
IEE
E P

ro
of

1 Accelerating Concurrent Priority Scheduling
2 Using Adaptive in-Hardware Task
3 Distribution in Multicores

4 Mohsin Shan and Omer Khan

5 Abstract—Task parallel algorithms execute tasks in some programmer-specified

6 order on shared-memory multicores. A Concurrent Priority Scheduler (CPS)

7 selects high priority tasks, and schedules them among cores to exploit parallelism.

8 The main objective of a CPS is to deliver work efficient algorithmic execution at low

9 communication cost. Selecting high priority tasks among cores requires high

10 synchronizations, but results in near-optimal work-efficiency. The communication

11 cost can be reduced by processing tasks without a strict priority order, but it

12 potentially degrades work-efficiency. This letter proposes HAPS, a novel CPS

13 architecture that utilizes in-hardware core-to-core messages to accelerate task

14 distribution among cores. Moreover, a set of dynamically tunable heuristics are

15 proposed to co-optimize work-efficiency and communication in shared-memory

16 multicores.

17 Index Terms—Task-parallelism, concurrent priority scheduler, shared memory,

18 multicore, hardware messages

Ç

19 1 INTRODUCTION

20 TASK-PARALLEL algorithms are ubiquitously deployed in data process-
21 ing and analytics domains, where an algorithm designer decomposes
22 the algorithm into tasks comprising of several instructions. Tasks are
23 generated at runtime, and pending tasks are scheduled dynamically
24 on different cores for processing.Most task-parallel algorithms execute
25 tasks in any order until convergence, thus exposing plentiful parallel-
26 ism.However,many algorithms demonstrate faster convergence using
27 priority based scheduling, where tasks with high priority are processed
28 ahead of lowpriority tasks. Faster convergence is achieved because pri-
29 ority-based scheduling improves work-efficiency, which is the total
30 amount of work performed by the parallel algorithm relative to the
31 work performed by a sequential baseline.
32 Task-parallel frameworks use Concurrent Priority Schedulers
33 (CPS) to implement priority-based scheduling of tasks on shared-
34 memory multicore machines [2], [6], [7]. A good CPS design aims to
35 schedule high priority tasks among the cores, while keeping synchro-
36 nizations and CPS overheads low. State-of-the-art CPS designs use
37 different methods to select high priority tasks. If a CPS optimizes to
38 find high priority tasks, it leads to an increase in synchronization
39 overheads. On the other hand, if a CPS aims to reduce synchroniza-
40 tions, it ends up picking tasks that are sub-optimal in their priority
41 order, which results in redundant work. Thus, the objective of a CPS
42 is to reduce synchronization costs, while high priority tasks are prop-
43 agated to different cores for concurrent processing.
44 This paper makes a key observation that work-efficiency in a CPS
45 is related to priority drift, which is the average difference of priority
46 between the global highest priority task, and the tasks being proc-
47 essed by the cores at any instance. Maintaining minimal priority drift
48 during execution improves work-efficiency. Minimal priority-drift
49 can be achieved by fast propagation of high priority tasks among the
50 cores. However, the additional burden of task communication and

51synchronizations must remain low for a CPS design to deliver supe-
52rior performance. State-of-the-art CPS designs follow rigid task
53scheduling policies without dynamically adapting to priority drift
54among cores. There is a need for an adaptive task scheduling scheme
55that monitors priority drift at runtime, and adapts task scheduling to
56keep communication overheads low.
57To demonstrate this idea, we adopt a state of the art CPS, Remote
58Enqueue, Local Dequeue (RELD) [9]. RELD implements a fine grain
59task distribution model that focuses on improving work-efficiency,
60while incurring relatively high synchronizations. It maintains a dis-
61tributed array of concurrent priority queues, where each priority
62queue (PQ) is associated with a core. Each core dequeues a task from
63its PQ, executes it, and distributes the children tasks to other cores by
64selecting a remote core at random. Tasks are inserted in a PQ via
65atomic operations. The three main challenges with RELD are (1) the
66use of atomic operations on PQs for task transfers that incur high syn-
67chronizations, (2) aggressive task distribution that leads to increased
68on-chip network traffic, and (3) task distribution at a fine granularity
69that incurs PQ related computation overheads. We propose a hard-
70ware-assisted adaptive priority scheduler (HAPS) that aims to reduce
71priority drift among concurrent tasks,while keeping the synchroniza-
72tion and communication costs low. The key contributions of HAPS
73are outlined below.
74(1) The inter-core transmission of tasks is accelerated using non-
75blocking asynchronous hardware messages that carry task infor-
76mation between cores at the hardware level. The use of hardware
77messages reduces synchronization costs as they bypass the require-
78ment of atomic operations on PQs. Since the atomic operations are
79blocking in nature, they can potentially obstruct a core from per-
80forming its operations during task transfers. On the other hand,
81hardware messages are non-blocking and enable both sender and
82destination cores to continue without waiting to complete task
83movement. Hardware messages enable faster propagation of high
84priority tasks among the cores, thus reducing priority drift to
85improve work-efficiency.
86(2) RELD aims to maintain high work-efficiency by continu-
87ously distributing tasks among cores. Uncontrolled task distribu-
88tion among cores stresses the traffic injected in the on-chip
89network that must be considered alongside the reduction of redun-
90dant work. HAPS takes a novel approach by focusing on the reduc-
91tion of priority drift between tasks being executed in different
92cores. A feedback-driven runtime heuristic is proposed that peri-
93odically exchanges latest task priority values among cores to esti-
94mate priority drift. It dynamically adjusts the rate of per-core task
95distribution, such that the priority drift is minimized among the
96cores. The heuristic keeps redundant work under control and
97focuses on reducing communication costs.
98(3) Under RELD, each task destined for a remote core is first
99injected into the network and later enqueued in the destination
100core’s priority queue. A large number of tasks significantly increase
101network traffic, and PQ enqueue/dequeue operations that hinder
102performance. We observe that it is advantageous to cluster and dis-
103tribute tasks into containers with priorities in close proximity.
104When a task is processed, its children tasks are clustered into con-
105tainers using their priorities, or proceed with tasks individually
106when multiple tasks do not share close proximity priorities. A con-
107tainer is highly input dependent and can range in size from a few
108or many tasks. However, each container is treated as a single entry
109for insertion and removal from a core’s PQ. When a container with
110multiple tasks is dequeued from a PQ, its tasks are all processed in
111bulk before moving to the next dequeue operation. Selective task
112clustering in HAPS enables performance benefits by preventing
113unnecessary compute operations on PQ, and preserving locality of
114tasks by clustering them into a container.

! The authors arewith theDepartment of Electrical andComputer Engineering, University
of Connecticut, Storrs, CT 06269USA. E-mail: {mohsin.shan, khan}@uconn.edu.

Manuscript received 1 Oct. 2020; revised 13 Nov. 2020; accepted 8 Dec. 2020. Date of
publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Omer Khan.)
Digital Object Identifier no. 10.1109/LCA.2020.3045670

IEEE COMPUTER ARCHITECTURE LETTERS 1

1556-6056! 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6293-7403
https://orcid.org/0000-0001-6293-7403
https://orcid.org/0000-0001-6293-7403
https://orcid.org/0000-0001-6293-7403
https://orcid.org/0000-0001-6293-7403
mailto:mohsin.shan@uconn.edu
mailto:khan@uconn.edu

IEE
E P

ro
of

115 The proposed CPS architecture mitigates synchronization and
116 communication costs, while minimizing priority drift among con-
117 currently executing tasks. HAPS, as well as state-of-the-art CPS
118 schedulers, OBIM [6], PMOD [9], and RELD are evaluated using a
119 real Tilera TileGx-72 multicore machine that implements hard-
120 ware-based directory cache coherence and explicit in-hardware
121 messaging under the shared memory paradigm. For a set of repre-
122 sentative task parallel algorithms, HAPS accelerates RELD by 2.5",
123 improves performance over OBIM by 1.9", and PMOD by 1.6".

124 2 RELATED WORK

125 Recent work conducted an empirical performance analysis of CPS
126 designs for modern shared-memory multicores [9]. It observes that
127 the performance of Galois’ OBIM [6] CPS is remarkable, followed
128 by RELD. OBIM implements a task distribution model that merges
129 tasks with priorities in close range into a single priority, distrib-
130 uted, and unordered bag. Each core first searches for the highest
131 priority bag and then process all the tasks in that bag. Following
132 this approach, OBIM schedules a few bags instead of many tasks,
133 which leads to reduced synchronizations. Moreover, processing
134 tasks clustered in a bag takes advantage of task locality. However,
135 this approach is helpful when there is a sufficient number of tasks
136 in the bags. Otherwise, the cores need to perform bag search opera-
137 tions repeatedly, thus incurring synchronization costs. To avoid
138 these costs, OBIM creates large bags by increasing the range of
139 merged priorities, which reduces communication costs but leads to
140 loss of priority order and hence results in redundant work. To
141 solve this challenge, a recent work PMOD [9] dynamically opti-
142 mizes the utilization of bags at runtime to improve performance of
143 OBIM. HAPS takes a fine grain task distribution approach to
144 improve work-efficiency by focusing on minimizing priority drift
145 across concurrently executing tasks. It overcomes the relatively
146 high communication costs of RELD to deliver superior perfor-
147 mance compared to both RELD and PMOD.
148 Prior works, such as Swarm [5] and Minnow [10] also aim to
149 improve work-efficiency and/or overcome communication costs in
150 concurrent priority schedulers. However, they all require invasive
151 hardware modifications to the multicore processor. Swarm adopts
152 RELD to distribute tasks among cores, but requires multiple per-core
153 task, order and commit queues (totaling 10s of KB hardware) with
154 complex parallel lookup capabilities. It preserves the task ordering
155 among cores, while introducing hardware to address the communi-
156 cation challenge. On the other hand, Minnow builds on OBIM, and
157 introduces a per-core hardware accelerator to offload task (worklist)
158 scheduling, and task pre-fetching from shared memory to improve
159 communication costs. However, it does not directly address the task
160 priority drift challenge of theOBIM scheduler.
161 Prior work ADM [8] uses hardware messages for task transfers.
162 However, itwas implemented primarily formessage passing schedu-
163 lers, andwas not evaluated in the context of CPS designs. HAPS opti-
164 mizes priority drift, which is correlated with communication costs.
165 Hence, fast transfer of tasks using in-hardware messages is shown to
166 improve priority drift that results inwork-efficient execution.
167 Prior works have also adopted unordered algorithms, where
168 the task priority scheduling is ignored to maximize concurrency.
169 These algorithms suffer from redundant work that can be miti-
170 gated by utilizing a large number of cores in modern GPU and
171 supercomputing machines. However, recent works have quanti-
172 fied that concurrent priority schedulers that tradeoff between
173 work-efficiency and task priority drift deliver superior perfor-
174 mance in a shared memory setup [6], [9].

175 3 HAPS CONCURRENT PRIORITY SCHEDULER

176 Prior CPS approaches lean towards optimizing opposite sides of
177 the work-efficiency and communication tradeoff. OBIM and its

178optimized PMOD variant aim to reduce communication costs by
179relaxing task orderings. On the other hand, RELD focuses on con-
180tinuous distribution of tasks to spread high priority tasks among
181cores, but incurs high communication costs. HAPS hypothesizes
182that work-efficiency and communication cost are both crucial for
183overall performance. Therefore, it proposes in-hardware and
184dynamically adaptive task distributions that minimize priority
185drift among cores. Fig. 1 shows the per-core view of the proposed
186HAPS architecture, which is built on top of the baseline RELD
187(shown in shaded arrows/boxes).

1883.1 Hardware Support for Accelerating Task Transfers
189In RELD, each task transfer between cores is achieved using atomic
190enqueue and dequeue operations on the per-core priority queue (PQ).
191These atomic operations are blocking and stall both the sender and
192destination cores. Moreover, these operations are time-consuming as
193the PQ needs to re-balance based on new task priorities, resulting in
194performance loss. We illustrate that the task transfer mechanism can
195be accelerated using asynchronous non-blocking in-hardware mes-
196sages [1] (c.f. Fig. 1:#1). (1) The sender core moves forward without
197having to wait for the completion of a task transfer. (2) Asynchronous
198communication enables the remote core to process incomingmessages
199at its convenience. (3) Hardware transfer of task results in low latency
200and reduced metadata computations at both sender and receiver
201cores. These benefits allow fast and high bandwidth propagation of
202high priority tasks among cores, resulting in decreased priority drift
203and faster algorithmic convergence. However, in the presence of finite
204sized per-core send and receive queues, application level deadlocks
205must be prevented. Each sender coremaintains a dedicated flag (bool-
206ean) for each destination core. When a sender core chooses a destina-
207tion core to send a task, it checks the destination core’s flag. If the flag
208is not set, the sender core sends the task and atomically increments the
209flag. However, if the flag is set, the sender core picks another ran-
210domly selected remote core to send the task. In case no remote core
211can accept the task, it is added to the local PQ of the core generating
212the task. The flag is atomically cleared by the destination core when
213the associated task is removed from the hardware receive queue. Note
214that the tasks are moved from the hardware receive queue to the soft-
215ware managed PQwith high priority. The software-based distributed
216flowcontrolmechanismensures forward progress inHAPS.
217The messaging scheme can also be built using software-only
218shared memory support [3]. A software per-core shared buffer
219implements communication between cores. Each buffer slot con-
220tains a flag and a place holder for the data to be sent. A requesting
221core atomically increments the write pointer of the corresponding
222buffer in the destination core, then places its data into the slot, and
223sets the flag. The atomic increment on the pointer makes sure that
224multiple cores do not write to the same slot. The receiving core

Fig. 1. Hardware and software components of the HAPS architecture.

2 IEEE COMPUTER ARCHITECTURE LETTERS

IEE
E P

ro
of

225 removes valid tasks from its buffer, and put them into its PQ for
226 further processing. Our preliminary results show that hardware
227 messages are faster than the software-only counterparts.

228 3.2 Adaptive Task Distribution to Manage Priority Drift
229 In RELD, the cores always distribute tasks generated at runtime to
230 randomly selected cores. The aim is to reduce priority drift since
231 the underlying assumption is that when a core executes a high pri-
232 ority task, it is probable that the priority of the children tasks will
233 be in close proximity of high priority. However, aggressive distri-
234 bution by RELD overlooks scenarios where children tasks do not
235 always exhibit priorities closer to the highest priority task in
236 the system. Moreover, it is also possible that PQ utilization
237 remains low during execution, leading to overall divergence of
238 priority drift among cores when tasks are continuously distrib-
239 uted. Even when priority drift does not get worse, the traffic
240 on the on-chip network may increase due to unwarranted task
241 distributions among cores.
242 To quantify the impact of task distribution on performance,
243 Fig. 2 shows the breakdown of parallel completion times and prior-
244 ity drift for a representative single source shortest path benchmark,
245 SSSP for two graph inputs. A metric, task distribution factor (TDF) is
246 introduced that is defined as “the ratio of remote enqueue opera-
247 tions and the total number of enqueues performed by a core.” The
248 baseline RELD scheme utilizes 100 percent TDF, where each task is
249 distributed to a randomly picked destination core. However, TDF
250 is varied from 10 to 100 percent to quantify the impact of choosing
251 a variable number of tasks for distribution to remote or local core’s
252 PQ. For the USA road network, the priority drift increases with an
253 increase in TDF. In this graph, a small number of children tasks
254 (1.2 on average) are generated with diverging priorities. Thus,
255 aggressive TDF results in slow propagation of high priority tasks
256 among cores due to communication costs, resulting in the priority
257 drift to increase. Consequently, the completion time dramatically
258 increases past 60 percent TDF due to increased work-inefficiency
259 and communication stalls. For the CAGE graph, the generated chil-
260 dren tasks (16 on average) end up in close proximity to high prior-
261 ity. Thus, initially when the TDF keeps most tasks in local core’s
262 PQ, the high priority tasks are not well distributed among cores.
263 However, as TDF increases, priority drift decreases, but saturates
264 at $40 percent. Completion time is minimum at this saturation
265 TDF point since communication stalls increase due to unnecessary

266network traffic past this point. It is clear that TDF needs to be
267adjusted at runtime for near-optimal performance.
268HAPS proposes a heuristic that quantifies priority drift among
269cores at different time intervals. The heuristic uses an initial value of
27050 percent TDF. After processing a fixed number of tasks (2K used in
271this paper using empirical data), each core sends the priority of its lat-
272est task processed to a master core (c.f. Fig. 1:#2). The master core
273receives priorities from all cores, and calculates the priority drift
274using the average pairwise differences. The priority drift of each sam-
275pling period serves as a reference for the next sampling period. The
276heuristic also tracks whether TDF was increased or decreased in the
277previous sampling period. For a given sampling period, the priority
278drifts are compared for the latest and previous sampling periods to
279compute whether the drift is increasing or decreasing. An increase in
280difference implies priority drift getting worse. However, if TDF was
281increased in previous sample and latest drift gets worse, then TDF is
282decreased. But the TDF is increased for current sample, if previous
283sample’s TDF was decreased. Similarly, a decrease in difference
284implies priority drift is improving. Regardless of TDF was increased
285or decreased for previous sample, the current sample’s TDF is now
286decreased. TDF is increased or decreased in intervals of 10 percent.
287The heuristic’s goal is to keep the priority drift low while ensuring
288unnecessary traffic is not injected into the on-chip network. In future,
289we plan to incorporate deeper history tracking and gradient descent
290in the heuristic for better prediction of task distribution factor. We
291also plan to compare the heuristic to a dynamic oracle that selects the
292best performing TDF at each interval.

2933.3 Adaptive Bulk Processing of Tasks Using Containers
294In RELD, each task is processed individually by inserting and
295removing it from its respective PQ. Each PQ maintains the highest
296priority elements at the top of the queue so that dequeue is an O(1)
297operation. However, the addition and removal of tasks from the
298PQ results in re-ordering operations required to maintain the prior-
299ity constraint. This process is compute-intensive, therefore, it is
300beneficial to reduce these operations on the PQ. Task containers
301are proposed to tackle this challenge. The container constitutes the
302payload for its tasks and metadata to track the container identifier
303and its priority. The container metadata is enqueued in the PQ of a
304core (local or remote), while its payload is stored either at the
305sender core, or at the destination core. The PQ at the destination
306core dequeues the container metadata when it becomes the highest
307priority at that core. The storage of container payload offers two
308implementation options. (1) Store the container payload at the
309sender core and use coherent loads to retrieve data when the con-
310tainer is dequeued from the PQ. (2) Communicate container pay-
311load alongside its metadata and store payload and metadata at the
312destination core’s PQ. Option 1 is chosen in this paper, but this
313decision may offer computation and communication tradeoffs that
314we plan to investigate in our future work. The advantage is that a
315container prevents unnecessary PQ operations by limiting the
316number of insertions and removals from the PQ. Moreover, coher-
317ent loads with option 1 efficiently transfer large data payload of a
318container by exploiting its inherent data locality.
319The use of containers is beneficial only when there are a suffi-
320cient number of tasks in the container. If a container only has a few
321tasks, then its overheads can overshadow the benefits. OBIM and
322PMOD both suffer from this problem since they always create con-
323tainers (or bags) that may be under-utilized. HAPS proposes a heu-
324ristic to address this challenge, and selects a task or a container for
325insertion into the PQ. After processing a parent task or container, if
326there are at least three children tasks for a given priority, they are
327bundled together in a container. Otherwise, they are left alone indi-
328vidually. The tasks and containers are then scheduled for insertion
329into a local or remote PQ (c.f. Fig. 1:#4). This approach avoids
330unnecessary computations associated with handling individual

Fig. 2. Completion time breakdown and priority drift of RELD at different task
distribution factors using 72 threads.

IEEE COMPUTER ARCHITECTURE LETTERS 3

IEE
E P

ro
of331 tasks as containers, i.e., insert container metadata in a PQ, and then

332 separately retrieve its payload on dequeue.

333 4 METHODOLOGY

334 The evaluation is performed on a real multicore machine, Tilera
335 Tile-Gx72TM. The processor chip integrates 72 tiles, where each tile
336 consists of a 64-bit multi-issue pipelined core, private level-1
337 (32 KB) data and instruction caches, and a 256 KB slice of the
338 shared last-level cache (totaling 18 MB on chip). The tiles are inter-
339 connected using 2D mesh networks that support hardware capabil-
340 ity to implement in-hardware messages between cores, as well as
341 directory-based cache coherence for shared memory operations.
342 Tilera’s Tiled Multicore Components (TMC) pthreads library is
343 used to port the RELD, OBIM, PMOD, and HAPS CPS designs.
344 OBIM and PMOD are tuned for processors that have a small num-
345 ber of cores per socket. To configure OBIM on Tilera multicore, the
346 72 tiles are logically distributed with a variable number of tiles per
347 socket, and best performing configuration of 9-sockets with 8-tiles
348 each is used for evaluation.
349 Four task-parallel graph algorithms, SSSP, BFS, MST, and Pag-
350 erank are chosen fromPMOD [9] for evaluation. SSSP uses delta-step-
351 ping algorithm to compute the shortest distance from a source vertex
352 to every vertex in a graph. BFS is a special case of SSSP, where the
353 weight of each edge is 1.MST uses Boruvka’s algorithm to find amin-
354 imum spanning tree consisting of all the vertices with minimum total
355 edge weight. Pagerank uses a push-pull algorithm, where each
356 node’s rank is calculated by computing over its incoming edges, and
357 then propagating the changes to outgoing neighbors. As in PMOD,
358 real world graph inputs are picked for evaluation, i.e., USA road net-
359 work, DNA electrophoresis (CAGE), and two social network graphs,
360 live-journal (lj) andweb-google (wg).

361 5 EVALUATION

362 Fig. 3 shows the performance evaluation of OMIB’s optimized
363 PMOD, RELD, and HAPS, normalized to optimized sequential
364 implementations. PMOD shows performance scaling over RELD
365 for all benchmarks since RELD suffers from significant communi-
366 cation costs and work-inefficiency. HAPS successfully adapts the
367 task distribution factor (TDF) and distributes tasks or containers
368 among cores to optimize priority drift, resulting in a work efficient
369 and communication aware CPS design. Overall, HAPS outper-
370 forms OBIM by 1.9" and PMOD by 1.6". Similar to PMOD paper,
371 MST is observed to show low performance scaling.
372 Fig. 4 introduces the proposed HAPS optimizations and normal-
373 izes their performance to the PMOD baseline. HAPS –HWm only adds
374 hardware messaging capability to the RELD baseline. The benefits
375 here arise frommitigating the overheads of synchronizations in RELD
376 due to atomic operations on PQs. However, it uses a static 100 percent
377 TDF, and thus suffers from work-inefficiency due to unmanaged pri-
378 ority drift among cores. The HAPS – HWm + ATDF utilizes the adap-
379 tive TDF heuristic proposed in Section 3.2 to obtain work-efficient

380execution. The USA graph results in high priority drifts as TDF
381increases, as also seen in Fig. 2. This results in poor work-efficiency at
382100 percent TDF, which significantly improves when a near-optimal
383TDF is used. However, for CAGE graph the priority drift remains low
384as TDF varies, thus performance benefits mainly stem from reduced
385communication costs associatedwith the right selection of TDF at run-
386time. Overall, HAPS –HWm + ATDF outperforms HAPS –HWm only
387by 1.6" and PMOD by 1.35", but it still has high CPS overheads as it
388stores individual tasks in a PQ. If tasks belonging to the same priority
389are bundled and managed as a container of tasks, the PQ overheads
390can be dramatically reduced. Moreover, the communication over-
391heads of individual tasks can bemitigated. TheHAPS –HWm+ATDF
392+ AC always creates task containers instead of individual tasks. This
393configuration only improves performance when multiple tasks with
394close priority are generated, otherwise the overheads of container for-
395mation result in overheads. For example, in SSSP-USA the graph
396mostly generates tasks with random priorities. Hence, it always incurs
397the computational overheads of containers. HAPS – HWm + ATDF +
398SC adopts the proposed heuristic for selective clustering from Sec-
399tion 3.3, where containers are formed at runtime when multiple tasks
400with same priority are generated. Otherwise, individual tasks are
401inserted in the PQ.
402The PMODbaseline ismodifiedwith hardwaremessages to accel-
403erate synchronizations [4], as shown in Fig. 5. Here, instead of using
404atomic operations, the shared Global Map data structure is updated
405by serializing all it’s requests using in-hardware messages. The
406results show that the use of in-hardware messages improve perfor-
407mance by$2 percent over the baseline PMOD that uses atomic opera-
408tions. However, as discussed earlier, HAPS significantly benefits
409from using in-hardware messages for task transfers. To justify this
410hardware overhead, Fig. 5 shows the performance evaluation by
411replacing in-hardware messages in HAPS with a shared-memory
412software-based messaging scheme [3], as well as using traditional
413atomic operations. Atomic locks on priority queues show the least
414performance since they block both the sender and remote cores from
415making progress, while the priority queue balances itself during
416enqueue and dequeue operations. Both hardware and software mes-

417

418

419

420

421

422

423

424

425

426

427

428

429

430

Fig. 3. Performance of RELD, OBIM, PMOD, and HAPS normalized to the
optimized sequential implementation.

Fig. 4. Performance evaluation of different HAPS’s configurations.

Fig. 5. Performance evaluation of HAPS with different task transfer mechanisms.
PMOD baseline that uses atomic operations is also compared with PMOD using
hardware messages.

4 IEEE COMPUTER ARCHITECTURE LETTERS

IEE
E P

ro
of

431432 saging-based schemes perform better than atomic locks since they do
433 not stall the cores, and result in faster propagation of high-quality
434 tasks across cores. However, hardware messages perform 1.25" bet-
435 ter than the software counterpart. It is noteworthy that software mes-
436 saging basedHAPS also outperforms the PMODbaseline by 1.3".

437 6 CONCLUSION

438 This paper proposes a CPS architecture that ensures work-efficient
439 execution of task parallel algorithms on shared-memory multicores.
440 Current CPS designs follow rigid strategies for selecting high priority
441 tasks without monitoring and adapting to optimize work-efficiency
442 and communication overheads. HAPS proposes in-hardware and
443 dynamically adaptive task distributions that minimize priority drift
444 among cores. Consequently, it optimizes work-efficiency and com-
445 munication costs, and outperforms state-of-the-art CPS PMOD by
446 1.6", andOBIMby 1.9" for the evaluated benchmarks.

447 ACKNOWLEDGMENTS

448 This work was supported in part by the National Science Founda-
449 tion under Grant CNS-1718481. This research was also supported
450 in part by the Semiconductor Research Corporation (SRC).

451 REFERENCES

452 [1] M. Ahmad, H. Dogan, J. A. Joao, and O. Khan, “In-hardware moving com-
453 pute to data model to accelerate thread synchronization on large multi-
454 cores,” IEEE Micro, vol. 40, no. 1, pp. 83–92, Jan./Feb. 2020.

455[2] L. Dhulipala, G. Blelloch, and J. Shun, “ Julienne: A framework for parallel
456graph algorithms using work-efficient bucketing,” in Proc. ACM Symp. Par-
457allelism Algorithms Archit., 2017, pp. 293–304.
458[3] H. Dogan, M. Ahmad, B. Kahne, and O. Khan, “Accelerating synchro-
459nization using moving compute to data model at 1,000-core multicore
460scale,” ACM Trans. Archit. Code Optim., vol. 16, no. 1, pp. 4:1–4:27, Feb.
4612019.
462[4] H. Dogan, F. Hijaz, M. Ahmad, B. Kahne, P. Wilson, and O. Khan, “
463Accelerating graph and machine learning workloads using a shared
464memory multicore architecture with auxiliary support for in-hardware
465explicit messaging,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
4662017, pp. 254–264.
467[5] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “ A scalable
468archit. for ordered parallelism,” in Proc. IEEE/ACM Int. Symp. Microarchit.,
4692015, pp. 228–241.
470[6] D. Nguyen, A. Lenharth, and K. Pingali, “ A lightweight infrastructure
471for graph analytics,” in Proc. ACM Symp. Operating Syst. Princ., 2013,
472pp. 456–471.
473[7] H. Rihani, P. Sanders, and R. Dementiev, “ Multiqueues: Simple relaxed
474concurrent priority queues,” in Proc. ACM Symp. Parallelism Algorithms
475Archit., 2015, pp. 80–82.
476[8] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “ Flexible architectural support
477for fine-grain scheduling,” in Proc. 15th Int. Conf. Archit. Support Program.
478Lang. Operating Syst., 2010, pp. 311–322.
479[9] S. Yesil, A. Heidarshenas, A. Morrison, and J. Torrellas, “ Understanding
480priority-based scheduling of graph algorithms on a shared-memory
481platform,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2019,
482pp. 46:1–46:14.
483[10] D. Zhang, X. Ma, M. Thomson, and D. Chiou, “Minnow: Lightweight off-
484load engines for worklist management and worklist-directed prefetching,”
485ACM SIGPLAN Notice, vol. 53, no. 2, pp. 593–607, Mar. 2018.

486

487" For more information on this or any other computing topic,
488please visit our Digital Library at www.computer.org/csdl.

IEEE COMPUTER ARCHITECTURE LETTERS 5

