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Abstract—Computation outsourcing is an integral part of cloud computing. It enables end-users to outsource their computational tasks
to the cloud and utilize the shared cloud resources in a pay-per-use manner. However, once the tasks are outsourced, the end-users
will lose control of their data, which may result in severe security issues especially when the data is sensitive. To address this problem,
secure outsourcing mechanisms have been proposed to ensure security of the end-users’ outsourced data. In this paper, we
investigate outsourcing of general computational problems which constitute the mathematical basics for problems emerged from
various fields such as engineering and finance. To be specific, we propose affine mapping based schemes for the problem
transformation and outsourcing so that the cloud is unable to learn any key information from the transformed problem. Meanwhile, the
overhead for the transformation is limited to an acceptable level compared to the computational savings introduced by the outsourcing
itself. Furthermore, we develop cost-aware schemes to balance the trade-offs between end-users’ various security demands and
computational overhead. We also propose a verification scheme to ensure that the end-users will always receive a valid solution from
the cloud. Our extensive complexity and security analysis show that our proposed Cost-Aware Secure Outsourcing (CASO) scheme is
both practical and effective.

Index Terms—Cloud computing, computation outsourcing, security, efficiency, cost-awareness
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1 INTRODUCTION

CLOUD computing paradigm provides end-users an on-
demand access to a shared pool of computing resources,

such as computational power and storage. It enables the end-
users to utilize those resources in a pay-per-use manner
instead of purchasing expensive equipment upfront. Compu-
tation outsourcing is a key component of cloud computing. It
enables the resource-constrained end-users to outsource their
computational tasks to the cloud servers. Then the tasks are
processed in the cloud servers and solutions are returned to
the end-users. The technical and economic advantages make
computation outsourcing a promising application for cloud
computing.

However, security has become one of the major con-
cerns that prevent computation outsourcing from being
widely adopted. When the end-users outsource their
tasks to the cloud, they inevitably lose control of their
own data, while the cloud servers will get full access to
not only the problem itself but also the input, the interme-
diate computational results and the output of the prob-
lem, which may contain sensitive end-user data, such as
financial statistics or health records. As a result, the end-
users’ privacy is totally exposed to the cloud. Further-
more, the cloud may have the motivation to cheat in the
computation process thus false solutions may be returned
to the end-users. This is because the computing resources

are regarded as a kind of commodity and the cloud may try
to reduce the cost by simply not investing enough computing
resources as it has claimed. For example, the cloud may just
return a trivial result for an outsourced task thus saving a lot
of resources. All these issues call for designs of more secure
and privacy-preserving outsourcing mechanisms that can
also provide end-users the ability to validate the received
results.

To address the aforementioned issues, researchers have
proposed various secure outsourcing schemes for different
types of computational problems, such as sequence compari-
son [1], [2], [3], linear algebra [4], [5], [6], [7], [8], [9], [10],
modular exponentiation [11], [12], [13] and other upper-layer
algorithms [14], [15], [16], [17], [18]. The techniques utilized
by these schemes can be divided into two categories: encryp-
tion based schemes and disguising based schemes. Research-
ers from the cryptography community are trying to develop
specific encryption schemes under which computation can
be carried out on encrypted data. For instance, in [19] the
authors proposed a fully homomorphic encryption scheme
under which an arbitrary boolean circuit can be evaluated
directly over the encrypted data. Based on this homomor-
phic encryption and Yao’s garbled circuit [20], the authors in
[21] designed a secure outsourcing scheme for arbitrary
functions where the input and output privacy are protected
and the results can be verified in a non-interactive way.
However, the main drawback of this type of schemes is that
they all require expensive encryption operations thus mak-
ing it impractical to be carried out in the cloud scenario.
Researchers in the theoretic computer science community
have developed some disguising techniques to transform
different types of computational problems to disguised
forms so that the private information of the original
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problems is concealed. Based on disguising, the authors in
[22] and [4] developed schemes to securely outsource some
basic scientific operations such as matrix multiplication,
matrix inversion and convolution. More recently, secure and
practical outsourcing schemes were proposed in [6], [23] for
linear programming. In [24], [25], the authors focused on out-
sourcing of large-scale systems of linear equations.However,
the above mentioned disguising techniques are specially
designed for a particular kind of scientific computation,
mostly lies in the scope of linear algebra. Thus the applicabil-
ity of the proposed schemes is quite limited.

In this paper, we aim at developing a secure outsourcing
scheme that is suitable for general computational problems.
The challenges come from various aspects. First, we target
at general computational problems which cover the scope
of linear and non-linear problems such as system of equa-
tions (linear or non-linear), linear programming and convex
optimization. Due to the different natures of these prob-
lems, it is extremely challenging to design an outsourcing
scheme suitable for various kinds of computational prob-
lems. Second,the end-users are resource-constrained which
means that the operations can be implemented before and
after the outsourcing are quite limited. Third, the end-users
vary from handheld mobile devices to desktop workstations
in terms of resource constraints and security requirements.
Thus it is not easy to design a scheme that can meet the
requirements of various end-users. Finally, our preliminary
investigation shows that a more complex pre-processing of
the problem will ensure a more secure outsourcing process.
However, it also creates more computational burden on the
end-users. Thus there exists a trade-off between the compu-
tational complexity that the end-users can afford and the
security they can get in return. All these concerns make it
extremely hard to design a secure outsourcing scheme for
general computational problems.

To deal with the aforementioned challenges, we propose
a secure outsourcing scheme based on affine mappings. The
basic idea is that before outsourcing, the independent varia-
bles of the computational problem is mapped to a new
group of variables through an affine mapping. Correspond-
ingly, the original problem is transformed to a new form
that can be securely outsourced to the cloud. Then the cloud
can generate valid results from the transformed problem
and return the results of the transformed problem back to
the end-user. By applying an inverse affine transformation
on the results returned from the cloud, the end-user can
derive the valid results to the original problem efficiently at
the local environment.

This paper can be considered as an extension of our pre-
vious conference paper [8] that only considers outsourcing
linear systems. In this paper, we extend the scope to general
computational problems including non-linear systems. We
also provide formal analysis of security and privacy. Espe-
cially, novel methods are proposed to characterize the pri-
vacy of outsourced data, which enables the investigation of
the trade-off between security and efficiency. The contribu-
tions of this paper can be summarized as follows:

! We propose a cost-aware secure outsourcing scheme
(CASO) that is generally suitable for a wide variety
of computational problems, such as system of equa-
tions, linear programming and convex optimization.

! We investigate the trade-off between the computa-
tional complexity and security such that end-users
can choose the most suitable outsourcing scheme
according to their own resource constraints and
security demands.

! Our analysis and performance comparison demon-
strate that CASO is much more efficient than the
existing schemes with comparable security levels.

! We also introduce a verification process which ena-
bles the end-users to verify the validity of the results
returned from the cloud servers.

The rest of this paper is organized as follows. In Section 2,
we introduce our system model, threat model and our
design goals. In Section 3, we present the basic idea of
CASO based on affine mappings. We use system of linear
equations as a case study to illustrate our cost-aware design
philosophies in Section 4. We extend our design to non-lin-
ear problems in Section 5 and the result verification scheme
is introduced in Section 6. We evaluate the performance of
our scheme by comparing it with several existing works
and giving some numeric results in Section 7. We conclude
our work in Section 8.

2 PROBLEM STATEMENT

2.1 System and Threat Model
We consider a system consisting of two entities: the end-
user and the cloud. Suppose that an end-user wants to solve
a general computational problem denoted by F ðxÞ, where
x ¼ ðx1; x2; . . . ; xnÞ is a group of independent variables.
Note that F ðxÞ describes a general computational problem
not necessarily restricted to a function. For example, it can
be a system of equations or an optimization problem. How-
ever, due to lack of resources, the end-user needs to out-
source the problem to the cloud which is considered to have
infinite computing resources. Before outsourcing, the end-
user will transform the original problem at the local side in
order to prevent information leakage. On receiving the
transformed problem, the cloud server will carry out the
computing process and return the solution to the end-user.
Then at the local side, an inverse transformation is carried
out on the solution returned from the cloud to recover the
solution of the original problem. Based on the transforma-
tion and the information returned by the cloud, the end-
user is able to verify the validity of the received solution.

2.2 Design Goals
Under the above system and threat model, our proposed
outsourcing scheme should achieve the following goals:

(1) Soundness: Given that the cloud is trustworthy, the
transformation on the problem and the inverse trans-
formation of the returned result should guarantee
that the recovered solution is correct.

(2) Security: When the problem is outsourced to the
cloud, it should be computationally infeasible for
the cloud server to infer the direct information of the
original outsourced problem.

(3) Verifiability: In case that the cloud cannot be fully
trusted, the end user should have the ability to verify
the validity of the solution returned by the cloud.
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(4) Efficiency: The outsourcing scheme should be effi-
cient in computation and communication. For com-
putation, the overhead caused by the problem
transformation, the inverse transformation and the
result verification should be limited to Oðn2Þ. For
communication, the overhead caused by the out-
sourcing process should be in the same level as that
of outsourcing the original problem.

(5) Cost-Awareness: The end-users can select different
outsourcing strategies according to their own compu-
tational constraints and security demands in a cost-
awaremanner.

2.3 Application Scenarios
Our secure outsourcing scheme serves as an important
building block in various high-level applications, since we
focus on general computational problems serving as the
underlying mathematical models in many practical prob-
lems. For example, consider a cloud-assisted image recon-
struction system, where some image sensors will upload
compressed image samples to the cloud. The cloud will
store the image samples and help to reconstruct the image.
We note that the core process in image reconstruction can
be modeled as a linear programming problem [26]. To pre-
serve the privacy of the images, the sensors can transform
the image samples following the procedure in our secure
outsourcing scheme. Then, the cloud will help to solve the
transformed linear programming problem and returned the
disguised result to the data users. At last, the data users can
easily reconstruct the image based on the returned result.

3 SECURE OUTSOURCING BASED ON AFFINE

MAPPING

3.1 Basic Framework
As mentioned previously, we assume that the end user has
a general computational problem F ðxÞ to be solved. Due to
the lack of resources, the end user needs to outsource F ðxÞ
to the cloud. We formally divide the outsourcing process
into the following phases.

(1) Key Generation: KeyGenð!Þ ! S. In this phase, the
end-user generates the secret key S based on the
security parameter !.

(2) Problem Transformation: ProbTranðS; F ðxÞÞ ! GðyÞ.
Based on this secret key S, the end-user transforms
F ðxÞ to a new form GðyÞ, where y is the new input.

(3) Cloud Computation: CloudComðGðyÞÞ ! fy%;Fg. On
receiving the transformed problem GðyÞ, the cloud
carries out the necessary computation and gives the
solution y% as well as a proof F of the validity of the
returned solution.

(4) Result Recovery and Verification: RecVeriðy%;S;FÞ !
fx%;Lg. By utilizing the secret key S, the end-user
recovers solution x% to the original problem from y%.
Based on the proof F, the end-user gives the decision
L ¼ fTure;Falseg, indicating the validity of x%.

3.2 Security Characterization
In this section, we characterize the security of a secure out-
sourcing scheme.

First, we characterize the information of the problem to
be outsourced. For a computational problem F ðxÞ, the most
sensitive information is the problem itself F ð&Þ and the out-
put x%. Depending on the types of the computational prob-
lem, some other information, such as the zeros and poles,
could also be sensitive. In light of this, we define direct
information and indirect information of a computational
problem as follows.

! Direct Information: for a computational problem F ðxÞ,
the direct information is the problem itself F ð&Þ and
the output x%;

! Indirect Information: other information besides direct
information is defined as indirect information.

Based on the above characterization of information, we
define the security notions for an outsourcing scheme.

Definition 1 (Security). An outsourcing scheme achieves secu-
rity if for any given set of transformed problems fGðyiÞg and
the solution fy%i g, it is computationally infeasible for the cloud
to recover the direct information.

In the scenario of computation outsourcing, the cloud is
able to observe the transformed problem, which corre-
sponds to the ciphertext in a cryptosystem. In this sense, the
cloud is able to conduct ciphertext-only attack. In the above
security definition, we define security for direct informa-
tion. To measure what indirect information the cloud can
learn, we define the notion of privacy as follows. First, we
define an experiment to model the attack by the cloud.

Outsourcing Experiment ExpA;outð!Þ:

! The adversary A outputs two computational prob-
lems F1ðxÞ and F2ðxÞ of the same type.

! The challenger runs KeyGenð!Þ to obtain the secret
key S.

! The challenger outputs a uniform bit b 2 0; 1. It runs
ProbTranðS; FbðxÞÞ to obtain the transformed prob-
lem GbðyÞ.

! A outputs a bit b0.
! The output of the experiment is define as 1 if b ¼ b0.

Otherwise, the output is 0.

Definition 2 (Privacy). An outsourcing scheme achieves pri-
vacy for a given security parameter ! if for any probabilistic
polynomial time adversary A, there exists a negligible function
negl such that

jPrðExpA;outð!Þ ¼ 1Þ ' 1

2
j ( neglð!Þ:

It should be made clear that the security notions defined
here is different from those for traditional cryptosystems in
that the transformation does not depend on a cryptographic
algorithm, even though we adopted the notions such as
semantic security under ciphertext-only attack in cryptogra-
phy to describe the privacy of indirect information. This is
because the semantic security requires that no key informa-
tion can be derived from the ciphertext, which resembles
our privacy requirement that no indirect information can be
learnt from the transformed problems.
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Remark 1 (Security Requirements). The basic security is
the minimum security that an outsourcing scheme should
provide. That is, given the transformed problem, the
cloud is unable to recover the original problem and solu-
tion (direct information). In contrast, privacy character-
izes a stronger notion of security. Under the definition of
privacy, the transformed problem should achieve indis-
tinguishability. In other word, based on the transformed
problem, the cloud should not be able to recover any
meaningful information (indirect information).

Remark 2 (Cost-Awareness). The achievable privacy of an
outsourcing scheme should be determined by the needs
of the end-user. That is, in some scenario, an end-user
may desire to achieve a strong notion of security; while in
many other cases, the end-user may only need security of
the direct information. On the other hand, in the practi-
cal design of secure outsourcing schemes, a stronger
notion of security is achieved at the cost of a higher
computational complexity. A cost-aware secure out-
sourcing scheme should provide an end-user the flexibil-
ity to select the most efficient outsourcing scheme that
satisfies the end-user’s security requirements.

3.3 Problem Transformation
The basic idea of problem transformation is to map the
independent variables of the problem to a new group of var-
iables such that the original problem is transformed to a
new form. To be specific, suppose the original problem is
F ðxÞ. We assume that c : Rn ! Rn is a general one-to-one
mapping function. Let x ¼ cðyÞ, then F ðxÞ ¼ F ðcðyÞÞ ¼
ðF ) cÞðyÞ ¼ GðyÞ. In this way, the original input x can be
transformed to input y with the relationship determined by
the function c. Below, we give the equivalence definition of
two computational problems.

Definition 3 (Equivalence). Denote a set of computational
problems as V ¼ fG j G : Rn ! Rng. For any F 2 V, if there
exists a one-to-one mapping c : Rn ! Rn such that F ðxÞ ¼
F ðcðyÞÞ ¼ ðF ) cÞðyÞ ¼ GðyÞ, then F is said to be equivalent
to G. We denote it as F * G. The equivalent class of F is
denoted as ½F , ¼ fG 2 V j G * Fg.

Theorem 1. The equivalence relation defined in Definition 3 is
well-defined.

Proof. We only need to prove that the relation defined in
Definition 3 is reflexive, symmetric and transitive. First, it
is obvious that for every F 2 V, if we select the one-to-
one mapping c to be the identity mapping, then we have
F ðxÞ ¼ F ðcðyÞÞ ¼ F ðyÞ. Thus for every F 2 V, we have
F * F which demonstrates the property of reflexivity.
Second, for F;G 2 V, if F * G, then there exists a one-to-
one mapping c such that F ðxÞ ¼ F ðcðyÞÞ ¼ ðF ) cÞðyÞ ¼
GðyÞ, which indicates the existence of an inverse mapping
c'1 such that GðyÞ ¼ ðF ) cÞðc'1ðxÞÞ ¼ F ðxÞ. Thus we
have G * F and the property of symmetry holds. To
prove the property of transitivity, assume that F;G; H 2
V such that F * G and G * H. This means that there are
two one-to-one mappings c and f such that x ¼ cðyÞ,
F ðxÞ ¼ F ðcðyÞÞ ¼ GðyÞ and y ¼ fðzÞ, GðyÞ ¼ GðfðzÞÞ ¼
HðzÞ. Therefore, we have F ðxÞ ¼ F ðcðyÞÞ ¼ F ððc ) fÞðzÞÞ ¼
HðzÞ. Since c and f are both one-to-one mappings, the

mapping c ) f is also one-to-one. Thus from the defini-
tion we have F * H and the equivalence relation is
transitive. tu
The above equivalence definition gives an insight of

CASO. Based on a one-to-one mapping c, the end-user first
transforms the original problem F ðxÞ to an equivalent form
GðyÞ that can be securely outsourced to the cloud. Since the
solutions to the two problem satisfy x% ¼ cðy%Þ, the end-user
can always recover x% from y% returned by the cloud. Thus
the essence of our proposed scheme lies in finding a proper
one-to-onemapping that satisfies the various design goals.

Definition 4. An affine mapping c : Rn ! Rn is defined as a
mapping from x 2 Rn to y 2 Rn satisfying x ¼ Kyþ r, where
K 2 Rn.n is nonsingular and r 2 Rn.

It is clear that as long as K is nonsingular, the affine map-
ping defined above is a one-to-one mapping. The soundness
of our proposed scheme based on affine mapping is guaran-
teed by the following theorem.

Theorem 2 (Soundness). Under the affine mapping, the trans-
formed problem is equivalent to the original problem. That is the
end-user is guaranteed to be able to recover the valid solution of
the original problem from the solution returned by the cloud.

Proof. The proof of soundness follows the definition of
equivalence. The affine mapping x ¼ Kyþ r is one-to-one
as long as K is non-singular. Thus by definition, F * G
under this affine mapping. Since the solutions to the two
problems satisfy x% ¼ Ky% þ r, given y% returned by the
cloud, the end-user is able to recover x% at the local side. tu

Remark 3. Our scheme is fundamentally different from the
previous schemes, such as [6] and [24]. Given a computa-
tional problem, the previous schemes try to extract the
key parameters that can represent the problem, and then
try to disguise these key parameters to a different form
thus representing a different computational problem so
that the original problem is protected from the cloud.
While it is relatively easy to extract and disguise the key
parameters of a linear computational problem (e.g., linear
programming and system of linear equations), it is hard
for non-linear problems, which limits the previous
schemes to only linear problems such as linear program-
ming and systems of linear equations.

In comparison, our scheme starts from the variables
since in essence, a computational problem is about com-
putation of the variables. We map the group of the origi-
nal variables to another group of variables in such a way
that the secret information is protected. When we map
the variables x to a new group of variables y through
x ¼ cðyÞ, the original problem becomes F ðxÞ ¼ F ðc
ðyÞÞ ¼ ðF ) cÞðyÞ, which can naturally be applied to both
linear and non-linear problems.

4 COST-AWARE DESIGN FOR LINEAR SYSTEMS

In this section, we present our cost-aware secure outsourc-
ing scheme for general computational problems. In the
region of linear computation, we deploy system of linear
equations as a case study to show the principles of our
design. Then we show that the proposed CASO can be well
extended to linear programming.
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4.1 Outsourcing Scheme
In the problem transformation phase, the end-user first gen-
erates a random one-time secret key S ¼ fK; rg, whereK 2 Rn.n

is a non-singular matrix and r 2 Rn. Then x ¼ Kyþ r is a
one-to-one mapping from x to y. The key S will be discarded
after each use. The randomness of the key selection ensures
that it is very unlikely for any key to be reused.

Suppose the computational problem is a system of linear
equations Ax ¼ b, where x;b 2 Rn and A is an n. n non-
singular matrix. The function ProbTranðS; F ðxÞÞ ! GðyÞ
takes the secret key S ¼ fK; rg and the linear system as
input and generates the output as AKy ¼ b'Ar. Denote
A0 ¼ AK and b0 ¼ b'Ar and the system is transformed to
GðyÞ : A0y ¼ b0 which can be outsourced to the cloud.

In the phase of cloud computation, the cloud solves GðyÞ
utilizing the typical methods and returns the solution y% to
the end-user. Then in the result recovery phase, the end-
user recovers the solution to the original system of linear
equations as x% ¼ Ky% þ r. In the following sections, we will
discuss the detailed design of our secure outsourcing
scheme. Some of the key notations are listed in Table 1.

4.2 Design Analysis
From the above outsourcing scheme, we can see that the
computational overhead for the end-user incurs both in the
problem transformation and the result recovery phase. To
be more specific, in the problem transformation phase, the
end-user needs to calculate AK and Ar. To recover the origi-
nal solution x% from the received solution y%, the end-user
has to calculate Ky%. Among those operations, the matrix
multiplication AK is the most computationally expensive
one. Thus in our discussion, we will analyze the number of
multiplicationsM required to computeAK. In the following
analysis, we denote A ¼ faijji; j ¼ 1; 2; . . . ; ng and K ¼
fkijji; j ¼ 1; 2; . . . ; ng.

To multiply two arbitrary n. n matrices, the typical
complexity is Oðn3Þ, which is generally believed to be too
high and unacceptable for mobile client computation. How-
ever, in our design, we can actually control the complexity
by selecting matrix K properly so that the computational
complexity can be effectively reduced without compromis-
ing security. Since matrix multiplication is the most expen-
sive part of the end-user’s processing, our goal is to ensure
that the complexity of multiplying K with an arbitrary

matrix A is bounded by Oðn2Þ, which is within the end-
user’s computational constraints.

In the following sections, we provide four schemes with
different types of non-singular secret key K based on the
above described complexity constraints.

4.2.1 K is a Diagonal Matrix (Scheme-1)

A diagonal matrix K has the formatK ¼ fkijjkij ¼ 0; 8i 6¼ jg.
Since K must be non-singular, all the entries in the diagonal
have to be non-zero numbers. When K is a diagonal matrix,
we haveM ¼ n2.

4.2.2 K is a Permutation Matrix (Scheme-2)

A permutation matrix K has exactly one non-zero entry in
each row and each column in the matrix. When K is a per-
mutation matrix, we haveM ¼ n2.

4.2.3 K is a Band Matrix (Scheme-3)

Suppose the band matrix K has an upper half-bandwidth p
and a lower half-bandwidth q such that kij ¼ 0 for i > jþ p
and j > iþ q. The total bandwidth of K is denoted by
W ¼ pþ q þ 1. When K is a band matrix, for simplicity, we
assume thatK has an equal upper and lower half-bandwidth
p ¼ q ¼ v, then W ¼ 2vþ 1, and the number of multiplica-
tionsM can be calculated asM ¼ ð2vþ 1Þn2 ' ðv2 þ vÞn.

4.2.4 K is a Sparse Matrix (Scheme-4)

Suppose K is a sparse matrix. The density d is defined as the
ratio of non-zero elements in the matrix. We assume that
the number of non-zero elements in each row and each col-
umn ofK is up-bounded by a constant u. WhenK is a sparse
matrix, it is usually stored in a special manner such as Dic-
tionary of Keys (DOK) [27] in computation. Thus the com-
plexity of matrix multiplication can be approximately
measured by the number of non-zero elements, which is dn3

in our discussion. Since we have assumed that d ( u
n, the

number of multiplication becomesM ¼ un2.
In summary, through the above analysis, we demon-

strate that for the four proposed schemes, the complexity of
multiplying K with an arbitrary matrix A is Oðn2Þ. Since
matrix multiplication is the most expensive part of the end-
user’s processing, we can derive that the overall computa-
tional complexity for the end-user is Oðn2Þ, which is within
the end-user’s computational constraints.

4.3 Security Analysis
In this section, we will analyze the security of our proposed
CASO. We will focus on the security of the coefficient
matrix A of the original function F ðxÞ, the variable x in the
function F ðxÞ and the form of the function F ðxÞ.

Theorem 3. CASO can ensure security of the direct information.
In other words, for the four schemes in CASO, it is computa-
tionally infeasible for the cloud to recover the original coefficient
matrix A and the output x% for the system of linear equations.

Proof. For a system of linear equations Ax ¼ b, the original
problem is represented by the matrix A and the vector b.
The output is x%, which is the solution of the system.
Under the affine mapping, the system of equations is

TABLE 1
Summary of Key Notations

Symbol Interpretation

F ðxÞ original problem on variables x

GðyÞ transformed problem on variables y

n number of independent variables

K; r one-time transformation key

A coefficient matrix

A0 transformed coefficient matrix

W bandwidth of a band matrix

u upper bound of non-zeros in each row or column of a sparse matrix

N number of terms in a non-linear system

L number of polynomials in a non-linear system

T e user-side computational time with outsourcing

T s user-side computational time without outsourcing

I computational gain from outsourcing
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transformed toA0y ¼ b0, whereA0 ¼ AK and b0 ¼ b'Ar.
Therefore, it is computationally infeasible for the cloud
to recover A and b from A0 and b0 since both K and r
are only used once and kept secret at the local side. Addi-
tionally, since the original solution is recovered by
x% ¼ Ky% þ r, without knowing K and r, the cloud cannot
recover x%. In this way, the output of the system is con-
cealed. Thus, all the four schemes are secure in outsourc-
ing the system of linear equations. tu

Theorem 4. CASO can achieve the privacy of output x%.

Proof. From the definition of privacy, an end-user plays the
role of the challenger and generates the secret key ðK; rÞ.
An adversary A submits two outputs y0 and y1 to the
end-user, The end-user generates a random bit b and
transforms yb to xb ¼ Kyb þ r and sends xb back to the
adversary. The task of the adversary is to output another
bit b0. If jProbðb ¼ b0Þ ' 1

2 j ( neglð!Þ, the adversary A will
loose the game and it is proved that CASO can achieve
the privacy of output x%. Note that r is randomly gener-
ated. As a result, regardless of the selection of K,
xb ¼ Kyb þ r is random. Thus, the advantage for the
adversary to distinguish x0 and x1 is negligible. In other
words, the adversary can only generate a bit b0 such that
jProbðb ¼ b0Þ ' 1

2 j ( neglð!Þ. tu

It is worth to mention that all the four schemes in CASO
can successfully conceal the zeros and poles of the function
since zeros and poles are information of the variables x.

Remark 4. The complete privacy of the coefficient matrix A
is unachievable under affine mapping. This is because
the adversary can always distinguish A0

0 ¼ A0K from
A0

1 ¼ A1K. For example, the adversary can select A0 and
A1 such that one of these two matrix is singular. Then the
rank of the retuning matrix A0

b would be different.
To this end, we have shown that the four schemes in

CASO is able to achieve security and the privacy of the
output x%. However, the privacy information of the coef-
ficient matrix A s not fully achievable. In the following
analysis, we will show different protection of indirect
information provided by the four schemes in CASO.

Theorem 5. Suppose c is a rational mapping, meaning that c
can be represented as a quotient of two polynomial functions,
G ¼ F ) c, then we have the following results:

(1) If F is a rational function, then G is rational.
(2) If F is an irrational function, then G is irrational.

Proof. Since c is a rational mapping, we assume cðxÞ ¼
P ðxÞ
QðxÞ , where P ðxÞ and QðxÞ are polynomials. When F is a

rational function, suppose

F ðxÞ ¼ f1ðxÞ
f2ðxÞ

; (1)

where f1ðxÞ ¼ a0 þ a1xþ & & & þ anxn; and f2ðxÞ ¼ b0 þ
b1xþ & & & þ bmxm. Then

ðF ) cÞðxÞ ¼ f1ðcðxÞÞ
f2ðcðxÞÞ

: (2)

Without loss of generality, we assume that m > n. Then
we have

ðF ) cÞðxÞ ¼ QmðxÞ & f1ðcðxÞÞ
QmðxÞ & f2ðcðxÞÞ

: (3)

It is clear that both QmðxÞ & f1ðcðxÞÞ and QmðxÞ & f2ðcðxÞÞ
are polynomials. Therefore, F ) c is the quotient of two
polynomials and the composition G ¼ F ) c is a rational
function.

When F is irrational, the composition G ¼ F ) c
cannot be rational. Otherwise, there exists an inverse
rational function c'1 such that F ¼ G ) c'1 ¼ F ) c ) c'1

becomes rational. Hence, G ¼ F ) c is irrational when F
is irrational. tu

Since the proposed affine mapping is rational, we have
the following corollary.

Corollary 1. Under an affine mapping c, the rationality of the
function G is the same as the original function F .

Theorem 5 and Corollary 1 state that the rationality of the
function F cannot be changed through composition with a
rational mapping or an affine mapping c. That is, if the
function F is rational, after the composition G ¼ F ) c, the
transformed function G is still rational. If F is irrational, G
is still irrational. As a result, the side information that is
related to the specific form of the function F (e.g., sin ð&Þ or
log ð&Þ ) may not be fully concealed by an affine mapping or
even a rational mapping.

Now, we will analyze the indirect information that can be
revealed by the coefficient matrix A of the four schemes.
Under an affine mapping, the coefficient matrix A is trans-
formed to A0 ¼ AK. Thus the problem is to characterize the
indirect information of A given A0. Let aij; a0ij and kij be
the entries of A, A0 and K, respectively. By affine mapping,
the entries a0ij are actually linear combinations of aij and kij.
In our settings, we elaborately select some of the entries inK
to be zeros to reduce the computational complexity. Thus, in
a high level view, multiplying A with K results in the com-
bined effect of scaling and permuting of the columns ofA. In
light of this, to characterize the effect of scaling and permut-
ing, we introduce the ratio privacy concerning the ratio infor-
mation of the entries ofA and the position privacy concerning
the composition of each entry of A0 from entries of A. In the
following, we will analyze to what extent the four schemes
can achieve the privacy. For scheme-i (i ¼ 1; 2; 3; 4), we
denote the secret key utilized in the scheme asKi.

For scheme-1, the secret key K is a diagonal matrix
denoted by K1 ¼ fkijjkij ¼ 0; 8i 6¼ jg. The entry a0ij in A0 can
be calculated as a0ij ¼ kiiaij. By investigating A0, it is obvious
that each column in A0 is related in a simple way to that in
A such that the ith column in A0 is the multiplication of the
ith column in A with kii. In this way, only based on A0, the
cloud can easily know the ratio between any two entries
within the same column in A. Moreover, it is also clear how
each entry in A0 is composed.

For K2 to be a permutation matrix in scheme-2, the differ-
ence is that A0 in scheme-2 can be regarded as the result of
permuting the columns of A0 obtained from scheme-1.
Thus, although the cloud can get a knowledge of the ratio
between two entries in the same column of A, it is not sure
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which particular column those two entries belong to. As a
result, while scheme-2 can achieve position privacy, it may
leak ratio privacy.

In scheme-3, for K3 to be a band matrix with upper half-
bandwidth and lower half-bandwidth both equal v, it can
be calculated that

a0ij ¼
Xjþv

r¼j'v

airkrj: (4)

Since each entry in A0 is a linear combination of entries in A
andK, the ratio information of entries inA is concealed.How-
ever, the disadvantage is that the cloud can still learn how a
particular entry in A0 is composed. For example, suppose
v ¼ 1, the cloud can know for sure that a0ij ¼ aiðj'1Þkðj'1Þj þ
aijkjj þ aiðjþ1Þkðjþ1Þj. In this sense, while scheme-3 can achieve
ratio privacy, it may leak position privacy.

At last, forK4 to be a sparsematrix in scheme-4,we assume
that there are exactly u non-zero entries in each row and col-
umn ofK. Similar to scheme-3, the ratio information of entries
in A can be concealed. Moreover, since the non-zero entries
are randomly positioned in the sparse matrix K, the cloud is
unable to know how each entry in A0 is composed. Thus,
scheme-4 can achieve both ratio privacy and position privacy.

In summary, we categorized the privacy of the coefficient
matrix A into ratio privacy and position privacy. Such cate-
gorization stems from the essence of matrix multiplication.
In a high level view, multiplyingAwith a specially designed
secret matrixK can be separated into two critical operations:
weighted sum of the entries of A and random permutation.
The former operation preserves the ratio privacy while the
latter operation preserves the position privacy. Moreover,
the number of non-zero entries in K determines to what
degree the ratio privacy is preserved. However, as long as
the positions of the non-zeros entries are random, the posi-
tion privacy ofA are preserved.We summarize the computa-
tional complexity and security of CASO in Table 2.

4.4 Trade-Off Between Complexity and Security
From the above complexity and security analysis, we can
see that there is a trade-off between the computational com-
plexity and security. As the simple scheme, scheme-1 is able
to protect the original coefficient matrix while exposing the
ratio between any two entries in the same column. In com-
parison, scheme-2 is slightly more expensive (e.g., the posi-
tions of the non-zero entries have to be stored), but it is this
cost for non-zero entries’ random positions that makes it
effective to conceal the ratio information. The complexity of
scheme-3 and scheme-4 is linearly dependent on W and u,
respectively. They are more costly than scheme-1 and
scheme-2. However, the transformed matrix A0 can conceal

A and K in a more complex way since it can conceal the
structure of the coefficient matrix. In summary, from
scheme-1 to scheme-4, the security levels that they can pro-
vide increase at a cost of computational power.

In the context of cloud computing, the end-users vary
from mobile devices to powerful workstations thus having
different computational constraints as well as different
security demands. Thus CASO provides end-users with the
flexibility to choose the outsourcing schemes that are most
suitable for them. These four schemes give cost-aware out-
sourcing for end-users to address the various security
demands and computational constraints.

4.5 Application to Linear Programming
In this section, wewill demonstrate that our design and anal-
ysis for system of linear equations can be well applied to
many computational problems, such as linear programming.
We consider a linear programming problem denoted by

F ðxÞ :¼
minimize cTx

subject to Ax ¼ b

Dx / 0;

8
><

>:
(5)

where b; c 2 Rn, A 2 Rm.n andD 2 Rs.n (m; s ( n).
Under the affine mapping x ¼ Kyþ r, the problem is

transformed to

GðyÞ :¼
minimize cTKyþ cT r

subject to AKy ¼ b'Ar

DKy / 'Dr;

8
><

>:
(6)

from which we can see that the original coefficient matrix
can be concealed by the secret key K and r. It is obvious that
the computational bottleneck lies in the multiplication of K
with A and D. Thus the same complexity and security anal-
ysis for systems of linear equations applies for linear pro-
gramming. That is the complexity of the previous four
schemes is all bounded by Oðn2Þ. In terms of security, the
four schemes are all secure in protecting the original coeffi-
cient matrix while providing different levels of protection of
the side information.

In the next section, we explore the differences for non-lin-
ear computation by investigating system of non-linear equa-
tions and convex optimization problems.

5 EXTENSION TO NON-LINEAR SYSTEMS

In this section,we aim at exploring the different design issues
between linear and non-linear computation. We consider a
system of non-linear equations denoted by F ðxÞ ¼ 0, where
F ðxÞ ¼ ffiðxÞjfiðxÞ : Rn ! R; i ¼ 1; 2; . . . ; ng. Typically, it is

TABLE 2
Complexity and Security of Each Scheme : @ Denotes Security can be Guaranteed or Privacy can be Preserved

Scheme Complexity Security Privacy of x Ratio Privacy of A Position Privacy of A

Diagonal matrix K1 n2 @ @ . .
Permutation matrix K2 n2 @ @ . @
Band matrix K3 Wn2 @ @ @ .
Sparse matrix K4 un2 @ @ @ @

. denotes privacy cannot be preserved.
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hard to obtain a symbolic solution for the system. Thus the
normal method is to solve the system of equations numeri-
cally in an iterative way. The main idea is that given a
solution xk in the kth iteration, we need to solve the linear
system @F ðxÞjx¼xk

ðxkþ1 ' xkÞ ¼ 'F ðxÞjx¼xk
, where @F ðxÞ is

the Jacob matrix of F ðxÞ. Then we can obtain the solution
xkþ1 in the ðkþ 1Þth iteration. The iteration will terminate
when kF ðx%Þk < ", where " is the error tolerance and x% is
the final solution. To minimize the communication overhead
and the energy consumption of the end-users, our goal is to
design off-line scheme so that the end-users are not required
to interact with the cloud except the problem outsourcing
and result retrieving process. In this way, the end-users only
need to focus on the high level view of the problem without
knowing the details of problem solving process. The detailed
design and analysis of the outsourcing scheme are presented
as follows.

5.1 Outsourcing Scheme
Compared with outsourcing of the system of linear equa-
tions, the main difference lies in the problem transformation
phase. First, to start the iteration at the cloud side, an initial
guess of the solution should also be outsourced. We assume
that at the local side, the end-user generates an initial solu-
tion x0. Then with the affine mapping, the outsourced initial
solution becomes y0 ¼ K'1ðx0 ' rÞ. We should notice that
there is an inversion operation on K which will impose
more constraints on our selection of K in terms of computa-
tional complexity. Second, after substituting x with y, the
problem should be further transformed. We use a simple
example to illustrate this point. Suppose we want to solve a
system of non-linear equations

F ðxÞ :¼
sin ð3x1Þ þ 4x2

2 þ x2x3 ¼ 0

2x1 þ e3x2 þ 2x3
3 ¼ 0

lgð5x1Þ þ 1
2x2þ1 þ 3ðx3 þ 1Þ2 ¼ 0:

8
><

>:
(7)

We take the affine mapping x ¼ Kyþ r, where r ¼ 0 and

K ¼
3 0 0
0 2 0
0 0 4

2

4

3

5:

Then the system is transformed to

GðyÞ :¼
sin ð9y1Þ þ 16y22 þ 8y2y3 ¼ 0

6y1 þ e6y2 þ 128y33 ¼ 0

lgð15y1Þ þ 1
4y2þ1 þ 48y23 þ 24y3 ¼ '3:

8
><

>:
(8)

It is obvious that to protect the cloud from revealing
information from the transformed system, it is sufficient to
mix the coefficient of each term in the equations with the
key entry. To be specific, we assume that there are pi terms
in equation fiðxÞ and each term is denoted by fji ðtxÞ, where
t is the coefficient. Then each equation in the system can be
written as

fiðxÞ ¼
Xpi

j¼1

fj
i ðtxÞ:

Under the affinemapping x ¼ Kyþ r, fj
i ðtxÞ is transformed to

giðyÞ ¼ fiðKyþ rÞ ¼
Xpi

j¼1

fj
i ðtðKyþ rÞÞ:

Thus the coefficient t is concealed by K and r, which is simi-
lar to the case of the system of linear equations. However,
as illustrated in the example, the multiplication cannot be
simply carried out when fj

i ð&Þ is a polynomial. Thus a fur-
ther transformation is needed to mix t with K and r for
polynomials.

Without loss of generality, we assume that the polyno-
mial is denoted by tixmi and in the affine mapping, K is a
band matrix with bandwidth W ¼ 3 and r ¼ 0. Thus under
the affine mapping, the polynomial is transformed to

tiðki'1yi'1 þ kiyi þ kiþ1yiþ1Þm:

To mix the coefficient ti with the secret keys, one straightfor-
ward way is to expand the polynomial and then multiple it
with ti. However, the complexity is unacceptable for high
order polynomials. Instead, we propose that it is sufficient
to split the secret keys as ks ¼ pqs, where s ¼ i' 1; i; iþ 1
such that

tiðki'1yi'1 þ kiyi þ kiþ1yiþ1Þm

¼ tiðpqi'1yi'1 þ pqiyi þ pqiþ1yiþ1Þm

¼ tip
mðqi'1yi'1 þ qiyi þ qiþ1yiþ1Þm:

In this way, the coefficient ti in the original function and the
secret keys ki are concealed.

5.2 Complexity Analysis
From the analysis above, we can see that the complexity of
the problem transformation mainly depends on two aspects.
One is the specific form of the equations, that is the number
of polynomials in the equations. The other one is how x and
y are related, which is determined by the number of non-
zero entries in K.

For a given system of non-linear equations, suppose that
there are N terms in total in the systems, among which L
are polynomials with orders no greater than m. Assume
that the number of non-zero entries in K is up-bounded by
! (i. e. each x is substituted by at most ! y’s). Thus for each
non-polynomial term, the transformation takes !multiplica-
tions between the coefficient of the term and the key entries.
And for a polynomial term tixm

i , we assume that it is
replaced by

tiðk1y1 þ & & & þ k!y!Þm ¼ tiðpq1y1 þ & & & þ pq!y!Þm

¼ tip
mðq1y1 þ & & & þ q!y!Þm:

Then the operations involved in the transformation include
one multiplication, ! division and raising p to the power of
m. As stated previously, we utilize the number of multipli-
cation as a measurement for complexity. We assume that
in terms of computational complexity, one division is equal
to one multiplication and with the method of exponentia-
tion by squaring, the computation for mth power takes
log 2 m multiplications. Thus, for a system of non-liner
equations with N terms among which L are polynomials,
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the complexity can be calculated as

!N þ ðlog 2 mþ 1ÞL:

It is obvious that the complexity depends on ! which is fur-
ther determined by the selection of K. We summarize the
complexity of the four different types of matrices in Table 3.
We can see from the table that the complexities of all
schemes are constrained to OðNÞ, where N is the number of
terms in the system of non-linear equations. Notice that typ-
ically for a system of equations, the number of terms N is in
the level of n2, where n is the number of independent varia-
bles. Thus the complexity is still bounded by Oðn2Þ, which
fulfills our design goals.

5.3 Security Analysis
Similar to the security analysis for linear systems, all of the
proposed four schemes are secure in protecting the coeffi-
cient matrix, the zeros, poles and optimums of the out-
sourced problem. As stated in Corollary 1, CASO cannot
conceal the specific form of the functions. For instance, in the
example given in Section 5.1, the original system of equations
is transformed toGðyÞ such that the coefficients in each term
of the function are changed. However, the specific forms of
the function (e.g., sin ð&Þ; lgð&Þ, etc. ) remain unchanged.

For the four schemes, generally as the complexity
increases, more side information can be concealed from the
cloud. Different from the linear equations, a non-linear
function fiðxÞ may contain some side information, such as
maximum or minimum value which is important in some
applications. For instance, the plot of the function or the
extreme values may expose the distribution of the incidence
of a disease among different age groups. For scheme-1 and
scheme-2, the curve of the function is just a scaled version.
Though scheme-2 provides better protection since it can
conceal the independent variables. In scheme-3 and
scheme-4, each independent variables in the original prob-
lem is substituted by several new variables. Thus the side
information, such as the curve and the extreme values can
be perfectly concealed.

5.4 Application to Convex Optimization
In this section, we show that the above schemes and analy-
sis can also be applied to convex optimization. Convex opti-
mization is widely employed in various practical problems.
We consider a convex optimization problem denoted by

F ðxÞ :¼
minimize f0ðxÞ
subject to fiðxÞ ( 0; i ¼ 1; . . . ;m

hjðxÞ ¼ 0; j ¼ 1; . . . ; t;

8
><

>:
(9)

where fi : Rn ! R, i ¼ 0; . . . ;m and hi : Rn ! R, i ¼ 1; . . . ; t
are all convex functions. Under the affine mapping
x ¼ Kyþ r, the original problem F ðxÞ is transformed to

GðyÞ :¼
minimize f0ðKyþ rÞ
subject to fiðKyþ rÞ ( 0; i ¼ 1; . . . ;m

hjðKyþ rÞ ¼ 0; j ¼ 1; . . . ; t:

8
><

>:
(10)

Since the key matrix K and r are randomly generated and
kept secret at the local side, the coefficient matrix of the out-
sourced problem is perfectly protected. And because the
functions fið&Þ and hjð&Þ are all non-linear functions, the
security and the complexity analysis of system of non-linear
equations can be well applied in this case. Thus we con-
clude that our outsourcing scheme is also applicable to con-
vex optimization problems.

6 RESULTS VERIFICATION

The general idea of our proposed verification scheme is to
transform the problem with two independent affine map-
pings and outsource the two transformed problems to the
cloud. Then the end-user is able to verify whether the two
results returned by the cloud match with each other. We
note that such a verification scheme is different from those
that requires two rounds of communications. In our scheme,
the end-user does not need to wait for the result of the first
round outsourcing before sending out the second trans-
formed problem. This is because the results for the two
transformed problems are received simultaneously. To be
specific, under the affine mappings x ¼ K1yþ r1 and
x ¼ K2zþ r2, the original problem F ðxÞ is transformed to
GðyÞ and HðzÞ which are outsourced to the cloud. Then the
cloud solves the two outsourced problems and returns the
corresponding results y% and z%. Since the condition
K1y% þ r1 ¼ K2z% þ r2 holds for these two results, the end-
users can utilize it as a criterion to verify whether the
returned results are valid.

6.1 System of Non-Linear Equations
The idea introduced above can be applied to system of
equations directly. When F ðxÞ is a system of linear equa-
tions, it is sufficient to verify directly whether kAx%k < ",
where k & k denotes the euclidean norm of a vector and " is a
pre-defined error tolerance. The complexity of this verifica-
tion process is Oðn2Þ.

When F ðxÞ is a system of non-linear equations, since the
end-user will have to evaluate the non-linear functions, the
computational cost for direct verification generally exceeds
Oðn2Þ. However, based on our idea of outsourcing twice,
the end-user only needs to check the condition K1y% þ r1 ¼
K2z% þ r2. Since the verification process involves only linear
operations, the computational complexity is bounded by
Oðn2Þ. As system of equations is typically solved by itera-
tive method, the solution is not accurate. Thus we may need
to change the equality condition to

kðK1y
% þ r1Þ ' ðKz% þ r2Þk < ":

In the following analysis, we uniformly utilize the equality
condition K1y% þ r1 ¼ K2z% þ r2 as the verification criteria.
When the computational problems are solved inaccurately,

TABLE 3
Complexity for System of Non-Linear Equations

Scheme Complexity

Diagonal matrix N þ ðlog 2 mþ 1ÞL
Permutation matrix N þ ðlog 2 mþ 1ÞL
Band matrix WN þ ðlog 2 mþ 1ÞL
Sparse matrix uN þ ðlog 2 mþ 1ÞL
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the equality condition should be changed to its inequality
variation.

6.2 Optimization Problems
When F ðxÞ is an optimization problem, we utilize convex
optimization as an example to illustrate the verification pro-
cess. And it can be easily applied to other optimization
problems, such as linear programming. The output of a con-
vex optimization problem can be divided into three cases:
normal, infeasible and unbounded [28, Chapter 4.1]. For the
convex optimization problem defined in Equation (9),
the domain D is the set for which the objective function and
the constraint functions are defined. That is

D ¼
\m

i¼1

domfi \
\t

i¼i

domhi:

The feasible set is E ¼ x 2 D j fiðxÞ ( 0; i ¼ 1; . . . ;m; hiðxÞ ¼ 0;f
i ¼ 1; . . . ; tg. In the normal case, there exists an optimal
point x% 2 E such that f0ðx%Þ ( f0ðxÞ; 8x 2 E. In the infeasible
case, E ¼ ;. In the unbounded case, there exists points xk 2 E
such that f0ðxkÞ ! '1 as k ! 1.

For the cloud to cheat, it must return results in the same
case for the two outsourced problem GðyÞ andHðzÞ as men-
tioned above. Suppose that y% and z% are the two returned
results and they belong to the same case. In the following,
we will present the verification scheme for the three differ-
ent cases separately.

6.2.1 Normal Case

The above proposed verification scheme works well for the
normal case. That is if the equality K1y% þ r1 ¼ K2z% þ r2
holds, the end-user can make sure that a valid result can be
recovered. This is because whatever the correct result is
(normal, infeasible or unbounded), the cloud is not able to
come up with two results that satisfy the equality without
actually conducting the computation process. And this veri-
fication process for normal case forms the basis for the veri-
fication for other cases.

6.2.2 Infeasible Case

The above verification scheme would fail if the cloud simply
returns an infeasible result for any outsourced convex opti-
mization problem. To deal with this issue, we utilize phase I
method as described in [28, Chapter 11] to check the feasi-
bility of the problem. For a convex optimization problem
F ðxÞ, a corresponding phase I optimization problem can be
constructed as

FIðxÞ :¼
minimize r
subject to fiðxÞ ( r; i ¼ 1; . . . ;m

hjðxÞ ¼ 0; j ¼ 1; . . . ; t;

8
<

:

where r is a single variable. It is obvious that when r is large
enough, FIðxÞ is always feasible.

Suppose x% minimizes the objective function and r% is the
corresponding minimum value. The phase I problem is
designed in such a way that when r% ( 0, the original prob-
lem F ðxÞ is feasible and F ðxÞ is infeasible otherwise. Thus
the verification scheme for infeasible case can be designed
as follows. When the cloud indicates that the solutions to

the two outsourced problem GðyÞ and HðzÞ are infeasible, it
then generates the corresponding two phase I problems
GIðyÞ and HIðzÞ and computes the optimal points y% and z%

and the minimum values r%G and r%H , respectively. Then at
the local side, the verification is the same as that in the nor-
mal case. That is only when r%G > 0 and r%H > 0 and the
equality K1y% þ r1 ¼ K2z% þ r2 holds can the end-user be
guaranteed to receive valid solutions.

6.2.3 Unbounded Case

In the unbounded case, the cloud indicates that the objective
function f0ðxÞ ! '1 in its domain. We utilize duality to
verify the soundness of the returned result. For a convex
optimization problem, we can construct the corresponding
Lagrangian L as

Lðx;u; vÞ ¼ f0ðxÞ þ
Xm

i¼1

uifiðxÞ þ
Xt

j¼1

vjhjðxÞ;

where u 2 Rm and v2 Rt are the associated Lagrange multi-
plier vectors. Then based on this Lagrangian Lðx;u; vÞ, a
Lagrange dual function can be constructed as

Fðu; vÞ ¼ inf
x2D

Lðx;u; vÞ

¼ inf
x2D

f0ðxÞ þ
Xm

i¼1

uifiðxÞ þ
Xt

j¼1

vjhjðxÞ

 !

;

where D is the domain of the optimization problem. From
this definition, it is easy to prove that 8u 0 0, we have the
following inequality:

Fðu; vÞ ( Lðx%;u; vÞ ( f0ðx%Þ;

where f0ðx%Þ denotes the optimal value of the objective func-
tion. The above inequality gives a lower bound of the objec-
tive function that depends on the selection of u and v. Thus,
among all the selections of u and v, finding the optimal
lower bound is equivalent to solving the following optimi-
zation problem:

maximize Fðu; vÞ
subject to u 0 0:

!

The objective function Fðu; vÞ is concave since it is the
point-wise infimum of a series of affine function of ðu; vÞ.
Thus the above optimization problem is also a convex opti-
mization problem. If the original problem is unbounded
below, the convex optimization problem described above
should be infeasible since it gives a lower bound of the opti-
mal value in the original problem. Thus the remaining task
is to verify the feasibility of the above convex optimization
problem, which has been illustrated in the infeasible case.
Let the cloud solve the phase I problems of the two
Lagrange dual problems and return the optimal solutions
denoted by ðr%G; y%;u%

G; v
%
GÞ and ðr%H; z%;u%

H; v
%
HÞ. At the local

side, the end-user then checks whether r%G > 0 and r%H > 0
and whether the equality K1y% þ r1 ¼ K2z% þ r2 holds.

7 EVALUATION

In this section, we will evaluate the performance of the pro-
posed CASO scheme. We first compare CASO with several
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existing outsourcing schemes. Then we present some
numeric results to show the efficiency of CASO.

7.1 Performance Comparison
The existing schemes on outsourcing of numeric computa-
tion mainly focus on some specific problems. To the best of
our knowledge, no effective outsourcing schemes have
been proposed for non-linear problems. In the following
part, we compare the performance of our proposed CASO
scheme with three existing schemes specially designed for
three types of problems in terms of security, computational
complexity and communication overhead. To measure the
communication overhead, we introduce a communication
overhead indexI cwhich is defined as the fraction of the com-
munication cost of transmitting the original problem over
that of the transformed problem. Thus a larger I c indicates
better communication efficiency.

7.1.1 Linear Programming

In this section, we compare CASO for linear programming
problems with the schemes proposed in [6] and [23] in both
security and complexity. We will show that while achieving
the same security level, our scheme outperforms them in
terms of complexity. In addition, our scheme also provides
end-users with the flexibility to select different outsourcing
options with different complexity according to their security
demands.

The general linear programming problems can be
expressed as

minimize cTx
subject to Ax ¼ b

Dx / 0:

8
<

: (11)

In [6], to transform the problem, a secret key
K ¼ fQ;M; r;!!; gg is generated, where Q is a randomly
generated m.m non-singular matrix, M is a randomly
generated n. n non-singular matrix, and r is an n. 1 vec-
tor. With this secret key, the original problem is transformed
to the following problem

minimize c
0Tx

subject to A0x ¼ b0

D0x / 0;

8
<

: (12)

where A0 ¼ QAM;D0 ¼ ðD' !!QAÞM;b0 ¼ QðbþArÞ and
c0 ¼ gMTc. Then the transformed problem is outsourced to
the cloud which is similar as our approach.

In terms of computational complexity, the computational
overhead of the outsourcing scheme in [6] as well as our
scheme lies primarily in matrix multiplication. As stated in
their paper, the overall computational complexity for the
scheme proposed in [6] is slightly less than Oðn3Þ depend-
ing the algorithm chosen to implement matrix multiplica-
tion. For instance, when the Strassen algorithm is adopted,
the complexity becomes Oðn2:81Þ; while for the Copper-

smith-Winograd algorithm the complexity is Oðn2:376Þ.
However, by carefully selecting the secret key K, our
scheme can limit the complexity within Oðn2Þ.

In terms of communication overhead, the original prob-
lems in both schemes are transformed by matrix multiplica-
tion such that the resulting matrices are still in the same

scale. As a result, the communication cost of the original
and transformed problems are in the same level. Thus we
have I c ¼ 1 in our scheme and the scheme in [6].

In terms of security, both schemes can conceal the private
information by some disguising techniques, that is to dis-
guise the original matrices by multiplying them with some
random matrices. As a consequence, the security they can
achieve in protecting the original coefficient matrix is in the
same level. Since the types of the transformation matrices
(e.g., Q, M) are not specified, each entry in the disguised
coefficient matrix A0 can be the linear combination of multi-
ple entries in A and the transformation matrices. Thus, the
ratio information can be concealed. In this sense, the secu-
rity of the scheme in [6] is comparable with our scheme-4 in
terms of protecting side information.

The scheme proposed in [23] can be regarded as a varia-
tion of that in [6]. The main difference is that the authors in
[23] specify the transformation matrices as sparse matrices
in order to achieve a lower computational complexity of
Oðn2Þ. For example, the schemes in [23] disguises the coeffi-
cient matrix by matrix multiplication as A0 ¼ MAN, where
M andN are both sparse matrices. In this way, the complex-
ity is reduced to Oðn2Þ. Actually, this scheme can be consid-
ered as a special case of our proposed CASO where K is
selected as a sparse matrix.

7.1.2 System of Linear Equations

In [24], the authors investigated outsourcing of system of
linear equations Ax ¼ b based on iterative method. First,
the problem is transformed to Ay ¼ b0, where y ¼ xþ r,
b0 ¼ bþAr and r is a random vector. Then the end-user sol-
ves the transformed problem iteratively with the aid of
cloud servers and an initial guess y0 from the following iter-
ation equation:

ykþ1 ¼ T & yk þ c0; (13)

whereA ¼ Dþ R such thatD is non-singular, T ¼ 'D'1 & R
and c0 ¼ D'1 & b0. The end-user utilizes the cloud servers to
compute the most expensive part T & yk based on homomor-
phic encryption to conceal the private information T. To be
specific, the matrix T is pre-computed at the local side and
the encrypted version EncðTÞ is outsourced to the cloud. At
each iteration, the end-user sends yk to the cloud and based
on the homomorphic properties of the encryption, the cloud
servers compute EncðT & ykÞ by

EncðT & ykÞ½i, ¼ Enc
Xn

j¼1

T½i; j, & yk;j

 !

¼
Yn

j¼1

EncðT½i; j,Þyk;j ;

for i ¼ 1; . . . ; n and send EncðT & ykÞ back to the end-user.
On receiving EncðT & ykÞ, the end-user decrypts it and get
ykþ1. This iteration terminates when it converges to the final
result y. At last the end-user can recover the desired solu-
tion x by x ¼ y' r.

As stated above, the computational overhead at the local
side primarily lies in the decryption of T & yk in each itera-
tion. Suppose the algorithm terminates after l rounds of iter-
ation, then the end-user has to perform l & n times of
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decryption. However, the decryption process of public-key
cryptosystem is much more expensive than simple multipli-
cation of real numbers since it mainly consists of modular
exponentiation of large numbers. For instance, the decryp-
tion process [30] adopted in [24] has a complexity of Oðn3Þ
and a modified version can achieve a complexity of Oðn2þ"Þ.
Thus, the outsourcing scheme in [24] introduces Oðn3þ"Þ
computational overhead at the local side. In terms of com-
munication overhead, the outsourcing process requires the
end-user to send yk and receive EncðT & ykÞ at each iteration.
As a consequence, the communication overhead index
I c ¼ 1

l is dependent on the convergence speed. Furthermore,
this iteration process requires the end-user to be “online”
for the process to continue. In comparison, our scheme can
limit the computational overhead to Oðn2Þ with I c ¼ 1.
Moreover, during the outsourcing process, the end-user is
“offline”, which means that after outsourcing the trans-
formed problem, the end-user does not need to interact
with the cloud servers until the result is sent back.

The system of linear equations considered in [24] includes
the coefficient matrix T and the solution vector x. In [24], the
matrix T is encrypted utilizing the Paillier cryptosystem [30]
as EncðTÞ and the vector x is transformed to y ¼ xþ r, where
r is a random vector. In comparison, CASO disguises the
coefficient matrix A and the solution vector x as A0 ¼ AK
and x ¼ Kyþ r, respectively. In the Paillier cryptosystem,
each entry of the coefficient matrix Tði; jÞ is encrypted as
EncðTði; jÞÞ ¼ gTði;jÞrn modn2, where g; r; n are parameters in
the cryptosystem. There are two scenarios: (i) If r’s are the
same for all entries in the coefficient matrix, then all the iden-
tical entries in A will be encrypted to identical entries in A0.
In other words, by inspecting identical entries in A0, we can
determine whether entries in A are identical or not. How-
ever, in CASO, since an entry in A0 is the linear combination
of entries in A and K, the identical entries in A0 would not
indicate that the corresponding entries in A are identical.
Thus, in this case, CASO will provide better security protection.
In this case, the end-user needs to compute n2 þ 1 exponen-
tial operation. (ii) If a different r is used for each entry of the
coefficient matrix, then the end-user has to randomly select
n2 r’s, which is quite complex. Furthermore, the end-user
need to compute 2 exponential operations for each entry (gai;j

and rn). Therefore, altogether, the end-user has to compute
2n2 exponential operations. In addition, due to security
requirement, n has to be at least 1,024 bits long. In this case,
n2 would be 2048 bits. As an example, the size of the out-
sourced coefficient matrix for 5,000 variables would be
around 6 MB without data compression. While in scheme-1
and scheme-2 of our proposed CASO, the transformation is
applied in the column basis. As a result, the order informa-
tion of each column may be exposed. In this sense, the

scheme in [24] may provide better protection than scheme-1
and scheme-2 regarding the coefficient matrix A. However,
in scheme-3, each entry inA is transformed to

a0ij ¼
Xjþv

r¼j'v

airkrj:

When v > 0, since each krj in K is randomly chosen, the
order information in each column will also be concealed.
Thus the scheme in [24] can provide comparable security
protection regrading the coefficient matrix A as scheme-3.
In scheme-4, the entries in A0 are further permuted. As a
result, there exist no explicit relation between the entry aij
in A and the corresponding entry a0ij in A0. However, one
can know for sure that the entry t0ij in EncðTÞ is encrypted
from the entry tij in T. Thus scheme-4 can provide better
protection of A.

In terms of the solution vector x, in [24], the solution vec-
tor x is protected by adding a random vector r as y ¼ xþ r,
while in our scheme, we conceal x by the affine mapping
x ¼ Kyþ r. Thus, CASO scheme can provide better security
protection in this aspect.

7.1.3 Convex Optimization

In [29], the authors proposed a verification scheme for con-
vex optimization problems. However, they did not give any
outsourcing scheme. Compare to [29], in addition to result
verification, CASO also provides a secure outsourcing
scheme. Even in result verification, CASO outperforms it in
terms of computational complexity.

The result verification of convex optimization is divided
into three categories: normal, infeasible and unbounded. The
verification for normal case forms the basis for other two
cases. For the normal case, the basic idea in [29] is to check
the Karush-Kuhn-Tucker (KKT) optimality condition. The
end-user has to evaluate the original functions aswell as their
differentials based on the optimal points returned by the
cloud. This verification process ismuchmore expensive since
all the original functions are non-linear. In comparison, our
verification scheme requires only linear operations (e.g., mul-
tiplication and addition) on the independent variables and
the returned solution, therefore, it must bemore efficient.

7.1.4 Summary

We summarize the performance comparison of CASO with
some existing works in Table 4. We have shown that in the
case of outsourcing linear programming (LP) and system of
linear equations (LE), CASO outperforms the existing
schemes in computational complexity. In terms of security,
all the schemes are secure in protecting the original

TABLE 4
Performance Comparison

Applicability Computational Complexity Communication Overhead Index I c

LE LP NLE COPT

Our Scheme
p p p p

Oðn2Þ 1
[6]

p
Oðn2:376Þ 1

[24]
p

Oðl & n3þ"Þ 1
l

[29] Only Verification Not Applicable Not Applicable
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coefficient matrix. That is, given the disguised problem,
input and output, it is computational infeasible to recover
the original problem, input and output. CASO can also be
applied to system of non-linear equations (NLE) and convex
optimization (COPT). This shows that CASO possesses bet-
ter applicability. Furthermore, compared to the existing
works, CASO also gives end-users the flexibility to choose
the most suitable outsourcing strategy on a cost-aware
basis. That is the end user can select the secret key K for the
outsourcing scheme based on its various security demands
and computational resources.

7.2 Numeric Results
In this section,wemeasure the performance ofCASOutilizing
MATLAB. The computation of both the end-user and the
cloud server is simulated using the same computer with an
Intel Core 2 Due CPU running at 2. 53 GHz with 4 GB RAM.
We take outsourcing of the system of linear and non-linear
equations as examples. In the process of outsourcing,we focus
on the overhead of problem transformation, result recovery
and the performance gain that they can achieve by outsourc-
ing problems to the cloud. We denote the time for local com-
putation in the outsourcing process T e, the time cost without
outsourcing T s, and the performance gain I ¼ T s=T e.

We first show the simulation results for outsourcing of
system of linear equations Ax ¼ b, where A is an n. n
matrix. In complexity analysis, we show that the complexi-
ties of scheme-1 and scheme-2 are in the same level while
the complexity for scheme-3 and scheme-4 are comparable.

In scheme-3, when the bandwidth W equals 1, it is
reduced to scheme-1. Thus in our evaluation, we take
scheme-3 as an example and let K be a band matrix with
bandwidth W varying from 1 to 31. To investigate the
impact of problem size on our proposed scheme, we let n
vary from 1,000 to 5,000. The numeric results are shown in
Table 5. First, we can learn from the results that when the

bandwidth of the banded matrix K becomes larger, the
computational overhead at local side grows and the perfor-
mance gain decreases. This fact coincides with our analysis
of the trade off between complexity and security. Second,
the performance gain increases with the growth of the prob-
lem dimension n. This is because our scheme requires the
end-users to carry out simple operations such as addition
and multiplication. And this feature becomes more obvious
for the case of non-linear computation.

Then we show the performance of our proposed scheme
for system of non-linear equations. We assume that the non-
linear system is composed of polynomials on ten variables
and let the number of independent terms N vary from 1,000
to 5,000. Also for the same reason, we deploy band matrix
as the key matrix and let the bandwidth W vary from 1 to 3.
The simulation result is shown in Table 6. For system of
non-linear equations, the performance gain is larger than its
linear counterpart. This is because CASO requires only lin-
ear operations (e.g., multiplication and addition) in the local
environment. Similar to that of the system of linear equa-
tions, the results clearly show that there exists a trade-off
between the computational complexity and security.

8 CONCLUSION

In this paper, we proposed a cost-aware secure outsourcing
scheme for general computational problems. We demon-
strated that CASO can be utilized for secure outsourcing of
various computational problems, such as system of equa-
tions, linear programming and convex optimizations. Our
scheme also provides mechanisms for the end-users to ver-
ify results received from the cloud. We provided security
analysis on our proposed scheme on a cost-aware basis. In
particular, we proved that CASO is secure in protecting the
coefficient matrix of the outsourced problem and can partly
conceal the side information. Our analysis shows that
CASO can limit the computational overhead at the local
side to Oðn2Þ. Since CASO is executed off-line, the commu-
nication overhead is in the same level as that of outsourcing
the original problem itself. We also compared CASO with
several existing schemes and showed that CASO is more
efficient and has a wider applicability.

TABLE 5
Performance Evaluation for System of Linear Equations

Dimension Bandwidth T e (s) T s (s) I

n ¼ 1000

W ¼ 1 0.0265 0.2356 8.9
W ¼ 7 0.0265 0.2402 9.1
W ¼ 15 0.0546 0.2356 4.3
W ¼ 31 0.0858 0.2387 2.8

n ¼ 2000

W ¼ 1 0.0593 1.3962 23.6
W ¼ 7 0.0936 1.4071 15.0
W ¼ 15 0.1248 1.3853 11.1
W ¼ 31 0.1950 1.3494 6.9

n ¼ 3000

W ¼ 1 0.1170 3.9234 33.5
W ¼ 7 0.1856 3.9281 21.2
W ¼ 15 0.3058 3.8844 12.7
W ¼ 31 0.4867 3.8766 8.0

n ¼ 4000

W ¼ 1 0.2184 8.5832 39.3
W ¼ 7 0.3416 8.6924 25.4
W ¼ 15 0.7129 8.6565 12.1
W ¼ 31 1.0171 8.6768 8.5

n ¼ 5000

W ¼ 1 0.3260 15.8138 48.5
W ¼ 7 0.5288 15.9839 30.2
W ¼ 15 1.2683 15.8793 12.5
W ¼ 31 1.8174 15.9698 8.8

TABLE 6
Performance Evaluation for System of Non-Linear Equations

Dimension Bandwidth T e (s) T s(s) I

n ¼ 1000
W ¼ 1 1.6800 26.2 15.6
W ¼ 2 2.4500 27.1 11.1
W ¼ 3 3.0500 26.2 8.6

n ¼ 2000
W ¼ 1 3.1500 118.2 37.5
W ¼ 2 5.1200 118.8 23.2
W ¼ 3 6.3900 117.1 18.3

n ¼ 3000
W ¼ 1 5.1300 330.8 64.5
W ¼ 2 7.7100 313.0 40.6
W ¼ 3 9.7500 320.6 32.9

n ¼ 4000
W ¼ 1 7.1600 712.9 99.6
W ¼ 2 12.3800 713.1 57.6
W ¼ 3 13.9000 711.4 51.2

n ¼ 5000
W ¼ 1 9.3700 1187.2 126.7
W ¼ 2 16.0000 1190.1 74.4
W ¼ 3 20.6700 1191.1 57.6
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