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ABSTRACT 

We present DescribePROT, the database of predicted 

amino acid-level descriptors of structure and func- 

tion of proteins. DescribePROT delivers a compre- 

hensive collection of 13 complementary descrip- 

tors predicted using 10 popular and accurate algo- 

rithms for 83 complete proteomes that cover key 

model organisms. The current version includes 7.8 

billion predictions for close to 600 million amino 

acids in 1.4 million proteins. The descriptors encom- 

pass sequence conservation, position specific scor- 

ing matrix, secondary structure, solvent accessibil- 

ity, intrinsic disorder, disordered linkers, signal pep- 

tides, MoRFs and interactions with proteins, DNA and 

RNAs. Users can search DescribePROT by the amino 

acid sequence and the UniProt accession number 

and entry name. The pre-computed results are made 

available instantaneously. The predictions can be ac- 

cesses via an interactive graphical interface that al- 

lows simultaneous analysis of multiple descriptors 

and can be also downloaded in structured formats at 

the protein, proteome and whole database scale. The 

putative annotations included by DescriPROT are 

useful for a broad range of studies, including: inves- 

tigations of protein function, applied projects focus- 

ing on therapeutics and diseases, and in the devel- 

opment of predictors for other protein sequence de- 

scriptors. Future releases will expand the coverage 

 
of DescribePROT. DescribePROT can be accessed at 

http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/. 

 
INTRODUCTION 

As the amount of sequence data grows rapidly, currently 
including over 189 million protein coding regions in the 
UniProt release 2020 04 (1), scientists face the huge task 
to characterize novel proteins functionally and structurally. 
The functions and structures of proteins can be annotated 
at three levels of resolution: atomic, amino-acid (AA) and 
whole-protein. The primary repository of atomic-level in- 
formation is the Protein Data Bank (PDB) (2), which cur- 
rently houses 160 thousand protein structures. Protein- 
level data can be collected from several resources, including 
the manually reviewed Swiss-Prot and computationally an- 
notated TrEMBL (1,3). Intermediate level annotations, also 
called 1D descriptors (4,5), describe structural and func- 
tional features of the AAs that compose protein chains. 
Popular AA-level structure descriptors include solvent ac- 
cessibility, secondary structure, torsion angles, intrinsic dis- 
order and flexibility. Common function descriptors at the 
AA level cover annotations of protein domains, catalytic 
residues and residues that interact with specific types of 
partners, such as proteins, RNA, DNA, membranes, nu- 
cleotides, and a variety of small ligands. While these AA- 
level annotations can be computed from PDB files and col- 

lected from Swiss-Prot/TrEMBL records, they cover a rel- 
atively small subset of proteins in the case of PDB and a 

small subset of AAs in the Swiss-Prot/TrEMBL annotated 
sequences. 

The absence of the AA-level annotations can be reme- 
died with the help of computational tools that predict them 
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from protein sequence. Hundreds of these predictors have 
been developed over the last few decades (5–24). For in- 
stance, there are over 60 tools for predicting secondary 
structure (10,22,23), over 70 predictors for intrinsic dis- 
order (14,16,20,21), and close to 40 predictors of AAs- 
nucleic acids interactions (24). Recent empirical assess- 
ments demonstrate that many of these tools provide accu- 
rate predictions (11,25–31). Many of them are also heav- 
ily used by the community, with examples that include Sig- 
nalP (32–35) [21 941 citations in Google Scholar as of July 
2020], PSIPRED (36,37) [9,050 citations] and IUPred (38– 
40) [2865 citations]. 

These tools can typically be used through web interfaces 
or downloadable programs provided by the authors. How- 
ever, using tools directly can become complicated when 

collecting predictions for a large set of proteins and/or 
for multiple structural as well as functional characteristics. 
Web interfaces are typically ill-suited to running large num- 
bers of predictions, and use of downloadable programs re- 
quires finding these resources, often time-consuming exe- 
cution of the predictions, and assembling the results from 
outputs that rely on different formats. Several recently 
published prediction platforms, such as PSIPRED work- 
bench (41), SCRATCH (42), PredictProtein (43), MULTI- 
COM (44) and DEPICTER (45), alleviate some of these 
issues by providing integrated access to multiple predic- 
tors. However, these platforms use a substantial amount 
of time to complete the predictions and most of them fo- 
cus on a specific category of the AA-level descriptors. For 
instance, PSIPRED workbench, SCRATCH and MULTI- 
COM primarily focus on the structural descriptors while 
DEPICTER covers both structural and functional features 
but solely for the disordered regions. Two databases of pre- 
computed AA-level predictions, D2P2 (46) and MobiDB 
(47,48), offer an alternative solution. They provide fast and 
convenient access to results generated by multiple predic- 
tors. However, D2P2 was last updated in 2012 and both 
repositories cover a rather narrow set of putative structural 
and functional features, primarily focusing on disorder pre- 
dictions (Table 1). More specifically, D2P2 covers only three 
descriptors (one structural and two functional) including 
the intrinsic disorder descriptor that is predicted by nine 
different methods. Similarly, MobiDB includes four puta- 
tive descriptors (two structural and two functional) when 
using ten predictors of the intrinsic disorder. 

DescribePROT (Database of structure and function 
residue-based predictions of PROTeins) is a new resource 
that offers access to the predictions of nine key AA-level de- 
scriptors generated by 10 predictors for a collection of over 
1.3 million proteins from 83 complete proteomes of popular 
organisms (Table 1). The current version of DescribePROT 
(v.1.1) provides a comprehensive collection of four struc- 
tural descriptors, three functional descriptors and two se- 
quence descriptors. 

 

MATERIALS AND METHODS 

Sequences 

The AA-level predictions were processed on the sequence li- 
brary of 83 complete proteomes selected from the UniProt’s 

 
reference proteomes list in 2019 08 release of UniProt. We 
focused on selecting organisms that are popular research 
targets, such as human, mouse, rat, zebrafish, macaque, 
fruit fly, yeast, C. elegans, A. thaliana, E. coli, as well as 
prevalent viruses that include herpes, Ebola, HIV1, measles 
and mumps. The 83 proteomes contain 1.36 million pro- 
teins with close to 600 million AAs, and cover the four 
taxonomic kingdoms: Eukaryota (with multiple Animalia, 
Plantae, Fungi and Protista proteomes), Bacteria, Archaea 
and Viruses (Table 2). Figure 1 summarizes the taxonomic 
distribution of the proteins and proteomes included in De- 
scribePROT. Figure 1B shows that 67% of proteomes are 
from Eukaryota, with the largest portion of 39% animal 
proteomes, while the remaining 33% are composed of 16% 
viral, 10% bacterial and 7% archaeal proteomes. Figure 1A 
reveals that DescribePROT includes about 2.3% bacterial 
proteins, 1.0% archaeal proteins, 0.1% viral proteins and 
96.6% eukaryotic proteins. The latter is due to the relatively 
large sizes of the eukaryotic proteomes, particularly com- 
pared to the very small viral proteomes. 

 
Predictions 

The predictive methods included in DescribePROT satisfy 
three key characteristics: (i) short runtime, which is nec- 
essary given the large scope of DescribePROT; (ii) com- 
plementary coverage of a comprehensive set of AA-level 
descriptors and (iii) strong predictive performance. Con- 
sequently, the current version of DescribePROT (v1.1) in- 
cludes results generated by ten predictors (alphabetically): 
solvent accessibility by ASAquick (49,50), disordered link- 
ers by DFLpred (51), disordered protein-, RNA-, and 
DNA-binding AAs by DisoRDPbind (52–54), structure- 
derived DNA- and RNA-binding AAs by DRNApred (55), 
multiple sequence alignment profiles by MMseqs2 (56,57), 
short disordered protein-binding regions by MoRFchibi 
(58), secondary structure by PSIPRED (36,59), structure- 
derived protein-binding AAs by SCRIBER (60), signal pep- 
tides by SignalP (34,61), and intrinsically disordered AAs 
by VSL2B (62,63). Table 3 summarizes these methods. Em- 
pirical measurements of the runtime conducted using pro- 
teins included in DescribePROT are shown in Table 3 and 
reveal that these predictors are indeed fast and require 
only between 0.07 s (for VSL2B) and 11 s (for both DR- 
NApred’s predictions) to make predictions for a single pro- 
tein sequence. Each predictor produces different descrip- 
tors and they collectively cover four structural descriptors 
(solvent accessibility, secondary structure, intrinsic disor- 
der and disordered linkers), three functional descriptors 
(protein-binding, RNA-binding and DNA-binding AAs), 
as well as two sequence descriptors (sequence conservation 
and signal peptides). Following, we briefly highlight key fea- 
tures of each tools. 

PSIPRED (36,59) is arguably the most popular predic- 
tor of secondary structure. It generates accurate three-state 
prediction of secondary structure, which includes numeric 
propensities for helix (H), strand (E) and coil (C) conforma- 
tions and a predicted label corresponding to the secondary 
structure with the highest putative propensity. PSIPRED 
was ranked as one of the most accurate predictors in multi- 
ple comparative studies (28,64). We run the single-sequence 
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Table 1. Summary of the databases of predicted AA-level descriptors. The descriptors are categorized into three groups: structural descriptors (Str), 

functional descriptors (Fun), and sequence descriptors (Seq) 
 

Database Last updated No. of descriptors List of descriptors URL 

MobiDB 2019 4 Intrinsic disorder (Str), Secondary structure 
(Str), Protein-binding (Fun), and Domains 
(Fun) 

https://mobidb.bio.unipd.it/ 

D2P2 2012 3 Intrinsic disorder (Str), Disordered protein http://d2p2.pro/ 

DescribePROT 2020 
 

9 
binding (Fun), and Domains (Fun) 
Solvent accessibility (Str), Secondary 

 
http://biomine.cs.vcu.edu/ 

  structure (Str), Sequence conservation 
(Seq), Protein-binding (Fun), RNA-binding 
(Fun), DNA-binding (Fun), Intrinsic 
disorder (Str), Disordered linkers (Str), and 
Signal peptides (Seq) 

servers/DESCRIBEPROT/ 

 
Table 2. Summary and taxonomic classification of the protein data and predictions included in DescribePROT 

 

 
Taxonomic classification 

No. of 
proteomes 

No. of 
sequences 

 
No. of AAs 

 
No. of predictions 

Eukaryotes Animalia 33 790 891 373 185 044 4 851 405 572 
Plantae 13 431 824 169 255 167 2 200 317 171 
Fungi 7 49 388 23 586 301 306 621 913 

Protista 3 48 395 19 407 557 252 298 241 
Bacteria 8 31 453 10 141 624 131 841 112 
Archaea 6 13 155 3 724 684 48 420 892 
Virus 13 840 214 886 2 793 518 

Total 83 1 365 946 599 515 263 7 793 698 419 

 

 
Figure 1. Taxonomic distribution of the proteins (panel A) and proteomes (panel B) in DescribePROT. 

 

version of PSIPRED that can scale to the size of De- 
scribePROT. 

ASAquick (49,50) is a very fast predictor of the AA-level 
accessible surface area (ASA). The quick runtime stems 
from the fact that ASAquick does not utilize the time- 
consuming multiple sequence alignments. However, its pre- 
dictive performance is competitive with other methods that 
are much slower due to using the alignments (50). We con- 
vert the outputs produced by this tool into the relative sol- 
vent accessibility (RSA) by normalizing the putative ASA 
value by the AA-specific factors taken from (65). We also 
use the RSA values to annotate buried residues based on 

the approach described in (66,67), i.e. AAs with the puta- 
tive RSA < 0.16 are assumed to be buried. 

SignalP (34,61) is the most commonly used predictor of 
signal peptides. It generates numeric propensities for the 
presence of signal peptides and the corresponding binary 
labels (signal peptide versus no signal peptide) for the first 
70 AAs in a given protein chain. We utilize the newest ver- 
sion 5.0 of SignalP that features very accurate predictions, 
works across all taxonomic kingdoms of life and differen- 
tiates between multiple types of the prokaryotic signal pep- 
tides (34). We set the organism groups parameter of SignalP 
to be compatible with the species of the query sequence. 
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Table 3. Overview of the ten predictors that were used to derive data for DescribePROT. The runtime was measured using five batches with 100 proteins 

each on the Intel i7 CPU; we report averages and standard deviations over the five runs 
 

Runtime avg±stdev 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

intrinsically disordered 
AAs. 

 

 

MMseqs2 (56,57) is a very fast homology search tool 
that can produce multiple sequence alignments and posi- 
tion specific scoring matrices (PSSMs) from the search re- 
sults. We utilize this tool to generate PSSMs using the ref- 
erence proteomes set from the 2019 08 release of UniProt 
as the background set of sequences. We compute sequence 
conservation scores from PSSM using the relative entropy- 
based approach (68,69) where the background amino acid 
frequencies are from BLOSUM-62 (70). Moreover, we bin 
the conservation scores into decile intervals and provide bi- 
nary annotation of the highly conserved AAs belonging to 
the top decile. MMseqs2 is two orders of magnitude faster 
than the popular PSI-BLAST while maintaining similar or 
better levels of sensitivity (57). 

VSL2B (62,63) is a fast and popular predictor of intrinsic 
disorder (71–73). It generates numeric propensity for intrin- 
sic disorder and a binary label (disordered vs. structured) 
for each AA in the protein sequence. It couples a short run- 
time with high levels of predictive performance. VSL2B was 
scored as the best disorder predictor in CASP6 (74) and was 
subsequently ranked among the top-performing methods in 
multiple other assessments (16,26,75). 

DFLpred (51) is currently the only predictor of disor- 
dered linker regions, which are defined as intrinsically dis- 

ordered regions that serve as linkers or spacers between 
domains in multi-domain proteins and between structured 
constituents within domains (76). DFLpred outputs the nu- 
meric propensity for the linkers and the corresponding bi- 
nary label (disordered linker vs. non-linker) for each AA of 
the input sequence. This method was shown to produce ac- 
curate predictions in sub-second time for a single protein 
(51). 

The functional descriptors that are included in De- 
scribePROT focus on the annotations of interactions with 
proteins, DNA and RNA. The corresponding predic- 
tive models have been in development for well over a 
decade (7,8,11,13,30). The selection of the four functional 
predictors included in DescribePROT was informed by 
two observations. First, the two major classes of these 
predictors––ones that are trained using the intrinsically dis- 

ordered AAs that bind proteins/DNA/RNA vs. ones that 
are trained using structured protein–protein, protein–DNA 
and protein–RNA complexes––were shown to provide com- 
plementary results (77,78). Second, multiple recent studies 
demonstrate that many of these methods cross-predict the 
three types of interacting AAs (11,30,31,79). This means 
that, for instance, predictors of protein-binding AAs would 
also incorrectly predict DNA- and RNA-binding AAs as 
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Predictor Last updated Version Reference(s) [s] per 100 proteins Notes URL 

ASAquick 2017 1.0 (49,50) 25.49±0.58 Fast and accurate 
predictor of solvent 

http://mamiris.com/ 
services.html 

DFLpred 2016 1.0 (51) 30.23±0.55 

accessibility. 
Sole, fast and accurate 
predictor of disordered 

http://biomine.cs.vcu.edu/ 
servers/DFLpred/ 

DisoRDPbind 2015 1.0 (52–54) 30.15±1.12 

linkers. 
Sole, fast and accurate 
predictor of the 
disordered DNA-, 

http://biomine.cs.vcu.edu/ 
servers/DisoRDPbind/ 

 
DRNApred 

 
2017 

 
1.0 

 
(55) 1094.03±79.89 

RNA- and 
protein-binding AAs. 
Accurate predictor of 
DNA- and 

RNA-binding AAs 

 
http://biomine.cs.vcu.edu/ 
servers/DRNApred/ 

 
MMseqs2 

 
2019 

 
2.0 

 
(56,57) 932.99±4.04 

annotated from 
structure. 
Fast and sensitive 
multiple sequence 

 
https://search.mmseqs. 
com/search 

MoRFchiBi 2016 1.03 (58) 179.87±8.73 

alignment. 
Fast and accurate 
predictor of MoRF 

https: 
//gsponerlab.msl.ubc.ca/ 

PSIPRED 2019 4.01 (36,59) 90.91±3.44 

regions. 
Popular and accurate 
predictor of secondary 

software/morf chibi/ 
http://bioinf.cs.ucl.ac.uk/ 
psipred/ 

SCRIBER 2019 1.0 (60) 770.56±40.81 

structure. 
Accurate predictor of 
protein-binding AAs 
annotated from 

http://biomine.cs.vcu.edu/ 
servers/SCRIBER/ 

 

SignalP 
 

2019 
 

5.0 
 

(34,61) 492.80±0.12 

structure. 
Popular, accurate and 
comprehensive 
predictor of signal 

 

http://www.cbs.dtu.dk/ 
services/SignalP/ 

 

VSL2B 
 

2006 

 

N/A 
 

(62,63) 7.76±0.044 

peptides. 
Fast and accurate 
predictor of 

http://www.dabi.temple. 
edu/disprot/predictor.php 

 

http://mamiris.com/services.html
http://mamiris.com/services.html
http://biomine.cs.vcu.edu/servers/DFLpred/
http://biomine.cs.vcu.edu/servers/DFLpred/
http://biomine.cs.vcu.edu/servers/DisoRDPbind/
http://biomine.cs.vcu.edu/servers/DisoRDPbind/
http://biomine.cs.vcu.edu/servers/DRNApred/
http://biomine.cs.vcu.edu/servers/DRNApred/
https://search.mmseqs.com/search
https://search.mmseqs.com/search
https://gsponerlab.msl.ubc.ca/software/morf_chibi/
https://gsponerlab.msl.ubc.ca/software/morf_chibi/
https://gsponerlab.msl.ubc.ca/software/morf_chibi/
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
http://biomine.cs.vcu.edu/servers/SCRIBER/
http://biomine.cs.vcu.edu/servers/SCRIBER/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://www.dabi.temple.edu/disprot/predictor.php
http://www.dabi.temple.edu/disprot/predictor.php
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protein-binding while predictors of DNA-binding residues 
would also incorrectly predict protein- and RNA-binding 
residues as DNA-binding. Correspondingly, we include 
both classes of predictors (disorder and structure trained) 
and we ensure that they were designed to minimize the 
amount of the cross-predictions. 

DisoRDPbind (52–54) is the only currently available pre- 
dictor of intrinsically disordered AAs that interact with 
DNA and RNA. This tool also provides predictions of 
disordered, protein-binding AAs. It generates three nu- 
meric propensities for protein-, DNA- and RNA-binding 
by disordered AAs and the corresponding three binary la- 

bels (protein/DNA/RNA binding versus non-binding) for 
each AAs of the input protein chain. DisoRDPbind excels 
through short runtime (the three types of interactions are 
predicted in under a second for a single protein), was ranked 
among the top predictors of disordered, protein-binding 
AAs (77), and generates low amounts of cross-predictions 
(52,77). 

We also cover prediction of an abundant subclass of dis- 
ordered, protein-binding AAs, called MoRFs (molecular 
recognition features) (80,81). MoRFs are short disordered 
protein regions (between 5 and 25 AAs in length) that un- 
dergo disorder-to-order transition upon binding the pro- 
tein partner(s). A significant majority of functional predic- 
tors that address disordered AAs focus on this type inter- 
action (16,18). We use a fast and accurate predictor, MoR- 
Fchibi (58), which outputs numeric propensities for MoRFs 
and binary labels (MoRF versus non-MoRF). This method 
was recently ranked among the most accurate predictors of 
MoRFs (18). 

DRNApred (55) accurately predicts DNA and protein– 
RNA binding AAs that are annotated based  on  struc- 
tured protein-nucleic acids complexes. It produces propen- 
sities for DNA-binding, propensities for RNA  binding, 
and two corresponding binary labels (RNA binding versus 
non-RNA binding and DNA-binding versus non-DNA- 
binding) for each AA of the input sequence. This method is 
the sole predictor of nucleic-acid interacting AAs that was 
trained to specifically reduce cross-predictions (55,79). 

SCRIBER (60) is an accurate predictor of protein- 
binding AAs annotated based on structured complexes. It 
outputs both the numeric propensities for protein-binding 
and the corresponding binary labels for each AA in the in- 
put protein sequence. Similar to DRNApred in the con- 
text of interactions with nucleic acids, this is the only 
method that was specifically designed to successfully min- 
imize cross-predictions of protein binding residues (60,77). 
The methods that we employ were shown to provide accu- 
rate predictions on the corresponding benchmark datasets 
(26,28,34,50,51,55,58,60,75,77). These datasets typically 
broadly cover the taxonomic space. However, only two of 
these methods, DisoRDPbind and SignalP, were compar- 
atively evaluated across different species or domains of 
life to probe robustness of their predictions. DisoRDP- 
bind demonstrates consistent levels of predictive perfor- 
mance across human, mouse, fruit fly and C. elegans pro- 
teomes (52). Similarly, SignalP provides comparable predic- 
tive quality across Archaea, gram-negative Bacteria, gram- 
positive Bacteria and Eukaryota (34). Availability of De- 

 
scribePROT will facilitate future studies that provide anal- 
ogous comparative analyses for the other methods. 

 
DATABASE 

The database is available at http://biomine.cs.vcu.edu/ 
servers/DESCRIBEPROT/. DescribePROT’s backend is 
implemented with the MariaDB relational database. We 
use php and JavaScript to deliver the user interface and 
python to access database, parse data, and generate down- 
loadable files. Following, we explain the data stored in De- 
scribePROT, how to access these data, how to search the 
database, and how to use and understand the graphical in- 
terface. 

 
Data 

The data of DescribePROT include protein names, UniProt 
entry names, sequences, accession numbers that are used to 
link to the UniProt records, and 12 predictions that are pro- 
vided as raw numeric propensities and propensity-derived 
labels. DescribePROT stores the numerical propensities for 
solvent accessibility, each of the three secondary structure 
states, signal peptides, intrinsic disorder, disordered linkers, 
MoRFs, disordered protein-, DNA- and RNA-binding and 
structure-annotated protein-, DNA- and RNA-binding. We 
also store the three-state secondary structure labels and the 
binary labels for buried AAs, signal peptides, intrinsically 
disordered AAs, disordered linkers, MoRFs, disordered 
protein-, DNA- and RNA-binding AAs, and structure- 
annotated protein-, DNA- and RNA-binding AAs. Finally, 
we include the PSSM, numeric conservation scores and 
the 10-state (decile-based) conservation level labels for each 
AA. 

These data are available to the end user in multiple conve- 
nient and complementary ways. We provide the source data 
in JSON format for each of the 83 proteomes as well as 
for the entire database. This option is available under the 
‘Download’ link on the main page of the database. We also 
provide access to the data for each individual protein via 
an interactive graphical interface and downloadable PNG 
file of this graphic, as well as a CSV-formatted file and a 
parsable JSON-formatted file with the raw predictions and 
binary results. We explain how to access this information in 
the ‘Results Page’ section. 

 
Search types 

Users can search DescribePROT in three ways: by the 
UniProt accession number, the UniProt entry name and the 
AA sequence. The AA sequence search generates a collec- 
tion of proteins included in DescribePROT that are sorted 
by their similarity to the input protein chain. These pro- 
teins can be sorted by the E-value (by default), alignment 
coverage and identity values that are produced by BLAST 
(82,83). This information is accompanied by the corre- 
sponding accession numbers linking to UniProt records 
and the taxonomy IDs, to provide context for the selec- 
tion of the most relevant protein. DescribePROT also pro- 
vides direct access to the data for a particular protein us- 
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ing the UniProt accession number, e.g. users can fetch re- 
sults for P04637 (p53 protein) using the following direct 
link: http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/ 
result.php?uniprot=P04637. This allows for direct cross- 
linking with other databases. 

 
Results page 

The putative structural, functional, and sequence descrip- 
tors for a given protein are available in an interactive graph- 
ical format, which utilizes the ‘Feature Viewer’ software 

(DOI: 10.5281/zenodo.345324), and parsable structured 
format on the results page (Figure 2). The top of the page 
includes the accession number (linked to the corresponding 
UniProt record), protein name, taxonomy ID and length of 
the sequence. The red marker 1 in Figure 2 points the ques- 
tion mark icon that links to the help and tutorial videos. 
The JSON and CSV-formatted putative annotations can be 
downloaded by clicking the arrow icons indicated by the red 
markers 2 and 3, respectively. The graphical view shown at 
the bottom of Figure 2 is available for download as an image 
in the PNG format by clicking the arrow icon identified by 
the red marker 4. The results are divided into three sections 
(Figure 2): (a) putative structural descriptors that include 
predictions from VSL2B (intrinsic disorder), ASAquick 
(solvent accessibility) and PSIPRED (secondary struc- 
ture); (b) putative functional descriptors that cover pre- 
dictions from DisoRDPbind (disordered protein-, DNA- 
and RNA-binding binding), MoRFchibi (MoRF regions), 
DRNApred (structure-derived DNA- and RNA-binding) 
and SCRIBER (structure-derived protein-binding) and (c) 
other descriptors that feature results from MMseqs2 (PSSM 
and sequence conservation) and predictions from DFLpred 
(disordered linkers) and SignalP (signal peptides). The pre- 
dictions are displayed using a graphical report that sum- 
marizes the numeric propensities and labels. The red oval 
marker at the top of Figure 2 identifies the checkbox that 
opens graphical reports for specific predictions. The graph- 
ical reports can be scaled (zoomed in and out) and offer 
functionality to highlight regions of predicted labels and to 
display the boundaries of these regions and the underlying 
propensities on the mouse over. Examples of the latter fea- 
tures are shown using the red oval markers in the middle of 
Figure 2. 

We explain how to interpret the data from the results 
page using an example analysis of the human p53 protein 
shown in Figure 2. The p53 protein is involved in several 
key cellular processes, such as apoptosis and DNA repair 
(84). Studies have shown that p53 is an intrinsically disor- 
dered proteins that carries out its functions by interacting 
with a large numbers of protein (85–91) and DNA (92,93) 
partners. According to the results from VSL2B shown in 
the light green color in Figure 2, DescribePROT suggests 
that 56% of the p53 sequence is disordered, with two long 
disordered regions at the N-terminus (positions 1–101) and 
the C-terminus (positions 277–393). This is in good agree- 
ment with the experimentally annotated disordered regions 
that are localized at the N-terminus (positions 1–92) and the 
C-terminus (positions 293–393 AAs) (94). Moreover, De- 
scribePROT suggests that 20% of AAs bind protein part- 
ners (blue highlights in Figure 2). This prediction combines 

 
together, using union operation, the results produced by the 
relevant methods that include DisoRDPbind, MoRFchibi 
and SCRIBER. Detailed analysis reveals that in this case 
the interactions are predicted by DisoRDPbind (regions 1– 
32, 41–70 and 283–287) and MoRFchibi (region 378–387). 
Their predictions are in line with the experimental data (88). 
For instance, p53 was shown to interact with several protein 
partners, such as p300 and CBP, via the transactivation do- 
main (region 1–61) (89), and with another group of proteins, 
including sirtuin and CBP, in the 374–388 region (90,91). 
Moreover, research shows that the central structured do- 
main of p53 is highly conserved (95) while the flanking dis- 
ordered regions have diversified during the evolution (96). 
Correspondingly, the gray-colored results in Figure 2 show 
that highly conserved residues (darker grays) are primar- 
ily located in the structured domain. This example demon- 
strates the richness of the information that can be gleaned 
from the results reported by DescribePROT. 

 
Global analysis of the putative descriptors 

Figure 3 visualizes color-coded Spearman correlation coef- 
ficients (SCCs) between each pair of the 14 AA-level puta- 
tive propensities for the protein structure and function gen- 
erated by nine predictive tools. We exclude SignalP from this 
analysis since its predictions concern only the 70 AAs at 
the N-terminus of the protein chain. The majority of the 

propensities are not correlated (SCC < 0.2), which con- 
firms that they characterize distinct descriptors of AAs. The 
few correlated descriptors include the PSIPRED-predicted 
secondary structures, where propensity for the helical con- 
formation is negatively correlated with the propensities for 

strands and coils (SCC < –0.6) and where propensities for 
strands and coils are weakly correlated (SCC 0.2). The 
DRNApred-generated propensities for DNA-binding and 
RNA-binding are negatively correlated (SCC –0.54), and 
this stems from the fact that DRNApred was designed to 
minimize cross-prediction between DNA and RNA binding 
AAs (55,79). Similar observation is true for DisoRDPbind’s 
predictions of protein-binding and RNA-binding that are 
also slightly negatively correlated (SCC –0.24) (52,77). Fi- 
nally, the modestly correlated predictions from SCRIBER 
and MoRFchibi (SCC 0.25) can be explained by the fact 
that both methods predict protein-binding AAs. SCRIBER 
predicts protein-binding residues that form structured com- 
plexes while MoRFchibi focuses on MoRFs (short disor- 
dered protein-binding regions that fold upon binding). 

Figure 4 shows distributions of the protein-level content 
values that are aggregated from the AA-level labels pre- 
dicted by the ten methods. Content is defined as the fraction 
of AAs with a given label in the protein sequence, e.g. frac- 
tion of buried AAs is computed as the number of buried 
AAs divided by the sequence length. We cover the content 
of highly conserved residues (AAs in the top docile of the 
database-wide conservation scores), content of helix (H), 
strand (E) and coil (C) conformations, content of buried 

AAs (RSA < 0.16 (66,67)), and contents of the disordered 
AAs, disordered linkers, as well as protein-binding, RNA- 
binding and DNA-binding AAs. Several interesting obser- 
vations can be gleaned from these data. For instance, the 
content of highly conserved AAs ranges between 0.03 and 
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Figure 2. An example results page generated by DescribePROT database for the human p53 protein (UniProt ID: P04637). 
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Figure 3. Spearman correlation coefficients (SCCs) between each pair of the numeric propensities produced by the 14 AA-level predictions of protein struc- 
ture and function. The color-coded SCCs were computed over the AAs included in DescribePROT. The structure predictions include RSA by ASAquick, 
disordered linkers by DFLpred, helix, strand and coil conformations by PSIPRED, and intrinsic disorder by VSL2B. The function predictions cover disor- 
dered RNA-binding, DNA-binding and protein-binding by DisoRDPbind, MoRFs by MoRFchibi, structure-annotated DNA-binding and RNA-binding 
by DRNApred and structure-annotated protein-binding by SCRIBER. We also include sequence conservation computed from the profiles generated by 
MMSeqs2. 

 

0.24, which suggests that sequence-level conservation can 
vary by as much as an order of magnitude. The median con- 
tent of helical AAs is at about 0.4, which is slightly lower 
than the median content of coils at 0.45, and substantially 
higher that the median content of strands that is at 0.15. 
The median content of buried AAs is 0.3, but the fraction 
of buried residues can vary widely between nearly zero and 
half the sequence. The median content of intrinsic disorder 
is at around 0.1 while about 35% of proteins have majority 
of their AAs disordered, and some proteins are fully disor- 
dered. These observations are in agreement with past stud- 
ies of the abundance of the intrinsic disorder (97,98). 

 
DISCUSSION 

DescribePROT provides convenient access to a variety of 
AA-level descriptors of protein structure and function for a 
collection of complete proteomes that cover popular model 
organisms. It includes predictions of intrinsic disorder, sec- 
ondary structure, solvent accessibility, RNA-, DNA- and 

protein-binding, MoRFs, disordered linkers and signal pep- 
tides. It also offers access to the pre-computed PSSM and 
sequence conservation values. This resource complements 
the current databases of AA-level predictions, D2P2 (46) 
and MobiDB (47,48), that primarily focus on the intrin- 
sic disorder. The putative annotations included by De- 
scriPROT are useful for a wide range of studies, spanning 
from basic investigations of protein function, through ap- 
plied projects that focus on diseases and therapeutics, to 
projects that design and test novel methods for the predic- 
tion of other characteristics of protein sequences. For in- 
stance, just recently, VSL2B was used to characterize func- 
tion and structure of the EZH2 protein (99), DisoRDPbind 
was used to analyze the SARS-CoV-2 proteome (100), and 
PSIPRED and ASAquick were applied to devise a deep- 
learning predictor of caspase and matrix metalloprotease 
cleavage sites (101). 

DescribePROT provides multiple ways to access the data. 
It features an interactive graphical interface that offers the 
opportunity to simultaneously explore multiple structural 
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Figure 4. Distributions of the putative protein-level content of the structural, functional and sequence-derived descriptors included in DescribePROT. 
The boxplots represent the following 12 intervals, where the consecutive rectangles corresponding to 5–12.5, 12.5–20, 20–27.5, 27.5–35, 35–42.5, 42.5–50, 
50–57.5, 57.5–65, 65–72.5, 72.5–80, 80–87.5, 87.5–95 percentile ranges. The black horizontal lines represent medians. 

 

and functional descriptors. It also provides parsable down- 
loads of the source data at the protein, proteome and whole 
database scales. Moreover, DescriPROT website features 
help and tutorial videos that explain how to search the 
database and how to use and understand the graphical in- 
terface. 

Future work will primarily concentrate on expanding the 
coverage of the database, with the long-term goal to cover 
the entire content of UniProt. Our high-priority short-term 
objective is to include experimental annotations available 
in several relevant reference databases, such as PDB (2) and 
DisProt (102). We intend to add additional and complemen- 
tary functional and structural descriptors, with examples 
being putative domain boundaries, post-translational mod- 
ifications, and interactions with small molecule ligands. We 
plan to provide access to the underlying data programmat- 
ically via API, to supplement the multitude of the currently 
available downloadable file formats. Overall, we aim to up- 
date the DescribePROT resource quarterly. We are also ea- 
ger to hear and consider suggestions concerning the future 
developments from the community of users. 
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Hamp,T., Hö nigschmid,P., Schafferhans,A., Roos,M., Bernhofer,M. 
et al. (2014) PredictProtein––an open resource for online prediction 
of protein structural and functional features. Nucleic Acids Res., 42, 
W337–W343. 

44. Cheng,J., Li,J., Wang,Z., Eickholt,J. and Deng,X. (2012) The 
MULTICOM toolbox for protein structure prediction. BMC 
Bioinformatics, 13, 65. 

45. Barik,A., Katuwawala,A., Hanson,J., Paliwal,K., Zhou,Y. and 
Kurgan,L. (2020) DEPICTER: intrinsic disorder and disorder 
function prediction server. J. Mol. Biol., 432, 3379–3387. 

46. Oates,M.E., Romero,P., Ishida,T., Ghalwash,M., Mizianty,M.J., 
Xue,B., Dosztanyi,Z., Uversky,V.N., Obradovic,Z., Kurgan,L. et al. 
(2013) D(2)P(2): database of disordered protein predictions. Nucleic 
Acids Res., 41, D508–D516. 

47. Piovesan,D., Tabaro,F., Paladin,L., Necci,M., Micetic,I., 
Camilloni,C., Davey,N., Dosztanyi,Z., Meszaros,B., Monzon,A.M. 
et al. (2018) MobiDB 3.0: more annotations for intrinsic disorder, 
conformational diversity and interactions in proteins. Nucleic Acids 
Res., 46, D471–D476. 

48. Di Domenico,T., Walsh,I., Martin,A.J.M. and Tosatto,S.C.E. (2012) 
MobiDB: a comprehensive database of intrinsic protein disorder 
annotations. Bioinformatics, 28, 2080–2081. 

49. Faraggi,E., Zhou,Y. and Kloczkowski,A. (2014) Accurate 
single-sequence prediction of solvent accessible surface area using 
local and global features. Proteins, 82, 3170–3176. 

50. Faraggi,E., Kouza,M., Zhou,Y. and Kloczkowski,A. (2017) Fast 
and accurate accessible surface area prediction without a sequence 
profile. Methods Mol. Biol., 1484, 127–136. 

51. Meng,F. and Kurgan,L. (2016) DFLpred: High-throughput 
prediction of disordered flexible linker regions in protein sequences. 
Bioinformatics, 32, i341–i350. 

52. Peng,Z. and Kurgan,L. (2015) High-throughput prediction of RNA, 
DNA and protein binding regions mediated by intrinsic disorder. 
Nucleic Acids Res., 43, e121. 

53. Peng,Z., Wang,C., Uversky,V.N. and Kurgan,L. (2017) Prediction of 
disordered RNA, DNA, and protein binding regions using 
DisoRDPbind. Methods Mol. Biol., 1484, 187–203. 

54. Oldfield,C.J., Peng,Z. and Kurgan,L. (2020) Disordered 
RNA-binding region prediction with DisoRDPbind. Methods Mol. 
Biol., 2106, 225–239. 

55. Yan,J. and Kurgan,L. (2017) DRNApred, fast sequence-based 
method that accurately predicts and discriminates DNA- and 
RNA-binding residues. Nucleic Acids Res., 45, e84. 

56. Mirdita,M., Steinegger,M. and Soding,J. (2019) MMseqs2 desktop 
and local web server app for fast, interactive sequence searches. 
Bioinformatics, 35, 2856–2858. 

57. Steinegger,M. and Soding,J. (2017) MMseqs2 enables sensitive 
protein sequence searching for the analysis of massive data sets. Nat. 
Biotechnol., 35, 1026–1028. 

D
o
w

n
lo

a
d
e
d

 fro
m

 h
ttp

s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
9
/D

1
/D

2
9
8
/5

9
4
3
1
9
3

 b
y
 g

u
e
s
t o

n
 2

1
 S

e
p
te

m
b

e
r 2

0
2
1
 



D308 Nucleic Acids Research, 2021, Vol. 49, Database issue 
 

 
 

58. Malhis,N., Jacobson,M. and Gsponer,J. (2016) MoRFchibi 
SYSTEM: software tools for the identification of MoRFs in protein 
sequences. Nucleic Acids Res., 44, W488–W493. 

59. Jones,D.T. (1999) Protein secondary structure prediction based on 
position-specific scoring matrices. J. Mol. Biol., 292, 195–202. 

60. Zhang,J. and Kurgan,L. (2019) SCRIBER: accurate and partner 
type-specific prediction of protein-binding residues from proteins 
sequences. Bioinformatics, 35, i343–i353. 

61. Nielsen,H. (2017) Predicting secretory proteins with SignalP. 
Methods Mol. Biol., 1611, 59–73. 

62. Obradovic,Z., Peng,K., Vucetic,S., Radivojac,P. and Dunker,A.K. 
(2005) Exploiting heterogeneous sequence properties improves 
prediction of protein disorder. Proteins, 61, 176–182. 

63. Peng,K., Radivojac,P., Vucetic,S., Dunker,A.K. and Obradovic,Z. 
(2006) Length-dependent prediction of protein intrinsic disorder. 
BMC Bioinformatics, 7, 208. 

64. Rost,B. (2001) Review: protein secondary structure prediction 
continues to rise. J. Struct. Biol., 134, 204–218. 

65. Tien,M.Z., Meyer,A.G., Sydykova,D.K., Spielman,S.J. and 
Wilke,C.O. (2013) Maximum allowed solvent accessibilites of 
residues in proteins. PLoS One, 8, e80635. 

66. Kim,H. and Park,H. (2004) Prediction of protein relative solvent 
accessibility with support vector machines and long-range 
interaction 3D local descriptor. Proteins Struct. Funct. Bioinf., 54, 
557–562. 

67. Pollastri,G., Baldi,P., Fariselli,P. and Casadio,R. (2002) Prediction 
of coordination number and relative solvent accessibility in proteins. 
Proteins, 47, 142–153. 

68. Fischer,J.D., Mayer,C.E. and Soding,J. (2008) Prediction of protein 
functional residues from sequence by probability density estimation. 
Bioinformatics, 24, 613–620. 

69. Wang,K. and Samudrala,R. (2006) Incorporating background 
frequency improves entropy-based residue conservation measures. 
BMC Bioinformatics, 7, 385. 

70. Styczynski,M.P., Jensen,K.L., Rigoutsos,I. and Stephanopoulos,G. 
(2008) BLOSUM62 miscalculations improve search performance. 
Nat. Biotechnol., 26, 274–275. 

71. van der Lee,R., Buljan,M., Lang,B., Weatheritt,R.J., 
Daughdrill,G.W., Dunker,A.K., Fuxreiter,M., Gough,J., 
Gsponer,J., Jones,D.T. et al. (2014) Classification of intrinsically 
disordered regions and proteins. Chem. Rev., 114, 6589–6631. 

72. Oldfield,C.J., Uversky,V.N., Dunker,A.K. and Kurgan,L. (2019) 
Introduction to intrinsically disordered proteins and regions. In: 
Salvi,N. (ed). Intrinsically Disordered Proteins. Academic Press, pp. 
1–34. 

73. Zhou,J., Oldfield,C.J., Yan,W., Shen,B. and Dunker,A.K. (2020) 
Identification of intrinsic disorder in complexes from the Protein 
Data Bank. ACS Omega, 5, 17883–17891. 

74. Jin,Y. and Dunbrack,R.L. Jr (2005) Assessment of disorder 
predictions in CASP6. Proteins, 61, 167–175. 

75. Peng,Z.L. and Kurgan,L. (2012) Comprehensive comparative 
assessment of in-silico predictors of disordered regions. Curr. 
Protein Pept. Sci., 13, 6–18. 

76. Dunker,A.K., Brown,C.J., Lawson,J.D., Iakoucheva,L.M. and 
Obradovic,Z. (2002) Intrinsic disorder and protein function. 
Biochemistry, 41, 6573–6582. 

77. Zhang,J., Ghadermarzi,S. and Kurgan,L. (2020) Prediction of 
protein-binding residues: dichotomy of sequence-based methods 
developed using structured complexes vs. disordered proteins. 
Bioinformatics, https://doi.org/10.1093/bioinformatics/btaa573. 

78. Chowdhury,S., Zhang,J. and Kurgan,L. (2018) In silico prediction 
and validation of novel RNA binding proteins and residues in the 
human proteome. Proteomics, 18, e1800064. 

79. Su,H., Liu,M., Sun,S., Peng,Z. and Yang,J. (2019) Improving the 
prediction of protein-nucleic acids binding residues via multiple 
sequence profiles and the consensus of complementary methods. 
Bioinformatics, 35, 930–936. 

80. Mohan,A., Oldfield,C.J., Radivojac,P., Vacic,V., Cortese,M.S., 
Dunker,A.K. and Uversky,V.N. (2006) Analysis of molecular 
recognition features (MoRFs). J. Mol. Biol., 362, 1043–1059. 

81. Yan,J., Dunker,A.K., Uversky,V.N. and Kurgan,L. (2016) 
Molecular recognition features (MoRFs) in three domains of life. 
Mol. Biosyst., 12, 697–710. 

82. Camacho,C., Coulouris,G., Avagyan,V., Ma,N., Papadopoulos,J., 
Bealer,K. and Madden,T.L. (2009) BLAST+: architecture and 
applications. BMC Bioinformatics, 10, 421. 

83. Hu,G. and Kurgan,L. (2019) Sequence similarity searching. Curr. 
Protoc. Protein Sci., 95, e71. 

84. Toufektchan,E. and Toledo,F. (2018) The guardian of the genome 
revisited: p53 downregulates genes required for telomere 
maintenance, DNA repair, and centromere structure. Cancers 
(Basel), 10, 135. 

85. Bischoff,J.R., Friedman,P.N., Marshak,D.R., Prives,C. and 
Beach,D. (1990) Human P53 is phosphorylated by P60-Cdc2 and 
Cyclin-B-Cdc2. Proc. Natl. Acad. Sci. U.S.A., 87, 4766–4770. 

86. Ferreon,J.C., Lee,C.W., Arai,M., Martinez-Yamout,M.A., 
Dyson,H.J. and Wright,P.E. (2009) Cooperative regulation of p53 by 

modulation of ternary complex formation with CBP/p300 and 
HDM2. Proc. Natl. Acad. Sci. U.S.A., 106, 6591–6596. 

87. Wells,M., Tidow,H., Rutherford,T.J., Markwick,P., Jensen,M.R., 
Mylonas,E., Svergun,D.I., Blackledge,M. and Fersht,A.R. (2008) 
Structure of tumor suppressor p53 and its intrinsically disordered 
N-terminal transactivation domain. Proc. Natl. Acad. Sci. U.S.A., 
105, 5762–5767. 

88. Oldfield,C.J., Meng,J., Yang,J.Y., Yang,M.Q., Uversky,V.N. and 
Dunker,A.K. (2008) Flexible nets: disorder and induced fit in the 
associations of p53 and 14-3-3 with their partners. BMC Genomics, 
9, S1. 

89. Feng,H., Jenkins,L.M., Durell,S.R., Hayashi,R., Mazur,S.J., 
Cherry,S., Tropea,J.E., Miller,M., Wlodawer,A., Appella,E. et al. 
(2009) Structural basis for p300 Taz2-p53 TAD1 binding and 
modulation by phosphorylation. Structure, 17, 202–210. 

90. Avalos,J.L., Celic,I., Muhammad,S., Cosgrove,M.S., Boeke,J.D. and 
Wolberger,C. (2002) Structure of a Sir2 enzyme bound to an 
acetylated p53 peptide. Mol. Cell, 10, 523–535. 

91. Mujtaba,S., He,Y., Zeng,L., Yan,S., Plotnikova,O., Sachchidanand 
Sanchez,R., Zeleznik-Le,N.J., Ronai,Z. and Zhou,M.M. (2004) 
Structural mechanism of the bromodomain of the coactivator CBP 
in p53 transcriptional activation. Mol. Cell, 13, 251–263. 

92. Lidor Nili,E., Field,Y., Lubling,Y., Widom,J., Oren,M. and Segal,E. 
(2010) p53 binds preferentially to genomic regions with high 
DNA-encoded nucleosome occupancy. Genome Res., 20, 1361–1368. 

93. McLure,K.G. and Lee,P.W. (1998) How p53 binds DNA as a 
tetramer. EMBO J., 17, 3342–3350. 

94. Uversky,V.N. (2016) p53 proteoforms and intrinsic disorder: an 
Illustration of the protein structure-function continuum concept. 
Int. J. Mol. Sci., 17, 1874. 

95. Soussi,T. and Beroud,C. (2001) Assessing TP53 status in human 
tumours to evaluate clinical outcome. Nat. Rev. Cancer, 1, 233–240. 

96. Xue,B., Brown,C.J., Dunker,A.K. and Uversky,V.N. (2013) 
Intrinsically disordered regions of p53 family are highly diversified 
in evolution. Biochim. Biophys. Acta, 1834, 725–738. 

97. Peng,Z., Yan,J., Fan,X., Mizianty,M.J., Xue,B., Wang,K., Hu,G., 
Uversky,V.N. and Kurgan,L. (2015) Exceptionally abundant 
exceptions: comprehensive characterization of intrinsic disorder in 
all domains of life. Cell. Mol. Life Sci., 72, 137–151. 

98. Uversky,V.N. (2015) Paradoxes and wonders of intrinsic disorder: 
Prevalence of exceptionality. Intrinsic. Disord Proteins, 3, e1065029. 

99. Jiao,L., Shubbar,M., Yang,X., Zhang,Q., Chen,S., Wu,Q., Chen,Z., 
Rizo,J. and Liu,X. (2020) A partially disordered region connects 
gene repression and activation functions of EZH2. Proc. Natl. Acad. 
Sci. U.S.A., 117, 16992–17002. 

100. Giri,R., Bhardwaj,T., Shegane,M., Gehi,B.R., Kumar,P., 
Gadhave,K., Oldfield,C.J. and Uversky,V.N. (2020) Understanding 
COVID-19 via comparative analysis of dark proteomes of 
SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell. 
Mol. Life Sci., https://doi.org/10.1007/s00018-020-03603-x. 

101. Li,F., Chen,J., Leier,A., Marquez-Lago,T., Liu,Q., Wang,Y., 
Revote,J., Smith,A.I., Akutsu,T., Webb,G.I. et al. (2020) 
DeepCleave: a deep learning predictor for caspase and matrix 
metalloprotease substrates and cleavage sites. Bioinformatics, 36, 
1057–1065. 

102. Hatos,A., Hajdu-Soltesz,B., Monzon,A.M., Palopoli,N., Alvarez,L., 
Aykac-Fas,B., Bassot,C., Benitez,G.I., Bevilacqua,M., Chasapi,A. 
et al. (2020) DisProt: intrinsic protein disorder annotation in 2020. 
Nucleic Acids Res., 48, D269–D276. 

D
o
w

n
lo

a
d
e
d

 fro
m

 h
ttp

s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
9
/D

1
/D

2
9
8
/5

9
4
3
1
9
3

 b
y
 g

u
e
s
t o

n
 2

1
 S

e
p
te

m
b

e
r 2

0
2
1
 

https://www.doi.org/10.1093/bioinformatics/btaa573
https://www.doi.org/10.1007/s00018-020-03603-x

