
An Efficient Algorithm for the Construction of
Dynamically Updating Trajectory Networks

Deniz Gurevin
Electrical and Computer Engineering

University of Connecticut, CT USA

deniz.gurevin@uconn.edu

Chris J. Michael
U.S. Naval Research Laboratory

Stennis Space Center, MS USA

chris.michael@nrlssc.navy.mil

Omer Khan
Electrical and Computer Engineering

University of Connecticut, CT USA

khan@uconn.edu

Abstract—Trajectory based spatiotemporal networks (STN)

are useful in a wide range of applications, such as crowd behavior

analysis. Significant portion of trajectory network based research

focuses on optimizing the analysis of STN to characterize, control,

and predict network behavior. However, these mining algorithms

are typically carried out on a pre-constructed network structure

that tracks all moving objects and their trajectories in real

time. The construction of such a trajectory network is itself

a computationally expensive task and it is becoming a bigger

burden with advancements in analysis algorithms. The traditional

approach is to construct static networks from the temporal

snapshots of trajectory data that cannot handle spatiotemporally

changing data. This paper proposes an efficient algorithm that

successfully generates and maintains an ST network from raw

trajectory data. The proposed method is based on a customized

R-Tree based constructor to keep track of object trajectories and

their interactions. It avoids redundant updates as trajectories

evolve over time, resulting in a significant reduction in STN

construction time. Based on the experiments we conducted, our

method reduces the number of updates by 71.25% as compared

to the static naive STN construction method.

Index Terms—trajectory networks, trajectory data mining,

spatiotemporal networks, R-Tree, network construction

I. INTRODUCTION

In recent years, there has been a rapid development in
application areas of satellite systems, vehicle navigation, mo-
tion planning and location acquisition that have all led to
the growth of massive databases containing trajectory data of
moving objects. Analysis of spatiotemporal networks (STN)
consisting of trajectory data is used to characterize, control,
and predict network behavior that can be useful in a broad
range of applications, such as analysis of transportation sys-
tems, GPS-based systems and crowd behavior analysis [1]–[5].
For this reason, the detection and mining of important nodes
using STNs (where nodes possess spatiality) have become a
popular problem in data science. Depending on the system
and application, the concept of node importance may differ.
This can include calculating the node that is closest to the
rest of the nodes of the network (closeness centrality [6]),
most connected node (degree centrality [7]), node connected to
other important nodes (eigenvector centrality [8]), node which
passes most information (closeness centrality [9]), etc.

The algorithms that calculate these metrics are often de-
signed to execute on a pre-constructed STN consisting of
raw trajectory data. Therefore, a trajectory network is initially
constructed, which results in a graph representation. Here,

Fig. 1: Naive approach to handle spatiotemporally changing
data.

graph nodes represent the objects, and edges represent the re-
lationships between objects that are in close proximity to each
other, forming contacts. Current research on node importance
generally focuses on the optimization of mining algorithms
and aims to achieve faster solutions [10]–[13]. In general, node
importance mining algorithms can be exact [14]–[16], i.e. they
will always accurately compute the final values of the metrics,
or they can be based on approximation to speed up perfor-
mance since the exact values of metrics can be prohibitive for
large graph computations in practice [13], [17]. Regardless of
their approach, all of these mining algorithms require a pre-
constructed trajectory network to work on. However, with the
advancements in network analysis algorithms, the construction
of the trajectory network itself becomes a computationally
expensive task that requires considerable time. This step is
generally neglected in current research.

A traditional naive approach to address this problem is
shown in Figure 1. T1, T2 and T3 represent the sequential
timestamps that contain moving objects on the Euclidean
plane. Objects can form contacts with other objects on the
plane if they remain in close proximity with each other. The
proximity rule is a predefined metric and can be defined as
the maximum distance the objects need to maintain between
each other in order to keep their contact. Since objects may
change their position at different timestamps, the contacts they
form may change. The naive trajectory construction method
constructs static networks from the snapshots of timestamps,
and cannot handle the temporal updates in an efficient way.
In fact, this type of approach has to assign many redundant
updates even if the underlying graph does not change over
time.

This paper focuses on spatiotemporal trajectory network

generation from trajectory data, based on a predefined proxim-
ity rule. We investigate the existing challenges in the network
generation and identify the computational cost for network
construction depending on the characteristics of the trajectory
data. Based on the observations, we propose a new method that
efficiently constructs a proximity based graph representation.
First, trajectories are processed and the objects that form
contacts with each other are clustered and structured in a
customized R-Tree based representation at any given initial
timestamp. As trajectories change in real time, only necessary
nodes are updated at the leaf level of the representative
structure. This way, the algorithm avoids redundant updates
and computations. Node mining algorithms then perform their
computations by extracting the necessary graph representation
from the tree structure. We evaluate a variety of cases and
scenarios where dataset parameters change, such as the speed
of the objects and their proximity threshold as well as area
size, the number of objects within the area and the number of
timestamps to be processed. Based on the experiments on real
and synthetic datasets, our construction/update method reduces
the number of updates by 71.25% as compared to the naive
method. This leads to fast processing and updates of trajectory
network that accelerates mining algorithm computations in real
time.

II. BACKGROUND

In the context of trajectories, a graph or network can repre-
sent the potential interaction of objects. A trajectory network
or graph, denoted as G[t, T] with an observation time interval
[t, T] is made up from a set of vertices V [t, T] that are con-
nected by a set of edges E[t, T]. V [t, T] represents all moving
objects N in a Euclidean plane, while E[t, T] represents the
links between nodes in time. In order to maintain and process
temporally changing data, the network is processed into a
sequence of discrete T � t network “snapshots”. Therefore,
a temporal network is traditionally represented as a sequence
of static graphs (G1, G2, ..., GT�t).

In order to represent the physical proximity between objects
(also called contacts) at time t, the distances between all pairs
of objects 2 Vt are calculated. If the distance is less than
or equal to the predefined proximity threshold ⌧ , then this is
considered a link or an event and is added to Et. This process
is repeated until all events between objects are found. The
computational cost of this process is O(T · |Vt|

2) for [0, T].
This type of traditional naive construction has the following
drawbacks:

• It is not a dynamic structure. It has to construct a new
static network from scratch at each timestamp, making it
computationally expensive.

• It is likely to contain excessive amounts of redundant
data. Even if objects do not change their location from
one timestamp to the next, it still examines each object
at each timestamp and constructs the same network.

In terms of mining trajectory networks, any dataset can be
represented using a set of nodes and a set of links (edges)
that characterize the relationship between them. Depending on
the system/application, the concept of node importance may

differ. Several methods have been studied and proposed to
mine trajectory data and the concept of node importance. [12]
focuses on comparing the similarity of movement character-
istics of moving objects. Algorithms that identify similarity
in trajectory data [10], [11] and trajectory clustering [5] can
be used in grouping similar trajectories. In terms of spatial
networks, there has been research that explored the objects
distributed in space and interacting with each other such as
proximity graphs [18] and geometric intersection graphs [19].
These proximity graphs include relative neighbor graphs [20]
and Gabriel graphs [18] that connect nearest neighbors and
Delaunay triangulations which maximize the minimum angles
of all triangles formed. In networks evolving over time, with
the addition of the temporal information, new metrics can be
adopted such as temporal node centrality [21] and network
reachability/connectedness [22].

The Sweep Line Over Trajectories (SLOT) algorithm [13]
is a method that can simultaneously evaluate node importance
metrics for all moving objects in the trajectory network.
The SLOT algorithm avoids a large number of unnecessary
computations by evaluating the network and updating the
metrics of interest only when an event between two nodes is
formed and dissolved (start and end time of an event), instead
of evaluating the network at each snapshot. For the details of
the SLOT algorithm, we refer the readers to [13]. Given the
trajectories of N objects, an observation time interval [t, T],
and a proximity threshold ⌧ that defines a contact between
two objects, SLOT computes the metrics that define:

• the trajectory node degree of each object.
• the trajectory node connectedness of each object.
• the trajectory node triangle membership of each object.

In this paper, we use the SLOT algorithm to calculate the
aforementioned node importance metrics. Note that, our net-
work construction algorithm performance is not dependent on
SLOT algorithm. We use an algorithm for node importance
metrics only for the purpose of demonstrating the performance
of our strategy along with the overhead of node importance
calculations. In fact, any node importance mining algorithm
can be used with our construction method. We choose SLOT
algorithm because (1) SLOT specifically focuses on interac-
tions of nodes, (2) it can handle spatiotemporal data, (3) it is an
exact algorithm, therefore, it always captures the correct values
of the metrics of interest and provides a detailed analysis of
node importance, and (4) it is a fast algorithm that handles
node importance computations on large scale datasets.

III. TRAJECTORY NETWORK CONSTRUCTION USING
R-TREE BASED STRUCTURE

Instead of generating a static network from scratch at each
timestamp, the proposed method creates a customized R-
Tree based structure and uses a dynamic updating algorithm
that enables the network structure to support spatiotemporally
changing data. Many variants of the R-Tree have been devel-
oped [23] since the original structure was proposed in [24].
We will use an R-Tree based structure to keep track of all
objects in the trajectory network, and use a customized update

Fig. 2: Trajectory network construction method clusters ob-
jects that have a distance  ⌧ with each other. These clusters or
MBRs are represented in a tree structure. While many objects
change their trajectories in the next timestamps, no updates
are needed in the tree structure as long as the objects remain
in their current MBR.

algorithm to update the network in the following timestamps.
However, the comparison of our proposed method against
other R-tree implementations, which were discussed in [24],
is left for future work.

Consider a set of N objects in R2 on which we want
to build an index structure. Rather than indexing the ob-
ject themselves, each object is represented by its minimum
bounding rectangle or MBR. Thus, the objects are clustered in
rectangles in R2, that is represented by its corner coordinates
MBR(x1,y1),(x2,y2). In the case of trajectory networks, MBRs
are considered as clusters that group all objects on the

Euclidean plane that form contacts with each other, i.e. each
object pair within the MBR maintains a distance less than or
equal to the predefined threshold ⌧ . MBR corner coordinates
(x1, y1), (x2, y2) are updated accordingly.

Figure 2 shows an example of how the proposed trajectory
network construction method works. It shows timestamps
T1, T2 and T3 that represent snapshots of the trajectories taken
chronologically. All objects are clustered to form events with
each other (distance  ⌧) in MBRs R1, R2, R3, ..., RM and
form an R-Tree based structure that maintains the MBRs and
the objects inside them at the leaf level. When moved from T1

to T2, it can be seen that some objects do change their location;
however, the change in the coordinates is not significant since
all objects remain within their MBR coordinates, i.e. objects
maintain their current contacts. In this case, an update at the
tree nodes is not required. However, at T3, an object leaves
its MBR R3 and moves to R1. In this case, an update to the
R-Tree at the third leaf level is required. Object ID is removed
from the R3 node and added to R1. Of course, the MBR corner
coordinates need to be updated simultaneously.

Initially, given trajectory data, the first step of the algorithm
is to construct a network from scratch. This process is ex-
plained in Algorithm 1. All trajectories at an initial time t are
first collected (Line 3). The algorithm then performs the fol-
lowing for each object in the current trajectory data: it iterates

Algorithm 1 Trajectory Network Construction
Given the trajectory data that contains the timestamp t 2 {0, T � 1}, object
id id and object coordinates (x, y), the algorithm constructs an R-Tree based
structure and its corresponding MBRs.
1: procedure CONSTRUCTRTREE(data)
2: t = initialtimestamp
3: trajectoriest extractData(t)
4: for object in trajectoriest do

5: for mbr in MBRList do

6: if isInside((x, y),mbrcoor) == True then

7: mbr.add(object)
8: mbr.updateCorners()
9: objLookup[id].add(mbrid)

10: end if

11: end for

12: if length(objLookup[id]) == 0 then

13: mbrNew = createMBR()
14: mbrNew.add(object)
15: mbrNew.updateCorners()
16: objLookup[id].add(mbrNewid)
17: end if

18: end for

19: end procedure

Algorithm 2 Trajectory Network Update
Given the trajectory data at timestamp t 2 {1, 2, ...T}, object id id and object
coordinates (x, y), the algorithm compares the objects movements with the
previous timestamps and assigns the necessary updates.
1: procedure UPDATERTREE(data, t)
2: trajectoriest extractData(t)
3: for object in objLookup[id] do

4: for mbr in MBRList do

5: inside = isInside((x, y),mbrcoor)
6: if mbrid in objLookup[id] then

7: if inside == True then

8: mbr.updateCorners()
9: else

10: mbr.remove(object)
11: mbr.updateCorners()
12: objLookup[id].remove(mbrid)
13: end if

14: else

15: if inside == True then

16: mbr.add(object)
17: mbr.updateCorners()
18: objLookup[id].add(mbrid)
19: end if

20: end if

21: if length(objLookup[id]) == 0 then

22: mbrNew = createMBR()
23: mbrNew.add(object)
24: mbrNew.updateCorners()
25: objLookup[id].add(mbrNewid)
26: end if

27: end for

28: end for

29: end procedure

through each MBR in the tree nodes, denoted by MBRList
and checks whether the object can fit inside the MBR using the
isInside(.) procedure (Lines 4–6). Given object coordinates
(x, y) and MBR coordinates mbrcoor, isInside(.) procedure
checks if object coordinates are within the boundaries of
mbrcoor. If it is, it returns True. If the object is not inside
the MBR, it might be the case that object is still within
the threshold of MBR boundaries and MBR is expanded to
fit the object. In order to check this, isInside(.) procedure

calculates the distance between object coordinates and MBR
corners and checks whether d = (d1, d2, d3, d4)  ⌧ , i.e., the
object can fit into the boundary of the MBR. If it satisfies this
condition, it returns True. Based on this result, the object ID is
added to the MBR and corner coordinates are updated using
updateCorners(). As a result, this expands or shrinks the
boundaries of MBR based on the coordinates of the outermost
objects that are the members of the MBR. Also, a separate
object lookup table is maintained, which keeps the information
about objects and their corresponding MBRs. If the object is
added to the MBR, then the object lookup table is updated
with that particular MBR’s ID in the index of the object (Lines
7–9). At the end of the search for MBRs, the object lookup
table for the object’s index is checked. If it is still empty, the
object is currently not a member of any MBR. Then, a new
MBR for the object itself is created, and the rest of the updates
take place (Lines 12–17). The iterations are repeated until all
objects find the MBRs they can fit in.

Once, the initial R-Tree based network structure is con-
structed, at subsequent timestamps, the structure is no longer
constructed from scratch but updated depending on the object
movements. This procedure is explained in Algorithm 2. The
algorithm does the following for each object in the object
lookup table: it iterates through the current MBRs and calls
the isInside(.) procedure and checks whether the object’s
coordinates can fit inside the MBR (Line 3–5). Then, it checks
whether the object is currently a member of the corresponding
MBR using the object lookup table. If the object is already
a member of the MBR, and if the object’s newest location
still lies within that MBR, only the MBR coordinates need to
be updated. If it is outside the MBR, the object is removed
from the MBR, and updates are performed on the MBR’s
coordinates and object lookup table (Lines 6–13). On the other
hand, if the object is not already a member of the MBR and if
it can fit inside the MBR, the object ID is added to the MBR
(Lines 14–19). At the end of the updates, the object lookup
table for the object’s index is again checked. If the object is
currently not a member of any MBR, a new MBR for the
object itself is created (Lines 21–26). Again, this process is
repeated until all objects find their corresponding MBRs. At
the end of this process, MBRs contain all objects that form
events with each other.

After the tree structure is updated at a given timestamp t,
the events are processed using Algorithm 3. Each MBR in
the tree and its entries are examined (Lines 3–5). Nodes Vt

are updated with the objects that lie within the MBR borders.
Each object pair inside the MBR is then added to Et since
they form events with each other (Lines 6–8). At this point, the
mining algorithms can be executed for the events at the given
timestamp. This process is repeated as the trajectory network
evolves spatiotemporally.

IV. EXPERIMENTAL EVALUATION

In this Section, the proposed trajectory construction method
is evaluated and compared with the naive method. We show
the overhead of both approaches when run with the node

Algorithm 3 Event Update
Given the a R-Tree based trajectory network at timestamp t 2 {1, 2, ...T},
the algorithm processes the sequence of edge events.
1: procedure PROCESSEVENTS(RTree,t)
2: edges = [], nodes = []
3: mbrList RTree(t)
4: for mbr in mbrList do

5: for i in range(0, length(mbr.objects) do

6: nodes.append(mbr.objects[i])
7: for j in range(i+ 1, length(mbr.objects) do

8: edges.append(mbr.objects[i],mbr.objects[j])
9: end for

10: end for

11: end for

12: V [t].append(nodes)
13: E[t].append(edges)
14: end procedure

importance SLOT mining algorithms [13]. We also run exper-
iments to further understand and evaluate the effect of some
critical parameters on the computation cost, such as speed
of trajectories, the number of objects (N), the number of
timestamps (T), the value of threshold (⌧). We initially provide
details of the computational environment and the datasets.
Environment: All experiments are conducted on an Intel(R)
Core(TM) i7-7820HQ CPU @ 2.90GHz and 32GB memory.
The system is booted with Windows 10 operating system. The
Python 3.6 programming language is used for the trajectory
network construction and node importance algorithms.

Data: In order to test the proposed method’s performance,
publicly available datasets in trajectory networks are used
and the parameters of them are fixed in our experiments as
following: ETH Walking Pedestrians Dataset [25] (BIWI ETH
with N = 360, T = 1448 and 8908 trajectories, and BIWI
Hotel with N = 405, T = 1169 and 6544 trajectories),
UCY (Crowds-by-Example) Dataset [26] (UCY Zara-1 with
N = 148, T = 866 and 3882 trajectories, and UCY
University-1 with N = 415, T = 444 and 5779 trajectories),
L-CAS 3DOF Pedestrian Trajectory Dataset [27] (N = 631,
T = 1700 and 21887 trajectories), Stanford Drone Dataset
[28] (N = 1186, T = 2000 and 44532 trajectories), and Grand
Central Station Dataset [29], [30] (N = 2500, T = 1400 and
47866 trajectories). Size of each trajectory entry is 0.12KB.

We also generate synthetic trajectory data to evaluate and
understand the effects of various cases and data parameters
on our algorithm. Two types of synthetic data generators are
used. First, the generator for random velocity trajectories over
a Euclidean plane from [13] is adopted. Given the number of
timestamps T and the number of objects N , for a period of
[0, T], the generator generates random trajectories. The details
of these parameters are given as we go through experiments.
However, we fix certain parameters throughout the experi-
mental section, such as space size = 1000 ⇥ 1000, minimum
speed = 0 and maximum speed = 1. Secondly, the idea of
Brownian motion is adopted to generate more realistic random
pedestrian trajectories. For this generator, the space size is
fixed to 100 ⇥ 100. The details of the other parameters are
given throughout the section. Using these synthetic datasets,

Fig. 3: Proposed trajectory network construction method’s
performance with node importance algorithms on different
non-synthetic datasets. When compared with node importance
algorithms, it can be observed that the overhead of our
construction algorithm is less on smaller datasets.

the dataset parameters are varied, and their effects are observed
on the algorithm performance.

We start by evaluating the performance of trajectory network
construction together with the three node importance SLOT
algorithms (c.f. Section II). As previously stated, for any node
importance algorithm, the data first needs to be collected and
the network needs to be constructed or updated with the new
data. Until after the network or graph becomes ready, the node
importance algorithms cannot be executed. The experiment
shown in Figure 3 observes the overhead of trajectory network
construction on the node importance algorithm on various
real-world datasets. The average number of updates to an
object per timestamp is also shown for both methods. In the
context of R-Tree based network construction, update means
removing/adding an object from/to an MBR. Since the naive
method does not maintain such a structure, update means
processing an event for the object. Based on our experiments,
the node importance algorithm is a lot faster than the naive
network construction. It can be observed that the performance
of both methods is highly correlated with the number of
updates, which happens to be a lot fewer for our proposed
method. This is because our algorithm does not need to assign
an update to an object at each timestamp, but only when
it is necessary (e.g. once an object leaves its MBR). The
naive method, however, does not evaluate this redundancy
and assigns updates to each object at each timestamp even
if the objects do not change their position. Based on these
experiments, the proposed method reduces the average number
of updates per timestamp by a geometric mean of 71.25%.

Similarly, the experiment shown in Figure 4 observes the
overhead of trajectory network construction on the node im-
portance algorithm on random synthetic data. In Figure 4a, the
number of timestamps are fixed to T = 103, and the number
of objects are increased from 103 to 8⇥103. In Figure 4b, the
number of objects are fixed to N = 103 and the number of
timestamps are increased from 103 to 8⇥103. In both cases, we
observe the time required to run the node importance together
with the naive method for trajectory network construction
versus node importance together with our proposed algorithm
for network construction. At T = 103 and N = 8 ⇥ 103,

(a) T = 1000.

(b) N = 1000.

Fig. 4: Trajectory network construction methods when run
together with node importance algorithms. Construction of the
network with the naive approach takes even longer than the
node importance algorithms.

Fig. 5: Trajectory network construction performance with
different values of N and average number of updates per
timestamp on synthetically generated Brownian motion data.

it can be seen that the network construction takes more than
6⇥ longer than the node importance algorithms in the naive
method’s case. This becomes problematic in cases where
the node importance algorithms and network construction
are pipelined. In such a case, the pipeline granularity will
degrade since the wait time for the node importance algorithm
increases exponentially, especially on large scale data and
an increased number of objects. However, we show that the
proposed network construction method reduces the overhead
as close as to the node importance runtime. This makes our
algorithm ideal for cases where the node importance and
network construction are pipelined.

Additionally, it can be observed that both algorithms are
more sensitive to N compared with T . This is because the
interaction of objects with each other needs to be taken into
account for the node importance algorithms. However, it can
be observed that the proposed construction method is more

robust against large N compared to the naive method. The
naive construction method needs to examine each object pair
to evaluate their interaction (in this case, calculate the distance
between them, and therefore is O(N2). On the other hand, our
network construction does not need to evaluate each object
pair. It instead examines the interactions between objects and
MBRs, which makes it O(N ·M), where M is the number of
MBRs which is much smaller than N .

Figure 5 shows the experiment performed on the synthetic
Brownian motion data. The number of timestamps is fixed to
T = 103, and the number of objects is increased from 102

to 104. It additionally shows the average number of updates
to an object per timestamp. The number of assigned updates
increase with the increased N . However, since the proposed
network construction takes advantage of the redundant data, it
assigns not as many updates than the naive method.

(a) Threshold effect on the
methods.

(b) Average number of updates
per timestamp in the proposed

construction method.

Fig. 6: Comparison of the trajectory network construction
methods with respect to different thresholds on the synthetic
random trajectory data (Figure 6a). Unlike the naive method,
the proposed construction method gets faster as threshold
increases, since fewer updates are assigned (Figure 6b).

Figure 6 shows the effect of distance threshold (⌧) on the
algorithms on the synthetic random trajectory data. As previ-
ously mentioned, the Euclidean plane size here is 1000⇥1000.
The experiment sets N = 5⇥ 102 and T = 103. In Figure 6a,
⌧ is increased from 10 to 103. We observe that as ⌧ increases,
the performance of our construction method improves while
the performance of the naive construction algorithm degrades.
This opposing behavior is explained with the number of MBRs
(M) maintained by the R-Tree structure. When threshold ⌧
increases, it allows for more objects on the plane to interact
with each other, i.e. it increases the number of events and
edges in the network. In this case, the naive method has to
process more events. In R-Tree structure, each MBR contains
objects that form events with each other. When the threshold
⌧ is high (proportioned with the area size), there are a smaller
number of MBRs in the R-Tree that contain more objects and
fewer updates are required. When the threshold ⌧ decreases, R-
Tree needs to generate more MBRs that contain fewer objects
and assign more updates as shown in Figure 6b. The work
in R-Tree increases with the number of MBRs it needs to
maintain. Therefore, the nature of R-Tree allows our proposed
construction method to handle higher ⌧ better.

Figure 7 shows the experiment on the synthetic Brownian
motion trajectory data with parameters N = 1000, T = 1000

(a) Effects of object speed. (b) Avg. updates per timestamp
in our construction method.

Fig. 7: Our trajectory network construction performance with
respect to different � values as compared to the naive method
on the Brownian Motion data (Figure 7a). As � decreases,
objects move at lower speeds and generate more redundant
data; therefore, smaller number of updates to the network need
to be made (Figure 7b).

and ⌧ = 5. The speed of the objects is changed using the
� parameter in the Brownian motion equation. When the
speed of moving objects is low, as timestamps are processed,
objects do not change their position as frequently. Therefore,
they generate a lot of redundant information. For example,
if the speed is low, the objects in the network may not
leave their MBRs at all or may leave after many timestamps.
Therefore, no updates need to take place for a certain length of
observation time. Even if the objects change their position to
some extent, as long as they remain in their current MBRs, no
updates may be required. As shown in Figure 7b, the number
of updates in the trajectory network increase with the speed.
Therefore, in Figure 7a, we observe that as the speed increases
(i.e. the redundancy decreases), our algorithm’s performance
degrades relative to the naive method.

V. DISCUSSION AND CONCLUSION

A novel trajectory network construction algorithm using R-
Tree based structure is proposed that efficiently generates an
STN from raw trajectory data. We show that the method can
significantly reduce the time cost of the network construction.
It keeps track of all trajectories and their interactions using
Minimum Bounding Rectangles (MBR), and therefore, it ef-
ficiently handles spatiotemporally changing data. The method
is evaluated against the static network construction method
using various real-world and synthetic datasets. It is shown that
the proposed method significantly outperforms static network
construction, especially in highly redundant datasets. Addi-
tionally, it is shown to reduce data construction time to as low
as the time required to execute the node importance algorithms
on a trajectory network. This enables fast trajectory network
computations since the network construction can be pipelined
with mining algorithms. The proposed method can be further
optimized since the R-Tree structure used in this paper has
a depth of 1, and no limitations are imposed on the number
of objects per MBR. A generalized R-Tree constructor can
support arbitrary depth and perform self-balancing operations
that can be utilized for future optimizations.

ACKNOWLEDGEMENTS

This work was funded by the U.S. Government under a
grant by the Naval Research Laboratory. This work was also
supported by the National Science Foundation (NSF) under
Grant No. CNS-1718481.

REFERENCES

[1] K. Sila-Nowicka, J. Vandrol, T. Oshan, J. Long, U. Demsar, and
A. Fotheringham, “Analysis of human mobility patterns from gps
trajectories and contextual information,” International Journal of Ge-

ographical Information Science, vol. 30, pp. 881 – 906, 2016.
[2] A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis, “Tensor methods

for group pattern discovery of pedestrian trajectories,” 2018 19th IEEE

International Conference on Mobile Data Management (MDM), pp. 76–
85, 2018.

[3] D. Guo, S. Liu, and H. Jin, “A graph-based approach to vehicle trajectory
analysis,” Journal of Location Based Services, vol. 4, pp. 183 – 199,
2010.

[4] J. Kim, K. Zheng, J. Corcoran, S. Ahn, and M. Papamanolis, “Trajectory
flow map: Graph-based approach to analysing temporal evolution of
aggregated traffic flows in large-scale urban networks,” 2017.

[5] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-
and-group framework,” in SIGMOD ’07, 2007.

[6] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31,
pp. 581–603, 1966.

[7] S. Wasserman and K. Faust, “Social network analysis - methods and
applications,” in Structural analysis in the social sciences, 2007.

[8] P. Bonacich, “Power and centrality: A family of measures,” American

Journal of Sociology, vol. 92, pp. 1170 – 1182, 1987.
[9] U. Brandes, “A faster algorithm for betweenness centrality,” The Journal

of Mathematical Sociology, vol. 25, pp. 163 – 177, 2001.
[10] M. V. Kreveld and J. Luo, “The definition and computation of trajectory

and subtrajectory similarity,” in GIS, 2007.
[11] N. Magdy, M. Sakr, T. Mostafa, and K. El-Bahnasy, “Review on trajec-

tory similarity measures,” 2015 IEEE Seventh International Conference

on Intelligent Computing and Information Systems (ICICIS), pp. 613–
619, 2015.

[12] S. Dodge, R. Weibel, and E. Forootan, “Revealing the physics of
movement: Comparing the similarity of movement characteristics of
different types of moving objects,” Comput. Environ. Urban Syst.,
vol. 33, pp. 419–434, 2009.

[13] T. Pechlivanoglou and M. Papagelis, “Fast and accurate mining of node
importance in trajectory networks,” 2018 IEEE International Conference

on Big Data (Big Data), pp. 781–790, 2018.
[14] L. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and

C. Sohler, “Counting triangles in data streams,” in PODS ’06, 2006.
[15] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in streaming

algorithms, with an application to counting triangles in graphs,” in SODA

’02, 2002.
[16] C. E. Tsourakakis, U. Kang, G. Miller, and C. Faloutsos, “Doulion:

counting triangles in massive graphs with a coin,” in KDD, 2009.
[17] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal

networks,” Proceedings of the Tenth ACM International Conference on

Web Search and Data Mining, 2017.
[18] K. Gabriel and R. Sokal, “A new statistical approach to geographic

variation analysis,” Systematic Biology, vol. 18, pp. 259–278, 1969.
[19] T. Erlebach, K. Jansen, and E. Seidel, “Polynomial-time approximation

schemes for geometric intersection graphs,” SIAM J. Comput., vol. 34,
pp. 1302–1323, 2005.

[20] G. Toussaint, “The relative neighbourhood graph of a finite planar set,”
Pattern Recognit., vol. 12, pp. 261–268, 1980.

[21] H. Kim and R. Anderson, “Temporal node centrality in complex
networks.” Physical review. E, Statistical, nonlinear, and soft matter

physics, vol. 85 2 Pt 2, p. 026107, 2012.
[22] P. Holme, “Network reachability of real-world contact sequences.”

Physical review. E, Statistical, nonlinear, and soft matter physics, vol.
71 4 Pt 2, p. 046119, 2005.

[23] L.-V. Nguyen-Dinh, W. G. Aref, and M. Mokbel, “Spatio-temporal
access methods: Part 2 (2003 - 2010),” IEEE Data Eng. Bull., vol. 33,
pp. 46–55, 2010.

[24] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
in SIGMOD ’84, 1984.

[25] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk
alone: Modeling social behavior for multi-target tracking,” in 2009 IEEE

12th International Conference on Computer Vision. IEEE, 2009, pp.
261–268.

[26] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” in
Computer graphics forum, vol. 26, no. 3. Wiley Online Library, 2007,
pp. 655–664.

[27] L. Sun, Z. Yan, S. M. Mellado, M. Hanheide, and T. Duckett, “3dof
pedestrian trajectory prediction learned from long-term autonomous
mobile robot deployment data,” 2018 IEEE International Conference

on Robotics and Automation (ICRA), pp. 1–7, 2018.
[28] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning

social etiquette: Human trajectory understanding in crowded scenes,”
in European conference on computer vision. Springer, 2016, pp. 549–
565.

[29] B. Zhou, X. Wang, and X. Tang, “Random field topic model for semantic
region analysis in crowded scenes from tracklets,” in CVPR 2011. IEEE,
2011, pp. 3441–3448.

[30] S. Yi, H. Li, and X. Wang, “Understanding pedestrian behaviors from
stationary crowd groups,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2015, pp. 3488–3496.

