
10288 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

Bitcoin and Blockchain: Security and Privacy
Ehab Zaghloul , Tongtong Li , Senior Member, IEEE, Matt W. Mutka , Fellow, IEEE,

and Jian Ren , Senior Member, IEEE

Abstract—Blockchain is a technology that was proposed to
enable the decentralized digital currency, Bitcoin. Since its incep-
tion, blockchain has been widely used in many other areas,
including tracing sensor data and mitigating its duplication in
IoT applications, the healthcare industry, and e-voting. In this
article, we provide a comprehensive review and analysis of the
major security and privacy issues of Bitcoin and blockchain, the
major challenges, and opportunities in utilizing the technology.
First, we present a comprehensive background of Bitcoin and the
preliminary on security. Second, the major security threats and
countermeasures of Bitcoin are investigated. We analyze the risk
of double-spending attacks, evaluate the probability of success
in performing the attacks, and derive the profitability for the
attacker to perform such attacks. Third, we analyze the under-
lying Bitcoin peer-to-peer network security risks and Bitcoin
storage security. We compare three types of Bitcoin wallets in
terms of security, types of services, and their tradeoffs. Finally,
we discuss the security and privacy features of alternative cryp-
tocurrencies and present an overview of emerging technologies
today. Our results can help Bitcoin users to determine a tradeoff
between the risk of double-spending attempts and the transac-
tion time delay or confidence before accepting transactions. These
results can also assist miners to develop suitable strategies to get
involved in the mining process and maximize their profits.

Index Terms—Bitcoin, blockchain, cryptocurrency, digital
assets, double-spending.

I. INTRODUCTION

ACRYPTOCURRENCY is a decentralized online currency
that was developed as an alternate means to trans-

fer money in an unprecedented way. The existing financial
systems require a centralized trusted financial institution to
securely process transactions between two parties. This insti-
tution charges costly service fees that are unavoidable for
banking customers. In addition to such cost burdens, delayed
processing time and security issues have affected the modern-
day financial industry. Certain transactions, such as funds
transfer, may take days or weeks to be cleared, causing issues
in cases of urgency. The modern-day financial system is also
plagued with security and privacy vulnerabilities. Financial
institutions employ the most advanced security techniques to
protect customers. However, the sensitive information of the
customer is always exposed to the financial institutions mak-
ing it vulnerable to information leakage. To mitigate these

Manuscript received May 7, 2020; accepted June 14, 2020. Date of
publication June 22, 2020; date of current version October 9, 2020. This
work was supported in part by NSF under Grant CCF-1919154 and Grant
ECCS-1923409. (Corresponding author: Jian Ren.)

The authors are with the Department of Electrical and Computer
Engineering, Michigan State University, East Lansing, MI 48824 USA (e-mail:
ebz@msu.edu; tongli@msu.edu; mutka@msu.edu; renjian@msu.edu).

Digital Object Identifier 10.1109/JIOT.2020.3004273

security concerns, privacy risks, and inconveniences, new
cryptographic protocols have been developed to allow secure
and convenient asset transfer, without involving a centralized
third party.

In 2008, Nakamoto [1] developed a white paper in which he
proposed Bitcoin. Bitcoin is an online peer-to-peer (P2P) dig-
ital cash system that does not require a trusted third party. In
Bitcoin, users possess ownership rights to virtual cryptocoins
that are denoted as Bitcoins (BTCs). Users generate transac-
tions to transfer BTC and store them in the public ledger,
blockchain. The smallest transferable value today is known as
a Satoshi, which is equivalent to one-hundredth of a millionth
BTC (i.e., 0.00000001 BTC).

Bitcoin transactions utilize cryptographic protocols to pro-
vide a secure process while striving to preserve the privacy
of both the buyer and seller. The transactions are stored in
a blockchain [2]–[5] to limit inherent issues of digital media
such as double-spending [6]. A blockchain is a distributed
database acting as a public ledger that holds all processed
transactions. It is based on a distributed consensus that allows
any past and present online transaction to be verified [7].

Bitcoin transactions are released into the network and val-
idated by the nodes as they propagate through the entire
network. The validating nodes referred to as miners, compete
to mine groups of transactions into blocks and earn BTC as a
reward. Mining is the process of solving a hard cryptopuzzle,
referred to as the Proof-of-Work (PoW), that requires extensive
computational power. The first miner capable of finding a solu-
tion to the problem broadcasts his/her block to the network and
earns the reward. The reward consists of a specified amount of
newly released BTC and all transaction fees associated with
the transactions included in the block. All other miners then
surrender to the solution of the winning miner and append the
winning block to the blockchain.

The first Bitcoin software was implemented by Satoshi
Nakamoto and is known as the Bitcoin core. This implemen-
tation is sometimes referred to as the Satoshi client and is
run by most of the network nodes in Bitcoin. It is an open-
source project with a large developer community contributing
to it. The developers follow a bitcoin improvement propos-
als (BIPs) [8] document and introduce the standards of the
system. The document also contains new features and pro-
posals for the developer community to test thoroughly before
making final modifications to the software.

Following Bitcoin, many cryptocurrency systems appeared
and continue to do so today. The blockchain technology is a
common characteristic shared by many newly emerging cryp-
tocurrency systems [9]. The majority of these systems are

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10289

mainly clones of Bitcoin. These systems introduced only minor
adjustments such as currency supply or block size within the
Blockchain. Alternatively, a few systems introduce innovative
concepts that offer substantial features. Examples of these
features include novel consensus mechanisms or enhanced
decentralized computing platforms that can provide additional
functions and higher flexibility to the system.

All cryptocurrencies are traded in the online cryptocur-
rency marketplace. The cryptocurrency market is similar to
other exchange markets such as the stock market, with vari-
ous trading platforms. However, the cryptocurrency market is
not regulated by a government or agency and trading occurs
virtually 24/7 across the world. The nature of cryptocurrency
allows transactions to occur at speeds that cannot be accom-
plished with fiat currency, such as the United States dollar.
This results in a much more volatile market than traditional
trading markets. Coin prices are continuously rising and drop-
ping, and new cryptocurrencies consistently enter and leave
the marketplace. Many coins continue to rise in value based
on value demonstrated to investors. However, increased spec-
ulation in the marketplace has lead to the overevaluation of
many cryptocurrencies.

As of January 2020, the total market cap of the cryptocur-
rency market hit $211 billion [10]. This amount comes from
the total valuation of almost 1000 cryptocurrencies on the mar-
ket today. Comparing this amount to the $17.6 billion total
market cap in 2016, the market has increased by 1198%. This
rapid growth in the new market has led an effort to examine
the role of cryptocurrency in the future.

A. Contributions

While the main purpose of this article is to examine the
potential stability of Bitcoin, we strive to delve deeper into
analyzing the double-spending attacks by modeling the prob-
ability of success in multiple ways. In particular, utilizing
our analysis, we present our own profitability analysis of the
double-spending attacks. We reveal a breakpoint in time when
attackers should give up on the attack since it is unlikely that
they will turn a profit beyond this point (i.e., the time when
the cost is greater than the revenue). We present a tradeoff
between the waiting time before accepting a transaction ver-
sus the profits/losses of the attackers. This may help maximize
the confidence of the users before accepting transactions. In
addition to this, we thoroughly analyze the infrastructure of
Bitcoin storage wallets. Our discussion presents the key algo-
rithmic features introduced by each wallet type in order to
counter the different potential threats. The main purpose is
to enlighten the users with the tradeoffs when using different
types of wallets from a cryptographic perspective.

More specifically, the major contributions of this article can
be summarized as follows.

1) We provide a comprehensive explanation of the pri-
mary components of Bitcoin discussed in sequential and
logical order for the readers to comprehend. The main
purpose is to cultivate the readers with the necessary
background on Bitcoin to consolidate their understand-
ing of the system.

2) We delve thoroughly into the analysis of double-
spending attacks. We first show that the probability of
success of performing double-spending attacks can be
modeled using two distinct probabilistic models. We
show that both models result in a similar outcome. Next,
using these probabilistic models, we present a profitabil-
ity analysis on performing double-spending attacks. The
main purpose of this analysis is to reflect the tradeoff
between the waiting time before accepting a transaction
versus the profits/losses of the attackers. We also aim at
reflecting that attackers with 51% computational power
or more will continue to profit indefinitely.

3) We present fundamental network security and privacy
concerns. The purpose of this analysis is to expand the
knowledge of readers on major security and privacy con-
cerns that threaten the stability of systems running the
blockchain technology. Our target is to help the reader
realize the major threats to such systems from a security
and privacy perspective.

4) We dive deeply into the exploration of Bitcoin stor-
age wallets. We first classify wallets based on their
underlying infrastructure and methods of PKI pair gener-
ation. We aim at presenting the cryptographic primitives
related to each type of wallet. Next, we classify wal-
lets based on installation environments and then further
classify them based on functionality. We strive to help
the readers understand the different classes of wallets,
their corresponding security risks, and the best practices
to secure their cryptocoins.

The interest in blockchain continues to grow aggressively.
It has already attracted a wide range of audiences, such as
governments, enterprises, healthcare, and many more. We real-
ize that in order for the blockchain to sustain its success and
for these interested entities to adopt it, we must educate a
wider range of audience, which could include: 1) researchers
at the beginning of the line who wish to expand on research
in this area and 2) skeptical entities and individuals who wish
to adopt the technology and wish to learn more about it. We
aim at putting together a comprehensive study that explores
the blockchain technology from multiple angles and filling in
the gaps of previous studies.

B. Organization

The remainder of the article is organized as follows. In
Section II, we provide a comprehensive background review on
Bitcoin outlining its building blocks and protocols. Next, in
Section III, we evaluate double-spending attacks and present
our profitability analysis. Following that, in Section IV, we
assess the major network security attacks of the Bitcoin
network. In Section V, we analyze the security issues in the
storage wallets used by Bitcoin today. We investigate the sub-
sequent privacy protocols of Bitcoin in an effort to limit the
linkage problem in Section VI. In Section VII, we review pro-
tocols and alternative consensus algorithms implemented in
emerging cryptocurrencies outlining the security and privacy
advantages and limitations. Finally, we conclude our study,

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10290 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

summarize the lessons learned, and future research directions
in Section IX.

II. UNDERSTANDING BITCOIN

Research in digital cash dates back to the early 1980s [11].
In 1990, DigiCash Inc., an electronic cash corporation, made
an initial attempt to provide a cryptocurrency system [12].
Later, other systems, such as DigiCash [12] and b-money [13]
were introduced that used cryptographic protocols and aimed
to enhance privacy. These systems suffered key issues includ-
ing double-spending attacks and did not use the blockchain
technology.

Blockchain as a concept was initially proposed by
Haber and Stornetta in 1991 [2]. Their blockchain aimed at
certifying the creation/modification of a digital record by dig-
itally timestamping the records. However, the blockchain was
not efficient since each record was independently timestamped.
To improve efficiency, Merkle trees [14] were incorporated
into blockchains in 1992 [3]. They improved efficiency by
handling multiple digital records into one block. Finally,
Nakamoto implemented the first real blockchain and used it
as the core technology for the Bitcoin cryptocurrency system.
In this section, we will present the major building blocks and
protocols of Bitcoin.

A. Bitcoin Network

Bitcoin runs over a P2P network. The main advantage of
using a P2P network is the agile movement of data for all
nodes to achieve consensus. In contrast to the typical P2P
network used to share data files between interested peers,
Bitcoin utilizes the network to rapidly broadcast data among
all the connected nodes. This process is known as flooding
and continues until all nodes within the network receive the
broadcast data.

It is important to differentiate between the terms node and
peer of a P2P network. A node is a network entity that is
connected to one or multiple other similar nodes. The directly
connected nodes are referred to as peers. Nodes propagate
data to the indirectly connected nodes by traversing it to their
peers which follow a similar manner until the data reaches
every connected node.

In the Bitcoin network, data being flooded include IP
addresses of the nodes, newly generated transactions, and
blocks of verified transactions that extend the blockchain.
Peers share IP addresses of other nodes that they are con-
nected to or have discovered from their peer nodes. The aim
behind sharing IP addresses is to allow peers in the network
to discover and connect to more nodes resulting in a random
network topology. Newly generated transactions are broadcast
through the network to rapidly publicize their occurrence to all
connected nodes. Miners compete to mine these transactions
into blocks. The winning miner broadcasts the block to all the
nodes to extend and update their version of the blockchain.

Nodes in the Bitcoin P2P network are defined based on their
roles. The main duties are summarized as transaction gener-
ation, block/transaction routing, block/transaction verification,

and transaction mining. Block/transaction routing is performed
by all nodes.

A node that can perform all functions is referred to as a full
node. It consistently keeps a copy of the full blockchain allow-
ing it to verify any transaction without needing the assistance
of other connected nodes. It also possesses a BTC wallet that
can generate transactions and compute the possessed value of
BTC by the node. Moreover, a full node possesses computa-
tional resources to compete in the mining competition. Nodes
that do not store a full copy of the blockchain are referred to
as simplified payment verification (SPV) nodes or lightweight
nodes. These nodes require assistance from full nodes when
verifying a transaction. Full nodes feed the SPV nodes with
the required information from the blockchain necessary to
complete the transaction verification.

Some nodes may only perform one particular function. Ones
that are engaged in the mining process are referred to as mining
nodes while others that generate transactions are referred to
as wallets.

In most Bitcoin software implementations, all nodes are
treated equally and can be uniquely identified by their IP
addresses. Using these addresses, peers establish transmission
control protocol (TCP) connections with one another. Each
node can choose whether to connect to the network using
a public or private IP. A node that utilizes a public IP is
accessible over the Internet by any connected node while one
with a private IP is only accessible by nodes within its pri-
vate network. By default, a node with a public IP address is
granted eight outbound connections and 117 inbound connec-
tions, resulting in a total of 125 connections. On the other
hand, a node with a private IP address is granted only eight
outbound connections. An outbound connection is initiated by
the node itself when it requests connecting to a discoverable
node while an inbound connection is initiated by other nodes
in the network that desire connecting to the node.

For explanation purposes, we define the node that initi-
ates a connection as client and the node that waits for an
incoming connection as server. Both nodes engage in a TCP
handshake by exchanging network packets defined as version
and verack. The client initiates a connection request by send-
ing a version packet addressed to the IP address of the
server. By default, the server listens on port 8333 for incom-
ing version packets. If the server accepts the version packet,
it responds with a verack packet and its own version packet,
both addressed to the IP address of the client. Finally, the
client responds by sending a verack packet addressed to the
IP address of the server and the connection is established.
The connection enables symmetric communication allowing
the client and server to exchange data bidirectionally. The con-
nection is lost if peers do not communicate for a specified idle
time. To reconnect, peers engage in a new TCP handshake.

As discussed previously, a node shares with its peers a list of
IP addresses that it has learned as a result of being connected
to the network. Each node stores its list in two separate tables:
1) a tried table and 2) a new table. The tried table of a node
stores IP addresses that the node has established connections
with while its new table stores IP addresses that it has only
discovered but did not attempt to connect to yet. When a node

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10291

desires sharing IP addresses with its peers, it randomly selects
IP addresses from both tables and sends them in addr mes-
sages. An addr message can contain up to 23% or a maximum
of 1000 IP addresses of the total IP addresses stored in both
tables. To initiate sharing, a node sends a getaddr message to
its peers requesting them to share their lists of IP addresses.
The peers then respond with an addr message. In some cases,
sharing IP addresses is unsolicited if a node voluntarily sends
an addr messages to its peers without receiving a getaddr
message.

A node that wishes to connect to the Bitcoin network for
the first time cannot obtain IP addresses by this method.
Bootstrapping is mainly achieved by communicating with a
domain name server (DNS) seeder. The node sends a DNS
query requesting a list of active IP addresses. If the DNS fails
to respond with an appropriate list of active IP addresses, the
node can still connect to the network by using a hard-coded
list of IP addresses, referred to as seeds. Once connected to
any of these IP addresses, the node can then request more IP
addresses from its peers by sending getaddr messages.

Nodes also relay verified transactions and blocks to their
peers to reach consensus. A node begins by broadcasting an
inventory (inv) message to all its peers informing them of the
new transactions or blocks it has received and verified. The
peer nodes check whether they are already informed of these
new transactions and blocks then respond to the node with a
getdata message. The getdata message includes all transac-
tions and blocks a peer node is not aware of. The node then
responds with a transaction/block message that includes the
complete transactions/blocks the peer requests. Once received,
the peer validates the transactions or blocks and continues to
relay them to its own peers in a similar manner. If a received
transaction or block cannot be validated, it is immediately
dropped and its propagation is discontinued.

B. Bitcoin Transactions

We define a Bitcoin transaction (TX) as the transfer of an
amount of BTC ownership rights from the wallet of the buyer
to the wallet of the seller, in exchange for a product or service.
BTC wallets utilize elliptic curve digital signatures to handle
the transfer of ownership rights and ensure that unauthorized
spending of the cryptocurrency is infeasible. Each wallet ran-
domly generates a private key Pr that is used to derive its
corresponding public key Pub that is shared among all users.
The Pub is used to generate the address of the wallet needed
to make payments to it while Pr is used to generate a digital
signature corresponding to Pub in order to claim payments
made to the wallet and use them in later transactions. A Pr is
first generated from a cryptographically secure pseudorandom
number generator (CSPRNG) and its corresponding Pub is
then calculated using the elliptic curve digital signature algo-
rithm (ECDSA). Calculations are performed based on the field
and curve parameters defined by secp256k1 with the curve
order n [15] as follows:

Pr = CSPRNG(), Pub = Pr × G (mod n) (1)

where G is a generator of the elliptic curve and × represents
elliptic curve multiplication.

Fig. 1. Single transaction with multiple UTXO inputs and outputs.

The BTC wallet of the buyer assembles a transaction using
the unspent transaction outputs (UTXO) of the buyer stored
in the blockchain. An UTXO specifies an amount of BTC
claimed earlier by the buyer as a result of a previously pro-
cessed transaction. A simple BTC transaction is shown in
Fig. 1.

In the figure, we show that a transaction can consist of
multiple inputs and outputs. The output UTXOpay represents
the transfer of ownership rights of a certain amount of BTC
from the wallet of the buyer to the wallet of the seller. The
output UTXOch represents redirecting ownership rights of the
BTC change amount back to the wallet of the buyer. A distinct
locking script is attached to each of these outputs, which spec-
ifies conditions that must be met in order to grant ownership
rights. For example, the locking script attached to UTXOpay
must include the Pub of the seller needed to generate his/her
wallet address. This ensures that the payment is made to the
wallet of the seller and only he/she is granted access to it with
his/her corresponding Pr. Using Pr, the seller can generate a
digital signature that corresponds to the Pub associated with
the locking script, hence claim the output.

The inputs {UTXO1, UTXO2, . . . , UTXOn} represent
unspent transaction outputs claimed by the buyer from the
previous transactions. When a buyer decides to use a specific
output from a previous transaction as an input to a new
transaction, the buyer must specify proof that he/she still
possesses ownership rights and did not previously spend
them in another transaction. This is done by attaching an
unlocking script to each input. The unlocking script solves
the locking script that was associated with the output from
the previous transaction. Likewise, the unlocking script is
a digital signature produced by the Pr of the buyer that
corresponds to a Pub associated with the locking script of
an UTXO. A valid unlocking script is legitimate proof of
continuous possession of ownership rights to certain BTC
being used as input. As a result, BTC can be viewed as a
chain of digitally signed transactions where ownership rights
are transferred from one owner to the other by digitally
signing them.

A transaction must include at least one input, however, may
include multiple outputs to simultaneously pay different sellers
from the total value associated with the inputs. The lock-
ing script of each output would specify the conditions of its
claimer. However, it is necessary that the total BTC value of

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10292 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

the inputs is always equal to or greater than the total value
of the outputs. In the event that the total value of the inputs
is greater than the total outputs, the difference, known as the
transaction fee, is rewarded to the miner that adds the trans-
action into a block attached to the blockchain. For guaranteed
processing, most available wallets today derive the transaction
fee as a fixed amount of BTC in relation to the size of the
transaction. In other words, the transaction fee increases with
the size of the transaction.

The wallet of the user combines all transaction
inputs/outputs and their corresponding scripts into one
digital message M. It then applies the secure hash algorithm
SHA256 to M twice to increase security before releasing it
into the network. The 32-B digest representing the identity of
the transaction (IDTX) is generated as follows:

IDTX = SHA256
(
SHA256(M)

)
. (2)

A newly generated transaction assembled by the BTC wallet
of a buyer is released into the Bitcoin network to be validated
and stored in the blockchain. The generating node transfers the
transaction to its peers that flood it to the rest of the network
nodes. Each node that receives it, audits the inputs by execut-
ing the scripts associated with it. This audit involves checking
whether the execution of the unlocking script integrated by
a buyer within each input matches its corresponding locking
script defined in the previous transaction. If a match exists, the
node relays the transaction to its peers and temporarily places
it in its transaction pool until chosen to be mined, otherwise,
the transaction is dropped.

In some cases, transactions are not flooded into the network
in the same order they are generated. As a result, during
the audit, a node might not be aware of some inputs of
a transaction (child transaction) referring to the outputs of
other transactions (parent transactions). Instead of immediately
rejecting the transaction and considering its inputs as invalid,
the node can temporarily place it into an orphan transaction
pool. If the parent transaction shows up, the inputs of the
child transaction become valid and it can be transferred to the
transaction pool.

C. Bitcoin Transaction Standards

There are five major Bitcoin transaction standards and a few
nonstandard transactions. All transaction types are generated
with a stack-based scripting language that is processed from
left to right. A script consists of a list of instructions that must
be executed in the correct order to grant an individual the right
to spend the BTC within a transaction. The list of standards
is described as follows.

Pay to Public Key Hash (P2PKH): This standard transaction
is the most used type. The locking script within each output of
a transaction holds the public-key hash (serving as a Bitcoin
address) of the seller that will claim the BTC amount included.
In other words, the locking script defines a condition that the
seller must possess a specific Pr corresponding to the public-
key hash to claim the output. Once claimed by the seller, the
output becomes an UTXO owned by the seller. In order for
the seller to use this specific UTXO as an input to a future

transaction, the seller must attach a valid unlocking script to
it. The unlocking script includes the Pub of the seller and a
digital signature generated by his/her Pr that corresponds to
the public-key hash associated with the locking script of the
previous transaction output.

Pay to Public Key: The intent behind this standard transac-
tion is to simplify the P2PKH standard. Rather than associating
the public-key hash within the locking script of the output, the
public key itself is used. As a result, the validation process is
simple. The digital signature of the seller generated with a
Pr can immediately be compared to the associated Pub by
searching whether or not they match.

Multisignature (MultiSig): In this standard transaction, a
combination of keys is required to authorize an output claim.
The locking script of a transaction output is associated with a
number (N) of public keys. In order for an individual to claim
the output, the individual must possess M-of-N private keys
that correspond to the N public keys. This type of transaction
can increase security and can be used in scenarios that require
more than one user to be present in order to claim and spend
BTC. However, as the number N of public keys associated
with the transaction output increases, the size of the trans-
action also increases. As a result, these transactions acquire
large space in the UTXO pool, therefore, requiring more stor-
age memory. As discussed previously, larger transactions also
require larger transaction fees.

Pay to Script Hash (P2SH): This standard transaction was
introduced to resolve the complex issues caused by MultiSig
transactions. The transaction has the same simple complex-
ity as a P2PKH transaction. Rather than associating the entire
locking script with a transaction output that includes multiple
public keys, a double hash computation is applied to the entire
script, SHA256(RIPEMD160(script)). The result is a 20-B
digest that is attached to the locking script instead of the
entire original script. In order to use the output from this
transaction as an input to another transaction, the buyer cre-
ates an unlocking script that holds M-of-N private keys and
the original script that was cryptographically hashed earlier.
In that way, sufficient information is available in the locking
and unlocking scripts to validate the UTXO for spending. In
addition, the buyer no longer has to worry about generating
large transactions which might require hefty transaction fees
to process. Instead, only the seller is required to provide the
unlocking script he/she wishes to spend the output in a new
transaction.

Data Output: This standard transaction is intended to store
arbitrary data on the blockchain rather than transfer BTC from
a buyer to a seller. In the Bitcoin community, many members
believe that such transactions are abusive to the system since
it places a burden on the network nodes to process transac-
tions that do not carry BTC. However, such transactions exist
and allow 40 B of data to be stored per transaction. These
transactions are unspendable, therefore, are not stored in the
UTXO set.

Nonstandard: A very small percentage of transactions
are processed under nonstandard transactions. Nonstandard
transactions use more sophisticated scripts that strive to pro-
vide higher complexity and security. In some cases, these

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10293

transactions might even be the result of bugs or mistakes
resulting in loss of BTC.

D. Merkle Trees

Validated transactions are grouped into blocks that are then
mined and stored in the blockchain. A single block can con-
tain multiple transactions up to the block size limit. Merkle
trees sometimes referred to as hash trees, are utilized to clus-
ter multiple transactions in one block. A Merkle tree is a tree
data structure generated in a bottom-up approach that can effi-
ciently summarize and verify the integrity of the transactions
being combined. Starting from the leaf nodes which are hashes
of the original data, each nonleaf node is generated as a com-
putation of its respective children nodes. For a single nonleaf
node, all its children nodes are concatenated then hashed to
produce a single digest that represents the node in the tree. The
approach continues until a single node is generated which is
defined as the root node.

BTC utilizes a binary Merkle tree in which each nonleaf
node has exactly two children. It applies a double hash com-
putation SHA256(SHA256(·)) when generating nodes. The
leaf nodes used to construct the tree are the identities IDTX
generated for each transaction as discussed in (2).

In a binary Merkle tree, each row within the tree con-
sists of an even number of nodes, except the root node. In
the case where a row consists of an odd number of nodes,
a replica of the last node is reproduced to even out the
number of nodes in that row. To better comprehend the con-
struction of the binary Merkle tree, consider a block that
consists of five transactions, {TX1, TX2, . . . , TX5}. Each one
of these transactions has already been validated by the nodes
and identity for each transaction has been generated as dis-
cussed in (2). We denote the corresponding identities as
{IDTX1, IDTX2 , . . . , IDTX5}, where each identity represents a
leaf node in the tree. In this example, the number of nodes at
the leaf node level is odd, therefore, a replica of the fifth iden-
tity is generated, {IDTX1 , IDTX2 , . . . , IDTX5 , IDTX6 = IDTX5}.
Next, the double hash computation is applied to the concate-
nation of each two identities to generate the parent nonleaf
nodes of the Merkle tree as follows:

Ni = SHA256
(
SHA256

(
IDTX2i−1‖IDTX2i

))
, i = 1, 2, 3 (3)

where ‖ is the concatenation of two identities.
As shown in the previous equations, an odd number of non-

leaf nodes is generated at that level. To even it out, we replicate
N3 to produce N4 as

N4 = SHA256
(
SHA256

(
IDTX5‖IDTX6

))
. (4)

Using the resulting digests, we can generate the following
level of nonleaf nodes as:

N4+i = SHA256
(
SHA256(N2i−1‖N2i)

)
, i = 1, 2. (5)

Finally, the 32-B root node is derived as

R = SHA256
(
SHA256(N5‖N6)

)
. (6)

Fig. 2 represents the complete construction of the Merkle
tree for this example. The dotted nodes represent the replicated

Fig. 2. Merkle tree within a block.

nodes that are added to even out the odd rows. The root node,
R, representing the summary of all transactions are placed into
the block header of a block to be mined and chained to the
blockchain.

The use of Merkle trees is more common in SPV nodes
since they do not store a copy of the full blockchain. When an
SPV node needs proof of the existence of a transaction within
a block, it turns to a full node for assistance. The full node will
generate a Merkle path by computing a maximum of log2 N
SHA256(SHA256(·)) computations, where N represents the
total number of transactions in the tree. Using the Merkle path
as an authentication path, the SPV node can prove the exis-
tence of a transaction within the tree. This proof of existence
method is considered to be efficient since it only requires hash
computations.

E. Blockchain

The blockchain is a public ledger that stores all previous
transactions since the creation of Bitcoin. It provides its users
with transaction confirmations to track ownership rights of
BTC. As new transactions are processed, the blockchain is
extended. It consists of blocks {B0, B1, . . . , Bn}, each carry-
ing a set of validated transactions, where B0 represents the
first block and Bn represents the most recent block attached
to the blockchain. Blocks are linked back-to-back, with each
one referencing its previous block to form the complete
blockchain. To reference a block, a unique 32-B identity
IDBi is generated for Bi by applying to the block header
SHA256(SHA256(·)). An identity is referred to as the block
hash.

The head of the blockchain is denoted as B0 and is defined
as the genesis block. B0 differs from all other blocks as it does
not reference any previous block. At the launching stage of the
system, B0 was a stand-alone block waiting for the system to
initiate a newly mined block to be chained to it.

Each block consists of two parts, a header, and a body. Each
header incorporates the block hash of its predecessor block in
the chain. The header also consists of a difficulty target, nonce,
and a timestamp, which are discussed in more detail in the
following section. The body carries all leaf nodes and nonleaf
nodes of the Merkle tree, excluding the Merkle root, which is
incorporated in the header. This design makes it infeasible to
retroactively alter records within any block of the blockchain.
Any modification to one block will require adjusting all the
subsequent chained blocks.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10294 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

F. Bitcoin Mining

Bitcoin mining is the final stage to secure validated trans-
actions and add them to the blockchain. Once a transaction
is added to the blockchain, it becomes completely verified
and public to all users. The transaction claimer(s) can use
the embedded UTXO(s) as the input to other transactions
whenever desired.

Miners begin by selecting transactions from their transaction
pools that will be placed into a block where a block cannot
exceed 1 MB in size. A small portion of that space is specified
to carry high-priority transactions. Priority is based on the size
and age of the transaction inputs. The rest of the block is
filled with other transactions that have greater transaction fees
to maximize the profit that a miner can turn if successful in
mining the block first. A transaction with low or no fees will
probably remain in the transaction pool of the miner until it
ages and becomes a high-priority transaction.

Next, the miner assembles a special transaction, known as
the coinbase transaction. This transaction is a reward paying
transaction to the miner in the event of winning a mining
competition. It does not have any inputs and consists of a
single output addressed to the wallet of the miner. The amount
incorporated in the output is the reward mining fee (6.25 BTC
at the time of writing) plus the sum of all transaction fees
included in each transaction.

All the selected transactions along with the coinbase trans-
action are then combined into a Merkle tree as discussed
previously. At this point, the miner has all components needed
to construct the block header of the new block except the
nonce. Miners compete in the PoW cryptopuzzle to derive the
value of this nonce. This value, if concatenated with the block
header of the group of chosen transactions and then double
hashed, must produce a digest with a specific prefix of zeros
in its binary representation. Searching for this value is per-
formed in a brute-force manner and is directly correlated with
the computational power available. The more computational
power available, the faster a miner is able to find the correct
nonce. A successful miner will then broadcast his/her PoW to
claim the reward.

The primary advantage of the PoW cryptopuzzle is to make
it computationally infeasible to perform Sybil attacks [16].
PoW is intentionally designed to be resource intensive to per-
form while efficient to verify. It requires a certain number of
zeros to appear in the prefix of the digest as a result of applying
the double SHA256 computation. The prefix determines the
difficulty of finding the correct nonce. The more zeros required
in the prefix, the harder it is to find the correct nonce and vice
versa. The difficulty is dynamically altered every two weeks
based on the number of miners (total hash power) so that the
average time it takes for a miner to find a correct solution is
approximately 10 min, a platform design choice.

The first miner to find the correct nonce to a block of
transactions is rewarded a mining reward as compensation
for the computational power spent. The mining reward is
halved precisely every 210 000 blocks that are added to the
blockchain. It is estimated to continue until the year 2140
when nearly 21 million BTC will have been released into the

system. The reason for having a fixed supply of BTC is to
prevent price inflation in the future.

Another incentive that encourages miners to spend their
computational power to perform mining is the transaction fee.
The winner is not only rewarded the mining reward but is also
given all the transaction fees incorporated with all the transac-
tions in the block. With time, the mining reward will decrease
due to halving, which will demand higher transaction fees in
the future to compensate for the reduced mining reward.

After a block is successfully mined, all miners check their
transaction pools to eliminate the transactions that have been
included in the mined block and immediately construct a new
block of transactions. The end of the mining race marks the
beginning of a new one. Miners instantly begin to search for
the nonce of the next block of transactions.

Simultaneously, the mined block is flooded through the
network so that all nodes can update their blockchains. The
winning miner transmits the block to its peer nodes to validate
it before propagating it further through the network. The peer
nodes check whether the block is correctly assembled in terms
of syntax and variables. The PoW provided by the miner must
be correct and the coinbase transaction must include the cor-
rect amount to pay the miner. If any information is invalid,
the block is immediately dropped.

Quite regularly, as blocks are mined to extend the
blockchain, a temporary incident, known as a fork, might
occur. A fork occurs when two miners are able to simulta-
neously mine two different blocks at the same time. As a
result, both newly mined blocks are accepted to extend the
blockchain. The blocks are flooded into the network and the
miners update their version of the blockchain based on the
block they receive first. This results in two valid versions of
the blockchain in possession by the miners with two different
paths. However, the miners continue to extend their version of
the blockchain regardless which path they possess. Eventually,
one path will grow longer than the other as mining continues.
The path that grows longer is the winner and all nodes imme-
diately discard the other path and update their blockchain to
the longer one. In literature, the blocks that are dropped are
known as orphan blocks; valid blocks that were part of the
blockchain at some point.

G. Bitcoin Scalability

Scalability is a major performance issue of the blockchain
systems. Layer 2 protocols, also known as off-chain proto-
cols, have been proposed in efforts to improve these issues.
Lightning network [17] is the most notable example. It oper-
ates atop the Bitcoin system to provide transaction speedup.
It also runs over a P2P network allowing the nodes to per-
form Bitcoin micropayments. Users of the protocol initially
open payment channels with designated BTC amounts. The
connected nodes can then begin to perform micropayments
among each other that are not settled on the blockchain but
stored locally. Once a user decides to close a payment chan-
nel, the final balance of the channel is settled on Bitcoin’s
blockchain allocating the correct amounts of BTC to each user.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10295

H. Bitcoin Mining Pools and Payment Methods
Although solo miners can compete in the mining process,

the likelihood of a successful return is very low. This is even
the case for solo miners with the most powerful computing
machines. As a solution to this problem, solo miners collab-
orate in the mining process by joining computational power
into mining pools. Together, they form a large organization
with significant computational power that can compete with
the other large entities. The members of the mining pool work
together to find the correct nonce for a candidate block and
report the result as one miner, increasing their chances of win-
ning the competition. In the event of success, the rewards are
split among the participating miners based on the contribution
provided by each.

The concept of a mining pool can be compared to the lottery.
Assuming individuals with the same financial capabilities, if
a large group buys tickets together, the individuals within the
group have a better chance of winning than a single individual
buying tickets alone. If any ticket owned by the group wins
the lottery, the participating individuals split the reward pro-
portional to the amount invested by each. In a mining pool, the
computational power provided by each solo miner is analogous
to the amount invested by each ticket buyer.

A mining pool is managed by a pool operator who handles
the entire pool server and receives a percentage of the rewards
as compensation. The role of the operator is to coordinate the
mining performed by all participating miners. The operator
keeps a continuously updated copy of the entire blockchain
to ease the job of the participating miners. Using the updated
blockchain, the operator verifies any transaction that appears
in the network and places it in a candidate block for mining.
By that, miners only need to worry about finding the cor-
rect nonce of the candidate block. If the mining pool wins
the competition, the operator divides the rewards among the
participating miners.

Reward splitting can be performed in multiple forms and
varies from one mining pool to the other. As described in [18],
these methods can be categorized into simple reward, score-
based reward, or risk-free pay-per share (PPS) reward.

Simple reward systems consist of either proportional
systems or PPS systems. In the proportional systems, a reward
B is split among the participating miners at the end of each
round, where a round is a consecutive time between two suc-
cessful blocks generated by the pool. The operator keeps a
percentage of the reward fB and divides the remaining (1−f)B
among the miners based on the shares they submit. Shares are
defined as the number of hashes performed by each miner
in an attempt to find the correct PoW. A miner that sub-
mits n shares from a total of N shares submitted by all
the miners in the pool receives a reward of (n/N)(1 − f)B
BTC on average. Conversely, the PPS system is a deter-
ministic one where the miner knows how much reward can
be turned in advance. The operator immediately pays each
miner based on the submitted shares regardless of the mining
result. In other words, a miner that submits n shares receives
(1 − f)pB BTC/share, where p represents the probability of
one share being the correct PoW. In this system, the operator

is taking the risk of mining independently since the miners
receive ensured payments whether or not the pool generates
a block.

Score-based reward systems come in many forms and strive
to prevent miners from pool hopping. Pool hopping is the
practice of mining in a pool only during its good times (suc-
cessfully generating blocks) and leaving it during its bad times.
A pool-hopper can maximize his/her rewards at the expense of
miners that remain loyal to the pool at all times. The method
introduced by Pool [19] is one of the first implemented score-
based systems that extends the proportional method. Rather
than paying the miner an amount based on the submitted shares
after each round, the miner is given a score that is proportional
to his/her contribution and increases as more time elapses from
the start of the round. The score is used to calculate the reward
share given to the miner at the end of the round. However, this
method is still susceptible to hopping since the score does not
consider factors, such as the mining difficulty or the hashrate
of the pool. Also, in this method, mining at the beginning
of a round is more profitable since there are fewer shares at
that time. As a result, the geometric method was introduced to
address these weaknesses. This method introduced a fixed fee,
a constant amount taken from the reward of each block, and a
variable fee, a score granted at the beginning of each round to
the operator. As time passes, the variable fee declines, making
mining equally profitable throughout the entire round. Shorter
rounds result in larger variable fees and vice versa. By that,
there is no advantage to mining early in the round.

Another score-based method is pay-per-last-N-shares
(PPLNSs) that exists in different forms. In this method, the
concept of rewarding miners after each round is replaced with
rewarding miners that have been participating in earlier rounds,
regardless of the mining result. In other words, the operator
pays miners based on their contributions from previous efforts.
Later on, more advanced payment systems evolved such as
the double geometric method (DGM). This system is a hybrid
between the PPLNS and geometric system that combines the
advantages of both methods.

Some mining pools employ a risk-free PPS system. One of
the first implemented systems is known as the maximum PPS
(MPPS). It combines both the PPS and proportional systems,
where each participating miner has a balance of each. If the
miner submits a share, the PPS balance is incremented and
when the pool successfully generates a block, the proportional
balance is incremented. At pay time, the miner receives the
minimum of both balances. This method protects the pool from
taking the risk alone. However, this method is inconsiderate to
the miners since they will always make less whether the pool
is successful or not. In addition to this, the system suffers
from pool hopping. A solution was later proposed to solve
this problem in the shared maximum pay-per-share (SMPPS)
system. The miners have a PPS balance which continues to
accumulate as the miners are participating. If a block is found
by the pool and there are sufficient funds, the miners are paid
based on their PPS balance. However, if there are no sufficient
funds, miners are paid proportional to the available funds and
given credit to be paid later for whatever balance that is owed.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10296 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

Today, a broad range of mining pools exist that give miners
a variety of options when joining pools. The question most
miners would ask is which mining pool is the best to join.
The answer here lies in the preferences of the miners. For
example, some miners are not willing to take the risk of not
getting paid in the event of being unsuccessful in generating
a block and would prefer a PPS mining pool. Others might be
willing to take the risk and choose a score-based system for
instance, in return for a larger profit.

I. Alternative Cryptocurrencies

In literature, alternative cryptocurrencies are known as alt-
coins, most of which are inspired by Bitcoin. Altcoins strive
to offer innovative features and/or enhanced security/privacy
countermeasures in an effort to compete with Bitcoin. Their
development process is based on the level of innovation and
security/privacy countermeasures they present.

The simplest method to develop an altcoin is by forking
the open-source code of Bitcoin [20] while adding or mod-
ifying any features to it. In software development, a fork is
a completely independent project that exploits a copy of the
original source code. A Bitcoin fork generates an entirely
new blockchain and is completely independent of Bitcoin.
Namecoin [21] is the first developed Bitcoin fork that adopted
all of the characteristics of Bitcoin. It also introduced an
additional feature allowing users to store data within its trans-
actions. Various Bitcoin forks have evolved latterly with more
features and handled security/privacy issues. Many of these
forks implemented privacy protocols to increase the anonymity
of cryptocurrencies. In Section VI, we discuss notable privacy
protocols that have impacted some of these altcoins.

On exceptional occasions, an altcoin can also be the result
of a hardfork. A hardfork occurs when modifications are made
to the original software of Bitcoin making its new trans-
actions/blocks incompatible with those previously generated
prior to the modifications. These modifications can be as sim-
ple as altering certain parameters, such as the block size, or as
complex as changing major protocols, such as the consensus
algorithm. In order to enforce these modifications, the major-
ity of users/miners must upgrade their client nodes to the latest
version which accommodates these changes. The users/miners
that do not accept the upgrade will view the new transac-
tions/blocks as invalid and will not accept them. As a result,
the blockchain will inevitably split into two paths, one stor-
ing transactions of the original cryptocurrency and one storing
transactions generated due to the modifications made, hence
creating a new altcoin. Users in possession of the original cryp-
tocurrency will automatically be granted an equivalent amount
of the new altcoin to what they hold.

Bitcoin Cash is a notable example of a Bitcoin hard-
fork which occurred on August 1, 2017. It was the result
of enforcing BIP91 [22] which proposed activating segre-
gated witness (SegWit) [23]. SegWit increases the transaction
speed of Bitcoin by splitting the transaction into segments and
removing the unlocking signatures which are attached sepa-
rately at the end. The majority of the miners accepted this
proposal resulting in Bitcoin Cash. Users who possessed BTC

were immediately granted an equivalent amount of BCC (the
currency of Bitcoin Cash) to the BTC they possessed.

While only borrowing the concept of storing transactions
in a blockchain, some altcoins have been implemented from
scratch with a completely different design and purpose. These
altcoins strive to provide services and security/privacy coun-
termeasures beyond the capabilities of Bitcoin or any of
its forks. They present substantial differences, such as inte-
grating enhanced consensus algorithms or utilizing private
(permissioned) blockchains. In contrast to the public (permis-
sionless) blockchain of Bitcoin, where all participating nodes
are allowed to execute the consensus protocol, a private (per-
missioned) blockchain is limited to only specific nodes. As a
result, the cryptocurrency market has witnessed a considerable
number of altcoins with substantial innovative features.

III. BITCOIN SECURITY—DOUBLE-SPENDING ATTACKS

Double spending is an attack that could be performed by
malicious users attempting to deceive the system by spending
the same BTC more than once. The attacker generates dupli-
cates of the same UTXO and uses it as an input in more than
one transaction. Differentiating between the duplicated (fraud-
ulent) copies and the original becomes an issue when used in
a decentralized system. There is no trusted entity that verifies
the legitimacy of the UTXO used as input in a transaction. The
inputs of a transaction may consist of unidentifiable fraudulent
BTC that have possibly been spent earlier.

The system defends against such attacks by relying on its
users (miners) to validate the legitimacy of the BTC used as
an input to transactions. Using the information stored in the
blockchain from the previous transactions, the miners validate
the inputs of any new transaction to ensure that it does not
contain previously spent inputs. Once verified, the transac-
tion is mined into a block that is attached to the blockchain.
Any user that refers to the blockchain becomes aware that
specific UTXO(s) have been spent earlier, making fraudulent
input transactions detectable.

To ensure that attackers cannot manipulate the blockchain in
their favor, the mining process is designed to be an expensive
and resource-intensive operation. To mine a block of transac-
tions in the blockchain, the miners must provide a valid PoW.
An attacker that wishes to double spend BTC must reverse
a transaction that has been stored in the blockchain to reuse
its inputs in another transaction. Reversing an already stored
transaction in the blockchain is an extremely difficult task
since it requires a significant share of the total computational
power of the system.

In the rest of this section, we will analyze the double-
spending attacks. We first discuss conventional methods to
perform double spending. Next, we analyze the probability and
profitability of the double-spending attack and present a trade-
off between the waiting time before accepting a transaction
versus the profitability of the attack.

A. Types of Attacks

A double-spending attack comes in many forms. We discuss
various techniques that can be performed.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10297

1) Race Attack: A race attack refers to the case where a
merchant accepts an unconfirmed transaction (a transaction
in a transaction pool waiting to be mined and stored in the
blockchain) and immediately provides the payer with a prod-
uct/service before waiting for confirmation. An attacker with
the intention of deceiving the merchant creates two transac-
tions: 1) a transaction that pays the merchant an amount of
BTC in return for a product/service and 2) a fraudulent trans-
action that pays the same amount to the wallet of the attacker.
Both transactions use the same inputs (duplicated BTC) and
try to spend the same BTC. The attacker concurrently releases
both transactions into the Bitcoin network. The miners con-
sider both transactions as being valid until one of them gets
stored in the blockchain. The transaction that gets stored in the
blockchain is referred to as a confirmed transaction. At that
point, the inputs of the stored transaction cannot be used as
inputs to other transactions. Therefore, the fraudulent trans-
action has a chance of being verified first and added to the
blockchain making the merchant-paying transaction invalid.
The invalid transaction is rejected by the system and dropped
from the transaction pools of miners.

To avoid a race attack, merchants must wait for the mining
to be completed and the transaction to appear in the blockchain
before providing the payer with the product or service. It is
recommended that the merchant should wait for at least six
subsequent blocks as confirmation before making the trade. In
this case, the chances for an attacker to reverse a transaction
are negligible, assuming that the attacker can control no more
than 10% of the total computational power used in mining.

2) Finney Attack: Finney attack was first suggested in a
Bitcoin forum [24]. Similar to the race attack, the attacker per-
forming this attack will only succeed if the merchant accepts
an unconfirmed transaction. The attacker creates two transac-
tions similar to those in the race attack and holds on to both
of them. The attacker then begins mining the block containing
the fraudulent transaction. If the attacker is successful in min-
ing the block, the attacker then uses the other transaction to
pay a merchant immediately in exchange for a product/service.
Once the merchant makes the trade, the attacker releases the
mined block which contains the fraudulent transaction into the
network. Given that the block is already mined, it will be added
to the blockchain immediately. As a result, the merchant-
paying transaction will become invalid. In addition to this,
the attacker is rewarded with the mining reward for the mined
block carrying the fraudulent transaction. However, the abil-
ity to independently mine a block is improbable given the
resources necessary to perform the task.

3) Vector76 Attack: In comparison to the race and Finney
attacks, the Vector76 attack requires the merchant to wait for
a single block to be mined and added to the blockchain as a
confirmation. To reverse the transaction, the attacker needs to
create a fork in the blockchain. Initially, the attacker creates a
merchant-paying transaction and does not broadcast it to the
network. Next, the attacker tries to independently and secretly
mine this transaction into a block. If successful, the attacker
holds onto the block until the honest miners discover another
block. The attacker then simultaneously releases the block into
the network at the same time as the honest miners release their

block which will result in a fork. Before the fork is resolved,
the attacker creates a fraudulent transaction that double spends
the same BTC used in the merchant-paying transaction. The
attacker then relays the fraudulent transaction to the honest
miners that do not have the path of the blockchain that carries
the merchant-paying transaction. These miners see the fraud-
ulent transaction as valid and begin mining it into a block.
As a result, each path of the blockchain stores one of the
transactions. If the path that holds the fraudulent transaction
grows longer than the other path, the double-spending attempt
is successful.

4) 51% Attack: 51% attack is the largest threat to the BTC
system. This attack is also referred to as the majority attack
in which the attacker (usually a pool of miners) controls more
than half of the total computational power of the system. By
controlling the majority of the power, the attacker is capable of
interfering with the process of mining blocks and reversing any
block of transactions. During a 51% attack, the system loses
integrity since the other miners no longer have an incentive to
compete in the mining process.

To better comprehend this attack, consider the case where
the attacker generates a merchant-paying transaction and
releases it into the network. The merchant waits for an appro-
priate number of confirmations before accepting the payment
and making the trade. Simultaneously, the attacker secretly
begins to mine a block that contains a fraudulent transaction
followed by more blocks to extend it. Since the computational
power of the attacker is more than the rest of the computa-
tional power of all the miners combined, the attacker can mine
blocks in less time. Once the merchant accepts the transaction,
the attacker releases the secretly mined blocks to create a fork
in the blockchain. If the fraudulent fork created by the attacker
is longer than the original chain, it becomes dominant and all
miners begin to extend on it. By that, the merchant-paying
transaction no longer exists in the blockchain.

This attack represents the biggest threat to Bitcoin as
it is directly correlated to the resources an attacker can
provide. Resources are measured in terms of financial and
computational power. Large entities, such as governments or
intelligence agencies have the means to control a large share
of the total computational power. They are able to destroy or
push the system into their favorable status. It is important to
note that even with a computational power that is slightly less
than 50%, an attacker may still be able to severely manipu-
late the system. In the next section, we analyze the chances of
success of the attackers based on the share of computational
power they control.

B. Probability of Success

Despite the continuously increasing popularity of Bitcoin,
the number of merchants that have accepted it as a method
of payment today is still relatively minimal. Many merchants
have concerns about its capabilities in terms of security, while
others consider it as a slow method to make payments. Those
that accept it should try to take all precautions before accepting
a transaction to prevent double-spending attacks.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10298 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

One of the important precautions is to decide when to accept
a transaction before making the trade. Merchants prefer to
obtain a certain degree of confidence as assurance that the
payer will not be able to reverse the transaction. Those that
can afford to wait a long period of time before accepting a
transaction (for example, online platforms) require a minimum
of six confirmations before accepting a transaction and con-
sidering it as being irreversible. However, others that cannot
afford this time waiting (such as vending machines), rush into
accepting transactions at the risk of losing the payment to a
double-spending attack.

Similar to the analysis in [1], we model the race between
the honest miners and the attacker to generate blocks as a
binomial random walk. The race is denoted as z which rep-
resents the number of blocks generated by the honest miners
with computational power p minus the number of blocks gen-
erated by the attacker with computational power q = 1 − p.
If a block is generated by the honest miners, we increment z
by 1. Conversely, if a block is generated by the attacker, we
decrement z by 1. The race between the honest chain and the
chain generated by the attacker can be derived as

zi+1 =
{

zi + 1, with probability p
zi − 1, with probability q

(7)

where i represents an individual block race. If q > p and the
attacker has unlimited resources, the attacker will eventually
reach z < 0. At that point, the attacker can replace the blocks
generated by the honest miners and succeed in performing the
attack.

The probability of the attackers to catch up and surpass the
blocks generated by the honest miners can be compared to the
gambler’s ruin problem. Similar to the description in [25], we
assume a gambler (attacker) begins with an initial fortune i,
0 < i < N, and either wins $1 with probability q or loses $1
with probability p = 1 − q, in each successive gamble. The
game represents a random walk which terminates at i = 0
(fail) or at i = N (success). The probability of success after i
trials is denoted as Pi and can be calculated as

Pi = qPi+1 + pPi−1. (8)

Since q + p = 1, we can rewrite (8) as

Pi+1 − Pi = p
q
(Pi − Pi−1). (9)

At i = 0, the attacker has a probability of success P0 = 0.
By rearranging and generalizing (9), we have

Pi+1 = P1

i∑

j=0

(
p
q

)j

=





P1

1−
(

p
q

)i+1

1−
(

p
q

) , if p %= q

P1(i + 1), if p = q = 0.5.

(10)

Let i = N − 1 meaning that PN = 1, we can rewrite (10) as

1 = PN =





P1

1−
(

p
q

)N

1−
(

p
q

) , if p %= q

P1N, if p = q = 0.5.

(11)

Solve P1 from (11) and substitute the result into (10) to
obtain

Pi =






1−
(

p
q

)i

1−
(

p
q

)N , if p %= q

i+1
N , if p = q = 0.5.

(12)

Following the analysis in [26], we assume that the attacker
begins with an initial fortune i = y and can afford to lose
up to y dollars before giving up. The gambler wins if i =
N = y + z + 1 dollars. This assumption modifies the game to
account for the probability Ps of the attacker to surpass the
blocks generated by the honest miners as

Pi =






1−
(

p
q

)y

1−
(

p
q

)y+z+1 , if p %= q

y+1
y+z+1 , if p = q = 0.5.

(13)

Consider an attacker that possesses an unlimited amount of
resources and is willing to use as much of it as needed to
perform the attack, i.e., y → ∞. If q > p, then

lim
y→∞

1 −
(

p
q

)y

1 −
(

p
q

)y+z+1 = 1. (14)

For q < p, we first divide the numerator and denominator
by (p/q)y then calculate the limit as

lim
y→∞

(
p
q

)−y
− 1

(
p
q

)−y
−
(

p
q

)z+1 =
(

q
p

)z+1

. (15)

Finally, we can summarize the probability of the attacker to
surpass the blocks generated by the honest miners as

Qz =
{

(q/p)z+1, if q < p or z ≥ 0
1, if q > p or z < 0.

(16)

The merchant has no way of figuring out the number
of blocks that the attacker has been able to secretly mine.
Therefore, one way to model the overall probability of the
attacker to surpass the honest chain is by using the Poisson
distribution. The expected number of blocks an attacker can
generate is λ = (z+1)(q/p). The overall probability Ps of the
attacker to surpass the honest chain can be computed by mul-
tiplying the Poisson density and the probability of surpassing
the honest z − k remaining blocks as discussed in

Ps =
∞∑

k=0

λke−λ

k!
× Qz−k

= 1 −
∞∑

k=0

λke−λ

k!

{
1 −

(
q
p

)z−k+1
, if q < p or k ≤ z

1 − 1 = 0, if q > p or k > z.
(17)

For (17), if q > p, we will always have Ps = 1, meaning
that the attacker will win. When q < p, the probability for the
attacker to succeed is

Ps = 1 −
z+1∑

k=0

λke−λ

k!
×
(

1 −
(

q
p

)z−k+1
)

. (18)

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10299

Another way to model this probability is by using the neg-
ative binomial distribution assuming the attacker can premine
one block before broadcasting the merchant-paying transac-
tion to the network [27]. The merchant waits for n blocks
to be generated by the honest miners with computational
power p before accepting the transaction. At that time, the
attacker can secretly generate m blocks with computational
power q = 1 − p, where m = n − z − 1. By definition, we can
model this as the m number of blocks that the attacker can
generate (success) before the n number of blocks the honest
miners can generate (failure). Therefore, the probability of a
successful double-spending attack for a given value m can be
calculated as

P(m) =
(

m + n − 1
m

)
× pnqm. (19)

Overall, the probability for an attacker to successfully sur-
pass the number of blocks generated by the honest miners can
be computed as

Ps =
∞∑

m=0

P(m) × Qn−m−1

= 1 −
∞∑

m=0

(
m + n − 1

m

)
× pnqm

×
{

1 −
(

q
p

)n−m
, if q < p or k ≤ n − m

1 − 1 = 0, if q > p or k > n − m.
(20)

Similar to the previous analysis, (20) confirms that when
q > p, the attacker will always succeed since Ps = 1. When
q < p, the probability of success can be defined as

Ps = 1 −
n−1∑

m=0

(
m + n − 1

k

)
× pnqm ×

(

1 −
(

q
p

)n−m
)

= 1 −
n−1∑

m=0

(
m + n − 1

m

)
×
(
pnqm − pmqn). (21)

Fig. 3 shows the results of Ps as n changes based on (21).
From this figure, the merchant can obtain the desired level
of confidence before accepting a transaction. The obtained
level of confidence is definite for any q at n = 0, mean-
ing that the attackers have 100% chance of success. As the
number of blocks n increases, the chances of a successful
double-spending attack decline. Conversely, as q increases, the
chances of a successful attack increase. The figure also shows
that if q ≥ 0.5, then we will always get Ps = 1. This is
known as the majority attack. In fact, even if the values of q
are slightly less than 0.5, the chances of a successful double-
spending attack could still be high. However, the probability
declines exponentially as the value of n increases.

C. Attack Profitability

A successful double-spending attack is only profitable if
the revenue is higher than the cost of performing the attack.
Suppose an attacker tries to double spend v BTC paid to a mer-
chant in exchange for a product/service. The attacker releases

Fig. 3. Probability of successful double-spending attacks versus number of
confirmations waited by the merchant.

a transaction into the network that pays v BTC to the wal-
let possessed by the merchant. Immediately after releasing
the transaction, the attacker secretly begins to mine blocks
of transactions. One of these blocks contains a fraudulent
transaction that pays the same v BTC to the wallet possessed
by the attacker. The merchant accepts the transaction after
observing that n blocks have been extended to the blockchain.
If the attacker is able to secretly mine m = n + 1 blocks
and replace the n blocks in the blockchain generated by the
honest miners, then the attacker is successful in gaining a
product/service without paying for it. Assume that the attack
returns a value of 2v, one of which is the actual BTC as a result
of reversing the merchant-paying transaction and the other as
the product/service. In addition to this, the attacker gains the
mining reward for each block mined and the transaction fees
included in each transaction. Then, the revenue gained by the
attacker can be formulated based on his/her corresponding Ps
as follows:

Revenue ≈ v + Ps(v + Rm) BTC (22)

where R is the block reward and the transaction fee per block.
Multiple factors can impact the cost, such as the price and

depreciation value of machinery used, the cost of electric-
ity, and the amount of BTC being spent in the transaction.
However, formulating the cost with all the possible factors is
infeasible. To simplify it, we focus our analysis on the cost
factors that could change significantly as the attack is per-
formed. These factors include the v BTC an attacker spends in
the merchant-paying transaction, the cost of mining m blocks,
and the depreciation cost d(t) of the computing device used
in BTC at time t. We derive the cost as follows:

Cost ≈ v + meq(t) + d(t) BTC (23)

where eq(t) is the estimated mining electrical cost in BTC
per block of a miner with a share q of the total computational
power of the system. We assume eq(t) remains constant during
the total time T the attack is performed.

We also assume that the average lifespan of the mining
equipment is approximately two years. Using straight-line
depreciation, d(t) is a negligible value for an attack over

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10300 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

a short period of time. Therefore, we can reduce the cost
equation as follows:

Cost ≈ v + meq(t) BTC. (24)

The time to mine a single block either by the honest miners
or the attackers is approximately 10 min. Therefore, we can
rewrite (21), (22), and (24) as

Ps ≈ 1 −
T
10 −1∑

m=0

(
m + T

10 − 1
m

)
×
(

p
T
10 qm − pmq

T
10

)

(25)

Revenue ≈ v + Ps

(
v + RT

10

)
BTC (26)

Cost ≈ v +
(

T
10

)
eq(t) BTC. (27)

The profit/loss can be formulated from (26) and (27) as

Profit/Loss = Revenue − Cost

≈ Ps

(
v + RT

10

)
−
(

T
10

)
eq(t) BTC. (28)

Nowadays, to stand a chance in mining Bitcoin, min-
ers merge their computational power into mining pools as
discussed in Section II-H. The mining pools combine the com-
putational power provided by the computing machine of each
participating miner. Machines are categorized into one of four
groups: 1) application-specific integrated circuits (ASICs);
2) field-programmable gate array (FPGA); 3) graphics pro-
cessing unit (GPU); and 4) central processing unit (CPU).
Each group can provide up to a certain computational power.
Comparisons of most of those machines are presented in [28]
and [29].

Each computing machine consumes electricity differently
based on its specifications. Even machines with similar speci-
fications might vary in cost to operate. As a result, formulating
the cost of electricity spent by a miner in the mining process
becomes challenging.

ASICs have monopolized the mining process due to their
incomparable computational power with those of the CPUs,
GPUs, and FPGAs. Miners using any computing machines
other than ASICs have a negligible chance of competing. Many
mining pools do not permit miners with these machines to
join their pools. A miner that joins a mining pool with one of
these machines would hardly earn BTC in the event that the
pool successfully mines a block. This is because rewards are
usually divided among the miners based on their contributions
as discussed in Section II-H.

Our goal now is to formulate the estimated electrical cost
eq(t) of a mining pool. First, we estimate the total number of
miners N(t) based on the total hashrate H(t) of the system at
a certain time t as

N(t) ≈ H(t)/h(t) (29)

where h(t) is the average hashrate of a single mining machine
involved in mining at time t.

The cost of electricity is measured in cents/kWh and varies
based on the end-use sector and time t. End-use sectors

include residential, commercial, industrial, and transportation.
We denote the average cost of electricity of all sectors at time
t as ea(t). Using the computing wattage w of the machine, the
average running cost c(t) of a machine at time t is

c(t) ≈ ea(t) × w cents/h. (30)

Using (29) and (30), the total cost E(t) for all miners at
time t is

E(t) ≈ N(t) × c(t) cents/h. (31)

We know that it takes approximately 10 min to generate
one block, i.e., in T = 1 h, miners can generate m = 6 blocks.
Therefore, the total cost C(t) for all miners to generate one
block at T = 10 min can be estimated as

C(t) ≈ E(t)
6

cents/10 min (1 block). (32)

We estimate the average electricity cost eq(t) of a mining
pool based on its computational power q as

eq(t) ≈ C(t) × q ≈ H(t) × ea(t) × w × q
6h(t)

cents/block. (33)

For our simulations, we assume that the total cost of mining
blocks C(t) by all miners and computational power q of the
mining pool are fixed during the total mining time T . We also
assume a mining environment consists of miners using only
ASICs such as Antminer S9 since it is one of the most efficient
computing machines on the market today. The specifications
of this machine are h = 14 TH/s and w = 1.375 kWh.

Consider an attacker trying to perform a double-spending
attack during the period of February 2020. During that period,
1 BTC was equal to approximately $9643. The total hashrate
power was approximately H = 110M TH/s and the average
cost of electricity for all sectors in the U.S. was approxi-
mately 10.45 cents/kWh, based on the data collected by the
U.S. Energy Information Administration [30]. Under these cir-
cumstances, in Fig. 4, we present the expected profit/loss of
double-spending attacks for various computational powers q.
For this analysis, we assume the attackers try to double spend
v = 5 BTC.

In Fig. 4, a point above y = 0 represents a profit while
one below it represents a loss. The point of intersection of a
curve with y = 0 represents the break-even point of an attack.
The amount of BTC spent to perform the attack at this time
is equal to the revenue returned. By analyzing the figure, we
attain the following findings.

1) For any value q at t = 0, the attacker turns a profit
of exactly v BTC. Recall in Fig. 3, for any value q at
n = 0 (or t = 0), Ps = 1. The merchant accepts an
unconfirmed transaction giving the attacker a theoret-
ically perfect chance to succeed. In this example, the
attacker is trying to double spend v = 5 BTC resulting
in a profit = 5 BTC for all values q at t = 0.

2) When the merchant waits for n confirmations before
accepting a transaction, the attacker is forced to mine
blocks in order to create a fork in the blockchain and
succeed in the attack. As discussed in Fig. 3, the proba-
bility of success is based on the computational power q

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10301

Fig. 4. Profit/loss of attackers with varying computational power q trying to
double spend v = 5 BTC.

of the attackers. Larger values of q correspond to higher
probabilities of success Ps, hence larger profits/losses.
We also know that Ps declines as n (or t) increases for
all values q < 0.5. As a result, the profits eventually
turn into a loss as time progresses. An attacker with a
smaller value q begins losing at an earlier time during
the attack while one with a larger value q can withstand
longer periods before losing. However, as reflected by
the figure, the losses of attackers with smaller values q
are less and continue to increase slower than those with
larger values q. This is due to the fact that the cost of
electricity eq(t) for attackers with larger values q are
larger than those with smaller values q.

3) In Fig. 4, an attacker with q = 0.1 to q = 0.2 represents
the scenario that begins at the maximum possible profit
if only one block is added, then continues to decline
till the break-even point. When the number of blocks
is increased to two, the attacker will most likely fail to
turn a profit. In other words, one block of confirmation
for a transaction worth of 5 BTC should give the mer-
chant enough confidence that an attacker with q = 0.1
to q = 0.2 will not be able to reverse the transaction. If
the attacker continues to perform the attack beyond this
point, the cost will continue to increase while the rev-
enue declines leading to a loss. As a result, the attacker
would most likely surrender at the break-even point to
minimize any losses.

4) For q = 0.3 to q = 0.4, Fig. 4 shows that the profit con-
tinues to grow as t increases until it reaches a maximum
point due to the accumulation of the mining rewards.
Once the chance of success Ps starts to decline with
t, the profit also begins to decrease until it reaches the
break-even point and later turns into a loss. However,
for q ≥ 0.5, the attacker always succeeds. The profit is
represented as a straight line with a positive slope where
the slope represents the rate of turning a profit.

As discussed previously, to increase their chances of winning
in the mining competition, miners merge their computational

power. However, an attacker with a computational power
q < 0.5 will eventually lose at some point as t increases. On
the other hand, an attacker with computational power q ≥ 0.5
will always succeed with a profit. However, it is important
to note that this analysis does not include the luck factor.
Consider two miners with computational powers q1 and q2,
respectively, where q1 > q2. The miner with computational
power q1 has more resources to solve the PoW, therefore,
can perform mining faster than the miner with computational
power q2. However, the miner with computational power q2
could still find the solution to the PoW first due to the random-
ness of the exhaustive search performed. From a probabilistic
standpoint, the chances are low. Moreover, it is worth mention-
ing that attackers may improve their chances through bribery
or selfish mining. In a bribery attack [31], the attacker may
purchase mining power from other miners at a premium cost.
In a selfish mining attack [32], rational miners are encouraged
to join larger mining pools as it would result in larger revenue
streams.

IV. BITCOIN SECURITY—NETWORK ATTACKS

Bitcoin is designed to operate over a P2P network. It is vul-
nerable to the decentralized network attacks that can escalate
other issues. In this section, we will discuss major network
attacks that can compromise Bitcoin and present network-
related issues. We also suggest possible countermeasures.

A. Denial-of-Service Attacks

Denial-of-Service (DoS) attacks flood the network with
bogus traffic in order to disrupt legitimate services and partic-
ipating components connected to the Bitcoin network. As an
example, DoS attacks on a mining pool can result in elimi-
nating the pool from the mining competition, hence giving an
advantage to other miners. They could also facilitate double-
spending attacks by preventing certain miners from observing
the actual transaction flow [33], [34].

Some nodes prefer to privately connect to the Bitcoin
network in order to limit the possibilities of becoming vic-
tims of DoS attacks. However, this limits the nodes to at
most eight outgoing connections. As the number of private
nodes increases in the network, the random topology con-
nection weakens. With fewer connections between the nodes,
information is flooded at slower rates. There is also no guar-
antee of the legitimacy of the eight outgoing connections each
private node connects to. This means that even a private node
can still be vulnerable to a DoS attack if it unluckily connects
to malicious nodes.

Bitcoin developers are continuously updating the Bitcoin
implementation in an effort to minimize the chances of DoS
occurrences. The newer versions analyze the network connec-
tions more closely to try to eliminate suspicious nodes from
connecting. Developers also strive to limit certain transac-
tions/blocks from being flooded throughout the network. New
transactions/blocks are given priority over less important ones
such as orphan transactions/blocks. Certain parameters such
as block size are also continuously being altered to adjust the

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10302 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

network based on its needs. However, the nature of the P2P
network makes Bitcoin vulnerable to these attacks.

B. Sybil Attacks

Peer-to-peer networks are also vulnerable to Sybil
attacks [16]. In Sybil attacks, the attacker sets up multiple
pseudonymous identities from a single node. In this way, the
attacker can acquire an unfair number of shares of the network
IP addresses. The honest nodes in the network can easily be
deceived into believing that the IP addresses belong to differ-
ent nodes. With a large number of IP addresses, the attacker
can monopolize other connections of nodes and control data
propagating to them.

A countermeasure to this attack was proposed in the original
Bitcoin white paper [1]. This countermeasure also presented
a solution to the majority decision-making problem. It is
more convenient to have a one-to-one relationship between
a computing machine (node) and a vote instead of having one
between an IP address and a vote. An attacker reproducing
multiple IP addresses from a single node can no longer make
use of them. Every node must engage in a PoW procedure to
prove its legitimacy as discussed in Section II-F.

Other countermeasures have been taken by the Bitcoin
developers to limit Sybil attacks. Each outbound connection is
limited to a single IP address per subnet mask 255.255.0.0 (i.e.,
x.y.0.0/16). In other words, a malicious node can theoretically
generate 65 536 IP addresses per network prefix consisting of
16 b where only one can be utilized in a requested outbound
connection. Today, owning a machine with different network
prefixes that consist of 16 b which can generate numerous IP
addresses is impracticable. Malicious users with IP addresses
belonging to different network prefixes need to collude in order
to pull off such an attack.

Developers can continue to increase the security by limit-
ing outbound connections to larger subnet masks (for example,
x.y.z.0/24), however, this would limit the connection possibil-
ities to the outbound connections which contradicts the P2P
network. To optimize security, the subnet mask should be
modified dynamically based on the available network prefixes
of the nodes connected to the network. This optimization is
very challenging since there is no fixed pattern to how or
when nodes connect to the network. In general, this practice
is a weak security countermeasure and can slightly increase
security if optimized.

Users should also realize that the majority of node connec-
tions are inbound connections (117). If we were to assume that
all the eight outbound connections of a node are legitimate,
there is no guarantee that the inbound connections are gen-
uine. A private node relies only on its outbound connections
to limit its network connections and the data it receives.

C. Eclipse Attacks

The Eclipse attack on Bitcoin was proposed in [35]. The
primary purpose of an eclipse attack as defined originally
in [36]–[38] is to monopolize all the outbound and inbound
connections of a node within a P2P network. As a result, the
victim node becomes isolated from the rest of the network

and only receives data fed to it by the attacker. By monopo-
lizing the connections of a node, the attacker can control the
blockchain view of this node. The eclipse attack targets nodes
that are possibly discoverable; nodes with public IP addresses.
It strives to populate the tried and new tables of nodes with
bogus IP addresses by frequently sending the victim nodes
unsolicited addr messages. When the tables of nodes are full,
they begin evicting random IP addresses to replace them with
the newer ones.

The attack requires the victim node to restart all of its
connections. Examples that may cause connection restarts
include Internet service provider outages, power failures, or
system/software updates. When the node tries reconnecting to
its eight permitted outbound connections, it will choose the
compromised addresses in either the new or tried tables with
a bias toward the newest stored IP addresses. The optimum
time to perform the attack is after populating the tables of the
victim node with a decent number of controlled IP addresses.
The chances of a successful attack are based on the percentage
of the controlled IP addresses and the time an attacker spends
performing the attack.

To limit an eclipse attack, some countermeasures have been
proposed [35]. When replacing IP addresses as newer ones
arrive, a deterministic eviction method could be used instead
of the random eviction technique. In this way, each IP address
is mapped to exactly one slot in the tables rather than multiple
slots, requiring the attacker to possess a large number of
addresses. Also, allowing random selection of IP addresses
rather than choosing the most recent ones when initiating an
outbound connection makes the attack less biased to the bogus
addresses of the attacker. Other measures include checking an
evicted IP address before replacing it with a new one. If the
address still connects successfully, there is no reason to evict
and replace it with another one. Feeler and anchor connections
are also good methods that can disrupt an attacker. Other mea-
sures such as increasing the size of the tables, allowing more
outgoing connections, or banning unsolicited addr can also
greatly limit eclipse attacks.

D. Routing Attacks

The main purpose of a routing attack is to intercept the
network transmitted messages and tamper with them. The
work presented in [39] proposed a routing attack on Bitcoin
via the Internet infrastructure. The border gateway protocol
(BGP) [40] is the most widely used protocol when transmitting
data between autonomous systems (ASs). An AS manages a
set of nodes with similar IP address prefixes and is responsible
for routing data between its nodes and other ASs.

The proposed attack intercepts traffic between ASs by per-
forming two independent attacks: 1) partitioning attack and
2) delay attack. The attack takes advantage of the fact that ASs
do not validate the newly announced BGP routes which could
result in possible BGP hijacks. A malicious AS can announce
forged IP address prefixes to deceive other ASs into believing
false routing information. As a result, a successful attacker
will be able to intercept all the traffic for nodes with a certain
IP address prefix before it reaches its original destination.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10303

The partitioning attack strives to partition the Bitcoin
network into two disjoint groups. One group represents the
set of isolated nodes while the other group represents the
remaining network. The attacker, usually an AS, requires BGP
hijacking of other ASs. Once hijacked, the attacker can inter-
cept all inbound and outbound traffic of all the victim ASs.
However, the attacker cannot intercept the traffic of stealth
connections. Such connections include intra-AS, node connec-
tions within the same AS, intrapool, node connections between
gateways belonging to the same mining pool, or pool-to-pool,
private connections established between pools. Stealth connec-
tions can leak data to the isolated group of nodes and result
in an attack failure. Therefore, the attacker must detect such
nodes and remove them from the lists of nodes to be isolated.

Once the network is divided into two groups, the attacker
can perform the delay attack. The main goal of the delay attack
is to tamper with data propagating to its destination and cause
a stall. The success of the attack relies on the fact that mes-
sage exchanging (inv, getdata, and tx) is not encrypted. If the
attacker intercepts the flow of traffic between ASs, it is possi-
ble to tamper with these messages without any node learning
about it. For example, when a node within an AS requests data
from its peer within another AS, the attacker will intercept
the requested message (getdata) and modify the request. As
a result, the sending node will send undesired data and cause
the receiving node to resend a request message. As long as the
attack occurs in a 20-min time frame, the nodes will not lose
their connection and will not be aware that their messages are
being tampered with.

Apostolaki et al. [39] suggested some countermeasures to
limit the routing attacks. Simple measures include increasing
and diversifying AS connections. Also, monitoring network
information such as round-trip time can help identify potential
threats. More complex measures can include encrypting mes-
sages, using different channels and ports, and simultaneously
requesting data from more than one peer. However, implement-
ing such more complex measures could introduce additional
cost and delay.

V. BITCOIN WALLET SECURITY

Unlike physical wallets that are used to hold cash and bank-
ing cards, Bitcoin wallets behave differently. A bitcoin wallet
does not store actual BTC. Instead, it stores the private and
public-key pairs that can be utilized to prove the ownership
rights to certain BTC stored over the blockchain. As discussed
in Section II-B, keys are generated using pseudorandom num-
ber generators and elliptic curve cryptography. In this section,
we discuss the variations in Bitcoin wallets and outline the
security issues in each.

Similar to [41], we first discuss Bitcoin wallet security based
on the key generation and infrastructure of the wallet. Three
types of wallets have been defined in BTC. We summarize the
comparison between all three types in Table I.

The simpler wallets are categorized as nondeterministic wal-
lets, sometimes referred to as Type-0 wallets. In these wallets,
when a new pair of keys is requested, the wallet generates a
random private key as shown in (1). Next, the wallet derives

Fig. 5. Structure of a HD wallet.

TABLE I
WALLET INFRASTRUCTURE COMPARISON

its corresponding public key as described in (1). The gen-
erated key pair is completely random and uncorrelated to
the previously generated keys. However, these wallets require
sophisticated management and could fail to perform well as the
number of stored keys grows exceeding the storage capacity of
the wallet. A consistent backup of the generated keys is also
essential to ensure that the users can still access their BTC in
the event of a wallet being unavailable. However, backups are
liable to theft and can result in exposing all the keys belonging
to a wallet.

Deterministic wallets are another type of BTC wallets. They
are also referred to as Type-1 wallets and can handle the draw-
backs of type-0 wallets. In this type of wallet, all the generated
keys are based on a common and randomly chosen seed s.
Using s, all keys are derived in a deterministic manner. First,
a private key with an index i is generated as

Pri = SHA256(s‖i). (34)

Using (34), the corresponding public key Pubi is then gen-
erated as discussed in (1). In contrast to nondeterministic
wallets, deterministic wallets need only to keep a backup of s
to regenerate all of the previously derived keys.

Hierarchical deterministic (HD) wallets, referred to as Type-
2 wallets, were later introduced based on the BIP0032 stan-
dard [42]. In HD wallets, keys are generated in a tree structure
as shown in Fig. 5. The key of a node is generated using its
corresponding parent node key.

For each node, a key consists of three components: 1) a
private key Pr; 2) a public key Pub; and 3) a chain code (CC).
The chain code is a third component introduced to prevent the
derivation of the key of a child node from only the private and
public keys of the parent node. In this way, the extended key is
an extension of both the private and public keys. The extended
private key is a combination of the private key and chain code
that is used to derive the private key of a child node. Using the
derived private key of the child node, it is possible to derive
its corresponding public key as explained in (1). On the other

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10304 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

hand, the extended public key is a combination of the public
key and chain code that is used to derive the public key of a
child node. It is important to realize that the public key of a
child node can be derived using either the extended private or
extended public keys.

The key generation begins at depth 0, which derives the
root node (master) key components using a randomly chosen
seed (s). In many wallets, s is in the form of a mnemonic
word sequence as described in the BIP0039 standard [43]. A
mnemonic word sequence is a sequence of English words that
represents a random number used to derive s. Using s, the
master private key PrM and chain code CCM are derived as

PrM = Left256
(
HMAC-SHA512(s)

)
(35)

CCM = Right256
(
HMAC-SHA512(s)

)
(36)

where HMAC-SHA512 is a one-way hash-based message
authentication code that outputs a 512-b digest and functions
Left256 and Right256 extract the left and right 256 b of the
digest, respectively. Using the result in (35), the master public
key PubM is generated as described in (1).

The next step is to generate keys for the children nodes at
depth 1 in the tree. Keys can be generated differently depend-
ing on the security of the environment in which the wallet is
being used. For example, when used in a secure environment,
the wallet uses the extended private key to generate all the
components of a child node key. This includes the private key
that would allow the user to spend BTC from the wallet. Using
the private key Prp of the parent, we can generate the corre-
sponding public key Pubp and derive both the private key Prc

and chain code CCc of the child using a child key derivation
(CKD) function as

Prc = Left256
(
HMAC-SHA512

(
Pubp∥∥CCp∥∥i

))
+ Prp (37)

CCc = Right256
(
HMAC-SHA512

(
Pubp∥∥CCp∥∥i

))
(38)

where Pubp = PubM , Prp = PrM , and CCp = CCM are the
public key, private key, and chain code of the parent node,
respectively, and i is the index of the child node. Using the
result of (37), we can derive the public key Pubc of the child
node as explained in (1).

On the other hand, when used in an insecure environment,
the wallet uses the extended public key to derive only the
public key and chain code of the child node instead of the
private key. This protects the private key from being exposed
to potential attackers. It also allows payments to be made to
the wallet while preventing them from being spent. The public
key Pubc and chain code CCc of the child node are derived
using the CKD function as

Pubc = Left256
(
HMAC-SHA512

(
Pubp∥∥CCp∥∥i

))
+ Pubp

(39)

CCc = Right256
(
HMAC-SHA512

(
Pubp∥∥CCp∥∥i

))
. (40)

Although using the extended public key is more secure as
it does not expose the private key, it may still put the wal-
let at risk. The extended public key exposes the chain code,
which is an essential component in key derivation. Using an
exposed chain code and public key, an attacker can perform a

brute-force attack on all chain codes derived from it as shown
in (40). In other cases, if the private key of a node is com-
promised in any way, the attacker can use it along with its
corresponding exposed chain code to derive the extended pri-
vate keys of all the descending children nodes as shown in (37)
and (38). We also consider the worst-case scenario where an
attacker is capable of reversing a derived Prc as shown in (37).
If successful, using the corresponding parent extended public
key, an attacker can derive Prp.

To counter these issues, HD wallets also implement an
enhanced derivation function known as the hardened CKD.
This derivation strives to secure the exposed chain code within
an extended public key. It prevents the public key of a
child node from being derived from the extended public key.
Therefore, the extended private key of the parent node is only
useful to derive a hardened private key Prc

h and chain code
CCc

h of the child node as

Prc
h = Left256

(
HMAC-SHA512

(
Prp∥∥CCp∥∥i

))
+ Prp (41)

CCc
h = Right256

(
HMAC-SHA512

(
Prp∥∥CCp∥∥i

))
. (42)

Using the result in (41), the corresponding hardened public
key Pubc

h of the child node can be derived as explained in (1).
In practice, it is suggested to derive the children keys of the
master node using the hardened CKD to keep the master key
as secure as possible.

Bitcoin wallets can also take other measures to increase the
security of storing keys. Practices, such as P2SH [44] and
Multi-Sig transactions increase the security of the BTC stored
in the wallet, as discussed in Section II-C. Such techniques
are referred to as threshold techniques as they require M-of-N
private keys to enable BTC spending. Other wallets enhance
the security by encrypting the stored private keys along with
a passphrase chosen by the owner of the wallet as defined in
the BIP0038 standard [45]. That is

Encrypt(Pr) = AESk(Pr‖PassPhrase) (43)

where AES is the advanced encryption standard [46] and k
is the encryption key. If a user wishes to spend BTC, the
user must first decrypt the corresponding encrypted private
key using k and the passphrase previously used in encryp-
tion. Although encryption provides higher levels of security,
the user must keep the passphrase and encryption keys stored
securely.

The wallets that exist today come in different forms and
account for different security measures. Based on the differ-
ent installation environments, wallets can be categorized into
three types: 1) online (Web) wallets; 2) desktop (software)
wallets; and 3) mobile wallets. As in [51], we can further cat-
egorize each type of these wallets into: full-service wallets,
signing-only wallets, and distributing wallets, based on the
functions that they can perform. Table II summarizes these
different functions.

A full-service wallet is one that can perform all functions
required to spend and receive BTC. These functions include
generating private keys needed to spend BTC, signing trans-
actions with the private keys, deriving public keys needed
to receive payments of BTC, broadcasting the derived public

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10305

TABLE II
WALLET FUNCTION COMPARISON

keys to the network, and monitoring the BTC spending and
receiving of a wallet. Full-service wallets must be able to con-
nect to the Bitcoin network. Examples of online full-service
wallets include the wallets provided by coinbase.com [47]
and blockchain.info [48]. Armory, Electrum, and Bitcoin core
are the most popular desktop full-service wallets today. For
mobile wallets, an example that runs on both Android and
iOS includes the Airbitz wallet.

The second type of wallets is the signing-only wallets. The
main purpose behind these wallets is to enhance the security of
the wallet by generating private keys in secure offline environ-
ments. Working in conjunction with a networked wallet, the
signing-only wallet can interact with the Bitcoin network and
can deterministically generate pairs of private and public keys
as needed to transfer the public key to the networked wallet.
The role of the networked wallet is to distribute the public
key to allow payments to be made to the wallet. In case of
an HD wallet, the network can also generate child node keys
as desired. Once the networked wallet detects a transaction
addressed to one of the public keys that it has distributed, it
creates an unsigned transaction based on the UTXO and trans-
fers it to the signing-only wallet. The signing-only wallet then
uses its private key that could be derived from an extended
private key in the case of an HD wallet to sign the transaction
and returns it back to the networked wallet. Finally, the net-
worked wallet distributes the signed transaction in the Bitcoin
network to claim the BTC.

Signing wallets can either be offline wallets or hardware
wallets. Offline wallets are designed to reduce network vul-
nerabilities. Their tasks include private key derivation and
transaction signing. The signed transactions are transferred via
removable media to the online wallets. Offline wallets provide
higher levels of security than the full-service wallets, how-
ever, they require a continuously isolated device. On the other
hand, hardware wallets are less of a hassle than offline wal-
lets. They are connected directly to the networked device that
eliminates the dependency of removable media when commu-
nicating between the signing-only wallet and the networked
model. However, the hardware wallet is also inconvenient in
situations where the owner makes frequent payments since the
owner must constantly carry the hardware wallet to be able
to make a payment anytime. As a result, many people use
hardware wallets for long-term storage rather than day-to-day
transactions. Utilizing this type of wallet, one can store large
amounts of BTC in the most secure environments. Popular
examples of hardware wallets today include the Ledger [49]
and Nano and TREZOR [50].

The final type of wallets is the distributing-only wallets.
These wallets also strive to reduce the security issues caused
by the full-service wallets. They are in the form of networked
wallets for public key distribution in a prepopulated manner,
where the public keys are derived and distributed as needed
by the network. Other distributing-only wallets are capable of
generating the public keys as the case in HD wallets.

Exchange platforms store large portions of cryptocoins in
online wallets to provide their users the advantage of reduced
transaction time due to the immediate availability of their pri-
vate keys. This is analogous to storing cash in a centralized
entity such as a bank. It is important to point out that stor-
ing cryptocoins in an online wallet provided by an exchange
platform is the least secure method since it means storing
the corresponding private keys that can spend those crypto-
coins. The users must completely trust the exchange platform
to safely store the private keys and not act maliciously. Even
worse, assuming we can trust an exchange platform, crypto-
coin owners are still at risk of losing their cryptocoins in the
event the exchange platform online wallets are hacked and the
private keys are leaked. A hacker that gets a hold of the pri-
vate keys can immediately use them to send the cryptocoins
to his/her personal address. Once the transaction is processed
and stored over the blockchain, it becomes immutable to being
deleted/modified and most likely will not be reversed unless
the blockchain is hard forked.

Throughout the history of cryptocurrencies, multiple attacks
have occurred to exchanges that resulted in massive losses
and severe price panics to certain cryptocurrencies. In 2011,
one of the most notable Japanese-based exchanges, Mt. Gox,
online wallets were hacked, leaking all the private keys it
stored in the wallet.dat file. Mt. Gox was able to recover
from that heist, however, later in 2014, it filed for bankruptcy
and was shut down since it was responsible for around 70%
of Bitcoin trading volume and lost approximately 850 000
BTC that was valued at more than $450 million. The hack-
ers were able to even steal BTC stored in the exchange’s
hardware wallets. There is no legitimate evidence of how
the attack occurred. In March 2014, Mt. Gox reported on
its Website that it had found 200 000 BTC from the total
stolen in old-format digital wallets. The other 650 000 were
believed to be laundered on another exchange platform known
as BTC-e.

The problem is that such heists could possibly occur again.
Exchange platforms remain to be extremely attractive hack-
ing points for hackers since they hold so many funds in the
least secure manner. Users are recommended to keep limited
amounts stored in exchanges while storing the majority of their
funds in hardware wallets.

Another issue is whether or not it is possible to track
the movement of stolen cryptocoins, hence, catch the hacker.
Based on our analysis, it is theoretically possible. However,
there have been scenarios where hackers were able to laun-
der large portions of stolen cryptocoins such as the example
discussed previously. Another famous example occurred in
January 2018 when about $534 million worth of a cryptocoin
known as XEM were stolen from a Japanese-based exchange
known as Coincheck.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10306 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

In conclusion, we stress on the fact that there remains to be
a tradeoff between the security of a wallet and the ease of use.
The most frequently used wallets today are full-service wallets.
They are free, user friendly, and can perform all functions
needed by a BTC owner. However, these wallets could be
vulnerable to theft since they are connected to the network.

VI. BITCOIN NETWORK PRIVACY

Bitcoin suffers inherent privacy issues in that attackers could
link certain identities to their pseudonyms (such as Bitcoin
addresses) and identify their history of transactions. This is
known as the linking problem. Many users publish their real
identities and Bitcoin addresses online so that others can make
payments to them. This practice is common among blogs and
Websites that request BTC as donations or those selling a prod-
uct or service. These actions could jeopardize their anonymity.
Another common example is when users trade BTC for other
altcoins over exchange platforms. Most exchange platforms
require users to validate their identities by uploading a copy of
official identification, which exposes the users to the exchange
applications. Such examples do not require an attacker to learn
the full transaction history of those users. Simply by tracing
the Bitcoin addresses over the blockchain, the transactions
could be revealed. In fact, even cautious users who do not
publicly use their identities may be at risk as well.

Bitcoin utilizes Bitcoin addresses as its defense mechanisms
to preserve the privacy of users. When generated for the users,
bitcoin addresses do not leak any information about the identities
of the users. However, attackers strive to search for links between
bitcoin addresses and user identities using auxiliary information
available over the network. If a link is found, it is possible
to discover all the other Bitcoin addresses belonging to that
user and revealing the complete history of BTC transactions
of the user. Today, powerful analysis tools and search engines
can be utilized to discover the Bitcoin address and determine
this information. Even the strongly encouraged practice of
using a new Bitcoin address for every new transaction cannot
completely prevent this information from being revealed once
a Bitcoin address is linked to an identity of the user.

The auxiliary information can be obtained by multiple
methods. Different techniques exist today that can speculate
links between Bitcoin addresses and user identities. The study
in [52] shows that using information about how nodes are
connected within a network can help identify users. In [53], it
was shown that patterns of co-occurrences may reveal useful
information and lead to any ties. The study in [54] showed that
just by monitoring the communication channel, users are likely
to lose their anonymity. In [55], an analysis is presented that
shows how compromised network nodes can leak significant
user information and link them to certain transactions.

Users can run their nodes over Tor [56] in an effort to hide
their information from the rest of the network. Tor is a soft-
ware that provides an additional layer of anonymity. It utilizes
multilayer encryption and random relaying nodes to transfer
data between a sender and receiver. The sender begins by send-
ing the multilayer encrypted message to a random node that
decrypts a single layer and transmits it to the next relaying

node. This process continues until the message is completely
decrypted and arrives at the receiver [57]. However, multiple
studies, such as [58] and [59], have shown that even a low-
resource attacker could be capable of gaining information
flowing between users running their Bitcoin nodes over Tor.
This information can include the data sent between nodes or
even the location of the nodes within the network topology.

Other efforts have also been employed in an effort to
improve the anonymity of Bitcoin. We classify these efforts
into two main classes: 1) mixing services and 2) joint
transactions.

A. Bitcoin Mixing Services

BTC mixing is an approach that mixes identifiable BTC in
an effort to make them unrecognizable by public observers.
The first generation mixing was centralized and performed by
tumblers. Tumblers are third party mixers that receive BTC
from different users, randomly mix them up, and then return
to the users their updated BTC amounts. An attacker would
no longer be able to trace the BTC of a certain user since the
user no longer possesses the same BTC that he/she previously
owned. However, a tumbler being a centralized entity presents
many threats to the users. It must be fully trusted not to steal
the BTC it mixes or even leaks any information about the mix-
ing process. Even when completely trusted, being centralized
makes it prone to being compromised. In addition, tumblers
charge users mixing fees in return for their services.

In an effort to mitigate these risks, a new generation of
decentralized peer-to-peer tumblers was introduced. Instead
of sending BTC to a tumbler that performs mixing, the
users themselves are involved in the process. For exam-
ple, CoinSwap [60] is a protocol that allows two parties to
exchange Bitcoins with the help of an intermediary who facil-
itates the Bitcoin swapping. Each party establishes a payment
channel with the intermediary using hash time-locked con-
tracts to prevent the intermediary from stealing the Bitcoins.
However, given that the intermediary knows both participat-
ing parties, it can still compromise privacy. To solve this issue,
TumbleBit [61] was later proposed allowing multiple partici-
pants to set up payment channels using the same intermediary.
Instead of swapping, TumbleBit allows users to make anony-
mous payments utilizing cryptopuzzles and blind signatures.
The paying user would generate a puzzle, blind it, and share
the result with the intermediary along with the amount of 1
Bitcoin. The intermediary would then solve the blinded puzzle
and return the blinded solution to the paying user. The paying
user next unblinds the solution and sends it along with the
original puzzle to the receiving user. The receiving user can
then share both values with the intermediary and obtain the
1 Bitcoin. As more participants interact with the same inter-
mediary, it becomes infeasible for the intermediary to link the
participants together.

B. Bitcoin Joint Transactions

A joint transaction allows different users to combine the
inputs and outputs of their transactions into a single transaction
to be processed as a whole. All participating users must provide

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10307

their own signatures to the transaction to unlock their input
portion. Once all participating users correctly sign their inputs,
the transaction can be processed as a regular transaction and
added to the blockchain. An attacker can no longer trace the BTC
movement of a user since there is no direct relationship between
the inputs and the outputs of a transaction. The level of privacy
provided by a joint transaction increases with the number of
participating users. This also results in a lower transaction fee
that is paid by each user as it is divided among more users. In
2013, Maxwell introduced this concept as CoinJoin [62] which
is widely used in practice today. CoinJoin eventually began to
evolve and existed in multiple flavors. Notable examples that
introduced new concepts are described as follows.

SharedCoin: Provided by Blockchain.info, SharedCoin is
one of the initial implementations of the CoinJoin protocol that
ran over a centralized server. The centralized server was the
meeting room for the participating users to meet and combine
their transactions together. Since users meet in one place, the
server is capable of keeping logs of the transactions processed
over it. This requires users to completely trust the server not
to misuse these logs and put their information at risk if com-
promised. Shortly, Kristov Atlas created CoinJoin Sudoku, a
software that is capable of analyzing the mixing process per-
formed by SharedCoin. The software aims at discovering the
relationships between transactions and their owners. It clus-
tered matching inputs and outputs of transactions trying to
identify a common owner. However, this implementation is
completely suspended due to its various privacy limitations.

Dark Wallet: In 2013, Willson and Taaki introduced Dark
Wallet [63]. It provides anonymity using stealth addresses
and the CoinJoin protocol. A stealth address is a public seed
address combined with some metadata used to derive an actual
address for a payee to receive transactions. The metadata are
shared only between the payer and the payee, and cannot
be accessed by the public observers. To generate an actual
address, the payee generates a private key and its correspond-
ing public key. Next, the payer uses the public key of the
payee and some metadata to generate a transaction with a new
address. Once the payee learns the metadata, it can claim the
amount attached to the transaction by deriving the appropriate
key from the stealth address. Others trying to trace the trans-
action that was received with a stealth address would not be
able to trace it. However, Dark Wallet cannot provide complete
anonymity against linking users to certain BTC transactions
since the payer can trace it.

CoinShuffle: CoinShuffle was introduced in 2014 [64]. It is
a combination of the CoinJoin protocol and the accountable
anonymous group communication protocol Dissent [65]. Its
main purpose is to eliminate the involvement of third parties
while achieving anonymity and protection against DoS attacks.
The protocol consists of three main phases: 1) announcement;
2) shuffling; and 3) transaction verification. In the announce-
ment phase, the participants generate a new pair of private and
public keys then broadcast their corresponding public key to
the other participants. In the shuffling phase, each participant
generates a new Bitcoin address to be used as their output
address in the mixing transaction. Following that, the partic-
ipants obliviously shuffle these generated Bitcoin addresses.

In the transaction verification phase, every participant checks
whether their Bitcoin address is contained in the output list.
If present, each participant creates a mixing transaction that
spends the inputs to the shuffled list of outputs, signs the
transaction, and broadcasts the signature. Once each partic-
ipant receives the signatures of the others, every participant
can generate a fully signed version of the mixing transaction.
Dishonest behavior can be detected by the presence of one
honest participant who would not broadcast his/her signature
and report the dishonesty to all other participants.

However, Coinshuffle suffers anonymity vulnerability if not
used cautiously since it allows users to assign change back
to themselves in the mixing transaction. Once the change is
assigned to the Bitcoin address of the user, anonymity could
easily be lost. The best solution to this problem is to use
amounts that do not require any change. However, the user
does not necessarily get to choose what amount to use since the
user must use UTXO(s) from previous transactions. In addition
to this, Coinshuffle reveals the identities of the participants
among each other during the process.

JoinMarket: JoinMarket [66] is a decentralized CoinJoin
implementation. It aimed at improving the privacy of all the
previous implementations. JoinMarket introduced two types of
participating users, market makers, and market takers. Market
makers are users who are willing to mix their BTC at any
given time in return for a fee. On the other hand, market tak-
ers are users that demand immediate mixing service and are
willing to pay a fee as compensation to the market makers.
Market makers and takers negotiate the service over an Internet
relay chat (IRC) channel. Once terms are discussed, a mixing
contract is generated which enables each participating user to
operate from their own personal machine. The fact that the
system is decentralized protects users from the need to trust a
centralized entity. Furthermore, the fee paid by the takers to
the makers incentivizes them to continue to join.

VII. SECURITY AND PRIVACY OF ALTCOINS

The continuous emergence of altcoins presents enhanced
features to the cryptocurrency enthusiasts. Some of these alt-
coins have proven to provide enhanced security and privacy
over Bitcoin. However, Bitcoin continues to remain at the top
of the list of cryptocurrencies with the largest market cap. This
contradiction raises questions around its dominance.

In this section, we unfold the major security and privacy
advantages of altcoins. We first investigate distinct consensus
algorithms implemented by different altcoins in an effort to
keep their network secure. We strive to elucidate the security
advantages of these algorithms over the PoW implemented by
Bitcoin. Next, we discuss major altcoin privacy protocols and
privacy improvement over Bitcoin.

A. Altcoin Security

The PoW implemented in Bitcoin utilizes SHA256: a
CPU-bound function. The time needed to run SHA256 is
determined by the speed of the machine. Powerful machines
such as ASICs can run SHA256 millions of times faster than
various other CPUs, GPUs, and FPGAs. This created an unfair

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10308 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

mining competition since not all miners use the same comput-
ing machine. In fact, it eliminates miners using CPUs, GPUs,
and FPGAs since their chances of success are negligible when
compared to those using ASICs.

This PoW has also been greatly criticized for being an
energy-wasting technique. Mining is performed using powerful
computing machines that require substantial energy to run.
Most of the energy used by all these miners end up being
wasted since the output of only one miner is used to extend the
blockchain. As a result, the cost of running this PoW to achieve
consensus is extremely costly. In addition, it is expected that
Bitcoin will suffer a mining tragedy of the commons [67].
The mining reward will converge to 0 since it continues to
halve approximately every four years (precisely every 210 000
blocks). Eventually, the miners will no longer have an incentive
in taking part in the consensus procedure someday. This will
force the transacting users to increase their transaction fees as
an alternative incentive to the miners. As a result, both the
users and miners will be driven away from the system.

In an effort to mitigate these issues, some altcoins replaced
SHA256 with memory-bound hash functions in their PoW. In
comparison to the CPU-bound function used by Bitcoin, the
time needed to run memory-bound functions is determined
by the amount of memory available to hold the processed
data. Developing ASICs for memory-bound functions is no
longer advantageous since they can only optimize CPU-
bound functions. Notable examples of such functions include
Scrypt [68], CryptoNight [69], Equihash [70], Ethash [71], and
Dagger [72]. However, the proposed memory-bound PoW has
not been proven to be completely successful. As a result, more
effort has been exerted to implement alternative chain-based
PoW algorithms. For example, combinations of hashing algo-
rithms, such as X11 [73] and X12-X17 [74] have been used in
other PoWs where 11–17 different hashing algorithms would
be used together and the result of each subalgorithm is fed
as input to the next subalgorithm. Other notable chain-based
PoW examples also include Lyra2RE [75] and Quark [76]
that use five and six different hashing functions, respectively.
Unfortunately, the limitations still remain. As a result, consen-
sus algorithms have evolved to pseudorandomly select a single
validator to generate the next block of the blockchain. Some
widely implemented protocols are described as follows.

Proof-of-Stake (PoS): PoS is an alternative consensus algo-
rithm that was initially suggested in [77]. In contrast to PoW,
PoS is dependent on economic stakes of users (i.e., holdings in
cryptocurrency) rather than their computational resources. The
algorithm deterministically selects a user with significant hold-
ings to validate the next block. In return, the selected validator
is rewarded a certain value of the cryptocurrency similar to the
mining reward in PoW and all the transaction fees included
in the block. Conceptually, a user holding x% of the total
available cryptocurrency will be chosen x% of the time as the
validator in generating the next block. Once the block is gen-
erated, the validator relays it to the other validators to confirm
it and extend the blockchain.

PoS has multiple benefits in comparison to PoW. Users
are no longer required to consume a substantial amount of
electricity since they no longer engage in a mining process.

In fact, they are motivated to take part in the validation pro-
cess as it requires nothing more than presenting their wealth in
return for a reward if chosen to be the validator. In contrast to
PoW, PoS significantly speeds up the consensus process. From
a security perspective, PoS tackles the 51% attack by making
it more expensive than performing it in a PoW environment.
An attacker would need to possess 51% of the total cryp-
tocurrency available to perform the majority attack. Assuming
a single user possesses 51% of the total cryptocurrency and
performs the attack, the value of the cryptocurrency will drop
and the attacker would suffer most, being the majority stake-
holder. In comparison to PoW, the majority attack requires
51% of the total mining power that is theoretically achievable
through mining pools. This incident previously occurred in the
mining environment of Bitcoin as a mining pool (Ghash.IO)
exceeded the 51% threshold.

Although PoS could handle some issues caused by PoW,
it also introduced some major challenges. The largest stake-
holders will be able to monopolize the consensus procedure
as they will always be selected and earn the reward. This will
create a centralized consensus environment. In addition to this,
an attacker with a 51% stake can also completely destroy the
cryptocurrency, assuming the intentions of the attacker are to
eradicate the system at any price. PoS also suffers a major
flaw known as Nothing at Stake (NoS). This issue can occur
if coincidentally two stakeholders are chosen to validate the
next block. This may result in two valid blocks that can extend
the blockchain. As a result, a fork may occur to the blockchain
as the miners accept both blocks. To resolve the fork, the val-
idators vote on both branches. Voting is done at no cost which
may be an incentive for a malicious validator to vote for a spe-
cific path of the blockchain and facilitate a double-spending
attack.

These issues resulted in PoS to start appearing in multiple
flavors. Its first implementation appeared in a Bitcoin fork,
namely, Peercoin [78], which incorporates a chain-based PoS,
a hybrid of an energy-efficient PoS and the original PoW
that runs SHA256. PoW was used initially as a method of
coin generation and distribution to get the system running.
As time progressed, PoW was slowly replaced by PoS to val-
idate transactions, mint new coins, and maintain consensus.
The validators are chosen based on the number of coins in
their possession and their corresponding age (i.e., a times-
tamp indicating how old the coins are). Once they are granted
a reward in return for their service, the age of their coins goes
back to 0 to give other validators a chance to generate the
next block. By that, no single validator can monopolize the
validation process.

Later, modified versions of PoS were implemented into
some cryptocurrencies. In [79], the age of the coins was
removed as it was argued to be abusive to the system. It
can help gain significant network weight and facilitate a
double-spending attack. In some cases, it may also discourage
honest users from staking persistently as they would hold back
until their coins are oldest in age to maximize their chances.
In addition, Tendermint [80] and casper the friendly ghost
(CTFG) [81] introduced a BFT-style PoS algorithm. In such
a PoS, a validator is selected randomly to propose the next

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10309

block, however, they include a process where all validators
engage in a multiround process to vote on a specific block at
each round. Moreover, in [82], a delegated-style PoS (DPoS)
was proposed where the users vote for validators (referred
to as witnesses). Each vote has a different strength based on
the stake of the user. However, this requires users to com-
pletely trust the validators they vote for. Notable examples
that implement DPoS include EOS [83] and Tron [84].

Proof-of-Activity (PoA): PoA is a consensus algorithm that
combines PoW and PoS into one protocol [85]. Its purpose
is to reward only the online participators, thus motivate more
miners to remain online in an effort to secure the network.
The protocol is analogous to the lottery where the chances of
winning an individual are based on the number of tickets the
individual holds.

In PoA, miners first utilize their computational power to
compete in generating an empty block header; one that does
not reference any transactions. A successful miner then imme-
diately broadcasts the resulting hash to the network. This
hash value is used to deterministically derive N pseudorandom
stakeholders who are potential miners if found to be online.
The derivation of these N stakeholders is performed by hash-
ing a concatenation of the broadcast hash value, the hash of the
previous block, and N fixed suffix values. The protocol then
invokes a subroutine known as follow-the-satoshi once for each
derived value. The subroutine finds the block storing a satoshi
with the same index as the result. Next, it inspects the block
in which the satoshi was minted and traces its movement up
until its last owner. If online, this owner participates in the next
block generation process that extends the blockchain. Similar
to PoS, the more satoshis an individual owns, the more likely
that the individual will be selected randomly in this process.

Every stakeholder then checks the validity of the empty
block header that was initially broadcast. Using this value,
they also check whether they were one of the N selected val-
idators. The first N − 1 lucky stakeholders sign the hash of
the empty block header with the private key that controls the
satoshi derived from follow-the-satoshi subroutine. Next, they
broadcast their signature to the network. The Nth stakeholder
then generates a wrapped block that extends the empty block
header by including the desired transactions to be verified, the
N −1 signatures, and his/her own signature for this block. The
wrapped block is finally broadcast to the network to extend
the blockchain. The transaction fees that the Nth stakeholder
collects from the included transactions are shared among the
miner and the N participators.

From a security perspective, PoA makes the 51% attack
more difficult than PoW and PoS since a large computational
power and a significant stake are both required in PoA.

Proof-of-Burn (PoB): PoB is an algorithm that achieves
consensus by burning a portion of a cryptocurrency. Burning
a portion of cryptocurrency means generating a transaction
with this portion destined to an inaccessible address by all
users. The concept of burning is analogous to buying expensive
computational hardware in PoW.

In general, a miner burns portions of his/her holdings and
waits a certain period of time. This time ensures that it is
impractical for an attacker to undo the transaction. After

waiting, the transaction is permanently stored in the blockchain
and becomes visible to all observers. This is proof that the
potential miner has invested a portion of his/her holdings and
is worthy of being a miner. Honest miners will burn portions
of their holdings that are less than or equivalent to what they
can return in the mining process if successful. In other words,
if miners burn more than what they are expected to return in
a successful mining process, they will spend more than what
they earned, hence a loss.

The potential miners then create candidate blocks in an
effort to extend the blockchain. By referencing their trans-
actions in the blockchain, they can prove that they have burnt
some of their holdings earlier, thus become accepted by the
community as miners. The winning block that extends the
blockchain is chosen by allocating the miner that has burnt
the most after a certain period of time.

From a security perspective, this algorithm can achieve the
same security as its predecessor algorithms. It requires a miner
to perform an expensive task (burning) that is easily verified
by all other participators observing the blockchain. Similar
to PoS, it saves the miners the hassle of buying hardware to
physically perform mining.

B. Altcoin Privacy

Privacy is one of the most important issues of cryptocur-
rencies. Below, we describe some notable protocols that have
been implemented in altcoins.

Zero-Knowledge Proofs: Zero-knowledge proofs have been
implemented into some altcoins to provide private transac-
tions. They allow a prover to convince a verifier that numbers
in transactions exist without revealing any information about
the actual numbers. Notable variants of such proofs have been
implemented, such as zk-SNARKs [86], zk-STARKs [87],
and BulletProofs [88]. In comparison to zk-SNARKs, both
zk-STARKs and BulletProofs do not require a trusted entity
during the setup phase and provide a smaller size of proof,
making the size of transactions smaller. However, the verifier
computational complexity of zk-SNARKs is lower.

PrivateSend: PrivateSend is an altcoin joint transaction pro-
tocol [89] that combines identical inputs from various users
into one transaction with multiple outputs. A user initially
reaches out to a random master node requesting mixing spe-
cific denominations of a certain amount of coins. The master
node then announces that it is willing to accept other coins
of identical quantities and denominations to be mixed into a
transaction. Once the master node receives enough requests,
the involved users specify their full list of inputs and outputs
they wish to be mixed. The inputs specify the coins to be
mixed while the outputs specify the output addresses of users
where they wish to receive the mixed coins. The master node
then puts all inputs and outputs into a joint transaction and
sends it to the involved users. The users validate the transaction
and sign their inputs and return it to the master node. The mas-
ter node finally broadcasts the transaction to the network which
is treated as any other transaction. However, PrivateSend is
not a completely decentralized protocol and can jeopardize
the anonymity of the user since it involves a centralized node.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10310 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

CryptoNote: CryptoNote is a privacy-preserving protocol
embedded in some cryptocurrency implementations that strive
to hide the connection between a sender and receiver from
the rest of the network [69]. The protocol protects the identity
of the sender by utilizing ring signatures [90] when signing
transactions. The public key of the sender is shuffled with
public keys of other senders, giving all keys equal probabil-
ity of being linked to a transaction. In this way, an attacker
has no way of identifying the private key used during trans-
action signing, hence identifying the sender. It also generates
a unique public key for the receiver with each new incoming
transaction. Using random data generated by the sender and
the public key of the receiver, a one-time unique pair of pri-
vate and public keys is generated via the Diffie–Hellman key
exchange [91]. These keys are used to claim the transaction
output by the receiver. However, since CrypoNote does not
reveal the information of transactions, verifying transactions
becomes a challenge. To handle this issue, a modified version
of the original traceable ring signature [92] is utilized.

C. Mimblewimble

Similar to CryptoNote, Mimblewimble [93] is a protocol
that hides connections between senders and receivers. It elim-
inates the inputs and outputs in the UTXO design model
replacing them with a single multisignature known as con-
fidential transactions. The multisignature uses the Pedersen
commitment scheme and is generated by both sender and
receiver. Both parties share a blinding factor used to encrypt
all inputs and outputs of their transaction and their private and
public keys. Using the Pedersen commitment, the blockchain
nodes can deduct the encrypted amounts from both inputs and
outputs to ensure that the coins actually exist. As a result,
the transaction amounts remain completely obscured from the
entire network, providing privacy to both users.

VIII. FUTURE RESEARCH DIRECTIONS

Following Bitcoin, some blockchain systems began incor-
porating smart contracts to provide services besides simple
payments, for example, Ethereum [94]. A smart contract is
a self-executing code that is stored and processed over the
blockchain. These contracts allow users to negotiate and come
to agreements without needing a trusted third party. They
may significantly facilitate payments that require certain pre-
requisites before initiating transactions. Similar to Bitcoin
transactions, when smart contracts are deployed over the
blockchain and executed by miners, the result is immutable
and irreversible. However, in comparison to Bitcoin, they
present new security and privacy concerns as they require
faultlessness. Once deployed over the blockchain, smart con-
tracts cannot be altered and will continue to exist indefinitely.
Inappropriately implemented smart contracts may fall victims
to attacks [95] that may jeopardize the security and privacy of
users.

Interestingly, since the outset of smart contracts, various
blockchain-based applications began to evolve beyond finan-
cial services [96]. The main purpose of these applications is
to make use of the permanent, transparent, and irreversible

features of the blockchain. These applications are emerging in
various domains.

From a commercial standpoint, blockchain could be useful
in any industry that applies the supply chain in its manufac-
turing process. For example, the automobile industry could
reduce the number of recalls when a part is found to be
faulty by storing all automobile parts and their data as they
change with time over the blockchain. Tracing the data of
a certain part over the blockchain starting from its origin
would then allow a manufacturer to come to conclusions and
enhance future decision making. Similarly, blockchain could
be used to trace sensor data and mitigate its duplication in IoT
applications [97].

The healthcare industry is another popular area that could
potentially benefit from the blockchain. Patient data could be
stored over the blockchain thus help doctors trace back the
entire history of a patient in just a few seconds and assist them
with making more efficient treatment decisions [98]–[100].
On larger scales, the stored patient data could even be used
to potentially enhance research that focuses on predicting
medical patterns among patients.

Governments have also shown interest in the blockchain.
A good example is clearly illustrated in applications such as
electronic voting where a high degree of transparency and
immutability is required [101], [102]. Votes could be stored
over the blockchain allowing the tallying process to be per-
formed within seconds. Blockchain can also provide voter
verifiability that is an imperative feature to trust election
results.

IX. CONCLUSION

Since the inception of Bitcoin, the cryptocurrency market
has grown aggressively. It has also raised serious questions,
in particular, are cryptocurrencies the future of monetary
systems? We strived to address this enigma from a techni-
cal perspective by focusing on the security concerns, privacy
issues, and their tradeoffs versus the transaction delay of
Bitcoin. These concerns are key factors in determining the
future of cryptocurrencies. To address these concerns, we
first introduced the background of Bitcoin and explicated its
major building blocks and protocols. Next, we delved into
crucial security concerns. We began by discussing the double-
spending attack and analyzing its probability of success. Using
this analysis, we further evaluated the profitability of a poten-
tial attack. We showed that anyone in possession of less
than half of the total computational power will eventually
lose at some point while performing the attack. In addition,
we explored the major network-related security issues of the
underlying peer-to-peer network. Our discussion showed that
these network attacks are inevitable since there is no method
to restrict malicious nodes from connecting to the network.
We further explored storage security by investigating the wal-
let infrastructures and the different modes of storage. We
concluded that there is a tradeoff between storage security
and practicality. Beyond the security issues that Bitcoin suf-
fers, we investigated the privacy limitations inherent to the
system. We debunked the misconception of Bitcoin anonymity

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10311

and reviewed major methods for privacy protection. We also
looked to expand the reader’s knowledge of emerging altcoins
with advanced security and privacy features.

Extensive research is still needed in the blockchain space
to fully understand and enhance the security and privacy of
such applications. Though many applications aim at further
enhancing security and/or privacy, the users remain skeptical
due to various application-specific requirements. As research
advances in these fields, it is possible that blockchain-based
systems may help revolutionize and supersede the centralized
systems we rely on today.

REFERENCES

[1] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,”
in Proc. Conf. Theory Appl. Cryptography, 1990, pp. 437–455.

[3] D. Bayer, S. Haber, and W. S. Stornetta, “Improving the efficiency
and reliability of digital time-stamping,” in Proc. Sequences II, 1993,
pp. 329–334.

[4] S. Haber and W. S. Stornetta, “Secure names for bit-strings,” in
Proc. 4th ACM Conf. Comput. Commun. Security, 1997, pp. 28–35.

[5] H. Massias, X. S. Avila, and J.-J. Quisquater, “Design of a secure
timestamping service with minimal trust requirement,” in Proc. 20th
Symp. Inf. Theory Benelux, 1999.

[6] G. Karame, E. Androulaki, and S. Capkun, “Two bitcoins at the price
of one? Double-spending attacks on fast payments in bitcoin,” in Proc.
IACR Cryptol. ePrint Archive, 2012, p. 248.

[7] M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman, “Blockchain
technology: Beyond bitcoin,” Appl. Innov., vol. 2, pp. 6–10, 2016.

[8] L. Dashjr. (2016). BIP Process, Revised. [Online]. Available: https://
github.com/bitcoin/bips/wiki/Comments:BIP-0002

[9] G. Hileman and M. Rauchs, Global Cryptocurrency Benchmarking
Study, Cambridge Centre Alternative Finance, Cambridge, U.K., 2017.

[10] (2018). Coin Market Capital. [Online]. Available: https://
coinmarketcap.com/

[11] D. Chaum, “Blind signatures for untraceable payments,” in Proc. Adv.
Cryptol., 1983, pp. 199–203.

[12] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” in
Proc. Adv. Cryptol., 1990, pp. 319–327.

[13] W. Dai. (1998). B-Money. [Online]. Available: http://www.weidai.com/
bmoney.txt

[14] R. C. Merkle, “A digital signature based on a conventional encryp-
tion function,” in Proc. Conf. Theory Appl. Cryptograph. Techn., 1987,
pp. 369–378.

[15] D. R. L. Brown, SEC 2: Recommended Elliptic Curve Domain
Parameters, Certicom Res., Mississauga, ON, Canada, 2010.

[16] J. R. Douceur, “The sybil attack,” in Proc. Int. Workshop Peer Peer
Syst., 2002, pp. 251–260.

[17] J. Poon and T. Dryja. (2016). The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments. [Online]. Available: https://www.bitcoin
lightning.com/wp-content/uploads/2018/03/lightning-network-paper.
pdf

[18] M. Rosenfeld, “Analysis of bitcoin pooled mining reward systems,”
2011. [Online]. Available: arXiv:1112.4980.

[19] S. Pool. (2017). Reward System. [Online]. Available: https://slushpool.
com/help/manual/rewards

[20] T. B. C. developers. (2017). Bitcoin/Bitcoin. [Online]. Available:
https://github.com/bitcoin/bitcoin

[21] A. Loibl, “Namecoin,” Network Architectures and Services, vol. 107,
2014. [Online]. Available: https://www.namecoin.org

[22] J. Hilliard. (2017). Reduced Threshold Segwit Masf. [Online].
Available: https://github.com/bitcoin/bips/wiki/Comments:BIP-0091

[23] P. Wuille. (2015). Segregated Witness and Deploying it for Bitcoin.
[Online]. Available: https://prezi.com/lyghixkrguao/segregated-witness-
and-deploying-it-for-bitcoin/

[24] H. Finney. (Feb. 2011). Best Practice for Fast Transaction
Acceptance—How High Is the Risk?. [Online]. Available: https://
bitcointalk.org/index.php?topic=3441.msg48384#msg48384

[25] K. Sigman. Gambler’s Ruin Problem. [Online]. Available: http://www.
columbia.edu/∼ks20/FE-Notes/4700-07-Notes-GR.pdf

[26] A. P. Ozisik and B. N. Levine, “An explanation of Nakamoto’s analysis
of double-spend attacks,” 2017. [Online]. Available: arXiv:1701.03977.

[27] M. Rosenfeld, “Analysis of hashrate-based double spending,” 2014.
[Online]. Available: arXiv:1402.2009.

[28] (2017). Mining Hardware Comparison. [Online]. Available: https://en.
bitcoin.it/wiki/Mining_hardware_comparison

[29] (2017). Non-Specialized Hardware Comparison. [Online]. Available:
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison

[30] U.S. Energy Information Administration. https://www.eia.gov/
electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a

[31] J. Bonneau, “Why buy when you can rent?” in Proc. Int. Conf. Financ.
Cryptography Data Security, 2016, pp. 19–26.

[32] I. Eyal and E. Sirer, “Majority is not enough: Bitcoin mining is vulner-
able,” in Proc. Int. Conf. Financ. Cryptography Data Security, 2014,
pp. 436–454.

[33] B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and T. Moore, “Game-
theoretic analysis of DDoS attacks against bitcoin mining pools,” in
Proc. Financ. Cryptography Data Security, 2014, pp. 72–86.

[34] M. Vasek, M. Thornton, and T. Moore, “Empirical analysis of
denial-of-service attacks in the bitcoin ecosystem,” in Proc. Financ.
Cryptography Data Security, 2014, pp. 57–71.

[35] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks
on bitcoin’s peer-to-peer network,” in Proc. USENIX Security Symp.,
2015, pp. 129–144.

[36] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,
“Secure routing for structured peer-to-peer overlay networks,” ACM
SIGOPS Oper. Syst. Review, vol. 36, no. 1, pp. 299–314, 2002.

[37] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach, “Eclipse attacks
on overlay networks: Threats and defenses,” in Proc. IEEE INFOCOM,
2006.

[38] E. Sit and R. Morris, “Security considerations for peer-to-peer
distributed hash tables,” in Peer-to-Peer Systems (LNCS 2429).
Heidelberg, Germany: Springer, 2002, pp: 261–269.

[39] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing
attacks on cryptocurrencies,” in Proc. IEEE Symp. Security Privacy
(SP), 2017, pp. 375–392.

[40] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),”
IETF, RFC 4271, 2005.

[41] A. M. Antonopoulos, Mastering Bitcoin: Unlocking Digital
Cryptocurrencies. New York, NY, USA: O’Reilly Media, 2014.

[42] P. Wuille. (2012). Hierarchical Deterministic Wallets. [Online].
Available: https://github.com/bitcoin/bips/wiki/Comments:BIP-0032

[43] M. Palatinus, P. Rusnak, A. Voisine, and S. Bowe. (2013). Mnemonic
Code for Generating Deterministic Keys. [Online]. Available: https://
github.com/bitcoin/bips/wiki/Comments:BIP-0039

[44] G. Andresen. (2012). Pay to Script Hash. [Online]. Available: https://
github.com/bitcoin/bips/wiki/Comments:BIP-0016

[45] M. Caldwell and A. Voisine. (2012). Passphrase-Protected Private Key.
[Online]. Available: https://github.com/bitcoin/bips/wiki/Comments:
BIP-0038

[46] J. Daemen and V. Rijmen, The Design of Rijndael: AES-The Advanced
Encryption Standard. New York, NY, USA: Springer, 2013.

[47] Coinbase. (2018). Coinbase—Buy/Sell Digital Currency. [Online].
Available: https://www.coinbase.com

[48] Blockchain. (2018). Bitcoin Block Explorer—Blockchain. [Online].
Available: https://blockchain.info

[49] Ledger. (2018). Ledger Wallet—Hardware Wallets—Smartcard Security
for Your Bitcoins. [Online]. Available: https://www.ledgerwallet.com

[50] SatoshiLabs. (2018). Trezor Bitcoin Wallet—The Original and Most
Secure Hardware Wallet. [Online]. Available: https://trezor.io

[51] (2017). Bitcoin Developer Guide. [Online]. Available: https://bitcoin.
org/en/developer-guide#wallets

[52] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,”
in Proc. 30th IEEE Symp. Security Privacy, 2009, pp. 173–187.

[53] D. J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher,
and J. Kleinberg, “Inferring social ties from geographic coincidences,”
Proc. Nat. Acad. Sci. USA, vol. 107, no. 52, pp. 22436–22441, 2015.

[54] R. Puzis, D. Yagil, Y. Elovici, and D. Braha, “Collaborative attack on
Internet users’ anonymity,” Internet Res., vol. 19, no. 1, pp. 60–77,
2009.

[55] A. Korolova, R. Motwani, S. U. Nabar, and Y. Xu, “Link privacy in
social networks,” in Proc. 17th ACM Conf. Inf. Knowl. Manag., 2008,
pp. 289–298.

[56] R. Dingledine, N. Mathewson, and P. Syverson, ToR: The Second-
Generation Onion Router, Naval Res. Lab., Washington, DC, USA,
2004.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

10312 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

[57] J. Ren and J. Wu, “Survey on anonymous communications in computer
networks,” Comput. Commun., vol. 33, pp. 420–431, Mar. 2010.

[58] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation of
clients in bitcoin P2P network,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2014, pp. 15–29.

[59] A. Biryukov and I. Pustogarov, “Bitcoin over Tor isn’t a good idea,”
in Proc. IEEE Symp. Security Privacy (SP), 2015, pp. 122–134.

[60] G. Maxwell. (2013). CoinSwap: Transaction Graph Disjoint Trustless
Trading. [Online]. Available: https://bitcointalk.org/index.php?topic=
321228.0

[61] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“TumbleBit: An untrusted bitcoin-compatible anonymous payment
hub,” in Proc. Netw. Distrib. Syst. Security Symp., 2017, p. 6.

[62] G. Maxwell. (Aug. 2013). Coinjoin: Bitcoin Privacy for the Real World.
[Online]. Available: https://bitcointalk.org/?topic=279249

[63] C. Willson and A. Taaki. (2017). Dark Wallet. [Online]. Available:
https://www.darkwallet.is/

[64] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “CoinShuffle: Practical
decentralized coin mixing for bitcoin,” in Proc. Eur. Symp. Res.
Comput. Security, 2014, pp. 345–364.

[65] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable anonymous
group messaging,” in Proc. 17th ACM Conf. Comput. Commun.
Security, 2010, pp. 340–350.

[66] A. Gibson and C. Belcher. (2017). Joinmarket. [Online]. Available:
https://github.com/JoinMarket-Org/JoinMarket-Docs/blob/master/
High-level-design.md

[67] G. Hardin, “The tragedy of the commons,” J. Nat. Resources Policy
Res., vol. 1, no. 3, pp. 243–253, 2009.

[68] C. Percival, “Stronger key derivation via sequential memory-hard
functions,” in Proc. Techn. BSD Conf. (BSDCon), 2009.

[69] N. V. Saberhagen. (2013). CryptoNote V.2.0. [Online]. Available:
https://cryptonote.org/whitepaper.pdf

[70] A. Biryukov and D. Khovratovich, “Equihash: Asymmetric proof-of-
work based on the generalized birthday problem,” Ledger, vol. 2,
pp. 1–30, Mar. 2017.

[71] J. Ray. (2018). Ethash. [Online]. Available: https://github.com/
ethereum/wiki/wiki/Ethash

[72] V. Buterin. (2013). Dagger: A Memory-Hard to Compute, Memory-
Easy to Verify Scrypt Alternative. [Online]. Available: http://www.
hashcash.org/papers/dagger.html

[73] B. Kiraly. (2017). X11. [Online]. Available: https://dashpay.atlassian.
net/wiki/spaces/DOC/pages/1146918/X11

[74] PiMP. (2017). Blog: What Are All These X11, X13, X15 Algorithms
Made of? [Online]. Available: https://getpimp.org

[75] (2019). Lyra2re. [Online]. Available: https://en.bitcoinwiki.org/wiki/
Lyra2RE

[76] (2018). Quark Algorithm. [Online]. Available: https://en.bitcoinwiki.
org/wiki/Quark_Algorithm

[77] Q. Mechanic. (2011). Proof of Stake Instead of Proof of Work. [Online].
Available: https://bitcointalk.org/index.php?topic=27787.0

[78] S. King and S. Nadal. (Aug. 2012). PPcoin: Peer-to-Peer Crypto-
Currency With Proof-of-Stake. [Online]. Available: https://decred.org/
research/king2012.pdf

[79] P. Vasin. (2014). Blackcoin’s Proof-of-Stake Protocol V2. [Online].
Available: https://blackcoin.org/blackcoin-pos-protocol-v2-whitepaper.
pdf

[80] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, Fall,
vol. 1, no. 11, 2014. [Online]. Available: https://cdn.relayto.com/media/
files/LPgoWO18TCeMIggJVakt_tendermint.pdf

[81] V. Zamfir. (2017). Casper the Friendly Ghost: A Correct by
Construction Blockchain Consensus Protocol. [Online]. Available:
https://github.com/ethereum/research/blob/master/papers/caspertfg/
caspertfg.pdf

[82] D. Larimer, “DPOS Consensus Algorithm-The Missing White Paper;
Delegated proof-of-stake (DPoS),” Bitshare, White Paper, 2014.
[Online]: [Online]. Available: https://steemit.com/dpos/@dantheman/
dpos-consensus-algorithm-this-missing-white-paper

[83] (2018). Eos.IO Technical White Paper v2. [Online]. Available: https://
github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.
md

[84] T. Foundation. (2018). Tron Protocol Version: 3.2. [Online]. Available:
https://tron.network/static/doc/white_paper_v_2_0.pdf

[85] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity:
Extending bitcoin’s proof of work via proof of stake [extended abstract]
Y,” ACM SIGMETRICS Perform. Eval. Rev., vol. 42, no. 3, pp. 34–37,
2014.

[86] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a Von Neumann architecture,” in Proc.
USENIX Security Symp., 2014, pp. 781–796.

[87] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. (Mar. 6,
2018). Scalable, Transparent, and Post-Quantum Secure Computational
Integrity. [Online]. Available: https://eprint.iacr.org/2018/046.pdf

[88] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
Proc. IEEE Symp. Security Privacy (SP), 2018,. pp. 315–334.

[89] B. Kiraly. (2017). PrivateSend. [Online]. Available: https://dashpay.atla
ssian.net/wiki/spaces/DOC/pages/1146924/PrivateSend

[90] R. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in Proc.
Adv. Cryptol. ASIACRYPT, 2001, pp. 552–565.

[91] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. IT-22, no. 6, pp. 644–654, Dec. 1976.

[92] E. Fujisaki and K. Suzuki, “Traceable ring signature,” in Public
Key Cryptography (LNCS 4450). Berlin, Germany: Springer, 2007,
pp. 181–200.

[93] T. E. Jedusor. (2016). Mimblewimble. [Online]. Available: https://
scalingbitcoin.org/papers/mimblewimble.txt

[94] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project, Zug, Switzerland, 2014.

[95] K. Zipfel. (2019). Smart Contract Attack Vectors. [Online]. Available:
https://github.com/KadenZipfel/smart-contract-attack-vectors

[96] S. Aggarwal, R. Chaudhary, G. S. Aujla, N. Kumar, K.-K. R. Choo, and
A. Y. Zomaya, “Blockchain for smart communities: Applications, chal-
lenges and opportunities,” J. Netw. Comput. Appl., vol. 144, pp. 13–48,
Oct. 2019.

[97] I. Makhdoom, M. Abolhasan, H. Abbas, and W. Ni, “Blockchain’s
adoption in IoT: The challenges, and a way forward,” J. Netw. Comput.
Appl., vol. 125, pp. 251–279, Dec. 2019.

[98] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec: Using
blockchain for medical data access and permission management,” in
Proc. IEEE Open Big Data (OBD), 2016, pp. 25–30.

[99] E. Zaghloul, T. Li, M. W. Mutka, and J. Ren, “d-MABE: Distributed
multilevel attribute-based EMR management and applications,” IEEE
Trans. Service Comput., early access.

[100] T. McGhin, K.-K. R. Choo, C. Z. Liu, and D. He, “Blockchain
in healthcare applications: Research challenges and opportunities,” J.
Netw. Comput. Appl., vol. 135, pp. 62–75, Jun. 2019.

[101] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for
boardroom voting with maximum voter privacy,” in Proc. Financ.
Cryptography Data Security, 2017, pp. 357–375.

[102] E. Zaghloul, T. Li, and J. Ren, “Anonymous and coercion-resistant
distributed electronic voting,” in Proc. IEEE ICNC, 2020, pp. 389–393.

Ehab Zaghloul received the B.S. and M.Sc. degrees
in computer engineering from the Arab Academy for
Science and Technology, Alexandria, Egypt, in 2012
and 2015, respectively, and the Ph.D. degree in elec-
trical and computer engineering with Michigan State
University, East Lansing, MI, USA, in 2020.

His research interests include applied cryptogra-
phy, secure and private cloud data sharing, cryp-
tocurrencies, and blockchain.

Tongtong Li (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering from Auburn
University, Auburn, AL, USA, in 2000.

From 2000 to 2002, she was with Bell Labs,
Murray Hill, NJ, USA, and had been working on the
design and implementation of 3G and 4G systems.
Since 2002, she has been with Michigan State
University, East Lansing, MI, USA, where she is cur-
rently an Associate Professor. Her research interests
fall into the areas of wireless and wired commu-
nications, wireless security, information theory, and

statistical signal processing with applications in neuroscience.
Dr. Li is a recipient of the National Science Foundation CAREER Award

for her research on efficient and reliable wireless communications in 2008.
She served as an Associate Editor for IEEE SIGNAL PROCESSING LETTERS
from 2007 to 2009, and an Editorial Board Member for the EURASIP Journal
Wireless Communications and Networking from 2004 to 2011. She served as
an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING
from 2012 to 2016.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

ZAGHLOUL et al.: BITCOIN AND BLOCKCHAIN: SECURITY AND PRIVACY 10313

Matt W. Mutka (Fellow, IEEE) received the B.S.
degree in electrical engineering from the University
of Missouri-Rolla, Rolla, MO, USA, the M.S. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, and the Ph.D. degree in com-
puter sciences from the University of Wisconsin–
Madison, Madison, WI, USA, in 1988.

He is a Professor on the Faculty of the Department
of Computer Science and Engineering, Michigan
State University, East Lansing, MI, USA, where he
is currently serving as the Program Director with the

National Science Foundation, Division of Computer and Networks Systems,
Directorate for Computer and Information Science and Engineering. He
served as a Chairperson with the MSU Department of Computer Science
and Engineering from 2007 to 2017. He has been a Visiting Scholar with
the University of Helsinki, Helsinki, Finland, and a member of the Technical
Staff with Bell Laboratories, Denver, CO, USA. His current research interests
include mobile computing, sensor networking, and wireless networking.

Prof. Mutka was honored with the MSU Distinguished Faculty Award.

Jian Ren (Senior Member, IEEE) received the B.S.
and M.S. degrees in mathematics from Shaanxi
Normal University, Xi’an, China, and the Ph.D.
degree in EE from Xidian University, Xi’an, in
1994.

He is an Associate Professor with the Department
of ECE, Michigan State University, East Lansing,
MI, USA. His current research interests include
network security, cloud computing security, privacy-
preserving communications, distributed network
storage, and Internet of Things.

Dr. Ren is a recipient of the U.S. National Science Foundation Faculty Early
Career Development (CAREER) Award in 2009. He served as the TPC Chair
of IEEE ICNC’17, the General Chair of ICNC’18, and an Executive Chair
of ICNC’19 and ICNC’20. He currently serves as an Associate Editor for
the IEEE TRANSACTIONS ON MOBILE COMPUTING, the IEEE INTERNET
OF THINGS JOURNAL, and the ACM Transactions on Sensor Networks, and
a Senior Associate Editor for IET Communications.

Authorized licensed use limited to: Michigan State University. Downloaded on October 11,2020 at 02:07:51 UTC from IEEE Xplore. Restrictions apply.

