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Abstract: When solving, modeling or reasoning about com-
plexproblems, it is usually convenient touse theknowledgeof
aparallel physical system for representing it. This is the case of
lumped-circuit abstraction,whichcanbeused for representing
mechanical and acoustic systems, thermal and heat-diffusion
problems and in general partial differential equations.
Integrated photonic platforms hold the prospective to
perform signal processing and analog computing inherently,
bymapping into hardware specific operations which relies on
thewave-natureof their signals,without trustingon logicgates
and digital states like electronics. Here, we argue that in
absenceofastraightforwardparallelismahomomorphismcan
be induced. We introduce a photonic platform capable of
mimicking Kirchhoff’s law in photonics and used as node
of a finite difference mesh for solving partial differential
equationusingmonochromatic light in the telecommunication
wavelength. Our approach experimentally demonstrates an
arbitrary set of boundary conditions, generating a one-shot
discrete solutionofaLaplacepartial differential equation,with
an accuracy above 95% with respect to commercial solvers.
Our photonic engine canprovide a route to achieve chip-scale,
fast (10 s of ps), and integrable reprogrammable accelerators
for the next generation hybrid high-performance computing.
Summary: A photonic integrated platform which can
mimic Kirchhoff’s law in photonics is used for approxi-
mately solve partial differential equations noniteratively
using light, with high throughput and low-energy levels.

Keywords: analog computing; homomorphism; partial
differential equation; photonic integrated circuits;
photonics.

1 Introduction

Photonic integrated circuits (PICs) do not exist. Even if this
statement could seem outrageously contradictory, we
invite the reader to bear with us while we unravel the
assertion. The concept of a circuit originates from con-
necting electronic components into a functional unit and
as such is governed by certain physical rules. These
fundamental rules of circuitry that, in fact, does not exist in
optics and hence also not in photonic platforms. As such,
the perception of a circuit applied to photonics is actually
only a rather loose sense, with significant physical and
technological consequences.

In electronics, circuits are simple loops, in which the
flow of electrons circulates, ruled by the conservation laws,
governed by quasi-static approximation of Maxwell’s
equation, resulting in Kirchhoff’s law. In contrast, in pho-
tonics, light does not have return loops but is usually
conveyed to be ultimately detected. Conservation laws still
hold considering the light dissipation and transition into
other domains, but the “flow of photons” followsMaxwell’s.

Anothermain aspect to consider, as a consequenceof the
quasi-static assumption, is that we usually refer to circuits
whenwe can approximate their components as concentrated
at singular points in space (“lumped circuits”) in which the
physical quantities, such as potentials and currents, are
function of time only. This approximation is possible because
the wavelength of the signals, and their time-scale variation,
is significantly longer and slower than the physical dimen-
sion and variations of the circuit itself, respectively. The
consequence of this approximation is nonlocal effects,
i.e., elements of the circuits are coupled, and local variations
will affect the global performance of the circuit.

In photonics, that is not the case (Figure 1 i–iii);
photonic platforms have to be considered as distributed
networks since they are characterized by a footprint that is
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several orders of magnitude larger compared to their
operatingwavelength (LengthPIC >> λNIR). Typically, when
designing “photonic circuits,” the aim is to design com-
ponents that will generate photons and efficiently convey
them, modulated in some prearranged way, to obtain a
certain functionality. Thus, photonic circuits are infor-
mation pathways rather than circuits (Figure 1 iii). For this
reason, photonics is considerably more related to data
transport than to algorithmic transformations and
operations.

The physical origin of the difference between the
behavior displayed by electronics versus optical circuits
rests in the vastly different momenta of electronics in
matter and photons of the near IR and visible frequency
ranges.

Therefore, strictly speaking, the “photonic circuit”,
which confines andmanipulates light, effectively performs
its functionality on a component-by-component manner.
However, Kirchhoff’s law and nonlocal effects contribute
in mapping in integral way fundamental mechanism used
for describing important phenomena directly into electrical
circuits and their algorithmic functionality. Indeed, such
“coupled-nodes” as part of a phase-constant network can
be a powerful tool for mimicking integral-differential
problems, for instance, which ubiquitously pertains to a
plethora of diverse scientific and engineering problems,
onto photonic hardware, thus potentially relevant for
future analog computing accelerators.

To further explain this concept, at the dawn of the
digital era, analog processors based on electrical mesh and
Kirchhoff’s law have been conceptualized and demon-
strated [1–3]. Such analog processors were able to solve
second order partial differential equations (PDEs) using
finite difference methods (FDM), relying on continuous
signals and programmed by changing the interactions
between its computing elements, e.g., impedances, using
minimum stored programs or algorithms; thus obtaining
solutions in a completely asynchronousmanner, providing
one-time, (noniterative) computations independent, at first
order, of the problem complexity. However, the complex-
ities of an effective integration of a high-speed program-
mable and energy-efficient static-like analog mesh and the
concurrent advancement of digital electronics architec-
tures, eclipse this Kirchhoff’s electrical FDM approach.

Current (von Neumann) processors solve PDEs through
numerical methods, involving iterative high precision
vector-matrix precision operations, which can be both po-
wer and time-costly according to the complexity and reso-
lutionof theproblem. Thesebottlenecksare only softenedby
parallel hardware (i.e., multicore processing), which do not
offer a significantly different path to accelerate PDEs, due to
the parallelism overhead and disadvantageous speed-up
scaling with respect to the number of processors [4].

Since the late 2000s, the computing paradigm has
shifted again; it seems apparent that a new class of hybrid
hardware is emerging, i.e., co-processor and accelerator,

Figure 1: Fundamental differences between electronics and photonics impacting design and functionalities.
(i) Electric circuits have a footprint significantly smaller than the operating wavelength, thus can be approximated via a lumped model
(ϕ1 − ϕ2∼0); while in photonics the wavelength of the electric field is significantly smaller than the network. (ii) In electric circuits nonlocality
holds true, where local variations do affect the entire network functionality, while in photonics light intensity is only affected locally (e.g., after
beingmodulated). Output power P1 and P2 of the splitter is given in terms of T (transmittance), R is the reflectance. (iii) Electric current flows in
loops, while light is generated, then follows set pathways, which provides a certain functionality, and is ultimately detected.
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able to perform a task efficiently, by homomorphically
mapping a specific problem category on application-
specific hardware, which solves the problem at hand in
an entirely parallel manner. Such outlook can potentially
ameliorate the computing pressure on digital electronics.

In this regards, integrated photonics-based signal pro-
cessing, thanks to the electromagnetic nature of its signals
and availing their efficient interactions with matter, places
itself as a compelling solution for optical communication [5],
quantum information processing [6], optical computing [7]
and especially neuromorphic computing with remarkably
reduced energy consumption and accelerate intelligence
prediction tasks [8–11]. Recently, inverse-designed meta-
material platform interfaced with integrated photonics
showed the possibility of solving integral equations using
monochromatic electromagnetic radiation [12]. In thefield of
PDE solvers, all-optical reconfigurable module based on
microring resonators can solve ordinary first and second-
order temporal differential-equation [13, 14].

Herewe argue anddemonstrate that, to a certain extent,
we can induce circuit-related homomorphism by imposing
an integrated photonics platform to behave as a circuit in
which Kirchhoff’s law can be re-implemented. We experi-
mentally demonstrate a photonic node, termed Kirchhoff’s
photonic node (KPN),which splits the incoming light evenly
into three remaining directions with minimized reflections,
which can be reprogrammed emulating an optical version of
Kirchhoff’s current law using optical light intensity. When
multiple nodes are interconnected and arranged to generate
a two-dimensional mesh, as envisioned by Anderson et al.
and Sorger et al. [15, 16], in analogy to a uniform electronic
resistive circuit, we are able to approximately solve a sta-
tionary partial differential equation which simulates in a
noniterative fashion the heat-transfer problem of a film, via
an optical finite difference method (FDM). We observe that
when the proposed photonic circuit, here termed Silicon
Photonic Approximate Computing Engine (SPACE), is
forced to pseudo-homomorphically map the PDE, we can
achieve solution accuracy up to 97% compared to a simu-
lated heat transfer problem with the same mesh resolution
which can be obtained in just 16 ps.

2 Results

2.1 Photonic Kirchhoff’s node

The fundamental unit of an electrical circuits are the nodes,
which represent the terminals in which two or more circuit
elements meet, and their distribution and interconnection
determine circuit functionalities and operating conditions.

At the node of electrical circuit, Kirchhoff’s current law
applies; which states that current flowing into a node (or a
junction)must be equal to current flowing out of it. This is a
consequence of charge conservation (energy), if we can
concurrently assume that the instantaneous variation of
the magnetic flux outside a conductor and the change of
charge in the conductor is zero (steady-state conditions). In
photonics, due to the distributed nature (l ≥ λeff) of the
platform used, the behavior of the electromagnetic radia-
tion is governed by Maxwell’s equation in time-variant
conditions, in which the electric and magnetic field are
both function of time and position (Figure 1). Hence, for our
analysis we consider as fundamental quantity of the pho-
tonic circuit the optical power instead of electromagnetic
field intensity. Although, this is not sufficient for ensuring
that the electromagnetic radiation flowing into a node is
necessarily equal.Wemust point out that an equal splitting
ratio across the outgoing ports in fundamentally unat-
tainable, and not only impractical due to “nonidealities”
given by (1) impedance mismatch at the discontinuity
(i.e., joint between different network elements), which
causes reflections, thus producing interference with the
incoming radiation, (2) light scattering at the abrupt dis-
continuities, and (3) optical losses due to mode dispersion.
The fundamental nonequal splitting ratio of the herein
discussed passive, reciprocal, linear, optical four-port
splitter is due to the fact that one cannot have zero reflec-
tion in all of its ports, unless at least four additional
off-diagonal elements in its S-matrix are also zero. None-
theless, prototyping a photonic node one can achieve a
design where nonidealities, such as reflections and optical
losses, are minimized. As a first step towards this goal, we
aim to mimic an electric node (Figure 2A.i) with equal re-
sistors onto a photonic platform, which evenly partitions
the optical power flowing from one of its side.

Towards approaching an near-equal light splitting
condition, this node design needs to meet the following
three criteria: (a) to be symmetrical to both x- and y-axis in
order to physically build the scalable optical mesh, and
needs to provide a 1-to-3 equal splitting ratio; (b) the splitter
needs to have tolerance to the fabrication variance since
cascading the node will amplify the device variance; (c) the
segment for light coupling should have the potential to be
further integrated with tuning mechanisms (e.g., electro-
optic means) in order to ensure reconfigurability and
compute-programmability. Independently of the photonic
node typology, the optical loss along each light path can be
used as an equivalent resistances Ri in the electrical model.

For this aim, we used two distinctive approaches;
Firstly, we follow a heuristic approach in which to obtain
even splitting of the optical power using waveguide
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crossing assisted by four directional couplers integrated
with ring resonators (Figure 2A.ii). To achieve the design
of the KPN we use a heuristic process to obtain 1–3 equal
power splitter in photonics by iteratively optimizing the
splitting ratio using 3D full-wave numerical simulations.
The resulting design comprises of four water-drop shaped
rings placed close to two perpendicularly crossed wave-
guides to couple part of the light coming from one direc-
tion into both, the other two perpendicular directions and
still let the remaining light pass through to the opposite
port. Instead of using circular rings, the segments close to
the straight waveguides are flattened to form a three-
waveguide directional coupler. We used directional cou-
plers to couple into the four feedback loops, and refrain
from using neither perfectly circular rings and nor high-
quality factor cavities to widen the spectral (and thermal)
operating window such as to not having to use tuning
(e.g., thermal, electro-optic) to control its resonance.

In addition, a four-waywaveguide crossing is the center of
each Photonic Kirchhoff’s node to reduce the scattering
and crosstalk at the intersection.

Secondly, an optimized inverse design approach is
used by setting the design area to 5 µm and the even
splitting functionality in the cardinal directions according
to the following cost function to optimize

minTobj = |T − Pout2|2 + |T − Pout3|2 + |T − Pout4|2 (1)

where T is the target transmittance and Poutn is the power
at the port n, assuming the following constraints:

0 ≤ Pout2 + Pout3 + Pout4 ≤ 1 (Pout1) (2)

In the full space of fabricable devices, the optimization
algorithm finds a structure (Figure 2A.ii) that meets these
requirements (further details of the electromagnetic char-
acterization of the inverse design KPN can be found in the
Supplementary material, Figure S2).

Input

Output 1

Output 2

Output 3

Output 3Output 3

Input Output 1

Output 2

Output 3

Figure 2: Kirchhoff’s photonic node (KPN).
(A) nodemapping between (i) a resistivemesh and (ii) a photonic node, designed either using heuristic approach or inverse design algorithm.
Kirchhoff’s photonic node implemented either as waveguide crossing assisted by a four waterdrop-like ring resonators or using optimized
inverse design [17–19] (represented with regions of silicon indicated by blue, and silicon dioxide indicated by white). (B) SEMmicrograph (53°
tilted) of a fabricated Kirchhoff’s photonic node (KPN). False color highlighted in light blue the silicon KPN. Scale bar 20 µm. (C) Electric field
distribution using 3D FDTDsimulation of the KPN. A TMmode source is injected from the left and aidedby the crafted coupling coefficients split
evenly in the other three cardinal directions. (D) The microscope image captured by infrared camera assessing the splitting with an inset
showing our measurement setup. All simulation and measurement use light source at 1550 nm wavelength.
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The inversely designed KPN is one among the infinite
number of configurations that would satisfy the optimiza-
tion of the cost function. Even if characterized by a compact
size (2 × 2 µm), it is significantly more intricate to fabricate
with the same high yield as regular photonics due to its
limited size. Additionally, this type of node would require a
completely different configuration and related optimization
process for mimicking different “optical power” partition-
ing, while the heuristic solution can be straightforwardly
reconfigured by actively tuning the coupling coefficients
with the ring resonators. It is worth noticing that the inverse
design of a KPN is symmetric, linear, passive, and free of
magnetic poles. Thus, the S-parameter matrix is equal to its

transpose (S = ST ) leading to a reciprocal behavior. Next,we
fabricated these KPNs and tested their response.

After optimizing the bending radii of the water-drop
shaped rings, flattened coupler length and the gap be-
tween the ring and the straight waveguide, the splitting
ratio can be tuned to 22, 23 and 22% with 12% reflection
(Figure 2B) based on full-wave simulation (Lumerical 3D
FDTD). Here the reflection is mainly caused by the return
couplings from the three-waveguide couplers at the
perpendicular ports (i.e., Output port 1 and 3). Instead of
completely coupling to the perpendicular port, the light
coming from the first two rings will be partially leaked to
the rings on the other side and route the signal back to the
input port. In terms of the fabrication process, 2%
hydrogen silsesquioxane (HSQ) electron-beam resist is
used due to its fine resolution and edge contrast, with
isotropic dry etching process (SF6 and C4F8) to get the
uniform height profile and vertical sidewall profile. More
details related to the fabrication are given in Section 4.

In order to test the fabricated device, a 1550 nm
continuous wave (CW) laser is used as light source which is
coupled to the waveguide by means of a periodical grating
coupler (details regarding the grating coupler are dis-
cussed in the Supplementary material). To read out the
output values at each port of the KPN in parallel, an InGaAs
infrared camera (Xenics) is used to capture the microscope
image of the light out coupled in each direction with 14 bits
(214 levels) of precision. The background noise, such as the
arbitrary reflections from the sample surface and the sensor
thermal noise, was minimized using noise-canceling
method and post image processing, thence the light in-
tensity from the grating coupler regions in each direction
was acquired (more details are provided in Section 4)
(Figure 2C). As the result, the light intensity from all three
output ports have a ratio of 22.3% : 23% : 22.1% (or 1744.5 :
1801.6 : 1727.2 from the image pixel readout) which is in

excellent agreement with the FDTD simulation result with
less than 0.5% deviation. Nevertheless, we envision that
high-speed, low noise germanium [20–22] or graphene
photodetectors [23–26] can be integrated into the device
and used for improving both detectability and data
collection speed and accuracy.

2.2 Solving PDE using Kirchhoff’s photonic
nodes

To showcase the functionality of a photonic platform
formed by KPNs, we aim to approximate a finite difference
node, which locally discretizes a Laplace equation using a
finite difference method (more details in the Supple-
mentary material, Sections 2–3). Although, this is not the
only possible application space for the proposed archi-
tecture since a network comprising of KPNs could be used
as recurrent neural network [27] or as a compact solution
for reconfigurable routing and network broadcasting [28],
or also simply as a reprogrammable filter for information
pre-processing applications such as for network-edge
devices.

As a proof of principle, here we select a two-dimensional
heat transfer problem represented by a steady-state Laplace’s
homogeneous equation (Figure 3A.i), which can be mathe-
matically described by Eq. (1), which describes the relation
between a variable f and its partial derivatives. Typically,
PDEs are solved numerically by discretizing space (and/or
time) into meshes points, in such a way that the partial de-
rivatives can be reduced into linear combinations of the
variable values at several neighboring nodes of the mesh.

In details, after applying the Finite Difference Method
(FDM) to amesh network (Figure 3A.ii), the central nodeOi,j

can be represented by its four adjacent nodes (Eq. (2)),
where hi is the mesh step that describes the discretization
level of the problem in the analytical domain. Once the
discretized mesh node is set with node-to-node correlation
function єi approximate to a constant value when the
equidistant mesh step h is small enough, this Laplace’s
equation can be locally converted in summation of incre-
mental ratios of physical quantities and solved iteratively
(further details in Supplementary material, Section 2).

However, this usually requires a large amount of
compute power, memory, and scales exponentially as the
problem size and required accuracy.

∇2f = ∂2f
∂x2

+ ∂2f
∂y2

= 0 (3)
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∇2f ≅
ϵ1(f1 − f0)

h21
+ ϵ2(f2 − f0)

h22
+ ϵ3(f3 − f0)

h23
+ ϵ4(f4 − f0)

h24

≅
1
h2

(f1 + f2 + f3 + f4 − 4fo)
(4)

As suggested more than six decades ago [1], electrical
resistor networks (Figure 3A.iii) can one-to-one map finite
difference mesh grids. Similar to the analytical model,
electrical current Ii and resistanceRi canbemapped to such
a node model ruled by Kirchhoff’s law and Ohm’s law
written as Ii= (Vi−Vo)/Ri. Here, the current injected into the
selected node always equals to the current leaving the node
(Kirchhoff’s law), while the current splitting ratios to each
direction will be automatically “adjusted” by the intrinsic
electrical potentials of each path according to current
(voltage) partitions, thus providing a solution to the
problem (e.g., PDE) (more details in Supplementary ma-
terial, Sections 2–3).

While the mapping of the finite difference algorithm in
an electrical circuit is completely homomorphic, in pho-
tonics due to its distributed nature this is not possible. In
electric circuits, due to quasi-static approximation, a
variation of just one resistance, which represents the node-
to-node correlation in the discretized domain, induces a
redistribution of the potential in the entire network
(nonlocal effects), which allows tomodel different gradient
effects in the distribution of physical quantities. In pho-
tonics instead, the optical power when flowing in the
photonic mesh is not affected by perturbation in other
paths in a global sense, though this effect can be forced or
induced, as discussed later. However, addressing all the
splitting ratios at each node could be unpractical under
certain circumstances, adjusting only the “key nodes”
(e.g., nodes on the boundaries or high-loss nodes) which
located adjacent to the places that the node connectivity
has relatively high variations would already bring the

Figure 3: Solving PDE using Kirchhoff’s law in integrated photonics.
(A) i. Analytic solution of a partial differential equation for the defined boundary conditions. ii. The discretized solution of the same PDE using
numericalmethods (finite difference). The superimposedmesh denotes the discretization. Inset highlights the node of amesh (notation is the
sameas Figure 2). iii.Characteristic electrical resistormeshwhichmaps thefinite differencemethodapplied to the PDE. iv.Aphotonic network
which imitates the behavior of a lumped circuit obtaining approximate (∼97% accuracy, Figure 4A) discretized solutions to the PDE. The
discretization step for each solver is considered the same (n = 3) and the boundary conditions are applied as external bias voltage or optical
power for the electrical and the photonic engines, respectively. (B) Schematic 3D demonstration of a heat transfer problemwith light injected
from the central left. Boundary condition is set by using extended waveguides and grating couplers connect to the peripheral nodes. Light
coupled into this direction can be scattered into free space without reflections thus can be regarded as a perfect constant temperature
boundary condition. The block chart shows a top view of the initial setup of the heat transfer problem that can be solved by our 5×5 SPACE
design (the external nodes are used to set the boundary conditions; the actual mesh consists of 3×3 nodes). (C) The microscope image
captured by infrared camera at 1550 nmwavelength overlaying with a sketch of the optical power splitters. Note, grating couplers, y-branches
and bending waveguides are omitted for better visualization.
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accuracy to an acceptable range (a boundary-weighted
example and the method of generating key node configu-
ration library is given in Sections 6 and 7 of the Supple-
mentary material in more details). In this view, a photonic
processor, with induced homomorphism, could generate
an initial, low-precision and approximate solution, to be
used then by an integrated high-precision digital solver
which ultimately produce the required high-precision so-
lutions. This type of photonic engine can, indeed, be
configured as an accelerator as it would reduce the number
of iterations required by the iterative solver when solving
partial differential equations associated to complex nu-
merical simulation, e.g., Newton’s method. Practically, for
this kind of solvers, it is essential to obtain an initial
approximation to the solution which can be used as an
initialization stage for obtaining a simulation that con-
verges much faster.

Nevertheless, besides the disadvantage of populating
the space of configurations to mimic different lumped cir-
cuit behaviors, using integrated photonics would provide
three immediate advantages over resistive networks. First,
the absence of charge/discharge of the wires enables
distributed communication and concurrent low power
dissipation. Second, once the network is set, the
picosecond-short delay is dominated by the time-of-flight
of the photon within the PIC. Third, the amplitude (power)
of the travelingwave in thewaveguides can be easily tuned
using attojoule-efficient modulators through wisely engi-
neered light–matter interactions [29–32] mimicking
different configurations (programmability). For the sake of
simplicity, we demonstrate that it is possible to obtain
accurate solutions for a uniform domain, but this approach
could be extended exploiting the network reconfigur-
ability. In the supporting information, exploiting the
symmetry and reciprocity of the KPN, we show that the
same chip can be used for obtaining the solution of the
same Laplace PDE with different Dirichlet’s boundary
conditions (Supplementary material, Section 5, Figure S9).

After providing a practical exhibition and guidelines
for obtaining a Kirchhoff’s equivalent law in photonics and
consequently obtaining an FDM-like node, we cascaded
multiple nodes building a 5 × 5 optical FDM mesh grid to
solve a discretized heat transfer problem. The assembled
system maps a symmetric type of heat transfer problem
with a heat source injected from the center-left of the mesh
grid and surrounded by constant temperature boundary.

The input signal, which in this case represents the
Dirichlet’s boundary conditions may, in general, be any
arbitrary laser beam distribution coupled into any node of
the circuit (i.e., here grating couplers used, Figure 3B). For
mimicking a 3 × 3 FDM mesh a 5 × 5 photonic mesh is

fabricated and tested, in which the additional nodes on the
sides of the domain are used for reading/applying the op-
tical power at the boundary. In electrical circuits, a Dirich-
let’s boundary condition is provided by a constant potential
which could be either “active” (heat source), using electrical
sources (voltage or current generators), or “passive” (heat
sink) as electrical ground. The electrical node at the
boundary has two functions: (1) sets the value of the func-
tion at the boundary by applying a constant voltage (2) due
to the lumped nature of the circuit, forces a gradient trend
(differential voltage) throughout the lumped circuit. In a
photonic network, if the former is possible by applying a
fixed optical power, the latter is not straightforwardly
achievable due to the absence of nonlocal effects. In this
view, this represents another breaking point in the likeness
between electrical and optical meshes. Active boundary
conditions, mimicked by local sources, sets the value of the
optical power at boundary, while passive boundary condi-
tions (no laser source applied) donot force the optical power
at the boundary node to be zero. This is achieved in the
successive normalization step. Additionally, the gradient
trend, which in the electrical mesh is stringently related to
the boundary conditions, in SPACE is fully decoupled. Our
approximation consists in directly embedding into the
network the boundary-induced thermal distribution by
modifying the node-to-node optical losses (i.e., adding 1 dB
of loss by using waveguide bending, like in this case, or
actively as shown in Section 6 of the Supplementary mate-
rials), accounting for modified node-to-node correlation
function єi. This is a further step towards our quest to an
induced homomorphism.

To characterize the performance of the system and
obtaining discretized measurements for each node, first,
we introduce for each direction of the nodes a set of 50/50
Y-branch splitter followed by a grating coupler in order to
estimate the optical power at each node. The power drop at
each node represents the temperature distribution at each
point of the discretized domain, and it is measured, as
previously observed, in time-parallel through a properly
calibrated camera (Figure 3C). However, for high-speed
reconfiguration operation, integrated photodetectors can
be used with a latency on the order of 10’s ps.

In order to obtain readable data from the furthest node
from the input, 39 mW of laser input (as the maximum
power output from our laser source) is applied to the 5 × 5
SPACE mesh grid. The optical nonlinearity effect has also
been considered and the actual optical power coupled into
the first node is well below 5 mW to prevent this [33].

We verify the accuracy of the approximate solution of the
5 × 5 SPACE prototype by comparing the obtained experi-
mental measurement at each KPN to the discretized and
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normalized solution of a heat transfer problem obtained
through ac commercially available numerical solver (COM-
SOL Multiphysics) with the same mesh resolution and den-
sity. Considering the different input units (i.e., temperature
and optical power) and values (i.e., 100 °C in the thermal
model and 39mWoptical power in themeasurement), all the
output at each node are normalized with respect to the input,
thus allowing a dimensionless comparison.

A discretized solution is obtained through commer-
cially available software (COMSOL) which served as a
problem accuracy baseline. It is worthmentioning that any
discretized solution is proportional to the mesh resolution
(e.g., a 5 × 5 mesh COMSOL simulation has 99.95% accu-
racy comparing to a 300 × 300 mesh averaged down to a
5 × 5 with same initial setup, Figure S3). In details, in order
to decouple the discretization error from the error produced
by the approximation of themodel, a 5× 5 discretizedmesh
is used as comparison with the experimentally measured
solutions at each node of the 5 × 5 SPACE (Figure 4A).
SPACE provides an overall average accuracy of 98% and a
discrete solution with an accuracy higher than 95% for
each node (Figure 4B).

In our pursuit of a forced homomorphism, similarly to
the tolerance of the resistors in a resistive network that
mimics a FDM [1], the deviations caused by fabrication
variances, such as the grating coupler efficiency, y-branch
splitting ratio, and variability of coupling coefficients
perceptively lower the accuracy of the solution.

Due to the distributed nature of the photonic engine,
several iterations, consisting ofmultiple reflections at each

discontinuity, are needed in SPACE to obtain a time-stable
solution. This time is proportional to the size of the network
and the density, i.e., number of KPN. Based on PIC simu-
lations performed using Lumerical Interconnect, a full
iteration cycle (dominated by the time of flight of the
photon) takes only 30 ps considering 100 μmnode-to-node
(n2n) spacing for a 5 × 5 SPACE in this sparse design. The
iteration time drops to 16 ps with 25 μm n2n spacing which
is the highest density achievable in our current design
(Figure 4C). The highest density can be achieved by using
on-chip integrated photodetectors as a detection mecha-
nism, instead of a IR-camera which requires outcoupled
radiation from the chip by means of taps and grating
couplers at each node which compel sufficient space
allocated on chip. Furthermore, considering the photonic
node size, the SPACE engine can be packed with a mini-
mum density of 25 μm/component, although we separate
the nodes with 200 μm spacing for reducing the output
crosstalk while measuring. The footprint of the network
can be further shrunk using inverse design approaches
obtaining a density of <5 µm/node, enabling higher density
meshes. Additionally, SPACE can be fabricated with
adaptive mesh, with an increased density within certain
sensitive or turbulent regions of the simulation, thus
increasing the overall accuracy. It is also worth to mention
that, as an approximate computing engine, when the target
accuracy is relaxed to 90% of its maximum, the iteration
time drops to 1.8 pswhich is equivalent to 556GHz. In terms
of the scalability, the latency does increase as the network
size scales from 5 × 5 to 10 × 10, in which the light

Figure 4: Accuracy and runtime performance of SPACE when solving Laplace equation mapping a 5 × 5 FDM.
(A) The averaged error and accuracy comparison betweenCOMSOL simulatedmodel (mesh size 5× 5) and themeasured solutions at each node
of a 5 × 5 SPACE. The negative error bars represent the accuracy level from the least accuracy node from the 5 × 5 FDM model. The numerical
simulation is regarded as the baseline and scaled to 100% accuracy. The accuracy of the solution provided by SPACE is on average 97.5% (B)
Normalized error heatmap between the baseline model and the measured space in the scale of (−0.05, 0.05) (more details in the
Supplementary material, Section 5). (C) Latency analysis for obtaining a stable solution on different network scales from 5 × 5 to 10 × 10 with
different node-to-node distance varying from 25 to 100 μm. Both full accuracy and 90% accuracy runtime show exponential increase in the
runtimemainly caused by the node-to-node distance.With closest packing (25 μm), full accuracy and 90%accuracy are able to provide 63 and
556 GHz operating speed respectively. The full accuracy and 90% accuracy are respected to the maximum accuracies that each network scale
could get. In all PIC simulations, the input light source has been set to 1 mW with optical power meter sensitivity set to −100 dBm and
simulation time long enough to converge all the signal propagation delays in the network.
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propagation time in the waveguide will contribute even
less to the total runtime, thus proving that SPACE could be
potentially further scaled-up (further details in Supple-
mentary material, Section 5).

Our KPN design and SPACE circuit provide a powerful
tool for homogenously distributing optical power in a
defined network similarly to a lumped circuit subjected to
Kirchhoff’s Law. When the correlation function between
each node of the network is wisely selected or actively
tuned (e.g., with electro-optic modulators or switches),
the network, mimicking FDM, can solve a general second-
order Laplace’s PDE in an analog manner. For instance, if
the splitting ratio of nodes adjacent to the boundary
conditions could be tuned to 10% : 10% : 80% (i.e., more
light routes to the boundaries), a 5× 5modulated SPACE is
able to improve the accuracy up to 99.2% (more details
discussed in Supplementary material, Section 6). Similar
configurations may potentially be explored to solve time
dependent or nonlinear PDE with arbitrary boundary
conditions by introducing time discretization or nonlinear
elements, respectively. PDEs applied to nonhomoge-
neous domains can bemapped on SPACE by changing the
splitting ratio according to characteristic distribution
(e.g., different thermal conductivity mapped as different
attenuation for each individual node). Other cases of PDE
applied to nonsymmetrical or inhomogeneous domains
are reported as PIC numerical simulation in the Supple-
mentary material.

Towards dynamic problem reconfigurability, if electro-
absorption modulators are introduced between neigh-
boring nodes in SPACE, a vast number of different PDEs
can be solved. For illustrative purposes, we numerically
show, using a photonic interconnection emulator, that it is
possible to map the temperature distribution, solution of
Laplace equation, onto SPACE by adjusting the extinction
ratio of these modulators between neighboring nodes ac-
cording to the problem to be solved. This allows solving a
multitude of problem cases for number of exemplary un-
derlying heat-conducting materials (details in the Supple-
mentary material, Section S7). Similar to commercial
numerical solvers, we present how KPN and SPACE with
added reconfigurability produces look-up table solutions
for the specific configuration.

Beyond the exemplary Laplace equation investigated
thus far, other PDEs can, in principle, be solved such as
Poisson’s equation, for example, if additional light sources
are added to the nodes, mimicking the different node po-
tential [34]. Nonetheless, other PDEs like diffusion equa-
tions and wave equations would require optical capacitive
and inductive elements needed to express the time-
dependent variances enabling the one-shot solution.

Different from emulating an optical resistor, which can be
easily realized by optical lossy materials or electro-optical
modulators, optical capacitors and inductors require spe-
cific designs to mimic the behavior of their electrical
counterpart. For example, a Fabry–Perot interferometer
with chirped Bragg gratings have been demonstrated as an
optical capacitive component which can act like a broad-
band low pass or high pass filter [35]. On the other hand, an
optical inductive component can be implemented as a self-
electro-optical device with both integrated modulator and
detectors that use the photocurrent to back feed the
modulator and change the light intensity injected into the
detection region as a negative feedback loop [36, 37].
Reconfigurability of the optical mesh nodes, and hence
boundary condition programmability, can also be intro-
duced via electro-optic tunable materials such the unity-
strong index variation demonstrated in transparent
conductive oxides (e.g., ITO [9, 30]) with temporal speeds
above 1 GHz [38]. Indeed, control of sub-wavelength small
programmable elements allows to realize optical circuitry
enabling designing PDE solvers that are actually governed
by the quasi-static approximation of Maxwell’s equation,
thus by Kirchhoff’s law [39]. In such optical circuits, the
effective wavelength is “stretched” due to the effect of
epsilon near (or at) zero media leading to nonlocal in-
teractionswithin the optical circuit board. The propagating
(conduction) electric displacement inside such optical
nano-circuits can then be probed and provide, in principle,
error-free, solutions to the PDE problem. Realistic imple-
mentations of such nano-optical analog processors, how-
ever, need to address the nonvanishing imaginary part of
the optical index, if higher than about 95% solution ac-
curacy is desired [39].

3 Conclusions

In summary, we propose the designs of a photonic node
which is able to replicate the equivalent of Kirchhoff’s law
for optical power. Using equal splitting functionality, we
replicate a mesh structure which approximate a homo-
geneous lumped circuit model. We use the photonic cir-
cuit to map a finite difference approach to solve partial
differential equation effortlessly and noniteratively,
termed Silicon Photonic Approximate Computing Engine
(SPACE). Our numerical and experimental analysis in-
dicates that the steady-state response of a characteristic
SPACE engine may be achievable in 16 ps, obtaining
inherently discretized solutions for each point of themesh
of the domain with a bandwidth up to 63 GHz. This
approach could easily adapt another active component,
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such as electro-optic modulators, photodetectors, and
tunable photonic cavities like photonic crystals, to solve
more complicated problems with denser, heterogeneous
meshes and arbitrary boundary conditions.

Furthermore, the proposed approach features recon-
figurability of the input positions and boundary conditions
with low-loss network interconnectivity of such distributed
networks via PICs and ensures foundry-near cost scaling.
This approach allows solvingmore intricate problems such
as those with heterogeneous grid and Neumann boundary
conditions when chip is augmented by active components,
such as electro-optic modulators, photodetectors, and
tunable photonic cavities like photonic crystals. Our find-
ings provided a novel pathway to ultra-fast, integrable, and
reconfigurable photonic analog computing engines based
on an integrated photonics Kirchhoff’s node, used for
solving PDEs, but can also be adopted as core structure in
recurrent neural networks or as compact solution for
network broadcasting.

4 Methods

4.1 Fabrication process

All of the single optical power splitters and 5× 5 SPACE is fabricated on
the same 220 nm Silicon on Insulator (SOI) chip to minimize the
variance during the fabrication process. Raith Voyager 50 kV E-beam
lithography system is usedwith fix beammoving stage (FBMS) feature
to allow zero waveguide stitching errors across multiple write fields.
Hydrogen silsesquioxane (HSQ) with 2% concentration is used to
provide around 42 nm ofmask thickness (4000 rpm for 60 s) with high
resolution in writing. After the spin coating, the chip is put on a hot-
plate for 240 s pre-bake at 80-degree centigrade. After the patterning,
the chip is dipped into MF-319 for 70 s to develop the unexposed HSQ
area including 5 s of gentle stirring to shake off the air bubbles of the
chemical reaction. Then 30 s of D.I. water rinse will be immediately
applied to stop the development and clean up the residue. To etch
down the silicon layer and reveal the features, a 28 s of SF6 and C4F8
(both at 10 sccm) at 500 W ICP power and 20 W bias etching with
Plasma-Therm Apex SLR Inductively Coupled Plasma Etcher is able to
fully etch all the silicon down and provide over 9:1 selectivity for our
smallest features.

4.2 Measurement and data processing

Tomeasure the output light intensity, an optical probe station setup
is used with a tunable laser at 1550 nm wavelength connecting to a
lens fiber to maximize the light coupled onto the chip. Considering
the polarization of the grating coupler and its coupling efficiency,
the actual laser power coupled into the mesh is less than 5 mW,
which is still far below the nonlinearity energy density limitation of
the Silicon Photonic waveguide (500 nm × 220 nm). Xenics IR
camera integrated with the microscope captures the scattering light

at each output grating. In addition, a black light shield is applied to
cover the entire camera, probe station and microscope to prevent
the ambient light. And the thermal noise of the camera is eliminated
by capturing the image with no laser input. The last type of noise
taken into account in the measurement is the surface reflection
including the lens flare, and this is by substituting the averaged
background readout that adjacent to the grating coupler. After the
noise cancelation, the images are imported into MATLAB to inte-
grate the intensity values (0–4095 for our 12-bit depth sensor) of all the
pixels of the output region. It is also worth to mention that nodes at
different positions have over three orders of magnitude difference
which is far beyond the dynamic range of the camera. Therefore, lower
input laser powerwith shorter camera integration time is used for nodes
closer to the input node and post-processed into the same scale.
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