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Abstract—This paper proposes a securely precoded OFDM
(SP-OFDM) system for efficient and reliable transmission under
disguised jamming. First, we bring off a dynamic constellation
by introducing secure shared randomness between the legitimate
transmitter and receiver, and hence break the symmetricity be-
tween the authorized signal and the disguised jamming. Second,
using the arbitrarily varying channel (AVC) model, we prove that
SP-OFDM can achieve a positive deterministic coding capacity
under disguised jamming since the AVC channel corresponding
to SP-OFDM is not symmetrizable. Finally, numerical examples
are provided to demonstrate the effectiveness of the proposed
scheme under disguised jamming attacks.

Index Terms—OFDM, disguised jamming, precoding, arbi-
trarily varying channel.

I. INTRODUCTION

In wireless systems, one of the most commonly used
techniques for limiting the effectiveness of an opponent’s
communication is referred to as jamming, in which the autho-
rized user’s signal is deliberately interfered by the adversary.
Recently, it was found that disguised jamming [1]–[3], where
the jamming is highly correlated with the signal, can reduce
the system capacity to zero. Consider channel R = S+J+N ,
where S is the authorized signal, J is the jamming interfer-
ence, N is the noise independent of J and S, and R is the
received signal. If the jammer is capable of eavesdropping on
the symbol constellation and the codebook of the transmitter,
it can simply replicate one of the sequences in the codebook
of the legitimate transmitter, the receiver, then, would not be
able to distinguish between the authorized sequence and the
jamming sequence, resulting in a complete communication
failure [4, ch 7.3].

Orthogonal frequency division multiplexing (OFDM), due
to its high spectral efficiency and robustness under fading
channels, has been widely used in modern high speed multi-
media communication systems [5], such as LTE and WiMax.
However, unlike the spread spectrum techniques [6], OFDM
has very limited built-in resilience against jamming attacks,
as it mainly relies on channel coding for communication
reliability under hostile jamming. To enhance the jamming
resistance of OFDM systems, in [7], a collision-free frequency
hopping (CFFH) scheme was proposed. CFFH integrates the
frequency hopping technique into OFDM transceiver design.
The idea is to randomize the jamming interference through
frequency domain interleaving based on secure, collision-
free frequency hopping. It can improve the jamming resis-

tance of OFDM significantly under partial jamming, without
sacrificing the spectral efficiency. However, CFFH based
OFDM is still fragile under disguised jamming. To combat
disguised jamming in OFDM systems, a precoding scheme
was proposed in [8], where extra redundancy is introduced
to achieve jamming resistance. However, lack of plasticity in
the precoding scheme results in inadequate reliability under
cognitive disguised jamming.

In this paper, we propose a securely precoded OFDM (SP-
OFDM) system for efficient and reliable transmission under
disguised jamming. First, we design a dynamic constellation
by introducing shared randomness between the legitimate
transmitter and receiver, which breaks the symmetricity be-
tween the authorized signal and the jamming interference, and
hence ensures reliable performance under disguised jamming.
Second, we analyze the channel capacity of the proposed SP-
OFDM under hostile jamming using the arbitrarily varying
channel (AVC) model [9]. We prove that with the secure
randomness shared between the authorized transmitter and
receiver, the AVC channel corresponding to SP-OFDM is not
symmetrizable, and hence SP-OFDM can achieve a positive
deterministic coding capacity under disguised jamming. The
channel capacity of the proposed system is also discussed.
Finally, Numerical examples are provided to demonstrate the
effectiveness of the proposed system under disguised jamming
and frequency selective fading.

II. SECURE OFDM SYSTEM DESIGN UNDER DISGUISED
JAMMING

In this section, we introduce the proposed anti-jamming
OFDM system with secure precoding and decoding, named
as securely procoded OFDM (SP-OFDM).

A. Transmitter Design with Secure Precoding

The block diagram of the proposed system is shown in
Fig. 1. Let Nc be the number of subcarriers in the OFDM
system and Φ the alphabet of transmitted symbols. For i =
0, 1, · · · , Nc and k = 0, 1, · · · , let Sk,i ∈ Φ denote the symbol
transmitted on the i-th carrier of the k-th OFDM block. We
denote the symbol vector of the k-th OFDM block by Sk =
[Sk,0, Sk,1, · · · , Sk,Nc−1]

T . The input data stream is first fed
to the channel encoder, mapped to the symbol vector Sk, and
then fed to the proposed symbol-level secure precoder.
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Fig. 1: Anti-jamming OFDM design through secure precoding
and decoding.
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Fig. 2: Secure phase shift generator

As pointed out in [3], [10]–[12], a key enabling factor
for reliable communication under disguised jamming is to
introduce shared randomness between the transmitter and
receiver, such that the symmetry between the authorized
signal and the jamming interference is broken. To maintain
full spectral efficiency of the traditional OFDM system, the
precoding is performed by multiplying an invertible Nc × Nc

precoding matrix Pk to the symbol vector Sk, i.e.,

S̃k = PkSk. (1)

In this paper, we design the precoding matrix Pk to be a
diagonal matrix as

Pk = diag(e−jΘk,0 , e−jΘk,1 , · · · , e−jΘk,Nc−1). (2)

That is, for i = 0, 1, · · · , Nc − 1 and k = 0, 1, · · · , a
random phase shift is applied to each transmitted symbol;
more specifically, a random phase shift −Θk,i is applied to
the symbol transmitted on the i-th carrier of the k-th OFDM
block. The phase shift changes randomly and independently
across sub-carriers and OFDM blocks, and is encrypted so that
the jammer has no access to it. More specifically, {Θk,i} is
generated through a secure phase shift generator as shown in
Fig. 2. The secure phase shift generator consists of three parts:
(i) a PN sequence generator; (ii) an Advanced Encryption
Standard (AES) [13] encryption module; and (iii) an M -PSK
mapper.

The PN sequence generator generates a pseudo-random
sequence, which is then encrypted with AES. The encrypted
sequence is further converted to PSK symbols using an M -
PSK mapper, where M is a power of 2, and every log2 M bits
are converted to a PSK symbol. The structure and the initial
state of the PN sequence generator are public, so that the
transmitter and the receiver can generate identical phase shift
sequences as long as they share the same secret encryption
key. The security, as well as the randomness of the generated
phase shift sequence, are guaranteed by the AES encryption
algorithm [13], for which the secret encryption key is only
shared between the authorized transmitter and receiver. As a

result, the phase shift sequence is random and unaccessible
for the jammer.

The resulted symbol vector from the secure precoding, S̃k,
is then used to generate the OFDM signals through IFFT,
and transmitted to the receiver after inserting the cyclic prefix
(CP), which eliminates the inter-symbol interference (ISI)
introduced by the multipath channels.

B. Receiver Design with Secure Decoding

We consider an additive white Gaussian noise (AWGN)
channel under hostile jamming. The transmitted OFDM
signal is subject to an AWGN term, denoted by Ñk,
and an additive jamming interference J̃k. Let Ñk =
[Ñk,0, Ñk,1, · · · , Ñk,Nc−1]. We assume that the components
in Ñk are i.i.d. circularly symmetric complex Gaussian ran-
dom variables. Note that in OFDM, the original symbol
vectors {Sk} are considered to be in the frequency domain
for k = 0, 1, · · · , we also express the noise term Ñk and the
jamming signal J̃k at the receiver input (please refer to Fig.
1) in terms of their frequency components as

Ñk = FN̄k, with N̄k = [N̄k,0, N̄k,1, · · · , N̄k,Nc−1]
T , (3)

J̃k = FJk, with Jk = [Jk,0, Jk,1, · · · , Jk,Nc−1]
T , (4)

where N̄k,i, Jk,i ∈ C, i = 0, 1, · · · , Nc − 1, denote the noise
and the jamming interference on the i-th subcarrier of the k-
th OFDM block, respectively; F is the IFFT unitary matrix
with [F ]m,n = 1√

Nc
ej2πmn/Nc , and C is the complex plane.

On the receiver side, after removing the CP and performing
OFDM demodulation (FFT) to the received signal, a symbol
vector R̃k = [R̃k,0, R̃k,1, · · · , R̃k,Nc−1]

T is obtained for the
k-th transmitted OFDM block. That is,

R̃k = PkSk + Jk + N̄k. (5)

Note that the noise vector Ñk has zero mean and covariance
matrix E{ÑH

k Ñk} = σ2I . It follows that the correspond-
ing covariance matrix of N̄k is E{N̄H

k N̄k} = σ2I , since
N̄k = FHÑk and F is a unitary matrix. Moreover, note that
(i) for any circularly symmetric Gaussian random variable N ,
ejθN and N have the same distribution for any angle θ [14,
p66]; (ii) linear combination of independent circularly sym-
metric Gaussian random variables is still circularly symmetric
Gaussian. We can see that the components of noise N̄k are
i.i.d. circularly symmetric complex Gaussian random variables
with zeros mean and variance σ2.

The secure decoding module multiplies the inverse matrix
of Pk to R̃k, which results in the symbol vector

Rk = Sk + P −1
k Jk + P −1

k N̄k, (6)

where Rk = [Rk,0, Rk,1, · · · , Rk,Nc−1]
T , with

Rk,i = Sk,i + ejΘk,iJk,i + Nk,i, (7)

where Nk,i = ejΘk,iN̄k,i, and Θk,i is uniformly distributed
over { 2πi

M | i = 0, 1, · · · , M −1}. Again, the phase shift to the
complex Gaussian noise N̄k,i will not change its distribution.
That is, Nk,i is still a circular symmetric complex Gaussian
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random variable of zero-mean and variance σ2. For notation
simplicity, from now on, we replace the double indices k, i of
each symbol with a single index i, referring to the i-th symbol
transmitted.

Taking the delay in the communication system into con-
sideration, in this paper, we assume that the authorized user
and the jammer do not have pre-knowledge on the sequence
of each other. We do not assume any a priori information on
the jamming signal, except a finite average power constraint
of PJ , i.e., E{|Ji|2} ≤ PJ , for any possible i.

C. PN Sequence Synchronization between the Secure Pre-
coder and Decoder

A key issue in the secure precoding and decoding is the PN
sequence synchronization. We ensure the synchronization be-
tween the PN sequences generated by the transmitter and the
receiver using the following method: each party is equipped
with a global time clock, and the PN sequence generators
of the two parties are reinitialized at fixed intervals. The
new state for reinitialization, for example, can be the elapsed
time after a specific reference epoch in seconds for the time
being, which is public. As the initial state changes with each
reinitialization, no repeated PN sequence will be generated.

At the beginning of the reception, the PN sequences gen-
erated by the two parties may not be perfectly synchronized
because of the mismatch between the time clocks and the
possible delays in the transmission and reception. That is, the
receiver may be unaware of the indices of the symbols at first.

This problem can be solved by inserting pilot symbols
into the transmitted signal. Consider the random phase shifts
introduced in the secure precoding, without loss of generality,
we can assume the pilot symbol vector is sp[1, 1, · · · , 1]T1×m,
where m is the length of pilot sequence. Suppose the received
training sequence is denoted as [R̃n0

, R̃n0+1, ...R̃n0+m−1]
T ,

where the staring index n0 is unknown to the receiver, i.e,

R̃n0+l = spe−jΘn0+l +Jn0+l +Nn0+l, l = 0, 1, · · · , m−1. (8)

To estimate the value of n0, the receiver calculates
its correlation with the known phase shifting sequence
ejΘn1 , ejΘn1+1 , ..., ejΘn1+m−1 , i.e.,

1

m

m−1∑

l=0

R̃n0+le
jΘn1+l

=
1

m

m−1∑

l=0

[
spe−j(Θn1+l−Θn0+l) + Jn0+le

jΘn1+l + Nn0+l

]
. (9)

The receiver iterates n1 over the candidate set of n0, that is,
all the possible values of n0. Note that for l1 %= l2, Θl1 and
Θl2 are independent, and Jl1 and Θl2 are also independent, so
we can get the mean and variance of the correlation coefficient
as

E

[
1

m

m−1∑

l=0

R̃n0+le
jΘn1+l

]
=

{
0, n0 "= n1

sp, n0 = n1
, (10)

D

[
1

m

m−1∑

l=0

R̃n0+le
jΘn1+l

]
≤

{
|sp|2+PJ+σ2

n
m

, n0 "= n1

PJ+σ2
n

m
, n0 = n1

. (11)

The value of n0 can then be estimated through

n̂0 = arg max
n1

| 1

m

m−1∑

l=0

R̃n0+le
jΘn1+l |. (12)

Note that from the design of the PN generator in section
II-A, the receiver is able to have a rough estimation of n0

from the time clock, so the candidate set of n0 is finite.
Under limited jamming power, the variance of the estimated
correlation coefficient can be arbitrarily small as m → ∞.
Thus from the Chebychev inequality [15, Theorem 5.11], for
any n1 %= n0, the probability that

Pr

{∣∣∣∣∣
1

m

m−1∑

l=0

R̃n0+le
jΘn1+l

∣∣∣∣∣ ≥
∣∣∣∣∣
1

m

m−1∑

l=0

R̃n0+le
jΘn0+l

∣∣∣∣∣

}
→ 0,

(13)
as m → ∞, which indicates we are able to get an accurate
estimate of n0.

Basing on the analysis above, in the following, we assume
the PN sequences have been perfectly synchronized between
the two parties. For notation simplicity, we further discard the
indicies of symbol and rewrite the equivalent channel model
as

R = S + ejΘJ + N, (14)

where S ∈ Φ, J ∈ C, N ∼ CN (0, σ2), Θ is uniformly
distributed over { 2πi

M | i = 0, 1, ..., M − 1}, and CN (µ,Σ)
denotes a circularly symmetric complex Gaussian distribution
with mean µ and variance Σ. We would like to point out
that this model is used for system capacity evaluation under
disguised jamming. The system performance with non-ideal
carrier synchronization or channel estimation under fading
channels will be demonstrated in Example 2 of section IV,
where the error in carrier synchronization or channel estima-
tion is modeled as the random channel gain under a Rician
model.

III. SYMMETRICITY AND CAPACITY ANALYSIS USING
THE AVC MODEL

In this section, first, we will show that for the proposed
SP-OFDM system, the equivalent arbitrarily varying channel
(AVC) model is nonsymmetrizable under disguised jamming.
We will further discuss the capacity of the proposed system
under disguised jamming.

The arbitrarily varying channel (AVC) model, first intro-
duced in [11], characterizes the communication channels with
unknown states which may vary in arbitrary manners across
time. For the jamming channel (14) of interest, the jamming
symbol J can be viewed as the state of the channel under
consideration. The channel capacity of AVC evaluates the
data rate of the channel under the most adverse jamming
interference among all the possibilities [9]. Note that unlike
the jamming free model where the channel noise sequence
is independent of the authorized signal and is independent
and identically distributed (i.i.d.), the AVC model considers
the possible correlation between the authorized signal and the
jamming, as well as the possible temporal correlation among
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the jamming symbols, which may cause much worse damages
to the communication.

To prove the effectiveness of the proposed SP-OFDM
under disguised jamming, we need to introduce some basic
concepts and properties of the AVC model. First we revisit
the definition of symmetrizable AVC channel.

Definition 1. [9] [16] Let W (r | s, x) denote the conditional
PDF of the received signal R given the transmitted symbol
s ∈ Φ and the jamming symbol x ∈ C. The AVC channel
(14) is symmetrizable if and only if for some auxiliary channel
π : Φ → C, we have

∫

C
W (r | s, x)dFπ(x|s′) =

∫

C
W (r | s′, x)dFπ(x|s), (15)

∀s, s′ ∈ Φ, r ∈ C, where Fπ(·|·) is the probability measure
of the output of π given the input, i.e., the conditional CDF

Fπ(x|s) = Pr{Re(π(s)) ≤ Re(x), Im(π(s)) ≤ Im(x)}, (16)

x ∈ C, s ∈ Φ, where π(s) denotes the output of channel π
given input symbol s.

We denote the set of all the auxiliary channels, π’s, that
can symmetrize channel (14) by Π, that is,

Π =
{
π | π satisfies (15) for any s, s′ ∈ Φ, r ∈ C

}
. (17)

With the average jamming power constraint considered
in this paper, we further introduce the definition of l-
symmetrizable channel.

Definition 2. [16] The AVC channel (14) is called l-
symmetrizable under average jamming power constraint if and
only if (iff) there exists a π ∈ Π such that

∫

C
|x|2dFπ(x|s) < ∞, ∀s ∈ Φ. (18)

In [16], it was shown that reliable communication can be
achieved as long as the AVC channel is not l-symmetrizable.

Lemma 1. [16] The deterministic coding capacity1 of the
AVC channel (14) is positive under any hostile jamming
with finite average power constraint iff the AVC is not l-
symmetrizable. Furthermore, given a specific average jam-
ming power constraint PJ , the channel capacity C in this
case equals

C = max
PS

min
FJ

I(S, R),

s.t.
∫

C |x|2dFJ(x) ≤ PJ ,
(19)

where I(S, R) denotes the mutual information (MI) between
the R and S in (14), PS denotes the probability distribution
of S over Φ and FJ(·) the CDF of J .

Next, we show that with the proposed secure precoding, it
is impossible to l-symmetrize the AVC channel (14) corre-
sponding to the SP-OFDM system.

1The deterministic coding capacity is defined by the capacity that can be
achieved by a communication system, when it applies only one code pattern
during the information transmission. In other words, the coding scheme is
deterministic and can be readily repeated by other users [17].

Theorem 1. The AVC channel of the proposed system is not
l-symmetrizable.

Proof. Suppose that there exists a channel π ∈ Π. Denote
the output of channel π given input x by Π(x), and define
channel for inputs s and s′ as

R̂(s, s′) = s + π(s′)ejΘ + N, (20)

where the channel output is denoted by R̂(s, s′). From (15),
the distribution of R̂(s, s′) and R̂(s′, s) should be equal. Let
ϕX(ω1, ω2) denote the characteristic function (CF) for any
complex random variable X . So we have

ϕR̂(s,s′)(ω1, ω2) ≡ ϕR̂(s′,s)(ω1, ω2), (21)

and

ϕR̂(s,s′)(ω1, ω2) = ϕs+π(s′)ejΘ(ω1, ω2)ϕN (ω1, ω2). (22)

where, for the complex Gaussian noise, we have

ϕN (ω1, ω2) = e− σ2

4 (w2
1+w2

2), ω1, ω2 ∈ (−∞, +∞), (23)

which is non-zero over R2. Thus by eliminating the CFs of
the Gaussian noises on both sides of equation (21), we have

ϕs+π(s′)ejΘ(ω1, ω2)=ϕs′+π(s)ejΘ(ω1, ω2). (24)

for ω1, ω2 ∈ (−∞, +∞). Let s = s1 + js2, we can then
express ϕs+π(s′)ejΘ(ω1, ω2) as

ϕs+π(s′)ejΘ(ω1, ω2) = ejs1ω1+js2ω2ϕπ(s′)ejΘ(ω1, ω2), (25)

and

ϕπ(s′)ejΘ(ω1, ω2) = E{ejω1Re(π(s′)ejΘ)+jω2Im(π(s′)ejΘ)}

=

∫
E{ejω1Re(xejΘ)+jω2Im(xejΘ)}dFπ(x|s′). (26)

Under the proposed secure precoding scheme, Θ is uniformly
distributed over { 2πi

M | i = 0, 1, ..., M − 1}, where M is a
power of 2. We have

E{ejω1Re(xejΘ)+jω2Im(xejΘ)}

=
1

M

M−1∑

i=0

ejω1|x| cos( 2πi
M

+arg(x))+jω2|x| sin( 2πi
M

+arg(x))

=
2

M

M/2−1∑

i=0

cos

(
ω1|x| cos(

2πi

M
+ arg(x)) +

ω2|x| sin(
2πi

M
+ arg(x))

)
, (27)

which is of real value for ω1, ω2 ∈ (−∞, +∞). So
ϕπ(s′)ejΘ(ω1, ω2) and ϕπ(s)ejΘ(ω1, ω2) are also of real values
over R2. For s %= s′, s′ = s′

1 + js′
2, expression

ej[(s1−s′
1)ω1+(s2−s′

2)ω2], (28)

has non-zero imaginary part for (s1 − s′
1)ω1 + (s2 − s′

2)ω2 %=
nπ, n ∈ Z. Without loss of generality, we assume s1 %= s′

1.
From (24), (25) and (27), we must have

ϕπ(s)ejΘ(ω1, ω2)=0, for ω1+
s2 − s′

2

s1 − s′
1

ω2 "= nπ

s1 − s′
1

, n ∈ Z. (29)
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On the other hand, the CF of a RV should be uniformly
continuous in the real domain [15, Theorem 15.21]. So for
any fixed ω2 ∈ (−∞, ∞), we should have

ϕπ(s)ejΘ(
nπ − (s2 − s′

2)ω2

s1 − s′
1

, ω2)

= lim
ω1→ nπ−(s2−s′

2)ω2

s1−s′
1

ϕπ(s)ejΘ(ω1, ω2), n ∈ Z. (30)

For ω1 ∈ (
(n−1)π−(s2−s′

2)ω2

s1−s′
1

,
nπ−(s2−s′

2)ω2

s1−s′
1

)

∪(
nπ−(s2−s′

2)ω2

s1−s′
1

,
(n+1)π−(s2−s′

2)ω2

s1−s′
1

), ϕπ(s)ejΘ(ω1, ω2) ≡ 0,
so

ϕπ(s)ejΘ(
nπ − (s2 − s′

2)ω2

s1 − s′
1

, ω2) = 0, n ∈ Z. (31)

Combining (29) and (31), we have

ϕπ(s)ejΘ(ω1, ω2) = 0, ω1, ω2 ∈ (−∞, ∞). (32)

However, (32) cannot be a valid CF for any RV. Thus channel
π does not exist. Since Π is empty, the AVC channel is not
l-symmerizable.

From Lemma 1, the capacity of channel R = S+ejΘJ +N
is given by (19). It is hard to obtain a closed form solution
of the channel capacity for a general discrete transmission
alphabet Φ. However, if we relax the distribution of the
transmitted symbol S from the discrete set Φ to the entire
complex plane C under an average power constraint, we are
able to obtain the following result on channel capacity.

Theorem 2. The deterministic coding capacity of SP-OFDM
is positive under any hostile jamming. More specifically, let
the alphabet Φ = C and the average power of S being upper
bounded by PS , then the maximin channel capacity in (19)
under average jamming power constraint PJ and noise power
PN = σ2 is

C = log

(
1 +

PS

PJ + PN

)
. (33)

The capacity is achieved at input distribution CN (0, PS) and
jamming distribution CN (0, PJ).

Proof. By replacing the support of S, Φ, with the complex
plane C, the maximin optimization problem is reformulated
as

C = max
FS

min
FJ

I(R; S),

s.t.
∫

|x|2dFS(x) ≤ PS ,
∫

|x|2dFJ(x) ≤ PJ ,

(34)

where FS(·) denotes the CDF function of S defined on C.
Mutual information I(S, R) is concave w.r.t. FS(·) and

convex w.r.t. FJ(·) [16, Lemma 4]. We denote I(S, R) for
input distribution FS(·) and jamming distribution FJ(·) by
φ(FS , FJ). As is noted in [18], if we can find input distribu-
tion F ∗

S and jamming distribution F ∗
J such that

φ(FS , F ∗
J ) ≤ φ(F ∗

S , F ∗
J ) ≤ φ(F ∗

S , FJ), (35)

for any FS and FJ under the average power constraints. Then

φ(F ∗
S , F ∗

J ) = C. (36)

Pair (F ∗
S , F ∗

J ) is the saddle point of the max-min problem
[19].

Note that: (i) phase shift would not change the distribution
of a circularly symmetric complex Gaussian RV, (ii) the
capacity achieving input distribution of a Gaussian channel
is Gaussian, and (iii) the worst noise in terms of capacity
for Gaussian input is Gaussian [4]. So the saddle point
(F ∗

S , F ∗
J ) is achieved at (CN (0, PS), CN (0, PJ)), where the

corresponding channel capacity is

C = log

(
1 +

PS

PJ + PN

)
, (37)

which completes the proof.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
system under disguised jamming attacks through simulation
examples.

Example 1: System performance under disguised jam-
ming in AWGN channels: In this example, we analyze the
bit error rates (BERs) of the proposed system under disguised
jamming in AWGN channels. We use the low density parity
check (LDPC) codes for channel coding, and adopt the parity
check matrices from the DVB-S.2 standard [20]. The coded
bits are mapped into QPSK symbols. The random phase
shifts in the proposed secure precoding are approximated as
i.i.d. continuous RVs uniformly distributed over [0, 2π). We
observe that such an approximation has negligible difference
on BER performance compared with a sufficiently large M .
The jammer randomly selects one of the codewords in the
LDPC codebook and sends it to the receiver after the mapping
and modulation. On the receiver side, we use a soft decoder
for the LDPC codes, where the belief propagation (BP)
algorithm [21] is employed. The likelihood information in
the BP algorithm is calculated using the likelihood function
of a general Gaussian channel, where the noise power is set
to 1 + σ2 considering the existence of jamming signal, and
σ2 is the noise power. That is, the signal to jamming power
ratio (SJR) is set to be 0 dB. It should be noted that for
more complicated jamming distribution or mapping schemes,
customized likelihood functions basing on the jamming dis-
tribution will be needed for the optimal performance. Fig. 3
compares the BERs of the communication system studied with
and without the proposed secure precoding under different
code rates and SNRs. It can be observed that: (i) under
the disguised jamming, in the traditional OFDM system, the
BER cannot really be reduced by decreasing the code rate
or the noise power, which indicates that without appropriate
anti-jamming procedures, we are not able to communicate
reliably under disguised jamming; (ii) with the proposed
SP-OFDM scheme, when the code rates are below certain
thresholds, the BERs can be significantly reduced with the
decrease of code rates using the proposed secure precoding.
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Fig. 3: BER performance comparison under disguised jam-
ming in AWGN channels: SP-OFDM versus the traditional
OFDM system, signal to jamming power ratio (SJR) = 0 dB.

=%>'?'@$($?
)*, 2 2*, + +*, - -*, . .*, , ,*, /

01
&

2)3.

2)3-

2)3+

2)32

2))

4536789:%4;&%<%A%#0
6789:%4;&%<%A%#0
4536789:%4;&%<%2)%#0
6789:%4;&%<%2)%#0

Fig. 4: BER performance comparison under disguised jam-
ming in Rician channels: code rate = 1/3, SJR = 0 dB. Here
the K parameter refers to the power ratio between the direct
path and the scattered path.

This demonstrates that the proposed SP-OFDM system can
achieve a positive deterministic channel coding capacity under
disguised jamming.

Example 2: System performance under disguised jam-
ming in Rician channels: In this example, we verify the
effectiveness of the proposed system in fading channels. We
consider a Rician channel, where the multipath interference
is introduced and a strong line of sight (LOS) signal exists.
The fading effect is slow enough so that the channel remains
unchanged for one OFDM symbol duration. In the simulation,
we set the power of the direct path of Rician channel to be
1 and vary the K parameter, which is the ratio between the
power of the direct path and that of the scattered path. Fig.
4 shows the BERs for LDPC code rate 1/3 under disguised
jamming. It can be observed that the proposed system is still
effective under the fading channel with a sufficient large K
parameter. For a small K parameter, i.e., when the fading is
severe, channel estimation and equalization will be needed to
guarantee a reliable communication.

V. CONCLUSIONS

In this paper, we designed a highly secure and efficient
OFDM system under disguised jamming, named securely

precoded OFDM (SP-OFDM), by exploiting secure symbol-
level precoding basing on phase randomization. We showed
that, with the secure randomness shared between the autho-
rized transmitter and receiver, the AVC channel corresponding
to SP-OFDM is not symmetrizable, and hence SP-OFDM
can achieve a positive deterministic coding capacity under
disguised jamming. Both our theoretical and numerical re-
sults demonstrated that SP-OFDM is robust under disguised
jamming and frequency selective fading.

REFERENCES

[1] A. Lapidoth and P. Narayan, “Reliable communication under channel
uncertainty,” IEEE Transactions on Information Theory, vol. 44, no. 6,
pp. 2148–2177, Oct 1998.

[2] T. Song, K. Zhou, and T. Li, “CDMA system design and capacity
analysis under disguised jamming,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 11, pp. 2487–2498, Nov 2016.

[3] L. Zhang and T. Li, “Anti-jamming message-driven frequency hopping-
part ii: Capacity analysis under disguised jamming,” IEEE Transactions
on Wireless Communications, vol. 12, no. 1, pp. 80–88, January 2013.

[4] A. E. Gamal and Y.-H. Kim, Network Information Theory. New York,
NY, USA: Cambridge University Press, 2012.

[5] T. Hwang, C. Yang, G. Wu, S. Li, and G. Y. Li, “OFDM and its wireless
applications: A survey,” IEEE Transactions on Vehicular Technology,
vol. 58, no. 4, pp. 1673–1694, May 2009.

[6] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication.
Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 1995.

[7] L. Lightfoot, L. Zhang, J. Ren, and T. Li, “Secure collision-free
frequency hopping for OFDMA-based wireless networks,” EURASIP
J. Adv. Signal Process, vol. 2009, pp. 1:1–1:11, Mar. 2009.

[8] T. Song, Z. Fang, J. Ren, and T. Li, “Precoding for OFDM under
disguised jamming,” in 2014 IEEE Global Communications Conference,
Dec 2014, pp. 3958–3963.

[9] I. Csiszar and P. Narayan, “The capacity of the arbitrarily varying chan-
nel revisited: positivity, constraints,” IEEE Transactions on Information
Theory, vol. 34, no. 2, pp. 181–193, Mar 1988.

[10] R. Ahlswede, “Elimination of correlation in random codes for arbi-
trarily varying channels,” Zeitschrift für Wahrscheinlichkeitstheorie und
Verwandte Gebiete, vol. 44, no. 2, pp. 159–175, 1978.

[11] D. Blackwell, L. Breiman, and A. J. Thomasian, “The capacities of
certain channel classes under random coding,” Ann. Math. Statist.,
vol. 31, no. 3, pp. 558–567, 09 1960.

[12] L. Zhang, H. Wang, and T. Li, “Anti-jamming message-driven frequency
hopping-part i: System design,” IEEE Transactions on Wireless Com-
munications, vol. 12, no. 1, pp. 70–79, January 2013.

[13] F. P. Miller, A. F. Vandome, and J. McBrewster, Advanced Encryption
Standard. Alpha Press, 2009.

[14] J. R. Barry, D. G. Messerschmitt, and E. A. Lee, Digital Communica-
tion: Third Edition. Norwell, MA, USA: Kluwer Academic Publishers,
2003.

[15] A. Klenke, Probability Theory: A Comprehensive Course. Springer,
2008.

[16] I. Csiszar, “Arbitrarily varying channels with general alphabets and
states,” IEEE Transactions on Information Theory, vol. 38, no. 6, pp.
1725–1742, Nov 1992.

[17] T. Ericson, “Exponential error bounds for random codes in the arbitrar-
ily varying channel,” IEEE Transactions on Information Theory, vol. 31,
no. 1, pp. 42–48, Jan 1985.

[18] J. M. Borden, D. M. Mason, and R. J. McEliece, “Some information
theoretic saddlepoints,” SIAM Journal on Control and Optimization,
vol. 23, no. 1, pp. 129–143, 1985.

[19] D. Du and P. Pardalos, Minimax and Applications. Springer US, 1995.
[20] A. Morello and V. Mignone, “DVB-S2: The second generation standard

for satellite broad-band services,” Proceedings of the IEEE, vol. 94,
no. 1, pp. 210–227, Jan 2006.

[21] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-
product decoding of low-density parity-check codes using a Gaussian
approximation,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 657–670, Feb 2001.

!"!"#$%&'(%)&*+%),#-+%.'('%/'#+%#-+012&*%34#5'&6+(7*%3#)%8#-+002%*/)&*+%9#:$-5-;<#-+002%*/)&*+%9#)%8#
$%.+(0)&*+%#='/2(*&>#=>01+9*20

399

Authorized licensed use limited to: Michigan State University. Downloaded on September 22,2021 at 16:39:08 UTC from IEEE Xplore.  Restrictions apply. 


