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A network model of transient polymers: exploring
the micromechanics of nonlinear viscoelasticity†

Robert J. Wagner, Ethan Hobbs and Franck J. Vernerey *

Dynamic networks contain crosslinks that re-associate after disconnecting, imparting them with

viscoelastic properties. While continuum approaches have been developed to analyze their mechanical

response, these approaches can only describe their evolution in an average sense, omitting local,

stochastic mechanisms that are critical to damage initiation or strain localization. To address these

limitations, we introduce a discrete numerical model that mesoscopically coarse-grains the individual

constituents of a dynamic network to predict its mechanical and topological evolution. Each constituent

consists of a set of flexible chains that are permanently cross-linked at one end and contain reversible

binding sites at their free ends. We incorporate nonlinear force–extension of individual chains via a

Langevin model, slip-bond dissociation through Eyring’s model, and spatiotemporally-dependent bond

attachment based on scaling theory. Applying incompressible, uniaxial tension to representative volume

elements at a range of constant strain rates and network connectivities, we then compare the

mechanical response of these networks to that predicted by the transient network theory. Ultimately, we

find that the idealized continuum approach remains suitable for networks with high chain

concentrations when deformed at low strain rates, yet the mesoscale model proves necessary for the

exploration of localized stochastic events, such as variability of the bond kinetics, or the nucleation of

micro-cavities that likely conceive damage and fracture.

1 Introduction

Dynamic networks, defined by arrangements of filaments or
chains inter-linked by reversible bonds, are omnipresent in
both natural and synthetic materials. These materials range
from thermally transient microemulsions1 or molecular motor-
driven microtubule networks,2 to interlinked clusters of insects
such as fire ants3,4 or honeybees5 at the macroscopic level.
Reversible bonds in these networks tend to dissociate from
stressed configurations and re-associate into relatively stress-
free states, conferring dynamic networks with remarkable
viscoelastic properties, including the ability to stress relax,6

mitigate crack propagation,7 and self-heal8 at timescales
governed by the underlying bond kinetics.9 Relating the local
chain properties and topologies of such networks to their global
mechanical response is highly sought after by researchers aiming
to elucidate the origins of biophysical phenomena,10 as well as
those interested in the predictive design of meta-materials with

suitably tough mechanical properties, the ability to self-repair,11

or the ability to facilitate active transport.12

Towards this aim, many methods of modelling dynamic
networks have been developed, including both microscale
methods such as molecular dynamics (MD) or dissipative
particle dynamics (DPD) simulations, and macroscale statistical
mechanics approaches.13 While the former methods simulate every
elementary unit in a system (e.g., atom, molecule or Kuhn segment)
to predict the microstructural evolution with high precision,14 they
are computationally expensive. As such, modelling statistically
representative volume elements (RVEs) – material unit cells
that capture the full range of structural microphases – is often
impractical when using these methods for amorphous materials.
In contrast, continuum scale approaches such as the continuum
model introduced by Hui et al. (2012)15 or transient network theory
(TNT)9 manage to make a connection between bond kinetics and
the emerging material response while requiring few computational
resources. However, they usually rely on smoothing assumptions
that restrict researchers from exploring the role of local
heterogeneities or microstructural features. While statistical and
computational approaches have been developed to relate damage
to the macroscopic material response,16,17 these models often
remain bound to coarse-graining assumptions such as, isotropy,
affine deformation and – commonly – idealized chains or bond
dynamics. Isotropy is reasonably assumed for some, but not all,
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dynamic networks,7 whereas the affine assumption is typically
violated at the network scale and slightly over-predicts stress.18,19

Furthermore, assumptions of idealized chain force–extension
models and constant bond dynamics are typically violated at
intermediate to high chain stretches.20–22

To address these shortcomings, researchers have developed
a number of multiscale models residing between the elemental
length scale of MD simulations and material length scale of
continuum approaches, which we will here refer to as the
‘‘mesoscale’’.‡ Rather than simulate the elemental units of a
network, mesoscale models generally coarse-grain entire chains
and prescribe their mechanical properties through statistical
representations such as the ideal Gaussian model.23 In doing
so, these models avert high computational cost while still
permitting investigation of the detailed microstructural
changes that occur during network evolution.13 Mesoscale
models have been extensively used to study the effects of non-
affine deformation in permanent networks,24–26 revealing that
the affine assumption limits continuum models’ abilities to
predict the mechanics of networks near the percolation
threshold.27 By extension, this also limits continuum models
in cases where damage occurs during deformation.7,17 In con-
trast, mesoscale models easily permit probabilistic rupture of
bonds through models such as Eyring’s21 or Bell’s28 theory,
while inherently tracking the topological evolution of the
network. Such mesoscale methods may be applied directly to
entire networks29,30 or incorporated into ‘‘quasicontinuum’’
models31–33 in which regions of high micro-structural interest
(e.g., those undergoing plastic deformation or damage) are
examined mesoscopically, while elements of lower interest
(i.e., homogenous regions) are captured through statistical
continuum models. Through both methods, researchers have
employed mesoscale models in the examination of permanent
damage, mechanical toughness, and loading rate-dependence,
to determine how these features are affected by chain properties
and concentrations.30,32–34 A natural extension of such work is to
then apply mesoscale modeling in the exploration of dynamic
networks in which the dissociation of bonds is reversible.
Indeed, researchers in the biophysics community have examined
active dynamic systems such as actin–myosin or cytoskeletal
networks using mesoscale modeling approaches.10,22 However,
inclusion of activity in these systems obfuscates the isolated
effects of traits such as topology, chain properties, and bond
kinetics, which researchers of thermally driven dynamic
networks (e.g., vitrimers35,36) are most immediately concerned
with. In the study of inactive polymers with reversible bonds,
other researchers have employed the more traditional methods
of MD-Monte Carlo simulations to directly study37 or develop
specific statistical approaches in the study of features such as
self-healing and adhesion of dynamic polymers.38 However,

these methods are inhibited by the same computational costs
and inaccessibility to larger time and length scales discussed
earlier. Ergo, there remains much to be learned through the
development and application of a general mesoscale framework
for networks with reversible bonds.

Moving in this direction, we here introduce a discrete,
mesoscopic, network model with dynamically cross-linking
connections that may represent a broad scope of systems
ranging from vitrimers39 to gel networks.40 Our main contribution
is at two levels. First, we introduce the mesoscale model, which
captures the time-dependent mechanical responses of networks
with dynamic connections, and allows us to relate them directly to
networks’ topological evolution. This model incorporates not only
probabilistic bond detachment, but also reattachment events,
thus broadening the scope of networks that may be explored
from permanent networks (with or without damage), to those that
may flow and self-heal. In the first iteration of this model, we
focus on networks of flexible chains permanently cross-linked to
one another at one end in a star-like configuration and containing
reversible binding sites at their free ends, which we will refer to as
‘‘stickers’’ (Fig. 1). As the first application of this model and
second contribution of this work, we compare the predictions of
this approach to those of the existing continuum TNT,9 thereby
allowing us to explore the limitations of the statistical approach
directly as they relate to the underlying network properties and
loading conditions. In the remainder of this manuscript, we
briefly describe the TNT for dynamic networks of Gaussian
chains, introduce the discrete model, and then explore the
mechanical responses predicted by each of these methods.

2 Transient network theory for
Gaussian networks

The TNT begins with the statistical treatment of networks
comprised of randomly oriented flexible chains connected by
reversible bonds with intrinsic association and dissociation
rates, ka and kd, respectively. The elastic energy of these
networks derives from the entropic elasticity of their connected

Fig. 1 (A) A single sample constituent with three possible attachments is
shown. Per the legend, grey nodes represent permanent crosslinks, blue
nodes represent reversibly bonded pairs, red nodes represent detached
reversible bonds and black curves represent chains. (B and C) A sample
network (B) before and (C) after a series of attachment and detachment
events (denoted by ka and kd, respectively) is depicted. The scale bar
represents approximately 1z where z is the characteristic spacing between
permanent crosslinks in the network.

‡ While researchers of condensed matter physics often define the ‘‘mesoscale’’ as
residing distinctly between the nanometer (i.e., atomistic or molecular) and
micrometer length scales,13 our interest in exploring a wide breadth of dynamic
networks – including macroscopic systems – prompts us to use this term in
reference to any length scale at which constituents are coarse-grained as single
members.
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chains, which is expressed in terms of their end-to-end vectors
r. For a population of Gaussian chains, the most probable
end-to-end distance or ‘‘reference state’’ is expressed by the

product
ffiffiffiffi
N
p

b, where N and b are the number and length of
Kuhn segments in a chain, respectively.20 For convenience, the
physical state of a chain is taken as the stretch vector

k ¼ r
� ffiffiffiffi

N
p

b
� �

, such that k is a unit vector when chains are in
their reference state. To provide a statistical description of the
network, one then introduces the distribution function f(k, t)
that characterizes the number density of chains found in
configuration k. Since this distribution describes the physical
state of the full population, it can be used to calculate
important macroscopic quantities such as the elastic energy,
stress, or viscous relaxation.4,6,9

Let us now consider a small network volume, subjected to an
overall deformation history, characterized by the time-
dependent deformation gradient tensor F(t). At a given time,
this function can be used to evaluate the velocity gradient
tensor through the relation L =

:
F F�1 where the superimposed

dot represents the material time derivative. From this knowledge,
it is possible to construct an evolution equation for the
distribution function over time if a relationship is postulated

between global deformation L and local chain deformation _l.
The simplest and most common assumption is given by the

instantaneously affine approximation6 that reads _k = Lk. In this
case, it can be shown that the material time derivative of the
distribution takes the form of the Fokker–Planck equation:9

_f ¼ �L:
@f
@k
� k

� �
� fTrðLÞ þ kacdp0 � kdf (1)

where cd is the concentration of detached chains and p0(k)
describes the probability density function at which chains
reattach to the network. The function p0(k) is usually taken as an

anisotropic, multivariate Gaussian with variance
ffiffiffiffi
N
p

b to express
the fact that chains reconnect into a relaxed conformation. In this
work, we concentrate on incompressible networks, characterized by
det(F) = 1, or alternatively, Tr(L) = 0. This therefore implies that the
second term on the right-hand side of eqn (1) vanishes in the
remainder of this manuscript. Given the evolution of the chain
distribution (f) through eqn (1), and assuming the force–extension
( f–l) response of a single chain is known, the stress in the network
can be directly evaluated through the virial formula as:9

r = 8ff # k8 + pI (2)

where p is a hydrostatic pressure that enforces the network’s
incompressibility.

We here concentrate on a reduced form of the TNT,41 where
the chain distribution is described by its covariance matrix

l ¼ 3

c
fðkÞk� kk k, also known as the conformation tensor.

Focusing on the case where the rates of chain dissociation kd

and association ka are constants and independent of deformation,
then the concentration of attached (and therefore
detached) chains quickly reaches a steady state that is not
affected by the loading history. This steady state concentration

given by:

c ¼ ka

ka þ kd
ct (3)

where ct is the total chain density. Furthermore, the Fokker–
Planck equation can be replaced by its reduced form, that
describes the evolution of the conformation tensor as follows:9

_l = Ll + lLT � kd(l � I) (4)

If the network is initially stress-free, this equation is
complemented by the initial condition l = I, where I is the
identity tensor. It can be shown that a general solution of this
equation is:9

lðtÞ ¼ FFTe�kdt þ kdF

ðt
0

Ft
�1Ft

�T� �
e�kdðt�tÞdt

� �
FT (5)

where the deformation gradient Ft = F(t). Although many
flexible chains exhibit a severe, non-linear strain-stiffening
response when deformed near their contour lengths, for
simplicity, we here assume that the force–extension relation
is that of a linear Gaussian chain taking the form f = 3kTl where
kT is the thermal energy. In this case, the stress simplifies to:9

r = ckTl + pI (6)

Combining this equation with the general solution for the
conformation tensor (eqn (5)) leads to the prediction of the
stress tensor for an arbitrary deformation history F(t). The TNT
has been amply used to understand the molecular origin of the
viscoelastic response by transient networks.4,6,9,42–45 It however
hinges on a number of assumptions that could affect the
validity and accuracy of its prediction in certain conditions.
Among those assumptions are (a) the affinity of the chain
deformation, (b) the assumption of constant association and
dissociation kinetics, and (c) the linear force–extension
response of the flexible chains. To explore these limitations,
we here construct a discrete, transient network model that does
not rely on these restrictions.

3 Discrete model of transient
networks

The topology of transient networks can be very diverse. Without
compromising generality, we here present a model that consist
of a network of star-shaped units whose branches may reversibly
bind with one another, in line with the depiction of Fig. 1. As a
discrete model that represents the end-to-end vector of every
chain, this framework inherently captures the non-affine
response of the network as it undergoes conformational changes
during deformation. Similarly, given bond dynamics, the frame-
work also captures non-affine changes due to network reconfi-
guration. Furthermore, the bond dissociation rate of attached
chains is prescribed a statistical dependence on force through
Eyring’s theory,21 while the association rate of detached chains is
governed by their proximity to neighboring open chains and
their timescale of tethered Rouse diffusion,38 thus rendering the
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assumption of constant kinetic rates unnecessary. Finally, the
chains are assigned a nonlinear force–extension relationship
through the Padé approximation of Langevin chains,46 capturing
the enthalpic stiffening of chains from the stretching of intra-
constituent bonds as they near full extension (as opposed to just
entropic stiffness from unfolding).47 In the remainder of this
section, we detail the prescribed force–distance relationships
(both the attraction of mutually bonded nodes due to chain
forces and repulsion of neighboring nodes due to volume
exclusion), bond kinetics (both detachment and attachment),
and integration of single chains into a network.

3.1 Elastic and repulsive interactions in a transient network

Networks’ constitutive properties are intrinsically tied to the
constitutive properties of their elemental building blocks.
Therefore, due consideration must be given to the assignment
of a force–extension relationship, f (l), for jointly connected
chains in the model. In many networks of flexible chains, a
nonlinear stiffening occurs when members are stretched close
to some finite contour length. To prescribe a finite contour
length, we employ the Padé approximate for Langevin chains46

for which the corresponding free energy is:

UcðlÞ ¼ kT
l2

2
�N logðN � l2Þ

� 	
: (7)

Notably, the force in a Langevin chain diverges in the limit l!ffiffiffiffi
N
p

(i.e., r - L), enforcing that f - N when the chains are
stretched to their full contour length (Fig. 2A). This nonlinear
divergence at high chain stretch is common to polymeric
chains. In fully extended polymer chains, the conformational
degrees of freedom are minimized and the stiffness of the
chains is no longer entropically driven, rather it is governed by
the much stiffer stretching of covalent bonds between
monomers.48

This model relies on the freely-jointed assumption that
there is no energetic penalty for changing the angle between
adjacent chain segments (i.e., bending). Employing freely-

jointed chains simplifies our network model by eliminating
moments on our permanent crosslinks, instead ensuring that
the force from a chain always occurs pairwise and in-line with
the centers of mass of the nodes to which it is connected. It also
permits us to assume a circumferentially symmetrical radial
distribution for unattached chains such that the stickers are
equally likely to occupy any azimuth about their tethered node.
However, with no energetic penalty for bending the chains have
no finite rest length and are always in tension, which – in the
absence of any repulsive potential – will cause traction-free
networks to converge to a single point. To mitigate this non-
physical effect, we introduce soft volume exclusion between
permanent crosslinks through a generic inverse repulsion
potential of the form:49

URðdÞ ¼
E g

d

R

� �
þ R

d

� �g� 	
; if doR

0; if d � R

8><
>: (8)

where E is a characteristic energy scale, R is the effective
particle radius, g is a scaling parameter that defines how soft
the particle is (where setting g lower decreases the particle
stiffness), and d is the pairwise separation distance between
neighboring nodes’ centers of mass. From eqn (8), we
may derive the repulsive force according to qUR/qd, which gives
fR(d) = gE(1/R � Rg/d(g+1)) when d o R while fR(d) = 0 otherwise.
Thus, the total force acting between an adjacent set of bonded
nodes becomes the sum of the tensile chain force and repulsive
volume exclusion force. Ultimately, e and R are set such that the
net force between a bonded pair becomes zero at a distance of
R = 2lc, which ensured that the networks always hosted some
effective pressure from volume exclusion, and which led to
negligible stress in equilibrated networks regardless of chain
concentration (see Section 3.4). Additionally, g is set to 2 in
order to achieve a very soft pairwise repulsion. We set the
contour length of an attached chain to Nb = 3.5 units of length,
and assume monodispersity, which enforces that chains
remain close to the linear regime of the tensile force when
connected to nearest neighbors. Note that while the Langevin
contribution to the pairwise force between nodes exists only if
said nodes are mutually bonded, volume exclusion force is
maintained between all nodes within the radial separation
distance d r R, hence the distinction between center of mass
separation distance ‘‘d’’ and chain end-to-end distance ‘‘r’’.

3.2 Force-dependent bond dissociation

At the constitutive level, the process of detachment is governed
by the competition between the binding energy, DG, of reversible
bonds and the force-dependent free energy, C( f ), stored in the
bonds’ chains. If the free energy in the chain exceeds this
binding energy (C( f ) 4 DG), then the bond will detach while
if the energy barrier is not eclipsed the bond will remain
attached. As such, bond detachment is an inherently force-
dependent phenomenon. In many of the systems modeled, such
as polymeric networks, the force produced in a chain contains
a random diffusion-governed, entropic contribution. Therefore,

Fig. 2 (A) The entropic tensile force of an attached chain is plotted with
respect to extension, l ¼ r

� ffiffiffiffi
N
p

b. Both the Gaussian (dashed black line)
and Langevin (solid black curve) chain models are displayed. The nominal
spacing between nearest neighboring permanent crosslinks, lc, and the

chain contour length, l ¼
ffiffiffiffi
N
p

are denoted for reference. (B) The repulsive
force between neighboring units due to volume exclusion is plotted with
respect to separation distance, d. Again, lc is marked for reference. The
length scale above which repulsion goes to zero, R, is also denoted.
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the detachment process will appear probabilistic at the
mesoscale and so we employ an average rate to describe random
dissociation events.

One commonly employed statistical model for force-
dependent detachment in both mesoscale10 and continuum
approaches7 is Eyring’s theory, which describes the average
bond detachment rate kd (or average inverse bond lifetime, kd =
1/tb) according to:

kd ¼ k0d exp
fxd

kT

� �
; (9)

where k0
d is the force-free detachment rate and xd is the

detachment activation length scale that characterizes the
force-sensitivity through f0 = kT/xd.21 The effects of force
sensitivity are displayed in Fig. 3A. When f0 is on the order of
20kT/b, there is very little extension-dependence of kd until

l!
ffiffiffiffi
N
p

. In contrast, when f0 is on the order of 0.2kT/b, kd is
more than tenfold greater than k0

d at the initial separation
distance between nearest neighbors, lc. As f0 will greatly impact
the connectivity and therefore stiffness of the networks in this
model, further investigation into its effects may be considered
in future work. However, here f0 is held at 2kT/b, which
produces an intermediate force-dependent effect on kd wherein
f reaches f0 at r E 2.5lc. Regardless of f0, under no applied load
( f = 0), the stress-free rate of detachment due to random
fluctuation is given by k0

d. From eqn (9) we see that as
force increases, the detachment rate increases exponentially.
Referencing the force–extension relationship of attached
chains (Fig. 2A) we see that the detachment rate diverges and
the bond lifetime goes to zero in the extensile limit r - L (or

l!
ffiffiffiffi
N
p

). It should be noted that eqn (9) is also synonymous
with the Bell model originally employed to predict slip bond
detachment kinetics between cells,28 thus generalizing its
application beyond the systems Eyring originally studied.

To gauge the effects of this coarse-grained detachment
algorithm on a single chain, we conduct a simple benchmark
problem. Two chains whose reversible binding sites are initially
attached, have their permanently cross-linked ends held apart

at some constant chain length, r. The nominal detachment
rate, kd, in this chain is then computed through eqn (9). From a
numerical view point, the detachment kinetics of a detached
chain can be seen as a stochastic process, where each event is
considered independent. It can therefore be considered as a
Poisson process with average rate kd. The differential probability
Pd for an attachment event to occur during a time interval t and
t + dt therefore follows the relation:

dPd = kde�kdtdt. (10)

Discretizing t by some small numerical timestep, Dt, and
accounting for the memorylessness of the exponential
function, we may rewrite this relationship such that the
probability of detachment at any given timestep in the model
is taken as:

Pd = 1 � e�kdDt. (11)

Time is stepped in increments of Dt, and a random number, a,
in the range a A [0, 1] is checked against Pd. If, a r Pd, the bond
is detached, the bond lifetime is recorded, and the simulation
stops. This process is repeated for 20 000 observations over
three separate values of r (r = lc, r = 2lc, and r = 3lc).
The resulting probability mass functions of bond lifetime
are presented in Fig. 3B, which agree with the continuous
distributions predicted by eqn (10). As r increases, the tail of the
histogram shortens and the peak of the distribution increases
indicating a shorter average bond lifetime for highly stretched
chains, as expected from eqn (9). In contrast, decreasing r
elongates the tail of the distribution and reduces the peak value,
indicating that shorter chains have longer average bond lifetimes.

3.3 Kinetics of bond association

Let us now concentrate on estimating the lifetime of a dangling
bond, that is attached to a fixed node as shown in Fig. 4A.
While other researchers have successfully employed Bell’s
theorem for the reattachment of bonds that fasten together
‘‘hidden lengths’’ or phantom loops,50 this approach requires
that the reversible bonds reside along the lengths of the
polymers and that the chains remain intact, albeit elongated,
after bond rupture. However, bond breakage in the networks
examined here results in complete chain scission and the
formation of two dangling chains, which are tethered only at
one end to their permanent cross-links. Under such conditions,
assuming negligible long-range potential between the free
stickers and that the bond transition length scale is very small
(such that bonds reform when two free stickers effectively come
into contact), then bond association kinetics depend primarily
on the diffusion of detached stickers. When detached, a
dangling flexible chain explores the space surrounding the
central node through a sub-diffusive Rouse process. Following
Stukalin et al. (2013),38 and assuming sufficiently flexible,
ergodic chains, we designate t0 as the time it takes for this
bond to move through the molecular distance b. This time
depends on both temperature and the friction coefficient
between the dangling chain and its surrounding medium.
Following the Rouse diffusion model, the mean square

Fig. 3 (A) Rate of unbinding as a function of chain stretch is plotted for
three different values of bond force sensitivity, f0. The vertical dashed lines
represent the stretches at which f = f0 (or kd = e) for each value of f0.
(B) Statistics of the bond lifetime of an attached chain when f0 = 2kT/b, are
plotted for three different values end-to-end distance, r: r = lc (cyan), r =
2lc (black), and r = 3lc (red), where lc is nominal spacing between nearest
neighboring permanent cross links.
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displacement hDr2(t)i of the dangling bond around its anchoring
node increases as a square-root of time following:

hDr2ðtÞi ¼ b2
ffiffiffiffiffiffiffiffiffi
t=t0

p
; (12)

for t0 o t o tR, where tR is the Rouse time of the dangling chain
given by tR = t0N2. Let us now estimate the three-dimensional
volume V explored by the bond over time (Fig. 4A). This volume
may be estimated by the mean square displacement as V(t) =
hDr2(t)i3/2, which, combined with eqn (12) yields the relation:

V(t) = b3(t/t0)3/4. (13)

To obtain a scaling law for the average lifetime of a free
dangling chain, we postulate that a binding event occurs when
the exploration volume V(t) is equal to the volumes at which two
dangling chains, attached to nodes separated by a distance d,
intersect (i.e., V E d3). Applying this to eqn (13) gives the
average life time of a free dangling chain as t E t0(d/b)4. In
other words, the average rate of association ka = 1/t scales
nonlinearly with the distance between two nodes according to
the power law:

ka �
1

t0

b

d

� �4

; (14)

where ka = 0 if d 4 Nb. Note that this scaling law based on
the work of Stukalin et al. (2013),38 yields a rough estimation
of the lifetime of a dangling chain and may be improved
in a number of ways. For instance, the recombination of
two dangling chains that belong to the same node is not
considered here, but is expected to decrease the lifetime
of these free chains. While this work ignores such effects
for clarity, they may be included in ulterior versions of
the model.

As with the detachment kinetics, the recombination kinetics
of two dangling chains may be viewed as a stochastic process,
where each event is independent, thereby being treated as a
Poisson process with average rate ka. Thus, the differential
probability Pa of an attachment event occurring during the
time interval t and t + dt follows the relation:

dPa = kae�katdt, (15)

where ka is a function of both time and chain separation
through eqn (14). Therefore, to gauge the effects of this
coarse-grained attachment process on a single chain, we
conduct another simple benchmark problem. As with the
detachment process, we discretize t, giving the attachment
probability within a discrete timestep as Pa = 1 � e�kaDt. Two
detached tethers separated by a fixed distances of d = lc, d = 2lc,
and d = 3lc are allowed to bond and their unbound lifetime is
recorded. The resulting probability mass functions from 20 000
detached lifetime observations each, are presented in Fig. 4A,
which agree with the continuous distributions predicted by
eqn (10). As d decreases, the tail of the histogram shortens
significantly and the peak of the distribution increases
indicating a shorter average unbound lifetime between nodes
in close proximity, as expected from eqn (14). In contrast,
increasing d lengthens the tail of the distribution and decreases
the peak value, indicating an increased average unbound life-
time, with very few attachment events occurring at any given
lifetime when d = 3lc in the observed time interval.

The combined effects of ka(d,t) and kd(r) are illustrated in
Fig. 4B by plotting the ratio ka/(ka + kd) with respect to node
separation distance d (which is synonymous with r for bonded
nodes). This ratio predicts the steady state fraction of chains
that will be attached at a given end-to-end distance. It remains
close to one for small separations at which kd will diminish
(Fig. 3B) and ka will increase (Fig. 4A). Similarly, it approaches
zero in the limit r - Nb. To also highlight the effect of the
sticker diffusion timescale, Fig. 4B displays ka/(ka + kd) for three
values of t0: t0 = 10�6Dt, t0 = 10�7Dt, and t0 = 10�8Dt. When t0 is
increased (i.e., when it takes longer for the sticker to travel a
distance b), the fraction of attached chains at a given distance
generally decreases, as expected given the corresponding
reduction in ka through eqn (14). Specifically, when t0 =
10�8Dt, the fraction of attached chains remains close to one
until d 4 2lc, while when t0 = 10�6Dt, the fraction of attached
chains only remains close to one when d o lc. As with f0, t0

greatly impacts the connectivity and therefore mechanical
properties of the networks. In the scope of this work, t0 is set
to 10�7Dt, such that the predicted fraction of attached chains
transitions from one to zero within the approximate node
separation range of this model (lc o d o 4lc) (see Fig. 4B).

3.4 Network model and algorithm

To explore the mechanical response of transient networks, we
here concentrate on two-dimensional, plane stress RVEs with
periodic boundary conditions (Fig. 5). The details of applied
periodic boundary conditions are provided in the ESI.† For
simplicity, these RVEs are initially square domains O0 that
contain star-shaped units (with n dangling chains) whose
centers (nodes) act as permanent cross-link sites (Fig. 1). The
free ends of the dangling chains each possess a sticker that can
reversibly connect to the dangling chains of neighboring units
as discussed above. While many branched dynamic networks
include reversible binding sites along the intermediate length

Fig. 4 (A) Statistics of the free sticker lifetime are plotted for three
different values separation distance, d: d = lc (cyan), d = 2lc (black), and
d = 3lc (red), where lc is nominal spacing between nearest neighboring
permanent cross links. (B) ka/(ka + kd) is plotted with respect to separation
distance, d, for three different values of the diffusion sticker timescale, t0,
which predicts the fraction of chains that will be attached at a given value
of d (f0 is held at 2kT/b).
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of their structural chains,30,51,52 we here focus on star-shaped
units because it allows us to begin by comparing TNT to
the relatively simple case of a monodisperse network with a
comparatively homogeneous cross-link distribution. We next
describe the numerical approach used to explore the mechanical
behavior of these transient networks.

3.4.1 Network generation. To generate the networks, N

nodes are initially positioned within the domain O0 at Cartesian
coordinates Xa (a A [1, N]). For computational efficiency, the
number of nodes included in the RVEs is set to N = 225, such
that minimum domain width at full deformation remains larger
than the contour length of a single chain, thus ensuring that a
chain cannot simultaneously span opposite boundaries of the
RVE. Increasing the domain size further induces no change in
global network stress (see ESI† for details). To ensure a uniform
node distribution, node placement follows a 2D Poisson’s point
process originating at the domain’s center ([0, 0]). The initial
network configuration is then achieved by randomly linking
chains according to the kinetics of bond association and
dissociation described in the previous sections. The chain
concentration ct is tuned in this process through the number n
of dangling chains assigned to each node. For simplicity, we
posit here that two chains branching from the same node cannot
form a connection. To enforce periodicity of the network, nodes
across opposite domain boundaries are also allowed to connect
and disconnect, as if neighboring one another. Note that in
this coarse-grained approach, the dangling chains and stickers
themselves are not explicitly modeled when detached. Rather,
when a connection forms between cross-link a and its neighbor
b, a chain of length Nb and end-to-end vector rab = xb � xa is
regarded with some resultant pairwise force, f ab, acting on
cross-link a due to b. In the simulations, we therefore only

visually represent the chains when they form connections
between nodes.

Prior to applying any deformation, the initiated networks are
dynamically equilibrated until they reach steady state. Here
steady state is defined by equilibration of the network stress
(Fig. 5), defined in Section 3.4.3. It should be noted that other
benchmarks for steady state, such as the average number of
connections Z per node or mean orientation of the chain
end-to-end distribution, consistently stabilized before network
stress.

3.4.2 Applying deformation. In this work, a global, but
periodic network deformation is applied over time by imposing
a macroscopic deformation gradient F(t). For this, the initially
square window is deformed by updating the coordinates of its
corners via the mapping

xj (t) = Fij(t)Xi (16)

where xj and Xi are the component of the corner points of the
domain in their current and initial configuration, while Fij are
the components of the applied deformation gradient. For the
purposes of this work, no shear components of F are applied,
such that the window always remain orthogonal. The distortion
of the window affects the distance between periodic pairs of
nodes on opposite boundaries, thus triggering traction forces at
the domain bounds. The deformation gradient F(t) is stepped
in time increments of Dt, which is set such that kd

�1, ka
�1, and

the inverse of the applied strain rate _e�1 are all at least
two orders of magnitude higher than Dt and a maximum
average of one stress free detachment event would occur
for every one hundred tethers within a discrete time step (see
ESI† for details). This ensures that the network configuration
due to bond dynamics and conformation due to non-affine

Fig. 5 (A) Snapshots of networks with n = 10 (top row), n = 4 (middle row) and n = 2 (bottom row) are shown at initiation (left column) and at the end of a
90 second dynamic equilibration process (right column). Red dots represent permanent crosslink sites and black lines represent connected chains. Grey
lines represent the periodically replicated chains. Note that permanent crosslinks are reduced in size for visual clarity when plotted. (B) The four
components of in-plane virial stress are plotted with respect to time.
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deformation modes are updated with ample frequency as
deformation is applied.

3.4.3 Network deformation and stress calculation. After
the deformation is stepped, the unbalanced traction forces at
the boundaries trigger the motion of nodes in the network until
they reach their next equilibrium state. Force equilibration is
achieved using a forward Euler, steepest descent algorithm.53

Thus, the position of node a at iteration k, xak, is updated
according to:

xak+1 = xak + Z�1f a
k, (17)

where f a ¼
P
b
f ab is the unbalanced force acting on node a, and

Z is simply a numerical overdamping coefficient set such that
the residual force converges towards zero. Note that f a is
inclusive of the tensile chain forces, as well as the repulsive
volume exclusion forces. No random force due to Brownian
noise is included in the scope of this work as the size of the
units considered are such that isotropic noise will have a
negligible net effect on diffusion. In contrast, the size of the
tethered stickers is not large enough to mitigate Brownian
noise, and therefore thermal noise is lumped into the kinetic
rates of bond dynamics.

Iteration of eqn (17) proceeds until the unbalanced forces
nearly vanish for all nodes. To reduce the computational cost
without a significant reduction in accuracy, the threshold for
the maximum and mean residual unbalanced forces are set to
less than 5% and 2.5% of kT/xd, respectively. We note here that
force equilibration is assumed to occur significantly faster than
the timescale of bond kinetics or applied deformation, such
that neither bond dynamics nor applied deformation are
updated during this procedure. At the end of each equilibration
step, the stretched state of chains along with pairwise volume
exclusion interactions culminate in some average true stress, r,
which is computed using the virial formulation given by:

sij ¼
1

2V

XN
a

X
b

r
ab
i � f

ab
j ; (18)

where V is the domain volume.54 We here exclude the inertial
term of the virial stress commonly seen in atomistic or
molecular scale discrete models, (due to the overdamped
assumption which invokes that the nodes’ inertia are
negligible) and instead use the virial formulation inherent to
the continuum model (eqn (2)).

3.4.4 Bond dynamics. After force equilibration, bond
dynamics are enabled following the algorithms for attachment
and detachment described earlier. Note that the networks
examined are non-associative, in that the number of attached
chains need not be conserved (i.e., bond exchange reactions are
not prerequisite for dynamics to occur). The algorithm repeats
the three steps described above (applying deformation,
equilibrating network force, and updating network configu-
ration due to bond dynamics) until the network has undergone
the full prescribed deformation history.

4 Results

Here we report the predicted statistical and mechanical
responses of discretely modeled transient networks, and com-
pare them to those predicted by the TNT. Two main mechanical
signatures are explored: (a) the rate-dependence of the network
response and (b) the dynamics of its stress–relaxation. To
achieve this, RVEs containing N = 225 permanent cross-links
are deformed per the load history described as follows and
plotted in Fig. 6A:
� In the first stage, a uniaxial stretch is applied at constant

true strain rate _e up to a stretch of 100% (Fig. 6A–D-0–2).
Deformation is applied in the Cartesian basis {e1, e2}
(Fig. 6D) through the deformation gradient F = diag(F11, F22).
The constant strain rate is achieved through the relation F22(t) =
exp( _et) and incompressible deformation is enforced through
the condition F11 = 1/F22 (i.e., det F = 1).
� In the second stage, a relaxation regime ensues in which

the stretch is held constant until equilibrium is achieved
(Fig. 6A–D-2–4).

In the loading regime, the solution of the TNT given
by eqn (5) can be estimated numerically over time. In the
relaxation regime, the deformation gradient remains constant
and the solution eqn (5) takes the simple form:

l(t � t0) = l0e�kd(t�t0) t Z t0 (19)

where t0 is the final loading time (i.e., when relaxation begins)
and l0 = l(t0) is the conformation tensor at t0. Eqn (19) predicts
that the stress decays exponentially to zero with a decay rate of
kd (Fig. 6B-2–4). The TNT also provides a general representation
of the chain statistics during network deformation. Since only
axial stretches are applied here, the conformation tensor
remains diagonal with components l = diag(m1, m2). As dis-
cussed in Vernerey et al. (2017),9 this tensor can be represented
by an ellipse with semi-axes m1 and m2 in the directions e1

and e2, respectively. This ellipse represents the normalized
mean-square stretch of the chains in different orientations
(Fig. 6C). To produce statistically representative results from
the discrete model, each of these conditions is imposed onto an
ensemble of fifty different networks from which the average
stress responses and chain distributions are measured. These
results are illustrated in Fig. 6 for a reference network, with a
chain concentration of c E 15z�2 (or average connectivity Z E
8.4), deforming at a strain rate _e = k0

d. Good agreement with the
continuum prediction is obtained when the dissociation rate
used in the TNT matches the average bond dissociation rate, %kd,
measured from numerical results (%kd E 6.5k0

d). Here, %kd is taken
as the total number of detachment events in the network per
time step, normalized by the total number of attached chains at
the beginning of said time step. Significantly, the observation
that %kd a k0

d is a consequence of force-dependent detachment
through eqn (9). In the remainder of this work, the applied
strain rate is normalized by the rate %kd, thus introducing the
non-dimensional Weissenberg number W = _e/%kd.

Both the stress response in time, r(t) (Fig. 6B) and the
distribution functions of connected chains’ end-to-end vectors,
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(Fig. 6C) are reasonably well-predicted by eqn (6) for the
conditions given (W E 1/6 and Z E 8.4). Generally, during
loading, chains are stretched in the direction of applied tension
as indicated by the elongation of the joint distribution
functions in Fig. 6C-1–2, resulting in the generation of tensile
stress in the loading direction (Fig. 6B-1–2). Once loading is
ceased (Fig. 6A–D-2–4), the joint distribution begins to revert to
an isotropic state (Fig. 6C-3) and the stress relaxes (Fig. 6B-3).
Eventually, the network reverts fully to the stress-free, isotropic
state associated with l0 = I.

It is however worthwhile to note that some deviation occurs
during both the loading and stress relaxation phases. In the
stress predicted by the discrete model is initially slightly greater
than that predicted by eqn (6), likely due to the divergence of
force associated with Langevin chains, which is not captured by
the idealized continuum model. Yet, despite this initially
higher stiffness, we see that the peak stresses at the time when

loading is ceased (Fig. 6B-2) roughly coincide between the
discrete and continuum models. This is because a region of
roughly steady state stress (i.e., creep) is predicted by the
discrete model in later loading stages. This stress plateau is
not observed in the continuum model whose modulus always
remains finite in the deformation range depicted. Notable
discrepancies also exist during the stress relaxation regime,
where the initial reduction in stress occurs faster for the
discrete model than it does for the continuum model, indicat-
ing that the stress of the former does not decay exponentially.
Both the creep response and non-exponential stress–relaxation of
the discrete model may be attributed to three main mechanisms
not captured by the continuum model: (a) non-affine micro-
structural deformation, (b) nonlinear chain response, and (c)
force-dependence of the bond dissociation rate kd. While the
observed differences are mild given the low loading rate (W o
0.5) and high connectivity (Z c 2) presented in Fig. 6, we now
explore the conditions under which the continuum model fails to
capture the network mechanics predicted by the discrete model.

4.1 Effects of strain rate

To better understand the limitations of the TNT with regards to
strain rate, we first sweep WA [1/8, 1/4, 1/2, 1, 2], while holding
the total chain concentration ct constant (therefore holding a
fixed connectivity Z E 8.4). The global mechanical stress
responses of networks loaded at various strain rates are
displayed during deformation and relaxation in Fig. 7A and B,
respectively. To elucidate the underlying micro-mechanical
phenomenon that drives deviation in global stress between the
continuum and discrete model predictions, the constant and
stretch-dependent detachment rates (kd), of a single chain in the
continuum and discrete models, respectively, are plotted with
respect to r in Fig. 7E. The percent deviation between the values
of kd from each model are also plotted with respect to r in
Fig. 7E, to show that kd of highly stretched chains deviates
significantly between the models. The maximum values of kd

at four different times corresponding to (1) partway through
loading, (2) at peak loading, (3) partway through stress
relaxation, and (4) near complete stress relaxation are denoted
for the lowest (blue) and highest (red) strain rates, respectively.

4.1.1 Nonlinear Langevin chains stiffen the network
response during initial loading. It is well-known that the affine
assumption leads to over-prediction of true stress; however the
results depicted in Fig. 7A show that during the initial loading,
the stress predicted by the TNT is consistently underestimated
across all strain rates. This is not observed for discrete
networks of Gaussian springs (see Fig. S1, ESI†). It is therefore
attributed to the use of Langevin chains in the discrete model,
whose force, as modeled through the Padé approximation,46

not only exceeds that of ideal chains at any stretch (albeit,

minutely below l ¼ lc
� ffiffiffiffi

N
p

b), but also undergoes divergence as
chains are stretched to their contour lengths (Fig. 2A). As such
for fixed values of N, b and ct, the Langevin chain model always
produces networks with higher predicted stiffness than those
comprised of linear chains and the effect is exacerbated at high

Fig. 6 (A) True strain in the direction of extension, e22 = ln F22, is plotted
with respect to simulation time. Loading is applied at a constant true strain
rate until the network is stretched by 100% (i.e., until time t = ln(2)/ _e), after
which the network is held in its deformed state until the stress fully relaxed.
(B) The normal component of virial stress in the vertical direction is plotted
with respect to time when W E 1/6 and c E 15z�2. The stress response
shown is the ensemble average of 50 numerical experiments. Standard
error, plotted as a shaded area around the curve, constitutes less than 5%
of the mean. The stress response computed from (5) is plotted as a dotted
curve. (C) The ensemble joint distributions of rab from ten numerical
experiments are displayed as 2D histograms. r, as predicted by r = lr0, is
plotted as red ellipses for initial end-to-end lengths of |r0| = [0.5, 1, 1.5].
(D) Snapshots of one numerical network during deformation are displayed
for reference. (C and D) The designations 1–4 represent the network (1) at a
stretch of 1.5, (2) at a stretch of 2 when loading is initially halted, (3) at time
t = kd

�1 into stress relaxation, and (4) time t = 4kd
�1 into stress relaxation.
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stretches. Therefore, the continuum model should always
under-predict the network stress, regardless of the loading
history. Yet, the stress responses during the relaxation regime
in Fig. 7B indicate that this is not the case.

4.1.2 Network connectivity is conserved despite force and
separation-dependent bond dynamics. Given force-dependent
detachment through eqn (9), we find that there exists an
increase in the mean detachment rate, %kd, during deformation.
This is exemplified in Fig. 7E (for the case of W E 1/2) by the
slight increase of the mean during times of loading (designated
by the blue tags labeled ‘‘1’’ and ‘‘2’’), versus times of relaxation
(denoted by the blue tags labeled ‘‘3’’ and ‘‘4’’). The increase in
mean detachment rate during deformation is negligible for low
strain rates (e.g., W E 1/8), but as high as 15% for high strain
rates (i.e., W E 2) immediately highlighting a limit of the
constant kd assumption when applied to networks undergoing
fast loading. Even more pronounced is the impact of high
loading rate on the maximum value of kd for a single bond.
In the case of W E 1/2, some bonds became stretched enough
to undergo a forty-fold increase in kd over the mean effective
value used to fit the continuum model, which occurred during
peak loading (designated by the red tag labeled ‘‘2’’). Later we

examine how local increase in kd impacts the networks’ stress
response during loading and relaxation; but first we note that
escalation of kd drives a corresponding increase in the mean
attachment rate, %ka, which is taken as the total number of
attachment events in the network per time step, normalized by
the total number of detached chains at the beginning of said
time step. The increase in %ka is attributed to an increase in the
number of attachment opportunities that occur at high strain
rates due to both the higher detachment rate of chains and the
mutual introduction of yet unattached tethers into each other’s
fields of reach. Despite this rise in bond reaction rates, the
average connectivity %Z of the network remains constant. This
suggests that %kd and %ka increase proportionally such that the
steady state concentration predicted by eqn (3) remains valid
for all deformation rates observed. Nevertheless, the increased
bond kinetics act as a softening mechanism whose effects, as
discussed below, are most pronounced at higher strain rates.

4.1.3 Force-dependent bond detachment entails non-
exponential stress relaxation. The most obvious effect of
force-dependent detachment is the non-exponential decay of
stress which occurs during relaxation as observed in Fig. 7B.
More specifically, once loading is ceased, the discrete network

Fig. 7 (A) Normal stresses from creep experiments are plotted with respect to engineering strain, e = F22 � 1, for W E 1/8 (cyan), W E 1/4 (teal), W E 1/2
(grey), W E 1 (maroon), and W E 2 (red). (B) Normal stresses from relaxation experiments are plotted with respect to time for three different initial values
of stress. All results from the discrete model are plotted as continuous curves with standard error represented by the shaded region, and results from TNT
are plotted as dotted curves. (C and D) The corresponding networks at times 1 (left) and 2 (right) are depicted when (C) W E 1/8 and (D) W E 2 to
highlight the effect of strain rate on chains’ stretches and orientations. (E) Top: Bond dissociation rate, kd is plotted with respect to r for Erying’s theory
employed in the discrete model (continuous black curve) and the constant kd assumption used in the continuum model (dotted black line). Bottom: the
percent deviation between the continuum and discrete model dissociation rates is plotted with respect to r. Where the percent deviation transitions from
negative to positive is labeled rcrit, as chains with r 4 rcrit will undergo faster dissociation than predicted by the continuum model. The four values
denoted in blue represent the average values of r for times (1–4) when W E 1/8. Similarly, the four values denoted in red represent the maximum values
of r for times (1–4) when W E 2.
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stress initially decays faster than the continuum model predicts
and the degree of disagreement is greater for larger stresses
(as in the case of higher loading rates). To understand this
response, we examined the percentage of chains whose end-to-
end distances r, exceeds the value at which the local
detachment rate equals that of the value fitted to the TNT, rcrit

(Fig. 7E). As expected, Fig. 8A and B demonstrates that this
percentage is generally higher during loading (at times ‘‘1’’ and
‘‘2’’) than during relaxation (at times ‘‘3’’ and ‘‘4’’), and
this effect is more pronounced for higher strain rates. This
increased percentage of highly stretched chains explains the
non-exponential decay of stress in the direction of applied
loading for a few reasons. Firstly, the non-linearity of eqn (9)
ensures that the bond dissociation rates of chains stretched
beyond rcrit are orders of magnitude higher than those of bonds
in the regime r o rcrit. Thus, the bonds detaching more
frequently are those which are highly stretched, which – given
any monotonically increasing force–extension relationship –
are also those carrying the most tensile load and thus dispro-
portionately contributing to the global stress response.

Secondly, this effect is exacerbated by the use Langevin chains,
which ensures that not only are the highly stretch chains
contributing disproportionately to the stress, but they do so
non-linearly due to the divergent chain force in the limit

l!
ffiffiffiffi
N
p

. Finally, as illustrated through the joint distribution
functions of r (Fig. 8C), the majority of chains stretched past a
distance of rcrit are oriented with their larger component in the
direction of global stretch (e2); therefore, as these chains
detach, they will principally reduce the reported stress compo-
nent s22. While these effects are most noticeable during stress–
relaxation, closer examination also reveals that they impact the
stress response observed during loading as well.

4.1.4 Force-dependent bond dynamics begets steady-state
creep regardless of strain rate. Under the assumption of a
constant dissociation rate kd, the TNT predicts that a network
subjected to a constant true strain rate (characterized by W) will
experience a steady-state true tensile stress of the form:

s ¼ ckT
W

ð1þWÞð1� 2WÞ; (20)

which notably diverges when W Z 0.5. This result can readily
be obtained by setting the term on the left-hand side of eqn (4)
to zero. In other words, when W Z 0.5, the rate of energy
dissipation due to chain detachment is overtaken by the rate of
elastic storage due to deformation, such that the elastic energy
increases infinitely with time. However, as displayed by Fig. 8D,
discrete networks isochorically stretched to 250% of their
original length do not exhibit such a singularity. Instead, the
discrete model predicts that steady state creep is reached for
strain rates up to W = 1. This observation is attributed to the
stretch-dependency of kd. Indeed for networks that are
stretched slowly (W E 0.1) the percentage of chains exceeding
rcrit remains close to 1% (Fig. 8A and B, cyan curve) throughout
deformation while for networks that are stretched quickly (W E 1),
the percentage of chains exceeding rcrit can reach close to 15%
(Fig. 8A and B, maroon curve). The faster dissociation rate of these
highly stretched chains mitigates storage of elastic energy such that
a finite steady state stress is always observed. We note that steady
state could not be reached for networks stretched at high rates
without introducing exceedingly large Lagrangian deformation of
the unit cell and so W is limited to the regime W r 1 with the given
deformation approach. It is however expected that a steady creep
will be obtained for any value of W based on the above analysis.
Worth noting, is that at times the networks are observed to undergo
a drop in stress rather than achieving steady state. Such cases
occur when voids nucleate in regions of initially lower chain
concentration, as exemplified by Fig. 8E.

Here, we define a void as a gap in the network’s cross-link
distribution whose characteristic height and width are both too
large to permit locally sustained percolation. This occurs when
the rate of attachment across said gap is an order of magnitude
less than the corresponding rate of detachment (i.e., ka/(ka + kd) t
10%), which – referencing Fig. 4B – corresponds to a node
separation of roughly 3lc. Therefore, although voids will not
assume perfectly circular geometries, we loosely classify
voids as vacant regions whose areas, Av, satisfy the normalized

Fig. 8 (A and B) The percentage of chains stretched above rcrit during (A)
creep and (B) stress relaxation is plotted with respect to engineering strain
and time, respectively. Results from three values of true W: W = 1/8 (cyan),
W = 1/4 (teal), W = 1/2 (grey), W = 1 (maroon), and W = 2 (red) – are shown.
(C) The ensemble joint distributions of r from ten numerical experiments
are displayed as 2D histograms for W = 2. r, as predicted by r = mr0, is
plotted as red ellipses for initial end-to-end lengths of |r0| = [0.5, 1, 1.5]. rcrit

is plotted as a red dashed circle to visually illustrate the fraction of chains
that are above or below the threshold, as well as their orientation. (D)
Steady state stress is plotted with respect to W for the numerical model as
discrete data, and the continuum theory as a continuous black curve. The
vertical dotted line at W = 0.5 denotes where the steady state stress
predicted by the continuum model diverges. (E) A network deforming at a
rate of W = 0.85 is depicted at three different strains and highlights a
region where the local void nucleation occurs.
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condition A�v ¼ Av

,
p

3

2
lc

� �2
" #

� 1. Given this definition,

transient voids appear to occur at every strain rate despite
incompressible loading conditions. However, preliminary
results suggests that voids constitute a greater average areal
fraction, �j, of the networks when high strain rates are applied
(e.g., �jE 1.3 � 0.5% when W E 0.125, whereas �jE 2.5� 0.5%
when W E 1). This increase in �j emerges from a concurrent
increase in the maximum number of voids observed existing

simultaneously (nv), average void area �A
�
v

� �
and average void

lifetime ( %Tv). Specifically, nv = 3 versus 1, �A
�
v ¼ 1:67� 0:20 versus

1.36 � 0.1, and �T
�
v ¼ �T 	 k0d ¼ 0:105� 0:050 versus 0.047 �

0.016 for W E 1 versus W E 0.125, respectively. Such
defects are hypothesized as the cause of mechanical failure in
associative networks such as vitrimers.55 Indeed a decline in
stress (as opposed to steady-state creep) is observed in cases
where large voids develop. Thus, to ensure that force-
dependent bond detachment alone, and not softening due
to void nucleation, is responsible for the average observed
induction of creep, cases in which voids formed are excluded
in the computation of steady state stress reported in Fig. 8D.
Furthermore, additional factors such as the goodness of solvent
may significantly impact the onset of damage and consequently
the global stress response in real materials such as gels.56

Therefore, these factors should be considered on a material-
specific basis for in-depth studies of damage. Nevertheless,
these preliminary results generally suggests that damage in rate
dependent transient networks is exacerbated by increased
loading rate. Additionally, the emergence of voids represents
a consequence of mesoscopic heterogeneity that influences
global mechanical response, yet which the continuum model
cannot predict: weakening due to nucleation of defects that are
too large to heal on the timescale of individual bond exchanges.
As such, further investigations of damage in transient networks
may be conducted via this model in forthcoming work.

4.2 Effects of chain concentration

Having observed the effects of strain rate on the network
response, we now turn to explore the effects of chain concen-
tration at low strain rates. For this, we sweep the number of
tethers per node, n A [2, 4, 10], which produces measured chain
concentrations of c E 15z�2 (Z E 8.4), c E 6.5z�2 (Z E 3.6), and
c E 3.3z�2 (Z = 1.8), respectively, while deforming the domain
at a relatively low strain rate of W E 1/6.

4.2.1 Low chain concentration leads to over-predicted net-
work stress by the continuum approach. We confirm that at
high concentrations the continuum model predicts the stress
response of the discrete model fairly well throughout the
deformation history, barring the discrepancies discussed in
Section 4.1. However, at lower concentrations, when c r
6.5z�2 (Z E 3.8), the TNT overestimates the stress response
(Fig. 9A). Observing the probability joint distribution functions
of r (Fig. 9B and C), it is clear that at low concentrations, chains
tend to occupy the shorter (i.e., lower energy) configurations
available to them more readily. Therefore, it is unsurprising

that the networks stress is reduced for domains with fewer
chains. That chains occupy these lower energy states to begin
with is driven by the distance-dependent rates of ka and kd

discussed in Section 3, which ensure that higher fractions of
chains will occupy lower end-to-end distance configurations
(Fig. 4B). Yet, another possible softening effect is that units in
networks with lower connectivity have higher conformational
degrees of freedom and may deform non-affinely, as needed, to
a lower energy state than that predicted by TNT (which assumes
instantaneously affine chain evolution :

r = Lr).
4.2.2 Both bond kinetics and conformational changes

contribute to non-affine deformation within a finite time
interval. As discussed above, the continuum model relies on
the instantaneously affine assumption that the rate change of a
chain’s end-to-end vector evolves according to :

r = Lr where L is
the globally applied velocity gradient. To approximately test
this in the discrete model, we quantified the extent of non-
affine network deformation according to:

du� ¼ duk k
uaffk k


 �
; (21)

where h i denotes taking the ensemble average over all Nab

chains that remain attached during the time interval from t to

Fig. 9 (A) The stress response for the full loading history of Fig. 6A is
plotted with respect to time for Z E 1.8 (cyan), Z E 3.6 (grey), and Z E 8.4
(red), respectively. Solid curves with shaded regions represent discrete
data with standard error, while dotted curves represent the stress response
predicted by TNT. The inset depictions of the networks at each time
visually illustrate how n influences the network topology through chain
concentration. Insets on the left always depict networks for which n = 2,
while insets on the right depict networks with n = 10. (B and C) The
ensemble joint distributions of r from ten numerical experiments are
displayed as 2D histograms for (B) n = 2 and (C) n = 10. r, as predicted
by r = lr0, is plotted as red ellipses for initial end-to-end lengths of |r0| =
[0.5, 1, 1.5].
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t + t, du = rab(t + t) � rabaff(t + t), and uaff = rabaff(t + t) � rab(t).57

Here, rab and rabaff represent the actual and affinely predicted
chain end-to-end vectors, respectively, at time t + t. The latter, r
ab
aff, is calculated according to:

rabaff(t + t) = Ftr
ab(t), (22)

where Ft is the globally applied deformation gradient from time
t to t + t. By definition, du* = 0 when the network deformation is
affine and du* - 0 in the limit t - 0.

In this framework, network connectivity is modulated
through the total number of tethers as opposed to by changing
the bonds’ attachment or detachment rates. As such, a network
with more tethers will have more total bond reactions per unit
volume within a given time interval and undergo a greater degree
of configurational change. Therefore, to isolate the degree of
non-affine deformation due to conformational effects (e.g.,
floppy modes24), as opposed to network restructuring, we nor-
malize du* by the total number of network tethers Nn, which
scales proportionately to the density of bond reactions. Indeed,
observing Fig. 10, we see that non-affine deformation due to
conformational change increases in time, but is negligible in the
limit t - 0, which is consistent with the instantaneously affine
assumption. We also see that non-affine deformation is ampli-
fied for networks with lower connectivities. Since non-affine
deformation modes allow networks to reduce their free energy
(thus softening their mechanical responses),19,24 this is the likely
explanation for the underestimation of network stress by the
continuum model at low chain concentrations. In the remainder
of this work, we examine a modification to the continuum
approach (through the phantom network theory24,58) that is
meant to correct for non-affine softening effects.

4.2.3 Correction to network stiffness through phantom
network theory leads to under-prediction of the network stress
by the continuum approach. Through the conventional TNT, a
network’s shear modulus is taken as G = ckbT. However, to
adjust for non-affine effects the phantom network theory poses
a correction to the instantaneous shear modulus as follows:24

G ¼ 1� 2

Z

� �
ckT ; (23)

for Z Z 2 and G = 0 for Z o 2. The shear modulus of discrete
networks is estimated according to the relation G = 2E(1 + n),

where E is the Young’s modulus, and n is the Poisson’s ratio (n =
0.5, given enforced incompressibility). For each network con-
nectivity, E is taken as the initial tangent modulus of the stress–
strain response (E E qs/qe), based on the assumption that
dissipative effects of networks near their stress-free configura-
tions and over short timescales are negligible. This assumption
is valid given that the networks begin at roughly stress-free
states and the time interval over which E is measured (BDt) is
much smaller than the timescale of bond dynamics (%kd

�1).
Indeed, examining Fig. 11A we see that this correction intro-
duces good agreement between the shear modulus predicted by
the TNT and discrete models. Nevertheless, as displayed in
Fig. 11B, applying this correction to the TNT leads to the
ubiquitous under-prediction of network stress by the conti-
nuum approach due to use of Langevin chains in the discrete
model. Furthermore, a finite modulus remains measurable for
discrete networks even below the percolation threshold of Z = 2.

4.2.4 A small tensile stress can exist below the percolation
threshold. The correction from the phantom network theory
dictates that no network stress will exist for networks below the
percolation threshold of Z = 2. However, as displayed in
Fig. 11A, the discrete model indicates that a finite tensile stress
remains present even when Z o 1 (or n = 1). In such cases the
measured stress cannot be the result of percolation, rather it is
due to the alignment of disconnected chains. To better under-
stand this effect, we revisit the computation of virial stress
through eqn (18). Recalling that pairwise volume exclusion
forces occur between all neighboring units, we recognize that
this produces a roughly isotropic contribution to the stress. As
such, any preferential alignment of the chains, which can only
carry tension, culminates in a finite normal stress that is not
balanced by the isotropic volume exclusion. To quantitatively
gauge chain alignment, we computed the ensemble average
metric tensor of r, g, defined as:

gij ¼
1

Vct

XN
a

X
b

r
ab
i � r

ab
j : (24)

The diagonal components of g indicate the degree to which
chains are aligned with the components of the orthonormal
basis {e1, e2}, where g11 4 g22 indicates that chains are more
aligned with e1 than e2, and g11 E g22 indicates no preferential
alignment. Examining g11 and g22 in Fig. 11C and D, it is clear
that even when the networks are below the percolation thresh-
old (Z o 2), the chains align with the direction of applied
extension (i.e., g22 increases during loading, while g11

decreases). Chain alignment is the origin of measurable stress
for networks below the percolation threshold in this model,
and is perhaps comparable to the stress evolution which occurs
in dilute solutions of dumbbell-like polymers (e.g., dimers or
finitely-extensible nonlinear elastic polymers) or viscoelastic
fluids undergoing shear flows.59,60 However, unlike these dilute
systems, the discrete model is representing compactly confined
nodes. Furthermore, the current iteration does not capture the
solute–solvent interactions which are often critical to the
hydrodynamic effects of such systems.59,61 Therefore, while

Fig. 10 (A) du*/Nn is plotted with respect to time interval, t, for networks
in which %Z E 1.8 (solid cyan), %Z E 3.7 (dashed teal), %Z E 5.4 (dotted-dashed
grey), %Z E 7.0 (dashed maroon), and %Z E 8.4 (solid red).
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commenting on the effects observed below the percolation
threshold, here we primarily focused on the findings of these
models in the regime Z 4 2.

5 Summary and concluding remarks

Ultimately, we have introduced a coarse-grained, discrete
numerical model that allows us to directly investigate
topological changes in transient networks without the high
computational cost stemming from modeling the elemental
constituents. To better represent the set of networks that can
be examined through this model, we incorporated nonlinear
Langevin chains,46 probabilistic slip-bond detachment through
Eyring’s21 or Bell’s28 model, and probabilistic bond reattach-
ment based on Rouse diffusion of tethered chains,38 thereby
capturing the energetic penalty associated with highly stretched
networks. Despite these features, we find that the idealized TNT
approach,9 which assumes linear chains and constant bond
dynamics, provides excellent agreement with the numerical
model when low strain rates are applied and network
connectivity is high. Therefore, this discrete method may be
feasibly incorporated into a quasicontinuum32–34 framework in
which regions exhibiting low stretch and heterogeneity are
efficiently modeled through the TNT,16 while regions of high
local stretch, such as those near crack tips or other stress
concentrations, are modeled through the newly introduced
approach. While quasicontinuum models have recently been
developed for irregular networked materials undergoing rate-
dependent, permanent damage33,34 to our knowledge no frame-
work has been developed for fully dynamic, self-healing
networks. Yet, as recently discussed by Ghareeb and Elbanna
(2021),34 quasicontinuum modeling also lends itself to
comparable investigation in such materials. This model
constitutes one possible discrete modelling component of such
an approach for networks with fully reversible bond dissociation.

Whether a quasicontinuum or purely discrete framework is
used, our results suggests that network discretization remains

crucial in regions of high stretch for a couple of reasons. First,
the finite length of true entropic chains (here captured using
the Langevin chain model) consistently serves to stiffen the
network and its effects become significant when the rate of
deformation exceeds that of relaxation. Second, we find that
force-dependent bond dynamics induce steady state creep in
the discrete model, at high strain rates for which elastic
behavior is predicted by the TNT. This same force-dependent
bond detachment also induces non-exponential stress decay.
Indeed, the numerical approach appears to capture two key
features that the continuum model does not: variability of bond
kinetics and heterogenization of network topology. Despite
variability in the detachment rate, the discrete model predicts
conservation of overall mean network connectivity, indicating
that the networks, while not enforceably or locally associative,
behave macroscopically as such. One might expect that con-
servation of connectivity precludes the loss of mechanical
strength; yet, the discrete model also predicts the occasional
nucleation of voids whose dimensions are too large for chains
to reattach across. The formation of such voids induces loss of
mechanical strength and it is believed that void nucleation
likely precedes the onset of fracture or ‘‘damage’’ in dynamic
networks despite the reversibility of their bonds.55

5.1 Limitations of the discrete model

A number of simplifications exist in the current numerical
framework that limit the generality of this approach. Firstly,
we assume monosdispersity in chain lengths; however, given
polydispersity’s effects on network mechanics,47 it may be
included in future work. Regarding the force–extension of
single chains, we include no enthalpic bending contribution
and the cross-links are modeled as freely attached pin joints,24

limiting this current iteration of the model to networks of
flexible chains. Since no energetic penalty is incurred for
bending, chains can attach with equi-probability in any
direction. Therefore, to mitigate directional biases in attachment
between nearest neighbors and facilitate homogenization of

Fig. 11 (A) The network stiffness, G, is plotted with respect to Z for the numerical model as discrete data, and the continuum theory as a continuous
black curve for the unadjusted model (G = ckT) and a dashed black curve for the adjusted model (G = (1 � 2/Z)ckT). The region shaded in red represents
the non-percolated regime in which the adjusted TNT predicts no finite modulus. (B) The stress response predicted by the discrete model (continuous
curves with shaded regions to represent standard error) and TNT (dashed curves) corrected through eqn (23), are plotted with respect to time. (C and D)
The normal components of g in direction (C) e1 and (D) e2 are plotted with respect to time. (B–D) Results from networks with average connectivities of
Z E 1.8 (cyan), Z E 3.6 (grey), and Z E 8.4 (red) are provided.
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network topology, neighboring units are not permitted to
attach more than once. However, this simplification is not
intrinsically gotten from the underlying physics. Finally, the
effects of solvent–solute interactions are neglected, which
suspends considerations such as depletion62 or drag forces61

from the current framework. Although these limitations do not
impact the findings of this work, they must be addressed for
the study of specific considerations in future work.

For the extension of this model to damage and self-healing,
several limitations must be addressed. Firstly, here network
incompressibility is enforced through the condition det(F) = 1
rather than being an outcome of the underlying physical
interaction potentials between nodes. In future work,
compressible uniaxial tension with traction free bounds may
be conducted on networks whose Poisson’s ratio is dictated by
their inter-unit potentials. Given some attractive regime (e.g.,
that of Lennard-Jones potentials63), these interactive potentials
will introduce an effective surface tension that governs
compressibility (or the lack thereof). Secondly, irreversible
damage of chains that are overly stretched is omitted from
the current framework, but is needed for the prospective study
of permanent damage,29,30,64 which can impact the number of
available chains for reattachment. Lastly, the positions of
individual stickers are not tracked in the current framework.
Although this does not impact detachment kinetics, it may
influence the timescale and bias the direction of reattachment
once hetereogeneities in the distribution of nodes (i.e., through
damage) develop. Tracking the diffusion-driven positions of
free stickers in a manner that more directly reflects the work of
Stukalin et al. (2013)38 would mitigate these concerns and also
eliminate the need for restrictive simplifications such as the
prohibition of double connections between neighboring nodes.

5.2 Future work

In future work, we aim to explore a number of additional
considerations that restrict the application of continuum
theory, including the effects of compressible deformation
and its influence on phenomena such as void nucleation (or
cavitation), and void coalescence.7,65 Cavitation, especially in
regions of highly localized stress (e.g., ahead of crack tips),66

has been observed as the cause of mechanical failure of soft
materials loaded under not only hydrostatic, but also uniaxial
tension.67 Yet, much remains uncertain about when cavities
form, how they grow (or coalesce), and how this leads to
mechanical failure. More importantly, it remains unclear how
the evolution of damage phenomena relates to the underlying
chain properties of networks. Availability of experimental
data for such considerations remains sparse.67 However, in
forthcoming work the discrete model introduced here will allow
us to explore these features through controlled, in silico
experimentation. Specifically, this model will permit direct
observation of the damage zone near a crack tip, wherein both
damage and viscoelastic deformation contribute to energy
dissipation and failure onset. Such detailed exploration could
elucidate the size of the damage zone and nature of the

dissipative mechanisms, thereby revealing the intrinsic fracture
toughness of the network.
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