10 11 13

14

15

26

Accelerating Concurrent Priority Scheduling **Using Adaptive in-Hardware Task**

Mohsin Shan and Omer Khan

Distribution in Multicores

Abstract—Task parallel algorithms execute tasks in some programmer-specified order on shared-memory multicores. A Concurrent Priority Scheduler (CPS) selects high priority tasks, and schedules them among cores to exploit parallelism. The main objective of a CPS is to deliver work efficient algorithmic execution at low communication cost. Selecting high priority tasks among cores requires high synchronizations, but results in near-optimal work-efficiency. The communication cost can be reduced by processing tasks without a strict priority order, but it potentially degrades work-efficiency. This letter proposes HAPS, a novel CPS architecture that utilizes in-hardware core-to-core messages to accelerate task distribution among cores. Moreover, a set of dynamically tunable heuristics are proposed to co-optimize work-efficiency and communication in shared-memory

Index Terms—Task-parallelism, concurrent priority scheduler, shared memory, multicore, hardware messages

INTRODUCTION

TASK-PARALLEL algorithms are ubiquitously deployed in data processing and analytics domains, where an algorithm designer decomposes the algorithm into tasks comprising of several instructions. Tasks are generated at runtime, and pending tasks are scheduled dynamically on different cores for processing. Most task-parallel algorithms execute tasks in any order until convergence, thus exposing plentiful parallelism. However, many algorithms demonstrate faster convergence using priority based scheduling, where tasks with high priority are processed ahead of low priority tasks. Faster convergence is achieved because priority-based scheduling improves work-efficiency, which is the total amount of work performed by the parallel algorithm relative to the work performed by a sequential baseline.

Task-parallel frameworks use Concurrent Priority Schedulers (CPS) to implement priority-based scheduling of tasks on sharedmemory multicore machines [2], [6], [7]. A good CPS design aims to schedule high priority tasks among the cores, while keeping synchronizations and CPS overheads low. State-of-the-art CPS designs use different methods to select high priority tasks. If a CPS optimizes to find high priority tasks, it leads to an increase in synchronization overheads. On the other hand, if a CPS aims to reduce synchronizations, it ends up picking tasks that are sub-optimal in their priority order, which results in redundant work. Thus, the objective of a CPS is to reduce synchronization costs, while high priority tasks are propagated to different cores for concurrent processing.

This paper makes a key observation that work-efficiency in a CPS is related to priority drift, which is the average difference of priority between the global highest priority task, and the tasks being processed by the cores at any instance. Maintaining minimal priority drift during execution improves work-efficiency. Minimal priority-drift can be achieved by fast propagation of high priority tasks among the cores. However, the additional burden of task communication and

The authors are with the Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269 USA. E-mail: {mohsin.shan, khan}@uconn.edu.

Manuscript received 1 Oct. 2020; revised 13 Nov. 2020; accepted 8 Dec. 2020. Date of publication 0 . 0000; date of current version 0 . 0000. (Corresponding author: Omer Khan.) Digital Object Identifier no. 10.1109/LCA.2020.3045670

synchronizations must remain low for a CPS design to deliver supe- 51 rior performance. State-of-the-art CPS designs follow rigid task 52 scheduling policies without dynamically adapting to priority drift 53 among cores. There is a need for an adaptive task scheduling scheme 54 that monitors priority drift at runtime, and adapts task scheduling to 55 keep communication overheads low.

To demonstrate this idea, we adopt a state of the art CPS, Remote 57 Enqueue, Local Dequeue (RELD) [9]. RELD implements a fine grain 58 task distribution model that focuses on improving work-efficiency, 59 while incurring relatively high synchronizations. It maintains a dis- 60 tributed array of concurrent priority queues, where each priority 61 queue (PQ) is associated with a core. Each core dequeues a task from 62 its PQ, executes it, and distributes the children tasks to other cores by 63 selecting a remote core at random. Tasks are inserted in a PQ via 64 atomic operations. The three main challenges with RELD are (1) the 65 use of atomic operations on PQs for task transfers that incur high syn- 66 chronizations, (2) aggressive task distribution that leads to increased 67 on-chip network traffic, and (3) task distribution at a fine granularity 68 that incurs PQ related computation overheads. We propose a hard- 69 ware-assisted adaptive priority scheduler (HAPS) that aims to reduce 70 priority drift among concurrent tasks, while keeping the synchroniza-71 tion and communication costs low. The key contributions of HAPS 72 are outlined below.

(1) The inter-core transmission of tasks is accelerated using non- 74 blocking asynchronous hardware messages that carry task infor- 75 mation between cores at the hardware level. The use of hardware 76 messages reduces synchronization costs as they bypass the requirement of atomic operations on PQs. Since the atomic operations are 78 blocking in nature, they can potentially obstruct a core from per- 79 forming its operations during task transfers. On the other hand, 80 hardware messages are non-blocking and enable both sender and 81 destination cores to continue without waiting to complete task 82 movement. Hardware messages enable faster propagation of high 83 priority tasks among the cores, thus reducing priority drift to 84 improve work-efficiency.

(2) RELD aims to maintain high work-efficiency by continu- 86 ously distributing tasks among cores. Uncontrolled task distribu- 87 tion among cores stresses the traffic injected in the on-chip 88 network that must be considered alongside the reduction of redundant work. HAPS takes a novel approach by focusing on the reduc-90 tion of priority drift between tasks being executed in different 91 cores. A feedback-driven runtime heuristic is proposed that peri- 92 odically exchanges latest task priority values among cores to esti-93 mate priority drift. It dynamically adjusts the rate of per-core task 94 distribution, such that the priority drift is minimized among the 95 cores. The heuristic keeps redundant work under control and 96 focuses on reducing communication costs.

(3) Under RELD, each task destined for a remote core is first 98 injected into the network and later enqueued in the destination 99 core's priority queue. A large number of tasks significantly increase 100 network traffic, and PQ enqueue/dequeue operations that hinder 101 performance. We observe that it is advantageous to cluster and distribute tasks into containers with priorities in close proximity. 103 When a task is processed, its children tasks are clustered into containers using their priorities, or proceed with tasks individually 105 when multiple tasks do not share close proximity priorities. A con- 106 tainer is highly input dependent and can range in size from a few 107 or many tasks. However, each container is treated as a single entry 108 for insertion and removal from a core's PQ. When a container with 109 multiple tasks is dequeued from a PQ, its tasks are all processed in 110 bulk before moving to the next dequeue operation. Selective task 111 clustering in HAPS enables performance benefits by preventing 112 unnecessary compute operations on PQ, and preserving locality of 113 tasks by clustering them into a container.

115 116 G 117 G 118 S 119 I 120 V 121 I 122 S

123

124 125

126

127

128

129

130

131

132

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

The proposed CPS architecture mitigates synchronization and communication costs, while minimizing priority drift among concurrently executing tasks. HAPS, as well as state-of-the-art CPS schedulers, OBIM [6], PMOD [9], and RELD are evaluated using a real Tilera TileGx-72 multicore machine that implements hardware-based directory cache coherence and explicit in-hardware messaging under the shared memory paradigm. For a set of representative task parallel algorithms, HAPS accelerates RELD by $2.5\times$, improves performance over OBIM by $1.9\times$, and PMOD by $1.6\times$.

2 RELATED WORK

Recent work conducted an empirical performance analysis of CPS designs for modern shared-memory multicores [9]. It observes that the performance of Galois' OBIM [6] CPS is remarkable, followed by RELD. OBIM implements a task distribution model that merges tasks with priorities in close range into a single priority, distributed, and unordered bag. Each core first searches for the highest priority bag and then process all the tasks in that bag. Following this approach, OBIM schedules a few bags instead of many tasks, which leads to reduced synchronizations. Moreover, processing tasks clustered in a bag takes advantage of task locality. However, this approach is helpful when there is a sufficient number of tasks in the bags. Otherwise, the cores need to perform bag search operations repeatedly, thus incurring synchronization costs. To avoid these costs, OBIM creates large bags by increasing the range of merged priorities, which reduces communication costs but leads to loss of priority order and hence results in redundant work. To solve this challenge, a recent work PMOD [9] dynamically optimizes the utilization of bags at runtime to improve performance of OBIM. HAPS takes a fine grain task distribution approach to improve work-efficiency by focusing on minimizing priority drift across concurrently executing tasks. It overcomes the relatively high communication costs of RELD to deliver superior performance compared to both RELD and PMOD.

Prior works, such as Swarm [5] and Minnow [10] also aim to improve work-efficiency and/or overcome communication costs in concurrent priority schedulers. However, they all require invasive hardware modifications to the multicore processor. Swarm adopts RELD to distribute tasks among cores, but requires multiple per-core task, order and commit queues (totaling 10s of KB hardware) with complex parallel lookup capabilities. It preserves the task ordering among cores, while introducing hardware to address the communication challenge. On the other hand, Minnow builds on OBIM, and introduces a per-core hardware accelerator to offload task (worklist) scheduling, and task pre-fetching from shared memory to improve communication costs. However, it does not directly address the task priority drift challenge of the OBIM scheduler.

Prior work ADM [8] uses hardware messages for task transfers. However, it was implemented primarily for message passing schedulers, and was not evaluated in the context of CPS designs. HAPS optimizes priority drift, which is correlated with communication costs. Hence, fast transfer of tasks using in-hardware messages is shown to improve priority drift that results in work-efficient execution.

Prior works have also adopted unordered algorithms, where the task priority scheduling is ignored to maximize concurrency. These algorithms suffer from redundant work that can be mitigated by utilizing a large number of cores in modern GPU and supercomputing machines. However, recent works have quantified that concurrent priority schedulers that tradeoff between work-efficiency and task priority drift deliver superior performance in a shared memory setup [6], [9].

3 HAPS CONCURRENT PRIORITY SCHEDULER

Prior CPS approaches lean towards optimizing opposite sides of the work-efficiency and communication tradeoff. OBIM and its

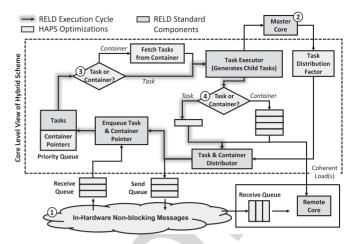


Fig. 1. Hardware and software components of the HAPS architecture.

optimized PMOD variant aim to reduce communication costs by 178 relaxing task orderings. On the other hand, RELD focuses on continuous distribution of tasks to spread high priority tasks among 180 cores, but incurs high communication costs. HAPS hypothesizes 181 that work-efficiency and communication cost are both crucial for 182 overall performance. Therefore, it proposes in-hardware and 183 dynamically adaptive task distributions that minimize priority 184 drift among cores. Fig. 1 shows the per-core view of the proposed 185 HAPS architecture, which is built on top of the baseline RELD 186 (shown in shaded arrows/boxes).

3.1 Hardware Support for Accelerating Task Transfers

In RELD, each task transfer between cores is achieved using atomic 189 enqueue and dequeue operations on the per-core priority queue (PQ). 190 These atomic operations are blocking and stall both the sender and 191 destination cores. Moreover, these operations are time-consuming as 192 the PQ needs to re-balance based on new task priorities, resulting in 193 performance loss. We illustrate that the task transfer mechanism can 194 be accelerated using asynchronous non-blocking in-hardware messages [1] (c.f. Fig. 1:①). (1) The sender core moves forward without having to wait for the completion of a task transfer. (2) Asynchronous communication enables the remote core to process incoming messages at its convenience. (3) Hardware transfer of task results in low latency and reduced metadata computations at both sender and receiver cores. These benefits allow fast and high bandwidth propagation of high priority tasks among cores, resulting in decreased priority drift and faster algorithmic convergence. However, in the presence of finite sized per-core send and receive queues, application level deadlocks must be prevented. Each sender core maintains a dedicated flag (boolean) for each destination core. When a sender core chooses a destination core to send a task, it checks the destination core's flag. If the flag 207 is not set, the sender core sends the task and atomically increments the flag. However, if the flag is set, the sender core picks another randomly selected remote core to send the task. In case no remote core 210 can accept the task, it is added to the local PQ of the core generating 211 the task. The flag is atomically cleared by the destination core when 212 the associated task is removed from the hardware receive queue. Note 213 that the tasks are moved from the hardware receive queue to the soft- 214 ware managed PQ with high priority. The software-based distributed 215 flow control mechanism ensures forward progress in HAPS.

The messaging scheme can also be built using software-only 217 shared memory support [3]. A software per-core shared buffer 218 implements communication between cores. Each buffer slot contains a flag and a place holder for the data to be sent. A requesting 220 core atomically increments the write pointer of the corresponding 221 buffer in the destination core, then places its data into the slot, and 222 sets the flag. The atomic increment on the pointer makes sure that 223 multiple cores do not write to the same slot. The receiving core 224

258

259

260

261

262

263

264

265

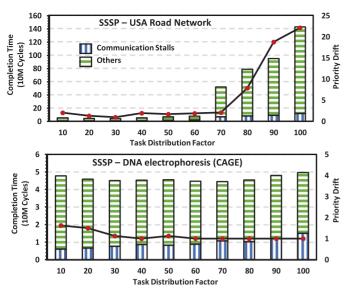


Fig. 2. Completion time breakdown and priority drift of RELD at different task distribution factors using 72 threads.

removes valid tasks from its buffer, and put them into its PQ for further processing. Our preliminary results show that hardware messages are faster than the software-only counterparts.

3.2 Adaptive Task Distribution to Manage Priority Drift

In RELD, the cores always distribute tasks generated at runtime to randomly selected cores. The aim is to reduce priority drift since the underlying assumption is that when a core executes a high priority task, it is probable that the priority of the children tasks will be in close proximity of high priority. However, aggressive distribution by RELD overlooks scenarios where children tasks do not always exhibit priorities closer to the highest priority task in the system. Moreover, it is also possible that PQ utilization remains low during execution, leading to overall divergence of priority drift among cores when tasks are continuously distributed. Even when priority drift does not get worse, the traffic on the on-chip network may increase due to unwarranted task distributions among cores.

To quantify the impact of task distribution on performance, Fig. 2 shows the breakdown of parallel completion times and priority drift for a representative single source shortest path benchmark, SSSP for two graph inputs. A metric, task distribution factor (TDF) is introduced that is defined as "the ratio of remote enqueue operations and the total number of enqueues performed by a core." The baseline RELD scheme utilizes 100 percent TDF, where each task is distributed to a randomly picked destination core. However, TDF is varied from 10 to 100 percent to quantify the impact of choosing a variable number of tasks for distribution to remote or local core's PQ. For the USA road network, the priority drift increases with an increase in TDF. In this graph, a small number of children tasks (1.2 on average) are generated with diverging priorities. Thus, aggressive TDF results in slow propagation of high priority tasks among cores due to communication costs, resulting in the priority drift to increase. Consequently, the completion time dramatically increases past 60 percent TDF due to increased work-inefficiency and communication stalls. For the CAGE graph, the generated children tasks (16 on average) end up in close proximity to high priority. Thus, initially when the TDF keeps most tasks in local core's PQ, the high priority tasks are not well distributed among cores. However, as TDF increases, priority drift decreases, but saturates at ~40 percent. Completion time is minimum at this saturation TDF point since communication stalls increase due to unnecessary

network traffic past this point. It is clear that TDF needs to be 266 adjusted at runtime for near-optimal performance.

HAPS proposes a heuristic that quantifies priority drift among 268 cores at different time intervals. The heuristic uses an initial value of 269 50 percent TDF. After processing a fixed number of tasks (2K used in 270 this paper using empirical data), each core sends the priority of its lat-271 est task processed to a master core (c.f. Fig. 1:2). The master core 272 receives priorities from all cores, and calculates the priority drift 273 using the average pairwise differences. The priority drift of each sam- 274 pling period serves as a reference for the next sampling period. The 275 heuristic also tracks whether TDF was increased or decreased in the 276 previous sampling period. For a given sampling period, the priority 277 drifts are compared for the latest and previous sampling periods to 278 compute whether the drift is increasing or decreasing. An increase in 279 difference implies priority drift getting worse. However, if TDF was 280 increased in previous sample and latest drift gets worse, then TDF is 281 decreased. But the TDF is increased for current sample, if previous 282 sample's TDF was decreased. Similarly, a decrease in difference 283 implies priority drift is improving. Regardless of TDF was increased 284 or decreased for previous sample, the current sample's TDF is now 285 decreased. TDF is increased or decreased in intervals of 10 percent. 286 The heuristic's goal is to keep the priority drift low while ensuring 287 unnecessary traffic is not injected into the on-chip network. In future, we plan to incorporate deeper history tracking and gradient descent in the heuristic for better prediction of task distribution factor. We also plan to compare the heuristic to a dynamic oracle that selects the best performing TDF at each interval.

3.3 Adaptive Bulk Processing of Tasks Using Containers

In RELD, each task is processed individually by inserting and 294 removing it from its respective PQ. Each PQ maintains the highest 295 priority elements at the top of the queue so that dequeue is an O(1) 296 operation. However, the addition and removal of tasks from the 297 PQ results in re-ordering operations required to maintain the prior- 298 ity constraint. This process is compute-intensive, therefore, it is 299 beneficial to reduce these operations on the PQ. Task containers 300 are proposed to tackle this challenge. The container constitutes the 301 payload for its tasks and metadata to track the container identifier 302 and its priority. The container metadata is enqueued in the PQ of a 303 core (local or remote), while its payload is stored either at the 304 sender core, or at the destination core. The PQ at the destination 305 core dequeues the container metadata when it becomes the highest 306 priority at that core. The storage of container payload offers two 307 implementation options. (1) Store the container payload at the sender core and use coherent loads to retrieve data when the container is dequeued from the PQ. (2) Communicate container pay- 310 load alongside its metadata and store payload and metadata at the 311 destination core's PQ. Option 1 is chosen in this paper, but this 312 decision may offer computation and communication tradeoffs that 313 we plan to investigate in our future work. The advantage is that a 314 container prevents unnecessary PQ operations by limiting the 315 number of insertions and removals from the PQ. Moreover, coher- 316 ent loads with option 1 efficiently transfer large data payload of a 317 container by exploiting its inherent data locality.

The use of containers is beneficial only when there are a sufficient number of tasks in the container. If a container only has a few 320 tasks, then its overheads can overshadow the benefits. OBIM and 321 PMOD both suffer from this problem since they always create containers (or bags) that may be under-utilized. HAPS proposes a heuristic to address this challenge, and selects a task or a container for 324 insertion into the PQ. After processing a parent task or container, if 325 there are at least three children tasks for a given priority, they are 326 bundled together in a container. Otherwise, they are left alone individually. The tasks and containers are then scheduled for insertion 328 into a local or remote PQ (c.f. Fig. 1:④). This approach avoids 329 unnecessary computations associated with handling individual 330

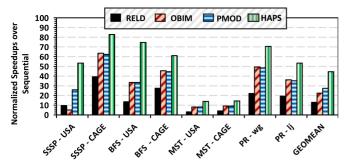


Fig. 3. Performance of RELD, OBIM, PMOD, and HAPS normalized to the optimized sequential implementation.

tasks as containers, i.e., insert container metadata in a PQ, and then separately retrieve its payload on dequeue.

4 METHODOLOGY

The evaluation is performed on a real multicore machine, *Tilera Tile-Gx72TM*. The processor chip integrates 72 tiles, where each tile consists of a 64-bit multi-issue pipelined core, private level-1 (32 *KB*) data and instruction caches, and a 256 *KB* slice of the shared last-level cache (totaling 18 *MB* on chip). The tiles are interconnected using 2D mesh networks that support hardware capability to implement in-hardware messages between cores, as well as directory-based cache coherence for shared memory operations. Tilera's Tiled Multicore Components (TMC) pthreads library is used to port the RELD, OBIM, PMOD, and HAPS CPS designs. OBIM and PMOD are tuned for processors that have a small number of cores per socket. To configure OBIM on Tilera multicore, the 72 tiles are logically distributed with a variable number of tiles per socket, and best performing configuration of 9-sockets with 8-tiles each is used for evaluation.

Four task-parallel graph algorithms, SSSP, BFS, MST, and Pagerank are chosen from PMOD [9] for evaluation. SSSP uses delta-stepping algorithm to compute the shortest distance from a source vertex to every vertex in a graph. BFS is a special case of SSSP, where the weight of each edge is 1. MST uses Boruvka's algorithm to find a minimum spanning tree consisting of all the vertices with minimum total edge weight. Pagerank uses a push-pull algorithm, where each node's rank is calculated by computing over its incoming edges, and then propagating the changes to outgoing neighbors. As in PMOD, real world graph inputs are picked for evaluation, i.e., USA road network, DNA electrophoresis (CAGE), and two social network graphs, live-journal (lj) and web-google (wg).

EVALUATION

Fig. 3 shows the performance evaluation of OMIB's optimized PMOD, RELD, and HAPS, normalized to optimized sequential implementations. PMOD shows performance scaling over RELD for all benchmarks since RELD suffers from significant communication costs and work-inefficiency. HAPS successfully adapts the task distribution factor (TDF) and distributes tasks or containers among cores to optimize priority drift, resulting in a work efficient and communication aware CPS design. Overall, HAPS outperforms OBIM by 1.9× and PMOD by 1.6×. Similar to PMOD paper, MST is observed to show low performance scaling.

Fig. 4 introduces the proposed HAPS optimizations and normalizes their performance to the PMOD baseline. HAPS – *HWm only* adds hardware messaging capability to the RELD baseline. The benefits here arise from mitigating the overheads of synchronizations in RELD due to atomic operations on PQs. However, it uses a static 100 percent TDF, and thus suffers from work-inefficiency due to unmanaged priority drift among cores. The HAPS – *HWm* + *ATDF* utilizes the adaptive TDF heuristic proposed in Section 3.2 to obtain work-efficient

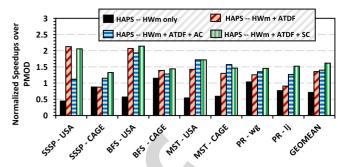


Fig. 4. Performance evaluation of different HAPS's configurations.

execution. The USA graph results in high priority drifts as TDF 380 increases, as also seen in Fig. 2. This results in poor work-efficiency at 381 100 percent TDF, which significantly improves when a near-optimal 382 TDF is used. However, for CAGE graph the priority drift remains low 383 as TDF varies, thus performance benefits mainly stem from reduced 384 communication costs associated with the right selection of TDF at runtime. Overall, HAPS – *HWm* + *ATDF* outperforms HAPS – *HWm only* by $1.6 \times$ and PMOD by $1.35 \times$, but it still has high CPS overheads as it 387 stores individual tasks in a PQ. If tasks belonging to the same priority are bundled and managed as a container of tasks, the PQ overheads 389 can be dramatically reduced. Moreover, the communication overheads of individual tasks can be mitigated. The HAPS – *HWm* + *ATDF* + AC always creates task containers instead of individual tasks. This 392 configuration only improves performance when multiple tasks with 393 close priority are generated, otherwise the overheads of container formation result in overheads. For example, in SSSP-USA the graph 395 mostly generates tasks with random priorities. Hence, it always incurs the computational overheads of containers. HAPS – HWm + ATDF + SC adopts the proposed heuristic for selective clustering from Section 3.3, where containers are formed at runtime when multiple tasks 399 with same priority are generated. Otherwise, individual tasks are inserted in the PQ.

The PMOD baseline is modified with hardware messages to accelerate synchronizations [4], as shown in Fig. 5. Here, instead of using atomic operations, the shared *Global Map* data structure is updated by serializing all it's requests using in-hardware messages. The results show that the use of in-hardware messages improve performance by ~2 percent over the baseline PMOD that uses atomic operations. However, as discussed earlier, HAPS significantly benefits 408 from using in-hardware messages for task transfers. To justify this 409 hardware overhead, Fig. 5 shows the performance evaluation by 410 replacing in-hardware messages in HAPS with a shared-memory 411 software-based messaging scheme [3], as well as using traditional 412 atomic operations. Atomic locks on priority queues show the least 413 performance since they block both the sender and remote cores from 414 making progress, while the priority queue balances itself during 415 enqueue and dequeue operations. Both hardware and software mes-

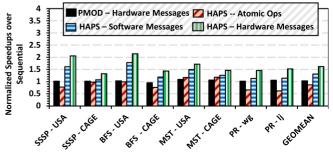


Fig. 5. Performance evaluation of HAPS with different task transfer mechanisms. PMOD baseline that uses atomic operations is also compared with PMOD using hardware messages.

saging-based schemes perform better than atomic locks since they do not stall the cores, and result in faster propagation of high-quality tasks across cores. However, hardware messages perform 1.25× better than the software counterpart. It is noteworthy that software messaging based HAPS also outperforms the PMOD baseline by $1.3\times$.

CONCLUSION

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

This paper proposes a CPS architecture that ensures work-efficient execution of task parallel algorithms on shared-memory multicores. Current CPS designs follow rigid strategies for selecting high priority tasks without monitoring and adapting to optimize work-efficiency and communication overheads. HAPS proposes in-hardware and dynamically adaptive task distributions that minimize priority drift among cores. Consequently, it optimizes work-efficiency and communication costs, and outperforms state-of-the-art CPS PMOD by $1.6\times$, and OBIM by $1.9\times$ for the evaluated benchmarks.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under Grant CNS-1718481. This research was also supported in part by the Semiconductor Research Corporation (SRC).

REFERENCES

M. Ahmad, H. Dogan, J. A. Joao, and O. Khan, "In-hardware moving compute to data model to accelerate thread synchronization on large multicores," IEEE Micro, vol. 40, no. 1, pp. 83-92, Jan./Feb. 2020.

- L. Dhulipala, G. Blelloch, and J. Shun, "Julienne: A framework for parallel graph algorithms using work-efficient bucketing," in Proc. ACM Symp. Parallelism Algorithms Archit., 2017, pp. 293-304.
- 458 [3] H. Dogan, M. Ahmad, B. Kahne, and O. Khan, "Accelerating synchronization using moving compute to data model at 1,000-core multicore 459 scale," ACM Trans. Archit. Code Optim., vol. 16, no. 1, pp. 4:1-4:27, Feb. 460 2019.
- [4] H. Dogan, F. Hijaz, M. Ahmad, B. Kahne, P. Wilson, and O. Khan, " Accelerating graph and machine learning workloads using a shared 463 memory multicore architecture with auxiliary support for in-hardware 464 explicit messaging," in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2017, pp. 254–264. M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, "A scalable
- archit. for ordered parallelism," in Proc. IEEE/ACM Int. Symp. Microarchit., 468 2015, pp. 228-241.
- D. Nguyen, A. Lenharth, and K. Pingali, "A lightweight infrastructure 470 for graph analytics," in Proc. ACM Symp. Operating Syst. Princ., 2013, 471 pp. 456-471
- H. Rihani, P. Sanders, and R. Dementiev, "Multiqueues: Simple relaxed 473 concurrent priority queues," in Proc. ACM Symp. Parallelism Algorithms 474 Archit., 2015, pp. 80–82.
- D. Sanchez, R. M. Yoo, and C. Kozyrakis, "Flexible architectural support for fine-grain scheduling," in Proc. 15th Int. Conf. Archit. Support Program. 477 Lang. Operating Syst., 2010, pp. 311-322. 478
- S. Yesil, A. Heidarshenas, A. Morrison, and J. Torrellas, "Understanding 479 480 priority-based scheduling of graph algorithms on a shared-memory platform," in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2019, 481 pp. 46:1–46:14. D. Zhang, X. Ma, M. Thomson, and D. Chiou, "Minnow: Lightweight off-482
- 483 load engines for worklist management and worklist-directed prefetching," 484 ACM SIGPLAN Notice, vol. 53, no. 2, pp. 593-607, Mar. 2018. 485

▶ For more information on this or any other computing topic. 487 please visit our Digital Library at www.computer.org/csdl.

472