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Abstract—Innovative processor architectures play a critical
role in sustaining performance improvements under severe
limitations imposed by feature size and energy consumption.
The Reconfigurable Optical Computer (ROC) is one such
innovative, Post-Moore’s Law processor. ROC is designed to
solve partial differential equations in one shot as opposed to
existing solutions, which are based on costly iterative com-
putations. This is achieved by leveraging physical properties
of a mesh of optical components that behave similarly to
electrical resistances. However, building large photonic arrays
to accommodate arbitrarily large problems is not yet feasible.
It is also possible to have problems that are smaller than
the size of the accelerator array. In both cases, virtualization
is necessary. In this work, we introduce an architecture
and methodology for light-weight virtualization of ROC. We
show that overhead from virtualization is minimal, and our
experimental results show two orders of magnitude increased
speed as compared to microprocessor execution while keeping
errors due to virtualization under 10%.

Keywords-Photonic computing; Hardware acceleration; Ana-
log computers; Virtualization; Scientific computing; Emerging
Technology; Parallel Processing

I. INTRODUCTION

Problems associated with extreme feature reduction, par-

ticularly the end of Moore’s law and Dennard scaling, have

introduced operational limits in both clock speed and levels

of energy consumption. For large-scale simulations, the stan-

dard approach uses supercomputers comprising chips with

tens of cores, and accelerated with digital co-processors such

as Intel Xeon Phi KNL, graphics processing units (GPU) and

field programmable gate arrays (FPGA). A recent example

of this is the SW26010 processor with its on-chip manycore

accelerator. Such digital supercomputers can be very power

hungry, such as the Sunway TaihuLight, which consumes

15MW [1]. This translates roughly to $15M annually in

operating costs. A departure from conventional hardware

architectures and technology is becoming necessary.

Historically, analog computers have been used where digi-

tal computers could not provide timely solutions; not only in

real-time control, but also in modeling and simulations. One

prominent methodology is to model dynamic physical sys-

tems using analog electric circuits, implemented with either

discrete components or as an application-specific integrated

circuit (ASIC), hosted by a digital computer which regulates

access to the accelerator.

Many computational problems in science and engineer-

ing are modeled via solving partial differential equations

(PDEs) [2]. These equations are commonly solved by first

discretizing them into finite difference equations or finite

elements. Iterative methods such as conjugate gradient or

adaptive multi-grid are then adopted to solve these equations

[3]. Due to the large number of elements, as well as the

iterative nature of obtaining the solution, such computations

are processor-intensive. Illustrated in Figure 1, electrical

circuit analogs of PDEs drastically reduce computation time

by providing a solution in one shot [4], [5]. These electric

analog mesh computers require a minimum computation

time dependent on the lumped resistance and capacitance

values of the entire network. However, recent advances in

material science have enabled nanophotonic implementa-

tions of analog mesh computers which address this short-

coming by reducing computation time to the time-of-flight

of an optical signal through the mesh diameter [6], [7].

As the sizes of physical simulations continue to scale

higher, they will inevitably be limited by hardware resources.

This is a common problem in classical computing and has
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Figure 1: Mapping a steady-state heat flow PDE to a finite

difference mesh and an analog mesh computer.

historically been solved using virtualization [8]. Traditional

software virtualization methods, such as paravirtualization,

require an operating system (OS) to coordinate with the

underlying hypervisor [9]. Virtualization techniques have

since moved to lower levels of the software stack when ap-

plied to reconfigurable accelerators [10] and heterogeneous

systems [11]. However, workload asymmetries expected in

multi-user environments benefit more from virtualization

at the hardware level, enabling space-time sharing of the

reconfigurable system [12], [13].

In this paper, we present a hardware virtualization archi-

tecture for analog mesh computers and apply it to the re-

configurable optical computer (ROC) [7]. These techniques

enable a fixed-size analog mesh accelerator to emulate PDEs

of varying sizes, thereby supporting the expected scaling of

physical simulation workloads.

II. BACKGROUND AND RELATED WORK

The complexity of PDE computation has led to the

introduction of a variety of acceleration methods. One

such class of techniques, numerical methods, is the most

common approach for solving PDEs. The three most widely

used numerical methods are finite element methods (FEM),

finite volume methods (FVM) and finite difference methods

(FDM) [14]. These techniques discretize the problem into

a computational grid (or mesh) and solve for each grid

point iteratively. For these techniques, grid point spacing is

inversely proportional to the accuracy of the solution. Conse-

quently, an increase in grid resolution results in an increased

time-to-solution, due to an increased number of required

computational iterations. Traditional digital PDE acceler-

ators based on complementary-metal-oxide-semiconductor

(CMOS) graphics processing units (GPU) and central pro-

cessing units (CPU) [15], [16], obtain speedups from clock-

frequency scaling and enhanced parallelism, but are bound

by the number of required iterations. Other techniques, such

as adaptive mesh refinement (AMR), reduce the time-to-

solution of numerical methods by exploiting distinct regions

of spatially-localized features that occur in physical simu-

lations [17]. By creating multiple meshes of varying reso-

lutions which overlay the original mesh, AMR reduces the

number of iterations with a minimal reduction in accuracy.

One extreme example of a PDE accelerator, the elec-

trical analog mesh computer, uses a network of resistors

to solve the Poisson Equation in one shot [4] and has

found use in solving oscillatory flow [18] and resistivity log

interpretations [19]. This eliminates the iterative component

required by numerical solutions, effectively reducing the

time-to-solution to the time required for a signal to traverse

the network diameter. The electrical analog mesh computer

exploits the relationship between difference equations (Equa-

tion 1) used in FDM and Kirchoff’s Laws for voltage and

current, allowing Equation 1 to be rewritten as a sum of

mesh currents (Equation 2). This effectively maps the FDM

computational grid to an electric mesh, where distance, h,

dictates the mesh resolution, characterized as the number

of resistors in the mesh. PDEs are mapped to an analog

mesh by setting boundary conditions as potentials at various

stiff nodes around the mesh perimeter, with the remaining

free nodes responsible for grid computation. Variations of

electrical analog mesh computers have been proposed to

solve a variety of PDEs, as simple resistor-inductor-capacitor

(RLC) configuration changes allow them to describe many

physical phenomena [5].

∇2 �f � 1

h2

[
�f( �P1) + �f( �P2) + �f( �P3) + �f( �P4)− 4(�f( �P0))

]

(1)

(2)
1

G

[
(I1 − I0) + (I2 − I0) + (I3 − I0) + (I4 − I0)

]
= 0

Shown in Figure 2, ROC was proposed as a class of recon-

figurable nano-optical analog mesh computers [6]. Loosely

coupled to a larger computer system, ROC is presented with

digital data used to configure the mesh and the boundary.

Digital results are, in turn, read from the mesh upon comple-

tion of the PDE computation. ROC replaces electric mesh

components with Reconfigurable Optical Elements (ROEs),

implemented with a network of silicon-photonic routers

and attenuators or nano-optical metatronics [7]. Metatronics

emulate combinations of RLC devices through changes in

real refractive index and imaginary extinction coefficients, as

governed by permittivity, which influence diffusion currents

traversing the waveguide [20]. Indium tin oxide (ITO), typi-

cally employed as an electro-optic modulator, has also been
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Figure 2: ROC hardware stack comprising layers supporting

reconfiguration, computation and readout.

Figure 3: ITO ROEs biased to RLC equivalents [22], [23].

shown to exhibit metatronic behavior at high frequencies

[21]. Illustrated in Figure 3, an ITO ROE is biased when

presented with a voltage, affecting its permittivity at a given

wavelength, thus its attenuation of an optical signal [22].

For the heat transfer application in Figure 1, ROC can

emulate an electrical analog mesh computer by enabling

multiplication and addition operations to be executed using

diffusion currents. This allows conductance, G in Equation

2, to be replaced with the transmission of optical power

associated with electromagnetic radiation through the net-

work. For signal wavelengths smaller than the device feature

size, addition is done via superposition of electromagnetic

waves from multiple waveguides by means of optical in-

terference. Consequently, ROEs can vary the characteristics

of the surface under simulation via coordinated changes

in attenuation. This provides ROC with a degree of pro-

grammability, where the optical mesh can be reconfigured

to match attributes of the computational mesh (enabling

common mesh acceleration techniques such as AMR), and

in cases of non-rectangular shapes, to effectively turn ROEs

”off” to match the shape of a surface.

Due to the fixed size of the analog mesh computer from

Figure 1, any solution obtained from it will have a fixed

resolution. A solution which requires a lower resolution than

that supported by the mesh hardware can be computed with

selective pruning of nodes. Conversely, any solution which

requires a higher resolution or size than what is natively

supported by hardware cannot be computed. This limits the

utility of analog mesh computers in scientific programming,

where computational mesh sizes are expected to scale with

problem size and resolution requirements.

Similar problems encountered in the classical computing

domain have traditionally been solved by virtualization [8].

More recently, virtualization has been applied to repro-

grammable accelerators, where resources are coordinated

without user assistance [24], [25]. Many of these techniques

were derived from strategies used by operating systems to

support virtual memory [12]. In these techniques, an OS

or hypervisor provides a hardware abstraction layer (HAL)

between hardware resources and software [26], allowing

software to view the resources as an autonomously coor-

dinated pool.

Heterogeneous systems have since virtualized FPGAs,

taking advantage of their reconfigurability for specific work-

loads [10], [13]. These techniques also borrow from OS-

based virtualization strategies, due to the coordination re-

quired for setup and scheduling [27]. However, lightweight

virtualization strategies are often needed [26]. El-Araby

developed a lightweight virtualization strategy which uses

the concept of ”virtual hardware” to support space-time

sharing of reconfigurable resources [12]. Space-time sharing

combats resource underutilization frequently encountered

during multi-tasking operations due to asymmetric work-

loads [12]. Lightweight hardware virtualization techniques

were also developed by Taher to enable fine-grained resource

utilization and load balancing in reconfigurable, heteroge-

neous systems [13]. As analog mesh computers serve the

same capacity as FPGA accelerators within a heterogeneous

architecture, their workloads will be similar, calling for

hardware virtualization techniques and space-time sharing.

III. VIRTUALIZATION OF AN ANALOG MESH

To enable virtualization, we extend the ”Computing in

Time - Computing in Space” paradigm [28] to analog mesh

computers. We do this by introducing a hardware virtualiza-

tion infrastructure which enables space, time and/or space-

time sharing of hardware resources. This allows a computer

with fixed hardware resources to compute a solution to a

problem of a larger size than the computer was originally

designed to handle.

For an analog mesh computer, this means matching a

computational mesh in terms of both size and resolution.

Matching the size of a computational mesh ensures that the
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Figure 4: Error in mesh calculations (across the diagonal)

as influenced by mesh resolution for the diagonal PDE

configuration illustrated in Figure 1.

final solution contains all regions within the computational

mesh boundary, while matching resolution ensures that the

number of nodes within the computational mesh matches the

number of nodes within the physical mesh. Interestingly, an

analog mesh computer can be viewed as an approximate

computing engine, as the resolution, thus accuracy, of the

solution is dependent on the size of the mesh. This char-

acteristic allows computer architects to select the lowest-

energy mesh that meets a given precision requirement. The

case of a low-resolution computational mesh mapped to a

high-resolution analog mesh computer is trivial; since the

computer executes the calculations in a one-shot fashion,

minimal time is wasted in computing an unnecessarily high-

resolution solution and results can be pruned to match the

required resolution. The case of a high-resolution com-

putational mesh mapped to a low-resolution analog mesh

computer is more interesting in that the missing information

must be estimated, resulting in a form of aliasing.

Figure 4 shows the error associated with mismatches in

resolution along the diagonal of the ROC optical mesh for

the diagonal PDE configuration from Figure 1. The readout

value for corresponding points among meshes of different

sizes varies, resulting in a resolution-dependent error called

offset. Minimum offset appears at both stiff nodes and free

nodes farthest from stiff sources. Figure 5 shows our results

computing error between corresponding points in multiple

4x4 and 8x8 meshes for different PDEs. The difference in

error ranges, calculated as the ratio of 4x4/8x8 offset to the

mesh dynamic range, implies that varying characteristics in

PDE configuration (e.g. boundary conditions, etc.) influence

offset.

A. Space Sharing

Multi-user environments require an analog mesh to com-

pute the solution to multiple problems simultaneously.

Shown in Figure 6, simultaneous computation is enabled

by partitioning the mesh, where a virtualization boundary is

created between virtualized mesh partitions through repro-

gramming of boundary attenuators to maximize loss. Signal

diffusion through the virtualization boundary, called bilat-
eral influence, is possible and reduces the signal-to-noise

Figure 5: Error in mesh calculations for corresponding points

in 4x4 and 8x8 meshes as influenced by PDE configuration.

Figure 6: Virtualization Boundary theory of operation (A)

and bilateral influence at varying ITO attenuation ratios (B).

ratios (SNR) of virtualized mesh partitions, thus increasing

error.

Due to the metatronic-electrical equivalence reported by

Gui [21], we simulated ITO-based metatronic circuits with

SPICE [29] to determine an appropriate attenuation ratio

between the virtualization boundary and individual virtu-

alized mesh partitions. Transient analysis results illustrate

that a virtualization boundary having an attenuation 4 orders

of magnitude larger than that within the virtualized mesh

partition (simulated with a resistive divider) reduces the

virtualization error associated with bilateral influence to less

than 1%. Bias values required to attain such isolation using

plasmonic MOS waveguides with a tunable ITO region were

estimated from research in the field [30].

136

Authorized licensed use limited to: The George Washington University. Downloaded on September 22,2021 at 15:51:14 UTC from IEEE Xplore.  Restrictions apply. 



Space sharing of the analog mesh requires hardware

overhead, in the form of the number of attenuators required

to sustain the virtualization boundary. The overhead, cal-

culated as the quantity of boundary attenuators divided by

virtualized mesh partition attenuators, varies with virtual

mesh size. This component overhead can be used to derive

overhead in terms of power or size by multiplying the

overhead ratio by the consumed power or size of each

attenuator. Additional overhead comes in the form of latency

associated with writing to attenuators during the setup and

teardown of the virtualization boundary.

B. Time Sharing

Time sharing is required when the number of tasks is

greater than the resource. This forces each task to share the

resource and make gradual progress to a solution.

A similar situation arises when the problem size and

resolution is larger than can be supported by a single analog

mesh computer. When this situation arises, the problem is

divided into regions, and each region must be scheduled and

solved for individually. The analog mesh computer provides

two techniques for supporting problem sizes larger than

the physical mesh: 1) recursive mesh refinement (RMR),

where the analog mesh is used exclusively to solve for each

region, and 2) linear interpolation, where the analog mesh

computer is used as an approximate computer for the initial

computation.

1) Recursive Mesh Refinement: We propose a method

to virtualize an analog mesh computer called Recursive
Mesh Refinement (RMR), which enables a coarse-grained

analog mesh computer to approximate the solution of a

much finer-grained problem. The notion of starting from a

coarse resolution and, through recursive refinement, arriving

at an improved solution has been used in many other

scenarios such as wavelet-based image registration [31]. This

technique enables hardware designers to select the coarsest

mesh dimension allowable by the common case, and then

use the coarse mesh with RMR to solve a PDE requiring

higher resolution.

RMR is a method of virtualization which exploits the

natural behaviors of an analog mesh to enable sharing of

the mesh among individual pieces of a decomposed problem.

The algorithm first maps the problem to the mesh, providing

a coarse-grain solution which is then subdivided into quad-

rants. Thereafter, the boundary conditions of each quadrant

are mapped to the perimeter of the physical mesh, and

the process is repeated. Quadrants are continually broken

down in the same manner, until the last level of resolution

matches the physical mesh resolution requirements. Figure

7 illustrates the spatial resolution of each RMR iteration,

followed by quadrant and subquadrant scheduling of the

mesh.

When a quadrant’s boundary information is mapped to the

periphery of the mesh, the computation of a single quadrant

Figure 7: Recursive Mesh Refinement (A), scheduling of

mesh resources (B), and its support of AMR (C).

is spread over the entirety of the mesh hardware. This

gives the appearance of increased resolution, called effective
resolution. When the desired resolution is reached, the

entirety of the nodes within the mesh are stored. This process

is repeated for all quadrants, and results from submeshes

stitched together to form a final solution.

There is a natural mismatch in that the number of biases

comprising the perimeter of a quadrant is always one half of

the biases required to completely set the mesh’s perimeter

biasing circuitry. Linear interpolation can be accurately used

to estimate the missing biases, considering that the missing

nodes are, in essence, the center of a resistive divider

comprising resistors of R/2 resistance [32]. This technique

enables the forced matching of perimeter node voltages.

The energy and time required for a RMR calculation are

related to the number of calculations required for an effective

resolution by Equation 3,

ncalc = 1 + 4nlevels , (3)

where nlevels is the number of recursive levels needed for

a specific effective resolution, calculated in (4).

nlevels = (resolutioneffective ÷ resolutionmesh)− 1 (4)

Storage requirements for quadrant boundary conditions

can be calculated as (5). Registers co-located with the opto-
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Figure 8: COMSOL RMR results for increasing resolution

of a 4x4 mesh.

electronic conversion circuitry provide a storage solution

with minimal access time, freeing the system bus. However,

any parameter overflow due to large levels of recursion can

be stored in main memory through a bulk DMA transfer.

memory = 4nlevels−1 × diametermesh × bitsperword (5)

Energy, storage and time required for RMR can be re-

duced using existing techniques for reduced-energy com-

puting, such as AMR. Shown in Figure 7, AMR reduces

the energy, time and storage requirements for resolution

enhancement operations by limiting the use of RMR to

regions of the mesh which require high resolution.

As RMR is required to match a low resolution mesh

with a high resolution problem, each iteration of RMR

can be viewed as a single pass through an approximate

computer. Figure 8 shows our COMSOL [33] simulation

results for RMR over a left-side, single-source and right-

side, single-sink configuration. Note that the refined submesh

results overlay the coarse mesh results, which is indicative

of an error-free process. Nonetheless, common error sources

inherent in analog mesh computers can reduce accuracy

of the final computation. These error sources include: 1)

offset due to resolution of the physical mesh, 2) mesh

component nonlinearities, and 3) nonlinearities in the biasing

and readout circuitry. These error sources can be reduced

to primarily resolution-based offset when considering the

averaging of noise sources through scaling [4], [7]. Con-

sequently, regarding a single instance of RMR as an error

function, X , allows multiple instances of RMR to be viewed

as a polynomial function of X . This results in an uncertainty,

δR, described by Equation 6 [34]:

δR = |n|× δX

|X| × |R|, (6)

where R is the solution, and n is the number of recursions

through the analog mesh.

2) Linear Interpolation: Interpolation is a fundamental

method for estimation of unknown values which reside

within a set of known values, requiring only a subset of

data points and an equation that describes the system. The

well-known linear relationship between voltage and current

supports the estimation of intermediate node values using

linear interpolation for an electric mesh. ROEs exhibit the

same lumped-element behavior as resistors for wavelengths

much less than device feature size [7], [23]. This enables the

extension of linear interpolation to an optical mesh based

on diffusion currents with minimal error introduction. For

interpolation, we used a 2D linear spline interpolation [35]

provided by the SciPy [36] library.

Resolution matching via linear interpolation requires a

single computation by the analog mesh, followed by a series

of linear calculations. After reading out the solution for

the entirety of the mesh, grid equivalence is calculated by

dividing the required resolution by the mesh resolution.

This is the number of interpolation points that must be

calculated between adjacent grid points in the analog mesh,

and is related to the number of linear calculations, ncalc, by

Equation 7.

ncalc = (Xmesh − 1)× (Ymesh − 1)× equivgrid (7)

As opposed to standard numerical methods, which are

limited in their parallelizability, linear interpolation in sup-

port of increased resolution is inherently parallelizable. This

is due to the availability of a low-resolution mesh solution,

which creates a set of boundary points which can easily be

expanded in parallel.
3) Hybrid Techniques: Heterogeneous systems, such as

microprocessor-based systems with loosely-coupled acceler-

ators, provide adequate resources to support virtualization

using a combination of RMR and linear interpolation. Dual-

track Virtual Configuration Management (VCM) automates

load-balancing between a microprocessor and FPGA ac-

celerator by trading-off resource availability and time-to-

solution [37], [13]. Shown in Figure 9, this technique can

be extended to analog-mesh virtualization by expanding

attributes to include availability and time-to-solution.

IV. RESULTS

A. Evaluation Methodology

Mesh virtualization accuracy for ROC meshes was eval-

uated using two test cases which represent the spectrum of

use cases for computational mesh workloads. Case 1 demon-

strates a larger optical mesh than computational mesh, where

the optical mesh must compute the solution to simultaneous

PDEs. Case 2 demonstrates a smaller optical mesh than

computational mesh; for our test purposes, a 4x4 optical

mesh must emulate a 64x64 mesh.

Due to the analogous behavior of electrical meshes and

metamaterial-based optical meshes [20], [21], mesh simula-

tions for accuracy were executed with SPICE. For all simula-

138

Authorized licensed use limited to: The George Washington University. Downloaded on September 22,2021 at 15:51:14 UTC from IEEE Xplore.  Restrictions apply. 



Table I: Error associated with scaling of virtualized mesh partitions for different PDE boundary conditions.

PDE Left to Right Diagonal Center Source
Scale Dimension 2x2 4x4 8x8 2x2 4x4 8x8 2x2 4x4 8x8

Free Border Nodes (%) 18.75 35.9 37.5
Free Non-Border Nodes (%) 31.25 25 18.75

Border Nodes Max Error (%) 0 0 0 0.024 0.02 0.024 0.045 0.017 0.333
Avg Error (%) 0 0 0 0.007 0.006 0.009 0.025 0.017 0.098

Non-Border
Nodes

Max Error (%) 0 0 0 0 0 0.02 0.079 0.076 0.12
Avg Error (%) 0 0 0 0 0 0.003 0.042 0.034 0.108

Overall Mesh Max Error (%) 0 0 0 0.024 0.02 0.024 0.079 0.076 0.333
Avg Error (%) 0 0 0 0.004 0.004 0.005 0.029 0.022 0.101

Figure 9: VCM for single round of time share.

Figure 10: Scalability of virtualized mesh partitions over

a single physical mesh (A) and various PDE boundary

conditions under consideration (B).

tions, virtualized mesh results were generated and compared

with SPICE results for an equivalently-sized physical mesh,

which was regarded as the ground truth. Timing modeling of

ROC meshes assumes biases that are written in a serial chain

running at 100 MHz, and optical mesh settling times were

extrapolated from Interconnect [38] simulations of small

optical meshes. A detailed analysis about optical network

propagation and stabilization delay was done by Anderson

et al. in [7].

B. Case 1: Computational Mesh Smaller Than Optical Mesh
Resolution

Case 1, illustrated in Figure 10, shows the analog mesh

computer executing a simultaneous computation of multiple

PDEs. Three PDE configurations: 1) single-source, single-

sink with a diagonal diffusion, 2) left to right lateral diffu-

sion, and 3) center source were simulated. These configura-

tions were chosen due to the expected variations of current

nearest the virtualization boundary.

To study the scalability of our virtualization solution, we

divided an optical mesh into 2x2, 4x4 and 8x8 grids of

virtual 4x4 submeshes, each with an identical PDE configu-

ration. Virtualization error was calculated by comparing the

simulation results of virtualized mesh partitions with that of

an isolated mesh of equal size.

Results in Table I show less than 1% error introduced to

the computation as a result of virtualization, and a maximum

of 0.026% error introduced to the computation. As expected,

there is little bilateral influence seen between virtualized

mesh partitions due to the high attenuation of the virtualized

mesh boundary. Bilateral influence can be seen to scale with

the number of free border nodes adjacent to the virtualized

mesh boundary. However, this can be reduced by decreasing

the distance between stiff nodes with boundary conditions at

the virtualized mesh partition border. This effect is best seen

when comparing the lateral diffusion PDE with the diagonal

diffusion PDE, as the former has a shorter distance between

stiff boundary nodes.

Hardware overhead incurred by the setup of the virtual-

ization boundary includes two rows of vertical attenuators

and a row of horizontal attenuators. This results in an ap-

proximately 20% hardware overhead for the configurations

shown. However, the time required for ROC computation of
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Figure 11: Virtualization error associated with 4x4 emulation

of 64x64 using RMR.

all PDEs is 10ms, which is identical to any computation by

an 8x8 optical mesh. This is possible because virtualization

boundary setup and teardown are hidden as part of the mesh

surface configuration.

C. Case 2: Computational Mesh Larger Than Optical Mesh
Resolution

The Case 2 simulation environment, shown as the diag-

onal diffusion PDE shown in Figure 10, addresses a 4x4

mesh which must emulate a 64x64 mesh. These emulations

were implemented using RMR with the ROC software stack

[39]. Additionally, AMR is represented in this case, due to

its common use in numerical solutions.

Figure 11 shows the virtualization error over the entire

mesh. Note that virtualization error is highest near the

source and sink, and minimizes as regions become more

isolated. The nonuniformity of RMR error suggests that

standard error correction schemes cannot be used. The

largest percentage of nodes were characterized by error less

than 20%, with a maximum error at approximately 40% and

a minimum error of 0%. The mean error introduced by RMR

is 11%, while the median is 8%.

Figure 12 shows the virtualization error caused by com-

bining RMR with AMR. As the single-source, single-sink

diagonal configuration showed the most nonlinearity near the

sink and source (Figure 4), these regions are characterized as

having a high resolution requirement. This is in contrast with

regions farther from the source and sink, where regions of

lower nonlinearity make a low-resolution mesh more accept-

able. Due to the use of AMR, the percentage of error-prone

nodes decreases, when compared to full-resolution RMR,

while the minimum and maximum errors stay constant. The

mean error introduced by AMR is 12%, while the median

is 6%.

Table II compares the time-to-completion of 3 implemen-

tations of PDE solvers: 1) a 4x4 ROC RMR emulation of a

larger mesh, 2) a single ROC mesh of comparable size and

Figure 12: Virtualization error for a 4x4 mesh emulating a

64x64 mesh using RMR with AMR.

Table II: Time-to-completion of 4x4 RMR, a single ROC

mesh of comparable size [7], and execution by a CPU.

size 8x8 16x16 32x32 64x64
ROC (ms) 0.0151 0.0200 0.0350 0.0500
RMR (ms) 0.058139 0.314 1.913 12.896

CPU1 (ms) 3000 4000 5000 5000

3) a CPU implementation using COMSOL on an Intel Xeon

E5603 running at 1.6 GHz. Time-to-completion for ROC

includes time required for ROC configuration, execution and

readout. Time-to-completion for the CPU implementation is

as reported by COMSOL.

Each doubling of the mesh dimension results in an in-

creased time-to-solution for the RMR-based mesh calcu-

lation. This is to be expected, as the overhead of mesh

virtualization follows Equation 3. However, despite this

overhead, virtualization of the ROC mesh performs faster

than sequential software by two orders of magnitude.

The overhead associated with RMR results in time-to-

completion higher than those of a physical mesh of compara-

ble size. This is in contrast to mesh complexity, where RMR

allows ROC to stay constant, while physically scaling ROC

results in a complexity of O(n2). Memory complexity due

to RMR boundary storage requirements is O(n). Analysis

of RMR and sequential execution of Laplace’s equation

showed time complexities of O(log2(n)×t) and O(n2×m),
respectively, where t includes the per-run cost of mesh setup,

execution and readout, and m is the number of iterations.

V. CONCLUSION

While new post-Moore’s Law computer architectures are

being introduced, virtualization environments need to be

developed for these innovative architectures to enjoy main-

stream success. Here, we have introduced architectural sup-

port for virtualization of an analog mesh computer and ap-

plied it to the reconfigurable optical computer, or ROC. For

1Time-to-Completion as reported by COMSOL.
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a high-resolution mesh, our virtualization technique enables

both space-sharing and time-sharing of mesh resources.

Additionally, we proposed recursive mesh refinement, or

RMR, to support a fixed-size mesh’s emulation of larger

meshes.

We simulated multiple use cases intended to show the

scaling of ROC to match the resolution requirements of

PDEs of various sizes. For small PDEs, ROC was able

to support simultaneous computations with less than 1%

error. The large-PDE use case illustrated RMR’s ability

to support high-resolution PDE requirements with an 8%

median error. We also applied RMR in support of adaptive

mesh refinement, which introduced a median 6% error to

the PDE computation.

Timing simulations compared various ROC meshes with

corresponding virtualized meshes and microprocessor execu-

tion. When compared to CPU execution, ROC virtualization

showed a reduction in time-to-solution by two orders of

magnitude.
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Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Con-
tributors, “SciPy 1.0–Fundamental Algorithms for Scientific
Computing in Python,” arXiv e-prints, p. arXiv:1907.10121,
Jul 2019.

[37] T. El-Ghazawi, “Virtual configuration management for effi-
cient use of reconfigurable hardware,” jul 2009, patent No.
US20090187733A1, Filed March 3rd., 2007, Issued July.
23rd., 2009.

[38] R. Goldman. Lumerical 2020a release speeds photonic design
through high performance computing. [Online]. Available:
https://www.prweb.com/releases/prweb16705671.htm

[39] E. Kayraklioglu, J. Anderson, H. Reza-Imani, V. Sorger, and
T. El-Ghazawi, “Software stack for an analog mesh computer:
The case of a nanophotonic pde accelerator,” in Proceedings
of the 2020 International Conference on Computing Frontiers,
ser. CF ’20. ACM, 2020.

142

Authorized licensed use limited to: The George Washington University. Downloaded on September 22,2021 at 15:51:14 UTC from IEEE Xplore.  Restrictions apply. 


