w0 NN o »

el

10
11
12
13
14
15
16

17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

IEEE COMPUTER ARCHITECTURE LETTERS

Accelerating Concurrent Priority Scheduling
Using Adaptive in-Hardware Task
Distribution in Multicores

Mohsin Shan and Omer Khan

Abstract—Task parallel algorithms execute tasks in some programmer-specified
order on shared-memory multicores. A Concurrent Priority Scheduler (CPS)
selects high priority tasks, and schedules them among cores to exploit parallelism.
The main objective of a CPS is to deliver work efficient algorithmic execution at low
communication cost. Selecting high priority tasks among cores requires high
synchronizations, but results in near-optimal work-efficiency. The communication
cost can be reduced by processing tasks without a strict priority order, but it
potentially degrades work-efficiency. This letter proposes HAPS, a novel CPS
architecture that utilizes in-hardware core-to-core messages to accelerate task
distribution among cores. Moreover, a set of dynamically tunable heuristics are
proposed to co-optimize work-efficiency and communication in shared-memory
multicores.

Index Terms—Task-parallelism, concurrent priority scheduler, shared memory,
multicore, hardware messages

<+

1 INTRODUCTION

TASK-PARALLEL algorithms are ubiquitously deployed in data process-
ing and analytics domains, where an algorithm designer decomposes
the algorithm into tasks comprising of several instructions. Tasks are
generated at runtime, and pending tasks are scheduled dynamically
on different cores for processing. Most task-parallel algorithms execute
tasks in any order until convergence, thus exposing plentiful parallel-
ism. However, many algorithms demonstrate faster convergence using
priority based scheduling, where tasks with high priority are processed
ahead of low priority tasks. Faster convergence is achieved because pri-
ority-based scheduling improves work-efficiency, which is the total
amount of work performed by the parallel algorithm relative to the
work performed by a sequential baseline.

Task-parallel frameworks use Concurrent Priority Schedulers
(CPS) to implement priority-based scheduling of tasks on shared-
memory multicore machines [2], [6], [7]. A good CPS design aims to
schedule high priority tasks among the cores, while keeping synchro-
nizations and CPS overheads low. State-of-the-art CPS designs use
different methods to select high priority tasks. If a CPS optimizes to
find high priority tasks, it leads to an increase in synchronization
overheads. On the other hand, if a CPS aims to reduce synchroniza-
tions, it ends up picking tasks that are sub-optimal in their priority
order, which results in redundant work. Thus, the objective of a CPS
is to reduce synchronization costs, while high priority tasks are prop-
agated to different cores for concurrent processing.

This paper makes a key observation that work-efficiency in a CPS
is related to priority drift, which is the average difference of priority
between the global highest priority task, and the tasks being proc-
essed by the cores at any instance. Maintaining minimal priority drift
during execution improves work-efficiency. Minimal priority-drift
can be achieved by fast propagation of high priority tasks among the
cores. However, the additional burden of task communication and

o Theauthors are with the Department of Electrical and Computer Engineering, University
of Connecticut, Storrs, CT 06269 USA. E-mail: {mohsin.shan, khan }@uconn.edu.

Manuscript received 1 Oct. 2020; revised 13 Nov. 2020; accepted 8 Dec. 2020. Date of
publication 0 . 0000; date of current version 0 . 0000.

(Corresponding author: Omer Khan.)

Digital Object Identifier no. 10.1109/LCA.2020.3045670

synchronizations must remain low for a CPS design to deliver supe-
rior performance. State-of-the-art CPS designs follow rigid task
scheduling policies without dynamically adapting to priority drift
among cores. There is a need for an adaptive task scheduling scheme
that monitors priority drift at runtime, and adapts task scheduling to
keep communication overheads low.

To demonstrate this idea, we adopt a state of the art CPS, Remote
Enqueue, Local Dequeue (RELD) [9]. RELD implements a fine grain
task distribution model that focuses on improving work-efficiency,
while incurring relatively high synchronizations. It maintains a dis-
tributed array of concurrent priority queues, where each priority
queue (PQ) is associated with a core. Each core dequeues a task from
its PQ, executes it, and distributes the children tasks to other cores by
selecting a remote core at random. Tasks are inserted in a PQ via
atomic operations. The three main challenges with RELD are (1) the
use of atomic operations on PQs for task transfers that incur high syn-
chronizations, (2) aggressive task distribution that leads to increased
on-chip network traffic, and (3) task distribution at a fine granularity
that incurs PQ related computation overheads. We propose a hard-
ware-assisted adaptive priority scheduler (HAPS) that aims to reduce
priority drift among concurrent tasks, while keeping the synchroniza-
tion and communication costs low. The key contributions of HAPS
are outlined below.

(1) The inter-core transmission of tasks is accelerated using non-
blocking asynchronous hardware messages that carry task infor-
mation between cores at the hardware level. The use of hardware
messages reduces synchronization costs as they bypass the require-
ment of atomic operations on PQs. Since the atomic operations are
blocking in nature, they can potentially obstruct a core from per-
forming its operations during task transfers. On the other hand,
hardware messages are non-blocking and enable both sender and
destination cores to continue without waiting to complete task
movement. Hardware messages enable faster propagation of high
priority tasks among the cores, thus reducing priority drift to
improve work-efficiency.

(2) RELD aims to maintain high work-efficiency by continu-
ously distributing tasks among cores. Uncontrolled task distribu-
tion among cores stresses the traffic injected in the on-chip
network that must be considered alongside the reduction of redun-
dant work. HAPS takes a novel approach by focusing on the reduc-
tion of priority drift between tasks being executed in different
cores. A feedback-driven runtime heuristic is proposed that peri-
odically exchanges latest task priority values among cores to esti-
mate priority drift. It dynamically adjusts the rate of per-core task
distribution, such that the priority drift is minimized among the
cores. The heuristic keeps redundant work under control and
focuses on reducing communication costs.

(3) Under RELD, each task destined for a remote core is first
injected into the network and later enqueued in the destination
core’s priority queue. A large number of tasks significantly increase
network traffic, and PQ enqueue/dequeue operations that hinder
performance. We observe that it is advantageous to cluster and dis-
tribute tasks into containers with priorities in close proximity.
When a task is processed, its children tasks are clustered into con-
tainers using their priorities, or proceed with tasks individually
when multiple tasks do not share close proximity priorities. A con-
tainer is highly input dependent and can range in size from a few
or many tasks. However, each container is treated as a single entry
for insertion and removal from a core’s PQ. When a container with
multiple tasks is dequeued from a PQ, its tasks are all processed in
bulk before moving to the next dequeue operation. Selective task
clustering in HAPS enables performance benefits by preventing
unnecessary compute operations on PQ, and preserving locality of
tasks by clustering them into a container.

1556-6056 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

https://orcid.org/0000-0001-6293-7403
https://orcid.org/0000-0001-6293-7403
https://orcid.org/0000-0001-6293-7403
https://orcid.org/0000-0001-6293-7403
https://orcid.org/0000-0001-6293-7403
mailto:mohsin.shan@uconn.edu
mailto:khan@uconn.edu

115
116
117
118
119
120
121
122
123

124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175

176
177

The proposed CPS architecture mitigates synchronization and
communication costs, while minimizing priority drift among con-
currently executing tasks. HAPS, as well as state-of-the-art CPS
schedulers, OBIM [6], PMOD [9], and RELD are evaluated using a
real Tilera TileGx-72 multicore machine that implements hard-
ware-based directory cache coherence and explicit in-hardware
messaging under the shared memory paradigm. For a set of repre-
sentative task parallel algorithms, HAPS accelerates RELD by 2.5x,
improves performance over OBIM by 1.9x, and PMOD by 1.6x.

2 RELATED WORK

Recent work conducted an empirical performance analysis of CPS
designs for modern shared-memory multicores [9]. It observes that
the performance of Galois” OBIM [6] CPS is remarkable, followed
by RELD. OBIM implements a task distribution model that merges
tasks with priorities in close range into a single priority, distrib-
uted, and unordered bag. Each core first searches for the highest
priority bag and then process all the tasks in that bag. Following
this approach, OBIM schedules a few bags instead of many tasks,
which leads to reduced synchronizations. Moreover, processing
tasks clustered in a bag takes advantage of task locality. However,
this approach is helpful when there is a sufficient number of tasks
in the bags. Otherwise, the cores need to perform bag search opera-
tions repeatedly, thus incurring synchronization costs. To avoid
these costs, OBIM creates large bags by increasing the range of
merged priorities, which reduces communication costs but leads to
loss of priority order and hence results in redundant work. To
solve this challenge, a recent work PMOD [9] dynamically opti-
mizes the utilization of bags at runtime to improve performance of
OBIM. HAPS takes a fine grain task distribution approach to
improve work-efficiency by focusing on minimizing priority drift
across concurrently executing tasks. It overcomes the relatively
high communication costs of RELD to deliver superior perfor-
mance compared to both RELD and PMOD.

Prior works, such as Swarm [5] and Minnow [10] also aim to
improve work-efficiency and/or overcome communication costs in
concurrent priority schedulers. However, they all require invasive
hardware modifications to the multicore processor. Swarm adopts
RELD to distribute tasks among cores, but requires multiple per-core
task, order and commit queues (totaling 10s of KB hardware) with
complex parallel lookup capabilities. It preserves the task ordering
among cores, while introducing hardware to address the communi-
cation challenge. On the other hand, Minnow builds on OBIM, and
introduces a per-core hardware accelerator to offload task (worklist)
scheduling, and task pre-fetching from shared memory to improve
communication costs. However, it does not directly address the task
priority drift challenge of the OBIM scheduler.

Prior work ADM [8] uses hardware messages for task transfers.
However, it was implemented primarily for message passing schedu-
lers, and was not evaluated in the context of CPS designs. HAPS opti-
mizes priority drift, which is correlated with communication costs.
Hence, fast transfer of tasks using in-hardware messages is shown to
improve priority drift that results in work-efficient execution.

Prior works have also adopted unordered algorithms, where
the task priority scheduling is ignored to maximize concurrency.
These algorithms suffer from redundant work that can be miti-
gated by utilizing a large number of cores in modern GPU and
supercomputing machines. However, recent works have quanti-
fied that concurrent priority schedulers that tradeoff between
work-efficiency and task priority drift deliver superior perfor-
mance in a shared memory setup [6], [9].

3 HAPS CONCURRENT PRIORITY SCHEDULER

Prior CPS approaches lean towards optimizing opposite sides of
the work-efficiency and communication tradeoff. OBIM and its

IEEE COMPUTER ARCHITECTURE LETTERS

Master e
Core
Task

Distribution
Factor

[RELD Standard
Components

Fetch Tasks
from Container

— RELD Execution Cycle
[HAPS Optimizations

Container

Task Executor
(Generates Child Tasks)

Container

Tasks

Enqueue Task
& Container
Pointer

Pointers
Priority Queue Task & Container
Distributor
Queue Queue Receive Queue

Remote
Y BT

Fig. 1. Hardware and software components of the HAPS architecture.

le—t

Container

Core Level View of Hybrid Scheme

Coherent
Load(s)

optimized PMOD variant aim to reduce communication costs by
relaxing task orderings. On the other hand, RELD focuses on con-
tinuous distribution of tasks to spread high priority tasks among
cores, but incurs high communication costs. HAPS hypothesizes
that work-efficiency and communication cost are both crucial for
overall performance. Therefore, it proposes in-hardware and
dynamically adaptive task distributions that minimize priority
drift among cores. Fig. 1 shows the per-core view of the proposed
HAPS architecture, which is built on top of the baseline RELD
(shown in shaded arrows/boxes).

3.1 Hardware Support for Accelerating Task Transfers

In RELD, each task transfer between cores is achieved using atomic
enqueue and dequeue operations on the per-core priority queue (PQ).
These atomic operations are blocking and stall both the sender and
destination cores. Moreover, these operations are time-consuming as
the PQ needs to re-balance based on new task priorities, resulting in
performance loss. We illustrate that the task transfer mechanism can
be accelerated using asynchronous non-blocking in-hardware mes-
sages [1] (c.f. Fig. 1:®). (1) The sender core moves forward without
having to wait for the completion of a task transfer. (2) Asynchronous
communication enables the remote core to process incoming messages
at its convenience. (3) Hardware transfer of task results in low latency
and reduced metadata computations at both sender and receiver
cores. These benefits allow fast and high bandwidth propagation of
high priority tasks among cores, resulting in decreased priority drift
and faster algorithmic convergence. However, in the presence of finite
sized per-core send and receive queues, application level deadlocks
must be prevented. Each sender core maintains a dedicated flag (bool-
ean) for each destination core. When a sender core chooses a destina-
tion core to send a task, it checks the destination core’s flag. If the flag
is not set, the sender core sends the task and atomically increments the
flag. However, if the flag is set, the sender core picks another ran-
domly selected remote core to send the task. In case no remote core
can accept the task, it is added to the local PQ of the core generating
the task. The flag is atomically cleared by the destination core when
the associated task is removed from the hardware receive queue. Note
that the tasks are moved from the hardware receive queue to the soft-
ware managed PQ with high priority. The software-based distributed
flow control mechanism ensures forward progress in HAPS.

The messaging scheme can also be built using software-only
shared memory support [3]. A software per-core shared buffer
implements communication between cores. Each buffer slot con-
tains a flag and a place holder for the data to be sent. A requesting
core atomically increments the write pointer of the corresponding
buffer in the destination core, then places its data into the slot, and
sets the flag. The atomic increment on the pointer makes sure that
multiple cores do not write to the same slot. The receiving core

178
179
180

182
183
184
185

187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

IEEE COMPUTER ARCHITECTURE LETTERS

160 25
140 SSSP — USA Road Network o
o = | 20
E T 120 [I] communication Stalls 1 &
c 5 100 = &
o > —-— 150
85 80 = z
2 | £
ES &0 = | 08
O 40 = s
20 B
0 i,
10 20 30 40 50 60 70 80 90 100
Task Distribution Factor
6 - 5
SSSP — DNA electrophoresis (CAGE)
5
o — — | a
E -] - — = = = £
-9 4) = = = = B a
s = | | = H H| 3%z
TR = = = = H H| .
| | | | | | a
Ed - - = - =
S] = = Y e N -
i Ml :
0 0

=
o

20 30 4 50 6
Task Distribution Factor

o
o

70

]
o
o
o
=

0f

o

Fig. 2. Completion time breakdown and priority drift of RELD at different task
distribution factors using 72 threads.

removes valid tasks from its buffer, and put them into its PQ for
further processing. Our preliminary results show that hardware
messages are faster than the software-only counterparts.

3.2 Adaptive Task Distribution to Manage Priority Drift

In RELD, the cores always distribute tasks generated at runtime to
randomly selected cores. The aim is to reduce priority drift since
the underlying assumption is that when a core executes a high pri-
ority task, it is probable that the priority of the children tasks will
be in close proximity of high priority. However, aggressive distri-
bution by RELD overlooks scenarios where children tasks do not
always exhibit priorities closer to the highest priority task in
the system. Moreover, it is also possible that PQ utilization
remains low during execution, leading to overall divergence of
priority drift among cores when tasks are continuously distrib-
uted. Even when priority drift does not get worse, the traffic
on the on-chip network may increase due to unwarranted task
distributions among cores.

To quantify the impact of task distribution on performance,
Fig. 2 shows the breakdown of parallel completion times and prior-
ity drift for a representative single source shortest path benchmark,
SSSP for two graph inputs. A metric, task distribution factor (TDF) is
introduced that is defined as “the ratio of remote enqueue opera-
tions and the total number of enqueues performed by a core.” The
baseline RELD scheme utilizes 100 percent TDF, where each task is
distributed to a randomly picked destination core. However, TDF
is varied from 10 to 100 percent to quantify the impact of choosing
a variable number of tasks for distribution to remote or local core’s
PQ. For the USA road network, the priority drift increases with an
increase in TDF. In this graph, a small number of children tasks
(1.2 on average) are generated with diverging priorities. Thus,
aggressive TDF results in slow propagation of high priority tasks
among cores due to communication costs, resulting in the priority
drift to increase. Consequently, the completion time dramatically
increases past 60 percent TDF due to increased work-inefficiency
and communication stalls. For the CAGE graph, the generated chil-
dren tasks (16 on average) end up in close proximity to high prior-
ity. Thus, initially when the TDF keeps most tasks in local core’s
PQ, the high priority tasks are not well distributed among cores.
However, as TDF increases, priority drift decreases, but saturates
at ~40 percent. Completion time is minimum at this saturation
TDF point since communication stalls increase due to unnecessary

network traffic past this point. It is clear that TDF needs to be
adjusted at runtime for near-optimal performance.

HAPS proposes a heuristic that quantifies priority drift among
cores at different time intervals. The heuristic uses an initial value of
50 percent TDF. After processing a fixed number of tasks (2K used in
this paper using empirical data), each core sends the priority of its lat-
est task processed to a master core (c.f. Fig. 1:®). The master core
receives priorities from all cores, and calculates the priority drift
using the average pairwise differences. The priority drift of each sam-
pling period serves as a reference for the next sampling period. The
heuristic also tracks whether TDF was increased or decreased in the
previous sampling period. For a given sampling period, the priority
drifts are compared for the latest and previous sampling periods to
compute whether the drift is increasing or decreasing. An increase in
difference implies priority drift getting worse. However, if TDF was
increased in previous sample and latest drift gets worse, then TDF is
decreased. But the TDF is increased for current sample, if previous
sample’s TDF was decreased. Similarly, a decrease in difference
implies priority drift is improving. Regardless of TDF was increased
or decreased for previous sample, the current sample’s TDF is now
decreased. TDF is increased or decreased in intervals of 10 percent.
The heuristic’s goal is to keep the priority drift low while ensuring
unnecessary traffic is not injected into the on-chip network. In future,
we plan to incorporate deeper history tracking and gradient descent
in the heuristic for better prediction of task distribution factor. We
also plan to compare the heuristic to a dynamic oracle that selects the
best performing TDF at each interval.

3.3 Adaptive Bulk Processing of Tasks Using Containers
In RELD, each task is processed individually by inserting and
removing it from its respective PQ. Each PQ maintains the highest
priority elements at the top of the queue so that dequeue is an O(1)
operation. However, the addition and removal of tasks from the
PQ results in re-ordering operations required to maintain the prior-
ity constraint. This process is compute-intensive, therefore, it is
beneficial to reduce these operations on the PQ. Task containers
are proposed to tackle this challenge. The container constitutes the
payload for its tasks and metadata to track the container identifier
and its priority. The container metadata is enqueued in the PQ of a
core (local or remote), while its payload is stored either at the
sender core, or at the destination core. The PQ at the destination
core dequeues the container metadata when it becomes the highest
priority at that core. The storage of container payload offers two
implementation options. (1) Store the container payload at the
sender core and use coherent loads to retrieve data when the con-
tainer is dequeued from the PQ. (2) Communicate container pay-
load alongside its metadata and store payload and metadata at the
destination core’s PQ. Option 1 is chosen in this paper, but this
decision may offer computation and communication tradeoffs that
we plan to investigate in our future work. The advantage is that a
container prevents unnecessary PQ operations by limiting the
number of insertions and removals from the PQ. Moreover, coher-
ent loads with option 1 efficiently transfer large data payload of a
container by exploiting its inherent data locality.

The use of containers is beneficial only when there are a suffi-
cient number of tasks in the container. If a container only has a few
tasks, then its overheads can overshadow the benefits. OBIM and
PMOD both suffer from this problem since they always create con-
tainers (or bags) that may be under-utilized. HAPS proposes a heu-
ristic to address this challenge, and selects a task or a container for
insertion into the PQ. After processing a parent task or container, if
there are at least three children tasks for a given priority, they are
bundled together in a container. Otherwise, they are left alone indi-
vidually. The tasks and containers are then scheduled for insertion
into a local or remote PQ (c.f. Fig. 1:@). This approach avoids
unnecessary computations associated with handling individual

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

289
290

292

293
294
295
296

298
299
300

302
303
304
305
306

308
309
310

312
313
314
315
316
317
318
319

321
322
323
324
325

327
328
329
330

331
332

333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

361

362
363
364
365
366
367
368
369
370
371
372
373
374
375

377
378
379

4
100 4| Il RELD oM [E pwmop [MHAPS |7

g 90

o 80

8 70

3% 60 Fs

$§E s0 ; -

@3 4) HE VRN

g3 27 Al HHl H| gt =l Al g

s 2031 A #s ’

£ B

£ 1

2

Fig. 3. Performance of RELD, OBIM, PMOD, and HAPS normalized to the
optimized sequential implementation.

tasks as containers, i.e., insert container metadata in a PQ, and then
separately retrieve its payload on dequeue.

4 METHODOLOGY

The evaluation is performed on a real multicore machine, Tilera
Tile-Gx72™. The processor chip integrates 72 tiles, where each tile
consists of a 64-bit multi-issue pipelined core, private level-1
(32 KB) data and instruction caches, and a 256 KB slice of the
shared last-level cache (totaling 18 MB on chip). The tiles are inter-
connected using 2D mesh networks that support hardware capabil-
ity to implement in-hardware messages between cores, as well as
directory-based cache coherence for shared memory operations.
Tilera’s Tiled Multicore Components (TMC) pthreads library is
used to port the RELD, OBIM, PMOD, and HAPS CPS designs.
OBIM and PMOD are tuned for processors that have a small num-
ber of cores per socket. To configure OBIM on Tilera multicore, the
72 tiles are logically distributed with a variable number of tiles per
socket, and best performing configuration of 9-sockets with 8-tiles
each is used for evaluation.

Four task-parallel graph algorithms, SSSP, BFS, MST, and Pag-
erank are chosen from PMOD [9] for evaluation. SSSP uses delta-step-
ping algorithm to compute the shortest distance from a source vertex
to every vertex in a graph. BFS is a special case of SSSP, where the
weight of each edge is 1. MST uses Boruvka’s algorithm to find a min-
imum spanning tree consisting of all the vertices with minimum total
edge weight. Pagerank uses a push-pull algorithm, where each
node’s rank is calculated by computing over its incoming edges, and
then propagating the changes to outgoing neighbors. As in PMOD,
real world graph inputs are picked for evaluation, i.e., USA road net-
work, DNA electrophoresis (CAGE), and two social network graphs,
live-journal (Ij) and web-google (wg).

5 EVALUATION

Fig. 3 shows the performance evaluation of OMIB’s optimized
PMOD, RELD, and HAPS, normalized to optimized sequential
implementations. PMOD shows performance scaling over RELD
for all benchmarks since RELD suffers from significant communi-
cation costs and work-inefficiency. HAPS successfully adapts the
task distribution factor (TDF) and distributes tasks or containers
among cores to optimize priority drift, resulting in a work efficient
and communication aware CPS design. Overall, HAPS outper-
forms OBIM by 1.9x and PMOD by 1.6x. Similar to PMOD paper,
MST is observed to show low performance scaling.

Fig. 4 introduces the proposed HAPS optimizations and normal-
izes their performance to the PMOD baseline. HAPS — HWm only adds
hardware messaging capability to the RELD baseline. The benefits
here arise from mitigating the overheads of synchronizations in RELD
due to atomic operations on PQs. However, it uses a static 100 percent
TDF, and thus suffers from work-inefficiency due to unmanaged pri-
ority drift among cores. The HAPS — HWm + ATDF utilizes the adap-
tive TDF heuristic proposed in Section 3.2 to obtain work-efficient

IEEE COMPUTER ARCHITECTURE LETTERS

N 3 Il HAPS - HWm only F HAPS - HWm + ATDF
2 25 ES HAPS -- HWm + ATDF + AC [II] HAPS -- HWm + ATDF + SC
3
v
3 2
% a
) 15
w3
sa 1
2
T 05
£
v < 03 g > g & N >
RSN A AN S 4 &S &
’ y A Q O
g & ¢ e & ¢ &

Fig. 4. Performance evaluation of different HAPS’s configurations.

execution. The USA graph results in high priority drifts as TDF
increases, as also seen in Fig. 2. This results in poor work-efficiency at
100 percent TDF, which significantly improves when a near-optimal
TDF is used. However, for CAGE graph the priority drift remains low
as TDF varies, thus performance benefits mainly stem from reduced
communication costs associated with the right selection of TDF at run-
time. Overall, HAPS - HWm + ATDF outperforms HAPS — HWm only
by 1.6x and PMOD by 1.35x, but it still has high CPS overheads as it
stores individual tasks in a PQ. If tasks belonging to the same priority
are bundled and managed as a container of tasks, the PQ overheads
can be dramatically reduced. Moreover, the communication over-
heads of individual tasks can be mitigated. The HAPS - HWm + ATDF
+ AC always creates task containers instead of individual tasks. This
configuration only improves performance when multiple tasks with
close priority are generated, otherwise the overheads of container for-
mation result in overheads. For example, in SSSP-USA the graph
mostly generates tasks with random priorities. Hence, it always incurs
the computational overheads of containers. HAPS — HWm + ATDF +
SC adopts the proposed heuristic for selective clustering from Sec-
tion 3.3, where containers are formed at runtime when multiple tasks
with same priority are generated. Otherwise, individual tasks are
inserted in the PQ.

The PMOD baseline is modified with hardware messages to accel-
erate synchronizations [4], as shown in Fig. 5. Here, instead of using
atomic operations, the shared Global Map data structure is updated
by serializing all it's requests using in-hardware messages. The
results show that the use of in-hardware messages improve perfor-
mance by ~2 percent over the baseline PMOD that uses atomic opera-
tions. However, as discussed earlier, HAPS significantly benefits
from using in-hardware messages for task transfers. To justify this
hardware overhead, Fig. 5 shows the performance evaluation by
replacing in-hardware messages in HAPS with a shared-memory
software-based messaging scheme [3], as well as using traditional
atomic operations. Atomic locks on priority queues show the least
performance since they block both the sender and remote cores from
making progress, while the priority queue balances itself during

enqueue and dequeue operations. Both hardware and software mes-
5 5 : | PMOD - Hardware Messages P HAPS -- Atomic Ops]
3 i 3 [HAPS - Software Messages [I1] HAPS — Hardware Messages
° E
Qo
é] 2.5 3
gE 23 .
“ 315 H = -
TE H H Ad| wHll oF o = B
Ra imH = 4 = H H H | |
E g ;El % | B I
£ SzIm fs Azl /SIM /SIM o2
2

Fig. 5. Performance evaluation of HAPS with different task transfer mechanisms.
PMOD baseline that uses atomic operations is also compared with PMOD using
hardware messages.

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

411
412
413
414
415
416

juary

jury

417
418
419
420
421
422
423
424
425
426
427
428
429
430

432
433
434
435
436

437

438
439
440
441
442
443
444
445
446

447

448
449
450

451

452
453
454

IEEE COMPUTER ARCHITECTURE LETTERS

saging-based schemes perform better than atomic locks since they do
not stall the cores, and result in faster propagation of high-quality
tasks across cores. However, hardware messages perform 1.25x bet-
ter than the software counterpart. It is noteworthy that software mes-
saging based HAPS also outperforms the PMOD baseline by 1.3x.

6 CONCLUSION

This paper proposes a CPS architecture that ensures work-efficient
execution of task parallel algorithms on shared-memory multicores.
Current CPS designs follow rigid strategies for selecting high priority
tasks without monitoring and adapting to optimize work-efficiency
and communication overheads. HAPS proposes in-hardware and
dynamically adaptive task distributions that minimize priority drift
among cores. Consequently, it optimizes work-efficiency and com-
munication costs, and outperforms state-of-the-art CPS PMOD by
1.6x,and OBIM by 1.9x for the evaluated benchmarks.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Founda-
tion under Grant CNS-1718481. This research was also supported
in part by the Semiconductor Research Corporation (SRC).

REFERENCES

[11 M. Ahmad, H. Dogan, J. A. Joao, and O. Khan, “In-hardware moving com-
pute to data model to accelerate thread synchronization on large multi-
cores,” IEEE Micro, vol. 40, no. 1, pp. 83-92, Jan. /Feb. 2020.

[2] L. Dhulipala, G. Blelloch, and J. Shun, “ Julienne: A framework for parallel
graph algorithms using work-efficient bucketing,” in Proc. ACM Symp. Par-
allelism Algorithms Archit., 2017, pp. 293-304.

[3] H. Dogan, M. Ahmad, B. Kahne, and O. Khan, “Accelerating synchro-
nization using moving compute to data model at 1,000-core multicore
scale,” ACM Trans. Archit. Code Optim., vol. 16, no. 1, pp. 4:1-4:27, Feb.
2019.

[4] H. Dogan, F. Hijaz, M. Ahmad, B. Kahne, P. Wilson, and O. Khan, “
Accelerating graph and machine learning workloads using a shared
memory multicore architecture with auxiliary support for in-hardware
explicit messaging,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
2017, pp. 254-264.

[5] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “ A scalable
archit. for ordered parallelism,” in Proc. IEEEJACM Int. Symp. Microarchit.,
2015, pp. 228-241.

[6] D. Nguyen, A. Lenharth, and K. Pingali, “ A lightweight infrastructure
for graph analytics,” in Proc. ACM Symp. Operating Syst. Princ., 2013,
pp. 456-471.

[71 H. Rihani, P. Sanders, and R. Dementiev, “ Multiqueues: Simple relaxed
concurrent priority queues,” in Proc. ACM Symp. Parallelism Algorithms
Archit., 2015, pp. 80-82.

[8] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “ Flexible architectural support
for fine-grain scheduling,” in Proc. 15th Int. Conf. Archit. Support Program.
Lang. Operating Syst., 2010, pp. 311-322.

[9] S. Yesil, A. Heidarshenas, A. Morrison, and J. Torrellas, “ Understanding

priority-based scheduling of graph algorithms on a shared-memory

platform,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2019,

pp- 46:1-46:14.

D. Zhang, X. Ma, M. Thomson, and D. Chiou, “Minnow: Lightweight off-

load engines for worklist management and worklist-directed prefetching,”

ACM SIGPLAN Notice, vol. 53, no. 2, pp. 593-607, Mar. 2018.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

487
488

