show mean flow for last seg-

ment of data, and right panels (c, f) show the differences between the
first and last segments of data. Scales shown in ¢ and f are consistent
over their respective rows

Fig.4 Two-point statistics for
Low-Int mode (a, b) and High-
Int mode (c,d). Left panels

(a, ¢) show the compensated
second-order structure function
(solid line) used to calculate
mean dissipation rate. Right
panels (b, d) show the spatial
correlation function (solid line),
a parabola fit near s = 0 to com-
pute the Taylor scale (dashed
line), and a model function (Eq.
(G19) in Pope 2000) fit in the
inertial subrange to calculate
the integral scale (dashed-dotted
line). Dotted vertical lines
indicate the inertial subrange. In
panel b, only the lower bound
of the inertial subrange is shown

10°
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We also calculate the Taylor length scale and the integral
length scale from the spatial correlation function. We fit an
osculating parabola to the first 3 points of a;; ;(s), excluding
the point at s = 0, and find the Taylor scale, A, as the posi-
tive root of this parabola (Eq. (6.53) in Pope 2000) (Fig. 4b,
d). This gives Taylor length scales of A = 9.8 mm (Low-Int)
and A = 6.6 mm (High-Int) and Reynolds numbers based
on the Taylor length scale of Re, = 64 (Low-Int mode) and
Re, = 142 (High-Int) (Table 1). These Re, values indicate
that the flow is in the fully developed turbulence regime
typical of laboratory experiments and direct numerical simu-
lations. The spatial extent of the SPIV field of view was
not sufficiently large to calculate the integral length scale
directly via computing the integral

Lii,k =/ a(s)ij)k ds. S)
0

Thus, following Bellani and Variano (2014), we fit a model
of the correlation function in the inertial subrange where
the integral length scale is a fitting parameter (Eq. (G.19)
in Pope 2000) (Fig. 4b, d). This gives integral length scales
of L = 25.2 mm (Low-Int) and 22 mm (High-Int) (Table 1).

We further investigate the scale-dependent turbulence
structure in the flow by comparing different second-order
structure functions and spatial correlation functions (Fig. 5).
The longitudinal structure functions (D, ; and D,, ) show
that flow stretching in the Low-Int mode occurs more in
the x-direction than the y-direction at all scales, but this

Fig.5 All two-point statistics

difference diminishes in the High-Int mode. The corre-
sponding spatial correlation functions (a; ; and a,, ;) show
that the integral scale is smaller in the y-direction than the
x-direction, but this difference is again reduced in the High-
Int mode compared to the Low-Int mode. The transverse
structure functions quantifying flow rotations about z-direc-
tion (D, , and D,, ;) show that the flow anisotropy observed
in the one-point statistics is present at all scales. Dy, is
larger than Dy, | in both Low-Int and High-Int modes. This
behaviour is also reflected in the corresponding spatial cor-
relation functions (ay;, and ay, ;), which show that the u
velocity stays correlated with itself over a larger distance in
the y-direction compared to the v velocity in the x-direction.
Overall, the turbulence structure is weakly anisotropic.

3 Volumetric particle imager

Overview We used the volumetric particle imager (VoPI; Tse
and Variano 2013) to take Lagrangian data of particle posi-
tions and velocities in the turbulence tank. Briefly, the VoPI
measures 3D positions of particles within its measurement
volume using the principle of defocused imaging (Willert
and Gharib 1992; Pereira and Gharib 2002). Images are
taken with a borescope (Pro Hardy 12", 0.25” diameter, Gra-
dient Lens Corporation) that is coupled to a digital camera
(Prosilica GE680, Allied Vision Technologies) via a double-
pinhole aperture mask. The measurement volume is lit with
white light (Luxxor 24W LS, Gradient Lens Corporation)

for Low-Int mode (a, b) and
High-Int mode (c, d). Left
panels (a, ¢) show the compen-
sated second-order structure
functions: Dy ; (solid black
line), D,, , (dashed black line),
D,, | (thick solid blue line), and
Dy , (thick dashed blue line).
Right panels (b, d) show the
spatial correlation functions:
ayy ) (solid black line), ay, ,

(dashed black line), a,, ; (thick
solid blue line), and a , (thick
dashed blue line)

@ Springer

b
) 1
A
0.8 \\\
\\\
06 BN
3 AN
= N
S04 \ AN
\\ \\\
0.2 N =
N
\\
0 =
0 0.5 1 1.5 2
s/L
d)
1
0.8’ \
\
\Y
06 \\\
E N
S04t U
~
\ \\
0.2} AN ~ 2
N
N
0 RN
0 0.5 1 15 2 2.5
s/L



Experiments in Fluids (2021) 62:149

Page70f15 149

P

Twin-iris
camera

- =

(¢
Light
delive .
ry y .
Image
collection
/, I 1 .
P AN Particles
/'~ 1 located in 3D [
7w * ;
\ ," . [
N S (xy,2) = Ax', ¥', d)

Fig.6 VoPI components and an overview of 3D particle position
measurements

that is delivered though optical fibres around the edge of
the borescope. Figure 6 shows the VoPI and provides an
overview of its concept, with further details available in Tse
and Variano (2013). Here, we focus on the updates to its
calibration and data analyses.

Image processing summary In the images collected by the
VoPI camera, each particle appears as 2 objects (or a ‘dou-
blet’) due to the double pinhole in the aperture mask. The
image processing algorithm removes the background noise,
identifies doublets, and calculates the location of the dou-
blet centre (x/, y'), separation distance between objects in a
doublet d, widths of the 2 objects in the doublet (x/ ,y! ), and
intensity of the doublet () using user-defined thresholds.
The separation distance, d, is computed by identifying the
secondary peak in the autocorrelation function of the doublet
(see Fig. 6 and accompanying text in Tse and Variano 2013
for a detailed description).

Calibration Doublet data in image coordinates (x’,y’, d)
are converted to a 3D particle position in the laboratory
frame (x, y, z) via calibration functions. We determined
these calibration functions using calibration data acquired
by taking repeated images of a calibration plate at dif-
ferent distances away from the borescope tip. The cali-
bration plate consisted of a matrix of 0.15-mm-diameter
dots separated by a known distance (0.5 or 1 mm, depend-
ing on the setting of the boroscope) with a reference dot
marked for ease of orientation. We mounted the calibra-
tion plate perpendicular to the axis of the boroscope on a
XY microstage for precise control of its distance from the
boroscope. Starting with the calibration plate just touch-
ing the distal tip of the boroscope, we moved the tip of
the boroscope away from the plate in increments of 1 mm,

taking a new image each time. This calibration procedure
was performed in seawater to match refractive indices of
the media for experiments with phytoplankton cells in the
turbulence tank. We fitted this data to the following cali-
bration functions for in-plane (x, y) and out-of-plane (z)
particle positions:

X = Cl + sz, + C3d + C4x,d, (63)
7'4 C.

z==Csexp| —— )d. (6¢)
C6

Here, (x, y, z) is the dot position relative to the VoPI’s dis-
tal tip in the laboratory coordinate system, r = 1/(x2 + y2)
is the radial distance from the borescope axis, and C,—C,
are calibration coefficients. Since these calibration coeffi-
cients are unique to the borescope’s focal setting, the VoPI
only needs to be calibrated once.

We performed the calibration procedure for two dif-
ferent focal settings, which we call ‘A’ (a higher optical
magnification to allow imaging of tracer particles of size
~ 10 pm) and ‘E’ (a lower optical magnification to allow
imaging of diatoms of size & 100 pm). The calibration data
and calibration functions are shown in Fig. 7 with values
of calibration coefficients given in Table 2.

When using the VoPI in turbulence tank experiments,
we exclude data that fall outside the measurement vol-
ume as defined by the convex hull of the calibration data
of each focal setting. Thus, the calibration fits are not
extended beyond the data originally used to generate them
and the uncertainty in experimental data is characterised
by the RMS values of the errors in the calibration data.
This uncertainty is greatest in the z-position and increases
slightly with distance away from the distal tip.

Particle tracking To obtain Lagrangian statistics from
data of particle positions in each frame, we implemented a
particle-tracking algorithm. We use the 4-frame best-esti-
mate (4BE) algorithm in Ouellette et al. (2006), which is
summarised in their Fig. 8. Briefly, this algorithm uses the
nearest-neighbour heuristic from two consecutive frames
to start building tracks and uses a 4-frame method to con-
tinue each track. The 4-frame method seeks candidate par-
ticles for a track within a predefined search radius of the
predicted location in the next frame. Of all particles that
match this criterion, the particle that is chosen to be part
of the track is the one that finds a particle closest to the
predicted location in the fourth frame, where this predicted
location is calculated with finite-difference estimates of
velocity and acceleration from the particle positions over
the first three frames. We set the search radius to 0.5 mm

@ Springer
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Fig. 7 Calibration data and errors associated with measuring particle
position for focal setting ‘A’ x-positions (a), focal setting ‘A’ z-posi-
tions (b), focal setting ‘E’ x-positions (c¢), and focal setting ‘E’ z-posi-

in the x and y directions and 2.5 mm in the z direction, fol-
lowing the recommendation by Malik et al. (1993) to use
(3 x expected particle displacement) + (3 X uncertainty in
particle position). The performance of this particle track-
ing method is quantified in Sect. 4.

Farticle velocity To calculate the Lagrangian particle veloc-
ities, we convolve the particle positions along their trajectories
with a kernel that simultaneously performs Gaussian smooth-
ing and differentiation (Mordant et al. 2004; Ouellette et al.

2006):
2
T eXp <—F>
3

sz exe () = 5 vmer(1)|

with the filter width f,, = 1 frame and the filter support
Jf. = 3 frames. These filter parameters provide a good com-
promise between smoothing and minimum required track

k(r) =

(N

@ Springer

tions (d). Positions (x and z) and errors in predicting those predictions
(e_i) are in units of mm. Data for y is similar to that for x

length (2f; ) while still ensuring that numerical convolu-
tion with a constant or a line of constant slope produce the
expected results to within 1%.

We calculate statistics of particle velocity, such as mean
and variance, from the particle velocities along their trajec-
tories. Using all velocity samples from Lagrangian particle
velocity data to calculate Eulerian velocity statistics results
in biased values since slower particles produce longer tracks
and hence more data (e.g., Buchhave et al. 1979). We avoid
this bias by first computing averages for each track and then
averaging across all tracks so that each track contributes
equally regardless of its length. 95% confidence intervals
are calculated by applying the bootstrap technique to this
procedure with randomly selected tracks.

Clustering Particle clustering is typically quantified
using the radial distribution function (RDF; e.g., Salazar
et al. 2008). However, computing the RDF was not possible
for our data because: (1) particle concentrations (number
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Table 2 Parameters of the volumetric particle imager (VoPI) calibration with with 95% confidence intervals in brackets

Focal setting ‘A’ Focal setting ‘E’
Measurement volume (mm?) 38.8 40.7
Calibration coefficients for x-position (Eq. 6a)
C, —3.57 [-3.73 —=3.42] —4.74 [=5.00 —4.47]
C, 0.0104 [0.0100 0.0109] 0.0147 [0.0139 0.0154
Cs 0.0503 [0.0442 0.0564] 0.0777 [0.0684 0.0871]
C, —1.45 [-1.63 —1.28] (x107% —2.42 [2.71 =2.13] (x107%)
Calibration coefficients for y-position (Eq. (6b))
C, 2.851[2.722.99] 3.49 [3.09 3.88]
G, —0.0109 [—0.0114 —0.0105] —0.0131 [~0.0147 —0.0115]
G, —0.0433 [—0.0485 —0.0380] —0.0514 [—0.0655 —0.0374]
C, 1.58 [1.39 1.76] (x107% 1.93 [1.352.51] (x107%
Calibration coefficients for z-position (Eq. 6¢)
Cs 87.29 [71.3 103] 252 [127 376]
Cs 100 [54.4 147] 135 [67.6 202]
C —0.754 [-0.816 —0.692] —0.993 [—1.14 —0.844]
Uncertainties in particle position
e, rvs (mm) 0.17 0.13
e, rms (mm) 0.12 0.14
e, pvs (Mm) 1.1 1.0
Fig.8 Synthetic data analysis a b)
showing PDF of track-averaged 0.025 ‘ ‘ ‘ 0.025
velocities for a the u com- b
ponent, b v component, ¢ w £ 0.02 £ 0.02
component, and d the cluster- % é
ing analysis. Black circles are < 0.015 < 0.015
analysis of noiseless data and :ff §
red asterisks are analysis of _g 0.01 Lg 0.01
noisy data. In panels a—c, the < <
solid line is the distribution £.0.005 £.0.005
from the OU process. In panel % %
d, the shaded region shows the 0 0 H
95% confidence intervals for the -50 0 50 -50 0 50
no-clustering scenario track-averaged velocity (mm/s) track-averaged velocity (mm/s)
c) d)
0.025 0.25
2 0.02 = 02 * .
.a .5 i
g g ®
= 0.015 < 0.15
2 ey
2 0.01 2 0.1 4 X
Q . < .
2 E e
2 o
£.0.005 2,005 LI
’ ® e
0 HOH 0 L ;
-100 0 100 0 5 10
track-averaged velocity (mm/s) particle pair separation (mm)

of particles per unit volume) were intentionally kept low  not have periodic boundary conditions, making it difficult
to avoid particle—particle interactions, which meant that  to normalise the histograms of particle-pair separation dis-
individual frames contained insufficient data to compute  tances without introducing ad hoc assumptions. Instead of
the RDF; and (2) the RDF is a function of the measure-  using the RDF, we quantified particle clustering by com-
ment volume, which in our case was anisotropic and did  puting a probability density function (PDF) of pair-wise
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particle separation distances, with 95% confidence inter-
vals computed using the bootstrap technique (Efron and
Tibshirani 1993). These PDFs were computed for the data
(excluding cases when tracks overlapped) and compared to
a Monte Carlo simulation of the PDF expected for a case of
no clustering. To generate the Monte Carlo simulation data
of particles that uniformly sample the measurement volume,
we drew samples of particle positions from a uniform dis-
tribution in a square box and excluded particles outside the
VoPI’s measurement volume so that the size and shape of
our measurement volume were taken into account. We also
matched the number of particles in the Monte Carlo simu-
lation to the real data. We generated many sample sets to
compute 95% confidence intervals of this no-clustering PDF.
If particles were to cluster, the PDFs of pair-wise distances
for the data would lie outside the range of the no-clustering
Monte Carlo PDFs.

4 Synthetic data

Before describing the experiments with diatoms and tracer
particles in the turbulence tank and their results, we first
describe the generation and analysis of a synthetic dataset
that replicates the type of data we gather in the experiments.
This allows us to demonstrate the ability of our data analysis
algorithms to accurately reproduce known statistics of par-
ticle velocity and clustering.

We generated synthetic particle tracks by modelling the
Lagrangian velocity using an Ornstein—Uhlenbeck (OU)
process, where each component of velocity is independent
and evolves according to (Gillespie 1996):

Ut + A = U (e @0 4 nU, [1 = e @4T0) 2,

®)
where U*(¢) is the Lagrangian velocity time series, 4t is the
time step, 7} is the Lagrangian integral scale, n is a random
number drawn from a Gaussian distribution with zero mean
and unit variance, and U, ¢ is the RMS velocity. The OU
process produces a Gaussian one-time PDF of velocity and
an exponential Lagrangian velocity autocorrelation func-
tion. Overall, these properties compare reasonably well with
data from moderate Reynolds number turbulence (pp. 485
in Pope 2000). Parameters of the synthetic data were chosen
to match the parameters of our system in High-Int mode:
U;MS = 20mm/s; 7| = 1s; At = 0.005 s. Velocity time series
for each velocity component were integrated using a 2"-
order Runge—Kutta algorithm to give particle positions for
each track. We generated 100,000 such tracks in a 3D cube
of size 100 mm with periodic boundary conditions and then
used data for tracks that entered a cuboid measurement vol-
ume of side length 2 mm and height 10 mm in the centre of

the cube, which approximated the measurement volume of

@ Springer

the VoPI. To understand the effects of measurement noise,
we added Gaussian random noise to the particle positions
in the synthetic dataset with a noise structure that mimicked
the VoPI measurement noise (e, gps = € gms = 0.15 mm,
e,rms = 1 mm; Table 2). The noiseless and noisy synthetic
data were fed into the data analysis pipeline to evaluate the
performance of each step.

Defining a correctly recovered track as one that begins
at the same frame as the synthetic data tracks and contains
no spurious particles but may end earlier (Ouellette et al.
2006), the particle-tracking algorithm correctly recovered
97.6% of the tracks in the noiseless data, whereas it per-
formed poorly in the noisy data because tracks never began
at the same frame as the synthetic data tracks. The velocity
PDFs calculated from particle tracks showed that the noise-
less data matched the synthetic data closely for all compo-
nents of velocity, whereas the noisy data matched the syn-
thetic data only for the u and v components for which the
noise levels were lower (Fig. 8a—c). For the noiseless data,
the RMS particle velocities and their 95% confidence inter-
vals were (u?)'/? =222+ 0.5 mm/s, (*)!/>2=219+05
mny/s, and (w?)!/? = 20.8 + 0.5 mm/s, whereas for the noisy
data the corresponding values were (u?)!/? =245+ 1.7
mm/s, (v*)!/? =23.5 +2.0 mm/s, and (w?)'/? = 100 + 8.
For comparison, the synthetic data were generated using
(W2 = ()12 = (w?)1/2 = 20 mm/s. Thus, the effect of
adding noise was to increase the RMS velocities. Finally, the
clustering analysis showed no clustering for both noiseless
and noisy datasets (Fig. 8d), conforming to the expectation
that a Gaussian stochastic process wherein particle trajecto-
ries are independent would not generate particle clustering.

Overall, the synthetic data analysis allows us to conclude
that the algorithms for particle tracking, calculating the sta-
tistics of particle velocity, and quantifying particle cluster-
ing are capable of reproducing known results. Measurement
noise makes tracking more difficult and leads to poor repro-
duction of statistics for the w component where the noise is
highest. However, measurement noise does not affect the
clustering analysis.

5 VoPl measurements of tracers
and diatoms

5.1 Experimental methods

We used the VoPI to record the motions of tracer particles
and live diatom cells in the turbulence tank. For tracer parti-
cles, silver-coated hollow glass spheres (conduct-o-fil, Potter
Industries) with a median diameter of 21 pm and a mean den-
sity of 1.03 g/cm? (Table 3) were used. For experiments with
diatoms, two different species of the genus Coscinodiscus
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Table 3 Particle parameters computed with the following values for
seawater: p = 1.025 g/cm® and v = 1.02 mm?%/s. For diatoms, d, is
taken to be the diameter of the diatom’s cylindrical cross section

Tracers C. wailesii C. radiatus
d, (um) 21 136 58
Py (g/cm?) 1.03 1.07 1.25
Sv,, (Low-Int) 7x10™* 3x 107! 2% 107!
Sv, (High-Int) 3x 107 1x 107! 1x 107!
St, (Low-Int) 1x10™* 4x1073 8x 107
St, (High-Int) 5% 107 2x 1072 4x1073

were used: C. wailesii and C. radiatus (Fig. 9). Cells of both
C. wailesii and C. radiatus species have a cylindrical shape,
but they differ in size and density. Cells were grown in L1
seawater media at 15.7 °C under 14:10 light:dark cycle and
cell culture in an exponential growth phase was used in the
experiments. Measurements showed (Ayres 2017) that the
C. wailesii cells had a mean cell diameter of 136 pm and
mean cell density of 1.07 g/cm? (n = 30), whereas the C.
radiatus cells had a mean cell diameter of 58 pm and mean
cell density of 1.25 g/cm? (n = 31) (Table 3).

The terminal Stokes settling velocity, the settling num-
ber, and the particle Stokes number for the different particle
types are given by (Table 3):

_ Gpy/p) — 1ldig

R TR ©
12
VS
SV = (10)
n
o L* 20,/ 00, an
t,=—,
1 3612

where d,, is the particle diameter and p, is the particle den-
sity. These expressions assume a spherical particle whose
motion relative to the fluid is characterised by a small Reyn-
olds number, which are reasonable assumptions here. The
Reynolds number based on the particle settling velocity in
quiescent fluid is (V,d,,/v) < 0.1 for all particles.

b)

<)

In experiments with both tracer particles and diatoms,
particles were introduced to the tank carefully and the
flow—particle mixture was allowed time to come to an equi-
librium state before measurements began. The following
procedure was followed to achieve this. The tank was ini-
tially filled with filtered seawater until water level reached
approximately 3/4 of its height. Particles were then added
to the tank in the form of a suspension of tracer particles or
diatom culture, filling the rest of the tank volume, and gen-
tly mixed. The culture media and the filtered seawater that
initially filled the tank were from the same stock of seawa-
ter. For the tracer particles, suspensions of the tracers were
agitated in a test-tube vortex mixer prior to experiments to
break up aggregates. Flow was then initiated at desired tur-
bulence level and particles were allowed to mix in the tank
for 30 min before data collection started. The flow was also
allowed continue between recording of replicate datasets.

Data were taken with the VoPI’s measurement volume
positioned 15 mm below the geometric centre of the tank.
Each experiment consisted of taking images with the VoPI
at 200 Hz for 20 s and repeating this procedure 20 times to
generate a total of 40,000 images that were subsequently
processed and analysed. We performed separate experiments
for each particle type (tracers and cells of the two species of
diatoms) in each mode (Low-Int and High-Int) to generate a
total of six different datasets.

5.2 Experimental results

In each dataset, O(10*) particles were identified from which
0(10%) tracks (e.g., Fig. 10) were found (Table 4). When
comparing the RMS velocities from the SPIV measurements
(Table 1) to those from VoPI measurements (Table 4), we
see that the RMS velocities for tracer particles and diatoms
are similar in both sets of measurements. This shows that
noise in the particle’s positions, which is highest in the
VoPI’s out-of-plane direction, is smoothed out when we
calculate the particle velocity using convolution with a
smoothing and differentiating kernel (Eq. (7)). From a par-
ticle—turbulence interaction point of view, this consistency in
the RMS velocities across all particle types is not surprising
since particle velocities are dominated by the largest scales
of turbulent motion and therefore insensitive to the changes

d)

Fig.9 Images of a Coscinodiscus cells. C. wailesii: a Valve (top) view and b Girdle (side) view. C. radiatus: ¢ Valve (top) view and d Girdle

(side) view during cell division
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a) T =T b)

z (mm)
Q)
z (mm)

z (mm)

T c) =T

2 (mm) z (mm)

Fig. 10 Example trajectories from High-Int mode: a tracers, b C. wailesii, and ¢ C. radiatus. The start of each track is marked with a black circle

and the trajectories do not overlap in time

Table 4 Results of VoPI measurements of tracer particles and diatom cells in turbulence tank

Tracers C. wailesii C. radiatus

Low-Int High-Int Low-Int High-Int Low-Int High-Int
No. of particles 88,566 39,149 28,457 16,480 27,675 8075
No. of tracks 5351 5188 1002 1876 1280 1151
Mean velocities (mm/s) with 95% confidence intervals
(u) —0.6 [-0.8 —0.4] 4.8 [4.35.4] —0.7 [-1.0 -0.5] 2.3[1.63.1] 2.4[1.92.8] 4.3[3.25.5]
(v) =1.0 [-1.1 -0.8] -1.3[-1.7-0.9] —1.6 [-1.9-1.3] —3.3[-3.9-2.7] —2.0[2.3-1.7] —2.8 [-3.6 —2.0]
(w) —0.2 [-0.6 0.3] —1.1[-1.8-0.4] 1.4[0.52.3] 29[1.93.9] —0.1 [-0.8 0.6] 1.7 0.3 3.1]
RMS velocities (mm/s) with 95% confidence intervals
(u?)'/? 8.5[8.3 8.6] 20.8 [20.4 21.2] 5.2[5.05.4] 16.9[16.3 17.5] 8.8[8.49.1] 20.5[19.8 21.3]
(v?)1/2 541[525.5] 14.6 [14.3 14.8] 4.51[4.34.8] 13.6 [13.3 13.9] 5.8 [5.6 6.0] 14.7[14.2 15.4]
(w2y/2 22.1[21.123.1] 30.4 [29.7 31.1] 26.6 [25.0 28.1] 32.0[31.0 33.0] 20.6 [19.8 21.5] 30.4 [28.6 32.7]

in particle size, Reynolds number, and Stokes number in
these experiments.

Across different datasets in the VoPI measurements, we
observe that the mean velocities of diatom cells are different
to those from tracers (Table 4). The mean vertical velocity
({(v)) becomes more negative in the High-Int mode relative
to the Low-Int mode, but this should not be interpreted as
suggesting a turbulence-induced enhancement of the set-
tling velocity because the mean horizontal velocities also
show increases in magnitude. The observed differences in
the mean vertical velocity could be related to particle—turbu-
lence interactions, but will also be influenced by the struc-
ture of the mean fluid velocity in the tank, which is known

@ Springer

to be non-stationary with > O(1) mm/s changes over time
(Fig. 3). Since the magnitude of the mean velocity varia-
tion is of the same order as the expected settling velocity
of the particles, it is not possible to conclusively state what
effects particle—turbulence interactions at the dissipation
scales have on the mean settling velocity in these data. How-
ever, we can rule out the extreme enhancement of settling
reported by Ruiz et al. (2004).

At the dissipation scales, we observe that both tracer
particles and diatoms are likely to be found in the vicin-
ity of other particles and cells with a higher likelihood
compared to a random, uniform distribution of particles
within the same volume (Fig. 11). Patchiness in the spatial
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Fig. 11 Clustering data for a)

tracers and diatoms for Low-Int 0.6
mode (a) and High-Int mode
(b). Symbols with 95% confi-
dence intervals are data and the
corresponding shaded regions
are the 95% confidence interval
bounds for the no-clustering
scenario. Each data point for the
diatoms data at small particle-
pair separations corresponds

to at least O(10?) independent

probability density

é tracers
0.5 11 C.wailessi |
‘% C. radiatus

probability density
o
w

observations of particle pairs 0 2 4
(particle pair separation)/n

distribution of planktonic organisms at small scales has also
been observed in the field (Malkiel et al. 1999, 2006), but the
mechanisms that control this are not understood. In our data,
tracers appear to show a weak clustering at small scales that
is independent of turbulence intensity. While any clustering
at this Stokes number (St, = 0(107%)) is surprising, previous
experiments have reported similar behaviour (e.g., Ouellette
et al. 2008).

For diatoms, clustering is weak and similar to that
observed for the tracers in the High-Int mode, but stronger
than that observed for the tracers in the Low-Int mode
(Fig. 11). This trend in clustering is not consistent with
the Stokes number (stronger clustering is observed for a
lower Stokes number). Thus, other effects besides particle
inertia could be causing clustering, and future work must
investigate alternate mechanisms. Here, we propose three
such alternate mechanisms. First, effects of particle shape
could be important. Numerical simulations have shown
that particles settling in turbulence can cluster even in the
inertialess limit if the particle shape is non-spherical (Niazi
Ardekani et al. 2017). Second, flow—particle interactions that
lead to clustering in this regime may be better character-
ised by the settling number rather than the Stokes number.
Our results would be consistent with this hypothesis, since
we observe stronger clustering when Sv,, is closer to unity.
Last, changes in cell density as a response to the turbulent
flow could explain the clustering behaviour. Recent stud-
ies have shown that diatoms have the ability to modulate
their buoyancy and settling speed in response to changes in
light and nutrient concentrations (Du Clos et al. 2019, 2021).
Under this hypothesis, our results would be consistent with
the expected response: At higher energy dissipation rates,
a decrease in cell density towards neutral buoyancy would
decrease clustering and avoid enhanced settling via the pref-
erential sweeping mechanism. However, further investiga-
tions are necessary before these mechanisms can be verified.

6 8 10 0 5 10 15 20
(particle pair separation)/n

6 Conclusions

We have presented a new turbulence tank that produces
homogeneous turbulence at moderate Reynolds number, yet
is small enough to allow experiments with cultures of phyto-
plankton cells (Sect. 2). Using a volumetric particle imager
(Sect. 3), we measured 3D trajectories of small, tracer parti-
cles and two species of diatoms (C. wailesii and C. radiatus)
in this tank. This experimental system provides a way to
systematically study small-scale interactions between dia-
tom cells and turbulence. The results of initial experiments
showed that diatom cells were more likely to be found in
closer proximity to each other at dissipation scales of tur-
bulence compared to tracer particles, but that this differ-
ence between diatoms and tracers vanished when turbulence
intensity increased. This finding is consistent with several
mechanisms of clustering that require further investigation,
including effects of cell shape, settling number, and active
regulation of cell density as a response to the ambient flow
conditions.
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