
APaS: An Adaptive Partition-Based Scheduling Framework

for 6TiSCH Networks

Jiachen Wang†∗, Tianyu Zhang‡, Dawei Shen§, Xiaobo Sharon Hu¶, Song Han†,
†Dept. of Computer Science and Engineering, University of Connecticut, Storrs, CT, 06269

†Email: {jc.wang, song.han}@uconn.edu
‡Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong‡Email: tianyu1.zhang@polyu.edu.hk

§School of Computer Science and Engineering, Northeastern University, Shenyang, China‡Email: 1610547@stu.neu.edu.cn¶Dept. of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556
§Email: shu@nd.edu

Abstract—The past decade has witnessed the rapid develop-
ment of real-time wireless technologies and their wide adoption in
various industrial Internet-of-Things (IIoT) applications. Among
those wireless technologies, 6TiSCH is a promising candidate
as the de facto standard due to its nice feature of gluing a
real-time link-layer standard (802.15.4e, for offering determin-
istic communication performance) together with an IP-enabled
upper-layer stack (for seamlessly supporting Internet services).
6TiSCH’s built-in random slot selection scheduling algorithm,
however, often leads to large and unbounded transmission
latency, thus can hardly meet the real-time requirements of
IIoT applications. This paper proposes an adaptive partition-
based scheduling framework, APaS, for 6TiSCH networks. APaS
introduces the concept of resource partitioning into 6TiSCH
network management. Instead of allocating network resources to
individual devices, APaS partitions and assigns network resources
to different groups of devices based on their layers in the network
so as to guarantee that the transmission latency of any end-to-
end flow is within one slotframe length. APaS also employs a
novel online partition adjustment method to further improve
its adaptability to dynamic network topology changes. The
effectiveness of APaS is validated through both simulation and
testbed experiments on a 122-node multi-hop 6TiSCH network.

Index Terms—6TiSCH, partition-based scheduling, end-to-end
latency, dynamic topology

I. INTRODUCTION

Internet of Things (IoT) is a fast-growing domain that

promises ubiquitous connection to the Internet, turning com-

mon objects into connected devices [1], [2]. The industrial

subset of IoT, namely Industrial IoT (IIoT), aims at creat-

ing a unified sensing, computing and control framework to

interconnect industrial assets with information systems and

business processes, which helps streamline the manufacturing

process and lead to optimal industrial operations [3]. Many

industries – including but not limited to chemical process

control, automotive and aerospace manufacturing [3]–[5] –

will benefit from this revolution.

IIoT systems are typically deployed in distributed indus-

trial environments, supporting a dense array of sensing and

actuation devices. In the past decade, we have witnessed the

rapid development of real-time wireless networking (RTWN)

∗The first two authors have equal contribution to this work.

���������

�	
��
���

��
��

��
��
�

�
��

��
��

��
��
��

��
�

�
��

��
��

���� !�"�����# ���� !�$�%�&��

'�����'����'���(���#�����#������)*��%�# �'��'���"�+

 ����*,�#���
�����%��#����%-��"

���������
%�"�*#����#�
��%�,�#�

.����%��#�
-��"�&��(

/�#����0�%���

����

�	
��
���

 �.�

�1�2�.3
�%��

45���

����

�	
��
���

 �.�

�1�2�.3
�%��

45���

����

�	
��
���

 �.�

�1�2�.3
�%��

45���

�1�2�.3
�%��

Fig. 1. Overview of the 6TiSCH architecture and hardware in our testbed.

technologies and their wide adoption in various IIoT applica-

tions [6]–[11]. This is mainly due to their great advantages

over their wired counterparts on easier deployment, enhanced

mobility, and reduced maintenance cost. Among the many

emerging RTWN technologies, 6TiSCH [12] has been receiv-

ing increasing attention in recent years. It has a nice feature

of gluing a real-time link-layer operational technology (OT)

standard (802.15.4e), for offering deterministic communica-

tion performance, together with an IP-enabled upper-layer

Information Technology (IT) stack, for supporting seamless

Internet services. Fig. 1 gives an overview of the 6TiSCH stack

architecture and example device and gateway platforms used

in our 122-node 6TiSCH network testbed.

Although 6TiSCH has high potential to become the de

facto standard for real-time wireless edge networks in IIoT,

its network management techniques are still rudimentary and

under development. Most of the 6TiSCH networks currently

deployed in industrial fields adopt a randomized packet sched-

uler at the data link layer. This randomized scheduler allocates

network resources (in the form of cells to be described in

detail later) randomly to the requesting communication tasks.

Such an approach, although can lead to good network resource

utilization, may cause high transmission latency for multi-hop

flows and even violate their end-to-end timing requirements.

We use actual measured data obtained from example

6TiSCH networks to show the impact of the randomized

scheduler on end-to-end latencies. Fig. 2 illustrates two

978-1-6654-0386-3/21/$31.00 ©2021 IEEE
DOI 10.1109/RTAS52030.2021.00033

2
0
2
1
 I

E
E

E
 2

7
th

 R
ea

l-
T

im
e

an
d
 E

m
b
ed

d
ed

 T
ec

h
n
o
lo

g
y
 a

n
d
 A

p
p
li

ca
ti

o
n
s

S
y
m

p
o
si

u
m

 (
R

T
A

S
)

| 9
7
8
-1

-6
6
5
4
-0

3
8
6
-3

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/R

T
A

S
5
2
0
3
0
.2

0
2
1
.0

0
0
3
3

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

3 4 5 6 7 8 9 10 11 12 13 14 15 31 34 46

0

0.2

0.4

0.6

0.8

1

A
v
er

ag
e

U
p

li
n

k
L

at
en

cy
(s

)

0 0.5 1

Average

1-hop

2-hop

0.167

1.8 · 10−2

0.811

0 10 20 30 40 50 60 70 80 90 100
0

0.5
1

1.5
2

2.5
3

3.5
4

Node ID

A
v
er

ag
e

U
p

li
n

k
L

at
en

cy
(s

)

0 2 4

Average

1-hop

2-hop

3-hop

4-hop

5-hop

0.937

0.209

0.822

1.644

2.108

3.383

Average Uplink Latency (s)

Fig. 2. Average uplink latency in two multi-hop 6TiSCH networks with the built-in randomized scheduler.

6TiSCH networks that we created in our testbed, one with 17

nodes organized into a 2-hop network and the other with 101

nodes forming a 5-hop network topology. In both networks,

each device is configured to publish its sensor readings to

the gateway periodically, with period set to be 1.27 second

(i.e., the slotframe length of the network). From the collected

statistics on the uplink transmission latency, we have the

following observations. (i) The end-to-end latency can be

rather long even for very few hops. In the 2-hop 17-node

network, although the average uplink transmission latency is

only 0.167 second, the average latency of the 2-hop flows

is already close to one second. (ii) The uplink transmission

latency grows quickly along with the increase in the network

size and hop counts. In the 5-hop 101-node network, the

average uplink transmission latency of the 5-hop flows can

reach 3.38 seconds which is almost three times larger than the

designated timing requirement.

The above limitation of the randomized scheduler is exacer-

bated by the fact that 6TiSCH networks are typically deployed

in industrial environments where interference and disturbance

happen throughout the network lifetime. Those harsh envi-

ronments cause the network nodes to frequently change their

associated parents to seek for better communication links and

thus change the network topology. Although several methods

have been proposed in the literature to minimize the latency of

multi-hop flows in 6TiSCH networks (see Section VIII for a

detailed discussion), they are mainly designed for constructing

communication schedules for static networks. They either can-

not handle dynamic topology updates in a timely fashion, or

incur significant network overhead for updating the schedules.

In this paper, we tackle the problem of link scheduling

at data link layer for 6TiSCH networks by introducing an

adaptive partition-based scheduling framework, APaS. APaS

aims to guarantee the end-to-end packet transmission latency

in multi-channel multi-hop 6TiSCH networks, even in the pres-

ence of frequent network topology changes. APaS employs

the concept of resource partitioning. Specifically, it divides a

slotframe into multiple partitions, and assigns the partitions

to specific links based on the links’ types and distances

to the gateway. Each partition contains a group of cells to

not only ensure that the latency requirements by the current

workload are satisfied but also provide reservation for future

demands due to topology changes. Our main contributions are

summarized below.

1) We introduce a novel partition-based, link-type guided

scheduling scheme at data link layer to help satisfy the

end-to-end real-time requirements of multi-hop flows.

The scheme divides time slots into different partitions

to schedule links of different types (uplink, downlink,

broadcast) and hop counts to the gateway. As long as a

link is assigned in the right partition, the transmission

latency of end-to-end flows is guaranteed to be within

the length of a single slotframe.

2) To improve the network scalability and support more

devices, we extend the baseline partition-based scheme

to perform further partitioning in the channel dimension

to allow channel reuse among different partitions.

3) We propose an efficient online partition adjustment

method to adjust allocations and boundaries of the parti-

tions for adapting to topology changes.

4) We implement APaS on a 122-node 6TiSCH network,

and validate the effectiveness of APaS through both

simulations and testbed experiments.

The remainder of the paper is organized as follows. Sec-

tion II describes the system model and presents the problem

statement. Section III introduces the baseline design of the

adaptive partition-based scheduling framework, APaS. Sec-

tion IV presents a two-dimensional partitioning scheme to

further increase the network scalability. Section V details the

dynamic partition adjustment method to improve the adapt-

ability of APaS. Section VI and VII evaluate the performance

of APaS via simulations and real-world testbed experiments,

respectively. Section VIII summarizes the related work. Sec-

tion IX concludes the paper and discusses future work.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we present the 6TiSCH network model and

describe the problem to be studied in this work.

A. Network Model

We adopt a typical RTWN model, in which sensors and

actuators are wirelessly connected to a controller node (the

gateway) either directly or through one or multiple relay nodes.

The network topology is modeled as a tree G = (V,E),
where node set V = {{V0, V1, · · · , }, Vg} and root node

Vg represents the gateway. At any given time, each node is

only associated with one parent node but can have multiple

child nodes. If two nodes are directly connected (without any

intermediate nodes) and one node has fewer hops to the root

node than the other, we say the former is the parent of the latter

and the latter is a child of the former. Link ei,j ∈ E represents

the directed wireless communication between nodes Vi and

Vj , where Vi is the sender and Vj is the receiver. Each link

is associated with two attributes, type and layer. The type of

link ei,j is uplink (downlink) if Vi is the child (parent) and Vj

is the parent (child). The layer of a link is the child node’s hop

count to the gateway. We use e(U, l) or e(D, l) to denote an

uplink or a downlink in layer l, respectively. Fig. 3(a) shows

a 6TiSCH network topology with 16 nodes and three layers.

An end-to-end (e2e) communication task (or simply task) in

a 6TiSCH network can be either a broadcast task or a unicast

task. A broadcast task is originated from the gateway and is

responsible for broadcasting network-wide configuration infor-

mation to all the nodes. A unicast task typically originates at

a sensor node. Following real-life RTWN settings, we assume

that each unicast task periodically samples the environment

and passes sensor readings along a pre-defined uplink routing

path to the gateway for data collection and control decision-

making. The generated control signals at the gateway are then

forwarded along a pre-defined downlink routing path to an

actuator node for execution. The information transmitted for

one instance of a task is referred to as a packet. See Fig. 3(b)

for the task related concepts and an example task.

In our network model, the 6TiSCH network employs a

Time-Division Multiple Access (TDMA) based data link layer

and adopts a centralized link-based scheduler to allocate

network resource for individual links [13]. We use the concept

of cell (denoted as xs,c) to represent the basic resource unit

that can be allocated to individual links, where s is the time

slot offset and c is the channel offset. Consecutive time slots

in a 6TiSCH network are grouped into a slotframe. The

assignment of the cells to individual links in the slotframe

defines the communication schedule of the network and the

schedule repeats every slotframe during the course of the

network operation. When a device joins the network and

a task is created, the scheduler allocates specific cells to

the links along the routing path of the task; when a node

leaves the network, the assigned cells are revoked1. We use

1Note that when a node leaves the network, all its descendants rejoin the
network by choosing a new parent. This will incur topology change(s).

... 1-hop / layer 1

... 2-hop / layer 2

... 3-hop / layer 3

V3 V4

V10

Vg

V1 V2

V5

V11 V12

V6 V7 V8 V9

V13 V14 V15

(a) A 6TiSCH network topology with 16 nodes and three layers.

Links:

Tasks:

downlink, layer 2uplink, layer 2

V1

broadcastunicast

V2

V5 V7

Vg

Vg

V5 V1 V2 V7

(b) Example for task, communication, and links.

Schedule:

Slot 0

...

..
.

..
.

...

...

..
.

Slot 1 Slot n

Ch 0

Ch 1

Ch m

..
.

Slot 2

Slotframe

e5,1

e2,7

Cell

(c) Examples for cell, slotframe, and schedule.

Fig. 3. Important concepts of network resource management in 6TiSCH.

A(xs,c) = ei,j to denote that cell xs,c is allocated to link ei,j
and use AL(xs,c) = (U, l) to denote that xs,c is allocated to

an uplink in layer l. If cell xs,c is not assigned to any link in

the communication schedule, we say it is an idle cell. Fig. 3(c)

illustrates the cell and schedule concepts in our network model.

B. Problem Statement

A key performance metric of 6TiSCH networks is the e2e

packet transmission latency which is defined as the time

duration between the generation of the packet at the sensor

node’s application layer and the reception of the control signals

at the actuator’s application layer. We assume that all tasks

have the same e2e latency requirement that is bounded by

the slotframe length2. Our work aims to guarantee the e2e

transmission latency in multi-hop 6TiSCH networks, even in

the presence of frequent network topology changes. Our work

uses the following two assumptions.

Assumption 1. Instead of directly focusing on the e2e appli-

cation layer latency, we consider the e2e MAC layer latency,

which is defined as the time duration between the transmission

of the packet at the sensor node’s MAC layer and the reception

of the packet at the actuator node’s MAC layer. We make this

assumption because the data link layer scheduler is not aware

of the generation time of the packet at the application layer

which can be arbitrary, and the e2e MAC layer latency is a

2The APaS framework can be readily extended to be applied in the scenario
where the latency requirements of the e2e tasks are diverse.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

more precise performance metric to evaluate the effectiveness

of data-link layer scheduling schemes.

Assumption 2. We assume that for each task, the number

of cells required by each link along its routing path has

been determined and each packet is assigned with sufficient

number of cells to transmit within each slotframe. We make

this assumption because extensive studies (e.g. [14], [15]) have

been conducted on how to decide the proper number of cells

for individual links in static networks to reduce the queuing

delay. Thus, this work focuses on (i) how to appropriately

allocate the determined number of cells for individual links in

a slotframe to guarantee the e2e MAC layer latency, and (ii)

how to adjust the allocation with moderate network overhead

in the presence of network topology changes.

Overall, the design objectives of our proposed scheduling

framework for 6TiSCH networks include: (i) guarantee the e2e

MAC layer latency of each packet to be within one slotframe

length; (ii) achieve high network scalability to support more

devices and tasks running in the network; and (iii) adapt to

network topology changes in an online and efficient manner,

so as to satisfy the e2e MAC layer latency requirements.

To achieve these design objectives, we introduce an adaptive

partition-based scheduling framework, APaS, which consists

of three key components. First, a baseline partition-based

scheduler is designed to achieve objective (i), where cells in

the schedule are allocated to links in groups according to their

types and layers. Second, the baseline design is extended to

a two-dimensional partition-based method to perform further

partitioning in the channel dimension to support channel

reuse by different partitions to realize objective (ii). Finally, a

dynamic partition adjustment strategy is developed in response

to online dynamic topology changes to achieve objective (iii).

Details of these innovations are presented in Section III,

Section IV and Section V, respectively.

III. BASELINE PARTITION-BASED SCHEDULING

APPROACH

As described in the introduction section, a major limitation

of the randomized scheduler in 6TiSCH networks is that it may

cause high e2e transmission latency for multi-hop flows and

violate their e2e timing requirements. In this section, we first

present a motivating example to show that an employed cell

allocation strategy (i.e., schedule) can significantly impact the

e2e latency, especially in the presence of topology changes.

Based on two important observations made from this example,

we then describe a baseline design of the proposed partition-

based, link-type guided scheduling scheme.

A. Motivating Example

6TiSCH is a representative type of TDMA-based multi-

channel multi-hop real-time wireless networks. In such net-

works, each packet has to wait for the allocated cell(s) for each

hop, and the e2e latency of the packet is an accumulation of the

waiting time of all its transmissions on the routing path from

the sensor node to the actuator node. In our study, we observed

that the following two key factors can affect the transmission

V3V4 V1V2 Vg

(a) An example topology with five nodes.

(b) Two schedules constructed following different orders of the routing path.

V3V4 V1V2 Vg

V5

(c) An updated topology with six nodes.

(d) Two schedules constructed with and without reserved cells.

Fig. 4. Comparison of e2e packet transmission latencies for four different
schedules. The latency in each schedule is indicated by the number of time
slots between the “release” red arrow and the “receive” red arrow. The purple
arrows indicate the slots where forwarding takes place.

latency of a packet: i) the sequence (or ordering) of the cells

allocated to the links along the routing path of the packet, and

ii) the positions of these cells in a slotframe. In the following,

we will use an example to illustrate how the two factors affect

the e2e transmission latency.

For simplicity of discussion, we consider a single-channel

6TiSCH network with a slotframe size of 6 and an uplink

packet transmission with routing path V4→V3→V2→V1→Vg

(see Fig. 4(a)). If the communication schedule is constructed

following an inverted order of the packet routing path (Sched-

ule 1 in Fig. 4(b)), 4 slotframes are needed to transmit the

packet from the sensor (V4) to the gateway (Vg). More specif-

ically, after the first-hop transmission via cell x4,1 allocated

to link e4,3 in the first slotframe, the second-hop transmission

has to wait for the next available cell x3,1 allocated to link

e3,2 in the next slotframe. Similarly, the third-hop and fourth-

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

hop transmissions are transmitted in the cells x2,1 and x1,1

in the third and fourth slotframes, respectively. Thus, it takes

4 slotframes to complete the transmission of the packet and

the e2e latency is 16 slots. However, if we allocate the cells

following the sequence of the links along the routing path

(Schedule 2 in Fig. 4(b)), 4 slots within one slotframe are

sufficient. This leads us to the following observation.

Observation 1 (Cell allocation sequence). If the cells assigned
to the links of a packet are allocated in the slotframe following
the packet’s routing sequence (i.e., the order of the links along
the packet’s routing path starting from the sensor node), the
packet experiences a shorter e2e transmission latency.

Besides the cell allocation sequence in a slotframe, another

key factor that affects the e2e transmission latency of a packet

is the network topology change, which in turn may change the

routing path of the packet. In 6TiSCH networks, a topology

change usually happens during the network operation when

new node(s) join the network, old node(s) leave the network,

or existing node(s) change their parents.

Fig. 4(c) shows a scenario when a new node V5 joins the

network and chooses node V2 as its parent. Assume that

a packet is generated at node V5 with node Vg set as its

destination. If Schedule 3 as shown in Fig. 4(d) is adopted,

there is no idle cell between cells x2,1 and x3,1 which are

allocated to link e3,2 and link e2,1, respectively. In this case,

we have to allocate the first idle cell (x5,1) in the slotframe

to link e5,2. This schedule violates the routing sequence of

the packet, thus does not satisfy Observation 1. The e2e

transmission latency of the packet from node V2 to Vg is

6 slots. By contrast, if we leave cell x3,1 idle before node

V5 joins the network, we can use Schedule 4 (as shown in

Fig. 4(d)) after V5 joins the network. Since Schedule 4 satisfies

Observation 1, i.e., all the cells follow the routing sequence

of the packet even after the topology change, the e2e packet

transmission latency is reduced to 3 slots. This example leads

us to the following observation.

Observation 2 (Idle cell reservation). Idle cells should be
judiciously reserved during the network operation so as to
help satisfy Observation 1 when topology changes occur.

Although reserving idle cells may negatively impact the e2e

transmission latency of the existing packets, it can significantly

improve the e2e latency when new devices join the network in

the future. The above observations provide useful guidelines

to reduce the e2e transmission latency for both existing and

newly joining devices. Then the question is how to utilize

these observations to construct the communication schedule,

especially when considering potential future topology changes.

B. Design of the Baseline Partition-based Scheduler

We now present an adaptive partition-based scheduling

scheme to allocate cells to links for a given network topology.

The key idea behind the scheduling scheme is to construct

schedules that satisfy Observation 1& 2. Before we go into the

details, we first introduce the concept of compliant schedule.

U,1U,2U,3 D,1 D,2 D,3B

Fig. 5. Slotframe layout of the base-line partition-based scheduler with one
broadcast partition and 3 partitions for uplinks and downlinks each.

Definition 1 (Compliant Schedule). A schedule S is a com-
pliant schedule if it satisfies the following three conditions.

Condition 1. Cells allocated to all the uplinks are placed
before the cells allocated to all the downlinks in the slotframe.
That is, ∀AL(xs1,c1) = (U, l1), AL(xs2,c2) = (D, l2), it holds
that s1 < s2.

Condition 2. Among all the cells allocated to the uplinks,
the ones allocated to any links with larger layer indices
are scheduled before those cells allocated to the links with
smaller layer indices in the slotframe. That is, ∀AL(xs1,c1) =
(U, l1), AL(xs2,c2) = (U, l2), if l1 > l2, it holds that s1 < s2.

Condition 3. Among all the cells allocated to the downlinks,
the ones allocated to any links with smaller layer indices
are scheduled before those cells allocated to the links with
larger layer indices in the slotframe. That is, ∀AL(xs1,c1) =
(D, l1), AL(xs2,c2) = (D, l2), if l1 < l2, it holds that s1 < s2.

Based on the definition of compliant schedule, we have the

following lemma.

Lemma 1. The e2e transmission latency of each packet in a
compliant schedule is bounded by one slotframe length.

The proof of Lemma 1 is straightforward and its detail

is omitted due to the page limit. According to Assumption

2 in the problem statement, the number of cells needed by

each link along a packet’s routing path is known and can

be accommodated in one slotframe. Further, according to

Definition 1, all the cells allocated to the links in the network

are compliant with their routing sequences. These two facts

together guarantee that the e2e transmission latency of each

packet does not exceed one slotframe length.

Based on Lemma 1, we propose a baseline partition-based,

link-type guided scheduling scheme that constructs a com-

pliant schedule by partitioning each slotframe in the time

dimension. Specifically, we first divide each slotframe into

three super-partitions in the time dimension. The three super-

partitions are allocated to uplinks (U), downlinks (D) and

broadcast tasks (B), respectively, and scheduled in the slot-

frame according to Condition 1 in Definition 1. The uplink and

downlink super-partitions are then further divided into L parti-
tions where L is an estimate of the maximum number of layers

in the network. Uplink and downlink partitions are scheduled

in the slotframe according to Condition 2 and Condition 3

in Definition 1, respectively. That is, the uplink/downlink

partitions are arranged in the descending/ascending orders

of their associated layers. Fig. 5 shows an example of the

partitioned slotframe with one broadcast super-partition and 3
partitions for uplinks and downlinks each. In the rest of the

paper, when it is not necessary to distinguish between partition

and super-partition, we simply refer to both as partition.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

Note that, initially we divide the slotframe equally among all

the partitions. If the total number of cells required by the task

set exceeds the capacity of the allocated partition, the online

partition adjustment method (to be elaborated in Section V)

is triggered to adjust the size and boundaries of the partition

to adapt to the change(s) from either the network topology or

the task specification. Below, we give the formal definitions

of uplink/downlink/broadcast partitions.

Definition 2 (Uplink/Downlink Partition). An uplink (down-
link) partition, denoted as PU,l (PD,l), is a set of consecutive
time slots in the slotframe. Each cell in PU,l (PD,l) can only
be allocated to an uplink (downlink) in layer l.

Definition 3 (Broadcast Partition). A broadcast partition, PB ,
is a set of consecutive time slots in the slotframe. Each cell in
PB can only be allocated to broadcast tasks.

After a slotframe is partitioned, the next question is how to

allocate the cells in each partition to the corresponding links,

i.e., constructing a compliant schedule. Since each node in

a 6TiSCH network is equipped with a single omni-directional

antenna, a node can only receive (send) a packet from (to) one
child node through an uplink (downlink) within one time slot.

Thus, a cell allocation should satisfy the following constraint.

Constraint 1. Cells with a same slot offset cannot be allocated
to links with a same sender or receiver.

Given that the number of slots in each partition is limited

and more slots may be needed when the network topology

or task specification changes, we desire to use the minimum

number of slots in a partition PU/D,l to satisfy the required

number of cells for all uplinks/downlinks in layer l. We thus

formulate the following slot minimization problem.

Problem 1 (Slot Minimization). Given partition PU/D,l in a
6TiSCH network with M channels and N uplinks/downlinks
in layer l, determine a cell allocation (i.e. schedule S) that
can provide the number of cells required by the N links while
using the minimum number of slots in PU/D,l (denoted as ρ).

We introduce an optimal solution below to solve Problem 1.

For simplicity of presentation, we describe the solution for

the case where all the N links are uplinks and each link

requires one cell. The solution can be readily extended to

the cases where all links are downlinks or each link requires

an arbitrary number of cells. Let α be the maximum number

of links associated with a same receiver. Let β = �N/M�
which denotes the minimum number of slots that needs to be

allocated to all the links if Constraint 1 is not considered. We

first claim that ρ = max{α, β}. Below, we describe how to

allocate the cells using ρ slots and prove its optimality.

Optimal Cell Allocation Policy (OCAP). (1) Group N links

into link groups, where all the links in a link group, LGk

(1 ≤ k ≤ I), share a common receiver (i.e., parent node)

and I is the total number of link groups. (2) For each LGk

(1 ≤ k ≤ I) in the decreasing order of the number of links

in LGk, allocate the links to the cells in PU,l from right to

left in the time dimension (i.e., in a decreasing order of the

slot offset), and from top to bottom in the channel dimension.

Once ρ cells in a channel are occupied and there are still links

in LGk to be handled, these links are allocated to the cells in

the next channel again from right to left in the time dimension.

It is easy to see that following OCAP, the number of slots

used by all the links is equal to ρ according to its definition.

The lemma below guarantees that OCAP satisfies Constraint 1.

Lemma 2. Links associated with the same receiver are always
assigned to cells with different slot offsets under the optimal
cell allocation policy, OCAP.

Proof. For an arbitrary group LGk, according to the definition

of ρ, the number of links in LGk is less than or equal to ρ,

i.e. |LGk| ≤ ρ. There are two cases when assigning cells to

links in LGk.

Case 1: All the links in LGk are assigned to cells in the

same channel. Obviously, in this case, all the links in LGk

are assigned to different slots.

Case 2: Links in LGk are assigned to cells in two different

channels. Suppose s∗ and s′ are the slot offsets of the right

partition boundary and the cell allocated to the first link in

LGk, respectively. According to OCAP, links in LGk are

assigned to cells in a decreasing order of their slot offsets (i.e.,
s′, s′ − 1, . . .). Once the cell with slot offset s∗ − ρ+1 in the

current channel is occupied by a link in LGk (i.e., hitting the

left boundary of the partition), the remaining links in LGk are

assigned to cells in the next channel starting from slot offset

s∗. Since |LGk| ≤ ρ, the slot offset of the cell allocated to

the last link in LGk must be larger than s′. That is, all the

cells allocated to links in the next channel are to the right of

the cells in the previous channel.

Theorem 1. OCAP uses the minimum number of slots to
allocate N links in PU/D,l while satisfying Constraint 1.

Proof. According to Lemma 2, OCAP satisfies Constraint 1.

Next, we prove that ρ, the number of slots allocated by OCAP

to N links in PU/D,l, is the minimum number of slots required.

If ρ = α, the number of allocated slots cannot be less than

ρ since all α links associated with the same receiver must be

assigned into cells with different slot offsets. If ρ = β, the

conclusion directly holds according to the definition of β.

The computational complexity of OCAP is O(n2) where

n is the number of links. Thus, the computation overhead of

OCAP is scalable considering that the algorithm runs on the

gateway. Fig. 6 shows an example schedule constructed by the

proposed partition-based scheduler for the 16-node 6TiSCH

network as shown in Fig. 3(a). As the network consists of 3
layers, 3 uplink and downlink partitions are created to allocate

cells for uplinks and downlinks in the corresponding layers.

Each partition contains 4 slots. As can be observed from

Fig. 6, the generated schedule is a compliant one, and the

e2e transmission latency of all the packets are guaranteed to

be within one slotframe length according to Lemma 1.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

U,3 U,2 U,1 B D,1

e1,g

time slots
ch

an
n
el

s

e2,g

D,2 D,3

e3,ge4,g

e5,1 e6,1e7,2

e8,3e9,3e10,3e11,6e12,6e13,6

e14,9e15,9

eg,1 eg,2 eg,3 eg,4

e1,5 e1,6 e2,7

e3,8 e3,9 e3,10 e6,11 e6,12 e6,13

e9,14 e9,15

Fig. 6. A schedule constructed by the baseline partition-based scheduler for the 16-node 6TiSCH network in Fig. 3(a). Assume each link needs one cell.

IV. TWO-DIMENSIONAL PARTITION-BASED SCHEDULING

The baseline partition-based scheduler presented in Sec-

tion III-B can guarantee that the e2e transmission latency of

all packets are bounded by one sloftframe length, if the two

assumptions in the problem statement are satisfied. However,

the baseline scheduler may have rather low cell utilization,

which leads to low schedulability especially as the network

size grows. In this section, we first discuss the root cause of

low cell utilization and then propose a novel two-dimensional

(2D) partition-based scheduling approach to address this issue.

A. Cell Utilization Challenge

In the baseline partition-based scheduler, partitioning is

done along the time dimension. Hence all the cells along

the channel dimension in the same time slot belong to the

same partition, which can lead to some cells not usable even

when other partitions need more cells. Consider the example

in Fig. 6, where all the cells in the first channel in partition

PU,1 are allocated. Suppose a new cell is requested by some

uplink in layer 1 due to either a new device joining or a new

task. It is clear that this request cannot be accommodated in

PU,1 since all the links in layer 1 share the same receiver

(gateway). This limitation is mainly caused by Constraint 1

which states that links with a same sender or receiver cannot

be assigned in the cells with a same slot offset. Though the

cells in the lower two channels in PU,2 could be used for this

new request, the baseline schedule restricts these cells for the

second-layer uplinks only.

In general, in the baseline partition-based scheduler, once

the number of cells requested by the links with a same sender

(receiver) reaches the corresponding partition size, no further

cell request from the same sender (receiver) can be accom-

modated even when idle cells still exist in that partition or

other partitions. This leads to low cell utilization. The problem

becomes more severe for higher-layer partitions since links in

these layers tend to have fewer packets to transmit (as these

links are shared by fewer routing paths) so most of the cells

in such partitions are wasted. Given that 6TiSCH networks

often need to deal with topology changes (such as new nodes

joining or existing nodes changing their parents/children), this

cell utilization challenge can be a large obstacle to handling

topology changes under the baseline partition-based scheduler,

which significantly reduces the scalability of the system.

To address this low utilization challenge, we note that

according to OCAP, cells in each partition are allocated in

a top-down fashion in the channel dimension. Thus, idle cells

in the bottom channels can be allocated to links in other

U,1,2

U,1,3

D,3,2U,2,2U,3,2

U,2,3U,3,3

D,2,2D,1,2

D,1,3 D,2,3 D,3,3

B

Row 1

Row 2

Row 3

U,1,1U,2,1U,3,1 D,1,1 D,2,1 D,3,1

Fig. 7. Slotframe layout of the 2D partition-based scheduler with 3 rows.
Each row has 3 sub-partitions for both uplinks and downlinks.

partitions. In Fig. 6, for example, if a link in PU,1 requests

an additional cell, this link can be allocated to cells in the

bottom channels in PU,2. This insight motivates us to perform

judicious partitioning not only in the slot dimension but also in

the channel dimension. Then the question is how to guarantee

the transmission latency bound when designing such a 2D

partition-based schedule.

B. Two-Dimensional Partition-based Scheduling Approach

We introduce a novel 2D partition-based scheduling ap-

proach to overcome the low cell utilization challenge. The

approach is built on two key ideas: i) let links in lower

layers (i.e., layers closer from the gateway and having smaller

layer index) borrow cells from higher layer partitions; and

ii) the lower the layer, the more cells it can borrow. it is

easy to see that the ideas are derived from the discussions

in Section IV-A. The 2D partition-based scheduler consists of

four major parts: (1) divide a slotframe into multiple rows in

the channel dimension, where each row consists of a group of

channels; (2) divide the slotframe in each row into partitions;

(3) assign links to the partitions in each row; (4) allocate cells

in each partition to specific links. The objective of this 2D

partition-based scheduler is to improve the network scalability

while ensuring that the constructed schedule is still a compliant

schedule. Below we describe the scheduler in detail.

The first two parts of the scheduler are to create partitions in

both the time and channel dimension. The resulting partition

layout should help the scheduler to eventually generate a

compliant schedule. Thus, the partition layout must satisfy

Condition 1 in the compliant schedule definition. That is,

cells allocated to all the uplinks are scheduled before the cells

allocated to all the downlinks in the slotframe. The following

process achieves the goal outlined above.

2D Partition Layout Generator (2D-PLG). (1) Divide a

slotframe into R rows according to the network specification,

including the max hop count, slotframe length, partition size

and the topology. (2) For the first row, create partitions

by applying the baseline partition-based scheduler. (3) For

the immediate next row, the uplink partitions start from the

beginning of the slotframe and ends at the left boundary of

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

PU,1 in the previous row. Similarly, the downlink partitions

start from the right boundary of PD,1 and ends at the end of

the slotframe. The relative sizes (i.e., the number of time slots)

of the partitions in the current row are the same as those in

the previous row. (4) Repeat (3) for the remaining rows.

Fig. 7 illustrates an example slotframe layout obtained from

applying 2D-PLG. Here 3 rows are considered and (U/D, l, r)
represents a uplink/downlink partition allocated for layer-l
links in row r. The sizes of the partitions within each row

are the same. We use PU/D,l,r (l ∈ [1, L], r ∈ [1, R]) to

denote an uplink (downlink) partition where r is the row

index. (Note that some cells (e.g., the grey ones in Fig. 7)

do not belong to any partitions under the 2D partition-based

scheduler. Those cells will be used as buffer to be assigned

to links in the presence of dynamic topology change(s). This

will be elaborated in the next section.) It is easy to see

that the partition layout obtained by 2D-PLG indeed satisfies

Condition 1.

Next, we present the details of the third part in the 2D

partition-based scheduler, i.e., assigning links to the partitions

in each row. Condition 2 and Condition 3 in the compliant

schedule definition collectively specify some requirements

when assigning links to partitions. Though they are appro-

priate conditions for the baseline scheduler, they are over-

constraining for the 2D case. Hence, we first discuss how to

relax these conditions while still guaranteeing the e2e trans-

mission latency bound. Then, we introduce our link to partition

assignment policy that satisfies the relaxed conditions.

Consider two links of the same type (e.g., uplink) but in

different layers. The two may or may not be on the same

routing path from a sensor node to the gateway for a packet.

Links e11,6 and e5,1 in Fig. 3a belong to the latter as they

are on the routing paths of different packets. According to

Observation 1, the cells assigned to the links of a same packet

should be assigned in the slotframe following the packet’s

routing sequence, but this is not required for the cell sequence

for different packets. Thus, there is no need to impose any

constraint on the cell sequence for the links on the routing

paths of different packets. Based on this observation, we relax

Condition 2 and Condition 3 as follows.

Condition 4. For any two cells allocated to two different
uplinks, if the two uplinks are on a same routing path to the
gateway for a packet, the cell allocated to the uplink in a
higher layer should be scheduled before the cell allocated to
the uplink in a lower layer.

Condition 5. For any two cells allocated to two different
downlinks, if the two downlinks are on a same path from the
gateway for a packet, the cell allocated to the downlink in a
lower layer should be scheduled before the cell allocated to
the downlink in a higher layer.

To develop a link assignment policy satisfying the above

two conditions, we make use of the “branch” concept in

the tree structure, and specifically refer to the collection of

all nodes/edges having a common layer-1 edge as a branch.

Algorithm 1 2D Partition-based Scheduler

1: Divide the slotframe into R rows in the channel dimension
according to the network specification;

2: Create partitions for the 1st row by applying the baseline
partition-based scheduler;

3: r ← 2;
4: while r ≤ R do
5: P (U,L, r) starts from the beginning of the slotframe and

P (U, 1, r) ends at the left boundary of P (U, 1, r − 1);
6: P (D, 1, r) starts from the right boundary of P (D, 1, r − 1)

and P (D,L, r) ends at the end of the slotframe;
7: The relative sizes of P (U/D, l, r)(1 ≤ l ≤ L) are the same

as those of P (U/D, l, r − 1)(1 ≤ l ≤ L);
8: r ← r + 1;
9: end while

10: while unassigned branches exist do
11: Select the branch Bm with the maximum number of links;
12: if P (U/D, 1, 1) is empty then
13: Assign e(U/D, 1) in Bm to P (U/D, 1, 1);
14: else if current row r is unfilled and has enough capacity then
15: Assign e(U/D, 1) in Bm to P (U/D, 1, r);
16: else
17: Assign e(U/D, 1) in Bm to P (U/D, 1, rs) where rs is

the unassigned row with the smallest index;
18: end if
19: Assign all the links in the higher layers (i.e., l > 1) in Bm into

the corresponding partitions in the same row as e(U/D, 1);
20: end while

Observe that by our definition, the links not belonging to the

same branch will never have shared routing paths, and thus

they do not need to satisfy Condition 4&5. The key idea of

our link assignment policy is to assign all links in a same

branch to a same row, thus allow links in different branches

to share slots if needed. The detail of the policy is given below.

Link to Partition Assignment. (1) Select the branch with the

maximum number of links among the unassigned branches.

(2) Assign the layer-1 link of this branch to the corresponding

partition in row-1 if this is the first link assignment, or in

the current unfilled row if the row has enough capacity, or in

the unassigned row with the smallest index. (2) Assign all the

links in the higher layers (i.e. l > 1) in this branch to the

corresponding partitions in the same row as the layer-1 link.

(3) Repeat (1) and (2) until no more unassigned branches.

The last part of our 2D partition-based scheduler is allo-

cating cells to links. This step can simply use the optimal

cell allocation policy, OCAP. The four parts collectively en-

sure that any generated schedule is a compliant one. Hence,

the 2D partition-based scheduler can guarantee that the e2e

transmission latency is bounded within one slotframe length.

Alg. 1 summarizes the 2D partition-based scheduler.

V. DYNAMIC PARTITION ADJUSTMENT

The 2D partition-based approach enables 6TiSCH to accom-

modate more nodes and tasks in the network, and thus improve

the system scalability. However, when the network size grows

or the network topology changes, it is still possible that the

cell allocation requests from some new or existing links cannot

be fulfilled in their corresponding partitions. This will cause

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

the e2e transmission latency of some packets to exceed the

slotframe length and degrade the overall network performance.

In these cases, dynamic partition adjustment is desired to adapt

the schedule to make it complaint again.

The communication schedule of a 6TiSCH network may

need to be changed in three different scenarios depending on

if the cell allocation requests from packets are updated.

Scenario 1: The cell allocation request decreases. This case

happens when some existing node leaves the network or the

data rate of some communication task decreases.

Scenario 2: The cell allocation request increases. This case

happens when some new node joins the network or the data

rate of some communication task increases.

Scenario 3: The cell allocation request does not change but

some nodes change their parents.

In the first scenario, the partition-based scheduler can read-

ily release the corresponding cells in the slotframe. Handling

the network dynamics in Scenario 2 and 3 is more compli-

cated since both scenarios require on-line cell and/or partition

adjustments in the current schedule. In the following, we first

describe our solution for handling Scenario 2 by assuming that

a cell allocation request from an uplink e(U, l) is to be satis-

fied. If e(U, l)’s corresponding partition is not fully used, the

request is simply fulfilled by one of the cells in the partition.

On the other hand, if e(U, l)’s corresponding partition, PU,l,r,

is full, we perform partition boundary adjustment to enlarge

PU,l,r whenever possible. This dynamic partition boundary

adjustment approach needs to decide when and how to adjust,

and we discuss the details below.

Regarding “how”, the partition boundary adjustment is

realized in two ways depending on whether the entire neighbor

partition needs to be shifted, or only the boundary of the

neighbor partition needs to be changed. For the former case,

the partition adjustment information is broadcast in a Beacon

packet to all the nodes within that partition. Upon receiving

such information, those nodes update their slot offsets in the

schedule. On the other hand, the latter case indicates that

idle slot(s) exist in the neighbor partition which is able to

accommodate e(U, l) (e.g., the leftmost slot in PU,2 in Fig. 6).

Since the partition boundary information is only known by the

scheduler, we can directly allocate e(U, l) into the idle cell in

the neighbor partition.

Regarding when to perform dynamic partition adjustment,

we do not perform the adjustment immediately when new

nodes join in the network or additional cell request exists for

transmitting packets. Instead, in order to keep the run-time

overhead under control, we perform partition adjustment either

periodically or based on certain loading condition. For this

“delayed” adjustment to work, we need to temporarily allocate

the new links or new requests somewhere before the next

partition adjustment. We make use of the unassigned partition,

i.e., the cells do not belong to any partition PU/D,l,r (e.g., the

grey blocks in Fig. 7) for this purpose. That is, we assign the

new links to the unassigned partition. This assignment may

cause unbounded transmission latency for packets with links

assigned in the unassigned partitions. While, if we choose

a random cell in another partition for such temporary cell

allocations, that partition’s capacity would be affected and

may not be able to serve future cell allocation requests, even

causing a cascading effect.

The partition adjustment to respond to Scenario 3 can be

easily achieved based on the above operations for Scenario 1
and 2. Specifically, we first move the cells allocated to the links

impacted by the topology change to the temporary partition.

Then the situation becomes the same as Scenario 2 and we can

follow the aforementioned process to make the adjustment.

VI. SIMULATION STUDIES

We have performed extensive experiments to evaluate the

performance of the APaS framework. In this section, we

present our key findings in the simulation studies. We further

implemented APaS on a 122-node 6TiSCH network testbed

and summarize our performance evaluation in Section VII.

A. Simulation Setup

In the simulation studies, we compare APaS with the

baseline randomized scheduler (RS), and two state-of-the-

art low latency scheduling functions designed for 6TiSCH

networks, LLSF [16] and LDSF [17]. RS simply allocates a

random cell for the requesting link. LLSF takes the following

two steps for cell allocation: (i) for each 1-hop link, it allocates

a random cell; (ii) for each multi-hop link, it allocates the next

available cell after the cell allocated for its previous link on the

routing path. LDSF is a block-based scheduling framework,

and it divides each slotframe into small blocks which repeat

over time. Similar to LLSF, links in LDSF are assigned to

consecutive blocks to minimize the e2e latency.

Our simulation studies aim to evaluate the e2e latency

of flows with different hop counts, and exam whether their

transmission latency bounds can be guaranteed. We use the

following two performance metrics in our studies.

E2e Latency (EL): EL is defined as the e2e MAC layer

latency of a packet. To better control the hop count of a packet,

we set its sensor and actuator to be a same device.

Success Ratio (SR): SR is defined as the fraction of packets

whose e2e transmission latencies are within one slotframe

length over all the packets transmitted in the network.

We randomly generate 200 network topologies. The num-

ber of nodes in the network is selected from the uniform

distribution over {20, 40, 60, . . . , 160}. 25 random topologies

are generated for each selected network size. The network

topology is formed in the same way as in the 6TiSCH network

initialization phase. Specifically, we first distribute the gateway

and nodes on a 25×25 grid randomly and let the gateway

broadcast Beacons. When nodes within the communication

range of the gateway (set to 5 unit distance) receive the

Beacons, they choose the gateway as their parents and broad-

cast Beacons to allow other nodes to join the network. This

process repeats until all nodes join the network and each node

originates a task. The slotframe lengths of all the networks are

set to 127 slots and each slot length is 10 milliseconds. We

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

enable all the 16 channels in 6TiSCH and cell reuse is only

allowed for broadcasting Beacons to save slots.

B. Simulation Results

We conduct two sets of experiments in our studies. In

the first set of experiments, we compare the performance

of APaS, RS, LLSF and LDSF in static network settings.

Fig. 8 compares the average EL and average SR among all the

schedulers by varying the network size from 20 to 160. Each

point in the figure represents the average value of 25 trials

with different topologies. We observe from the results that RS

suffers a high average EL especially when the network size

is large. On the other hand, the average ELs of APaS, LDSF

and LLSF are all within 1 slotframe length. Although LLSF

achieves the lowest average EL, its SR drops to 80% when the

network size increases to 160. LDSF demonstrates a similar

trend with LLSF on both EL and SR since it also allocates

a random cell for each 1-hop link and the available cells in

the subsequent blocks for links corresponding to the following

hops. Due to the block-based design, in LDSF each link can

only be allocated to its corresponding blocks and thus LDSF

suffers a larger EL compared to LLSF. By contrast, APaS

can always achieve 100% SR and guarantee that its ELs are

bounded by one slotframe length.

In the second set of experiments, we compare the per-

formance of APaS, LLSF and LDSF on handling dynamic

network topology changes. We randomly create a 100-node

network and generate 50 interfering events in the network

at randomly selected times and locations. The duration of

each event is set to be small enough so that no concurrent

events will appear in the network. During an interfering

event, each node within the interference range (set to 2.5 unit

distance) of the interferer will choose another neighbor node

located outside the interference range as the new parent for

seeking better connectivity. At the bottom of Fig. 9, we show

the number of nodes that change their parents during each

interfering event. The top two subfigures in Fig. 9 illustrate

the dynamic changes of EL and SR in responding to the 50

interfering events under APaS, LLSF and LDSF, respectively.

It can be observed that both EL and SR of LLSF and LDSF

degrade significantly when the network topology changes.

However, APaS can maintain a stable EL and guarantee a

100% SR during the simulation.

VII. TESTBED IMPLEMENTATION AND EVALUATION

A. Testbed Implementation and Deployment

We implemented the 6TiSCH stack and the gateway soft-

ware on COTS hardware and established a 122-node full-

blown 6TiSCH network testbed. The 6TiSCH stack is imple-

mented on TI CC2650 SensorTag device [18] (see Fig. 10(a)).

We use TI-RTOS as the real-time operating system to run

multiple tasks on the devices. For the gateway, we use a

Beagle Bone Black (BBB) embedded Linux system to serve

the boarder router and a SensorTag device to serve the Access

Point (AP) (see Fig. 10(a)). We mount the gateway and the

devices at designated locations in our testing environment

20 40 60 80 100 120 140 160
0.5

1

1.5

2

2.5

3

E
L

(s
)

20 40 60 80 100 120 140 160

20

40

60

80

100

Network Size

S
R

(%
)

APaS LLSF RS

LDSF 1-Slotframe

Fig. 8. Comparison of APaS, RS, LLSF and LDSF in static network settings.

10 20 30 40 50

1

1.5

E
L

(s
)

10 20 30 40 50

60

80

100
S

R
(%

)

10 20 30 40 50

0

5

10

15

Interfering Event Index

A
ff

ec
te

d
N

o
d
es

APaS LLSF

LDSF 1-Slotframe

Fig. 9. Comparison of APaS, LLSF and LDSF with dynamic topologies. If
the number of affected nodes is 0, it means no nodes are in the interference
range of the randomly generated interferer, and no topology change happens.

(see Fig. 10(b)). The SensorTag device provides multiple on-

board sensors. These sensor readings are collected through a

CoAP task and updated through the gateway to the cloud-based

network management system of our testbed (see Fig. 10(c)).

Similar to the simulation studies, we set the slotframe

length to 127 slots in the experiments, and each slot is 10

milliseconds. We enable all the 16 channels in 802.15.4e, and

cell reuse is only allowed for Beacons to save slots.

B. Performance Evaluation

We performed extensive experiments on the testbed to

compare the performance among APaS, LLSF and RS, under

both static and dynamic network settings.

Uplink Latency (UL): After the sensor data is subscribed

from the gateway, each device generates a CoAP packet every

10 seconds. We record the packets’ MAC layer transmission

time at the device and the MAC layer reception time at the

gateway to measure the uplink latency.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

�

�
�

Fig. 10. (a) Hardware platforms for the device (SensorTag) and gateway (BBB+SensorTag); (b) the testing environment where 122 devices and one gateway
are mounted; (c) the cloud-based network management system for sensor data collection, topology visualization and network health monitoring.

TABLE I
AVERAGE UPLINK AND E2E LATENCY COMPARISON BY LAYERS.

Layer
Average UL (s) Average EL (s)

APaS LLSF RS APaS LLSF RS
1 0.224 0.246 0.221 0.629 0.868 1.025
2 0.609 0.585 0.614 0.799 1.141 1.943
3 0.742 0.917 1.005 1.058 1.539 2.909
4 0.881 1.106 1.556 1.110 1.562 3.948
5 1.070 1.796 2.777 1.496 1.865 4.922

Overall 0.604 0.717 0.873 0.894 1.248 2.362
SR 85.7% 80.5% 78.1% 87.3% 70.3% 39.9%

E2e Latency (EL): Each device sends a CoAP packet to the

gateway and then to another device every 30 seconds. Similar

to the simulation studies, both source and destination are set

to the same device. We record the MAC layer transmission

and reception time at the device to measure the e2e latency.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

U
L

(s
)

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Node ID

E
L

(s
)

1

2

3

4

5

H
o
p

C
o
u
n
t

1

2

3

4

5

H
o
p

C
o
u
n
t

APaS LLSF

RS Hop count

1-Slotframe

(a) Average uplink latency of each device.

(b) Average end-to-end latency of each device.

Fig. 11. Comparison of uplink latency and e2e latency for all the devices
under the three schedulers: APaS, RS and LLSF.

To evaluate the performance of all the methods in a static

network, we collect 2-hour data trace when the network is

running stably, including 87,120 uplink packets and 29,040 e2e

packets. Table I summarizes the average uplink and e2e latency

for the devices in each layer of the network, and the overall

success ratio of all the packets. Although the transmission and

reception of 1-hop packets are in the same time slot and their

ideal MAC-to-MAC latency should be zero, as there is queuing

delay and packet loss in the testbed, some 1-hop packets may

also need one or more slotframes to finish the transmission.

Thus, the average uplink latency of layer-1 devices of the three

schedulers are all around 0.2 seconds. For higher layer packets,

the performance of RS degraded quickly as the layer increases

(e.g., layer-5’s average uplink and e2e latency of RS could

reach 2.777s and 4.922s, respectively). APaS and LLSF are

less sensitive to the hop counts. However, the average latency

of multi-hop packets under the LLSF scheduler is much higher

than that under APaS. This is because it allocates cells as close

as possible, and thus there is no reserved space to allocate new

cells along the routing path when the traffic changes. When

the network size increases, LLSF is more likely to suffer from

queuing delay than APaS.

Since more than half of the devices in the testbed are in

layer 1 and 2 (hop distribution is shown in Fig. 11), the overall

average uplink latency of the three schedulers are close, and

the overall average e2e latency of LLSF and RS are near one or

two slotframes length. But the difference in SR is significant.

For the e2e latency, APaS can guarantee 87.3% packets to

be finished within one slotframe, while the success ratios of

LLSF and RS are only 70.3% and 39.9%, respectively. Fig. 11

compares the average uplink and e2e latency for every device

under the three schedulers. Both the uplink and e2e latency

of LLSF and RS are increasing linearly with the hop counts,

while the performance of APaS is stable and most of packets

can be finished within 1 slotframe.

Note that the ELs of LLSF, RS and APaS all increase in

the testbed experiments compared with those in the simulation

evaluations (the SRs decrease accordingly). The main reason

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10

1

1.2

1.4

E
L

(s
)

0 2 4 6 8 10
50
60
70
80
90

S
R

(%
)

0 2 4 6 8 10

0

10

20

30

Topology Change Events

A
ff

ec
te

d
N

o
d
es

APaS

LLSF

Fig. 12. Comparison of APaS and LLSF with dynamic topology changes.

lies in the system assumptions made in the simulation experi-

ments, i.e., reliable links and sufficient cells without queuing

delay. These two assumptions typically do not hold in the

testbed and hence lead to increased ELs.To mitigate the impact

of packet loss and queuing delay, we allowed retransmission

of packets upon link failure and allocated certain number of

redundant cells in the slotframe for such retransmissions for

all the methods in the testbed implementation. Benefiting from

the compliant schedule design of APaS, these redundant cells

allocated in the idle slots reserved within each partition can

considerably help reduce the e2e latency. However, LLSF does

not make idle slot reservation along the packet routing path

and redundant cells have to be randomly allocated into idle

slots. This is the reason why APaS outperforms LLSF in the

testbed experiments.

To evaluate the performance of all the methods in handling

network topology changes, we randomly select nodes in the

network to restart, which forces the descendants of the selected

nodes to rejoin the network through new parents. We generate

these topology change events every 40 minutes and collect the

performance data for 30 minutes after the network becomes

stable for each event. For fair comparison, we use the same

random number generator seed and guarantee that the topology

change events are the same for all the methods. Fig. 12 shows

the average EL and SR of APaS and LLSF on handling 10

consecutive network topology change events. (We omit the

results of RS in the figure since the performance of RS is

significantly lower than both APaS and LLSF.) The results

show that compared with LLSF, APaS maintains stable EL and

SR values in the presence of topology changes. By contrast,

the EL of LLSF gradually increases and exceeds one slotframe

length after the third topology change event. In the meantime,

the SR of LLSF decreases from 75% to 52% as well. This is

because LLSF does not have the built-in functions for handling

network topology changes. After a node (re)joins the network

after the topology change, LLSF cannot guarantee that the

updated schedule is compliant. By contrast, APaS judiciously

reserves idle slots within each partition along the tasks’ routing

paths, and thus can adapt to topology changes.

VIII. RELATED WORK

In recent years, significant research efforts have been made

in designing data link layer scheduling methods for 6TiSCH

networks. [12] applies the Minimal Scheduling Function

(MSF) as a bootstrap mechanism [19] for 6TiSCH networks

based on random cell selection. [20] proposes 6TiSCH oper-

ation sublayer protocol (6p) where neighbor devices are able

to negotiate the communication schedule locally. The 6TiSCH

community standardizes several negotiation-based distributed

scheduling functions using 6P transaction, including Schedul-

ing Function Zero (SF0) [21] and Scheduling Function One

(SF1) [22]. SF0 enables each node to dynamically adjust the

amount of resources between itself and its neighbors based on

the current resource allocation. On the other hand, SF1 is an

end-to-end resource scheduler with hop-by-hop reservation in

a distributed manner. [23] proposes a distributed scheduling

policy based on PID control, enabling each node to determine

the cell allocation based on bandwidth estimation using a PID

controller. However, the above scheduling approaches have

the following two drawbacks: 1) transmission conflicts and

possible interference among nodes are not considered; 2) end-

to-end packet transmission latency can be large and unbounded

under a distributed scheduling policy.

Several works in the literature studied the end-to-end latency

optimization problem in 6TiSCH networks. Based on SF0,

[16] develops an advanced scheduling method called LLSF

to minimize the transmission latency by allocating the cells

for the packets along their routing paths. However, LLSF

does not make any cell reservation and thus suffers high

latency in the presence of network dynamics. [24] proposes

a localized scheduling algorithm enabling slot reservation for

nodes in each layer, but does not support on-line adjustment.

[15] proposes the Traffic Aware Scheduling Algorithm (TASA)

to reduce transmission latency for 802.15.4e networks. A

distributed version of TASA, called DeTAS, is also proposed

in [25]. However, both approaches require that the topology

under study is static and known a priori. [17] proposes a

block-based scheduling framework, called LDSF, to allocate

retransmission cells in the slotframe to improve reliability.

However, LDSF’s low latency and reliability are achieved by

adding a large number of redundant cells for each flow, and

thus unnecessarily sacrifice the network utilization.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose an adaptive partition-based

scheduling framework called APaS for 6TiSCH networks.

APaS aims to guarantee the e2e packet transmission latency

in multi-channel multi-hop 6TiSCH networks, and handle

frequent network topology changes by employing a novel

online partition adjustment method. We implement APaS on

a 122-node 6TiSCH network and validate its effectiveness

through both simulations and testbed experiments. As the

future work, we will extend APaS to a distributed version,

support tasks with diverse e2e latency requirements, and

apply machine learning techniques to handle different kinds

of network dynamics and further improve APaS’s scalability.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

X. ACKNOWLEDGEMENT

This research is partially supported by National Science

Foundation under awards CCF-2028875 and CCF-2028879.

We thank Dr. Tao Gong for assistance with the methodology

discussion and experimental testbed setup.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[3] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[4] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[5] H. P. Breivold and K. Sandström, “Internet of things for industrial
automation–challenges and technical solutions,” in 2015 IEEE Interna-
tional Conference on Data Science and Data Intensive Systems. IEEE,
2015, pp. 532–539.

[6] T. Zhang, T. Gong, C. Gu, H. Ji, S. Han, Q. Deng, and X. S. Hu,
“Distributed dynamic packet scheduling for handling disturbances in
real-time wireless networks,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2017, pp. 261–
272.

[7] T. Zhang, T. Gong, Z. Yun, S. Han, Q. Deng, and X. S. Hu, “Fd-pas: A
fully distributed packet scheduling framework for handling disturbances
in real-time wireless networks,” in 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2018, pp. 1–
12.

[8] T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu, “Distributed dynamic
packet scheduling framework for handling disturbances in real-time
wireless networks,” IEEE Transactions on Mobile Computing, vol. 18,
no. 11, pp. 2502–2517, 2018.

[9] T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu, “Fully distributed
packet scheduling framework for handling disturbances in lossy real-
time wireless networks,” IEEE Transactions on Mobile Computing,
vol. 20, no. 2, pp. 502–518, 2021.

[10] T. Gong, T. Zhang, X. S. Hu, Q. Deng, M. Lemmon, and S. Han,
“Reliable dynamic packet scheduling over lossy real-time wireless
networks,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019), 2019.

[11] T. Zhang, T. Gong, X. S. Hu, Q. Deng, and S. Han, “Dynamic resource
management in real-time wireless networks,” in Wireless Networks and
Industrial IoT. Springer, 2020, pp. 131–156.

[12] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
deterministic IP-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 36–41, 2014.

[13] D. De Guglielmo, G. Anastasi, and A. Seghetti, “From ieee 802.15. 4
to ieee 802.15. 4e: A step towards the internet of things,” in Advances
onto the Internet of Things, 2014.

[14] P. Djukic and S. Valaee, “Delay aware link scheduling for multi-
hop tdma wireless networks,” IEEE/ACM Transactions on networking,
vol. 17, no. 3, pp. 870–883, 2008.

[15] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic aware scheduling algorithm for reliable low-power multi-hop
IEEE 802.15.4e networks,” in 2012 IEEE 23rd International Sympo-
sium on Personal, Indoor and Mobile Radio Communications-(PIMRC).
IEEE, 2012, pp. 327–332.

[16] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low
latency scheduling function for 6TiSCH networks,” in 2016 International
Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, 2016, pp. 93–95.

[17] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
“Ldsf: Low-latency distributed scheduling function for industrial internet
of things,” IEEE internet of things journal, vol. 7, no. 9, pp. 8688–8699,
2020.

[18] “SimpleLink multi-standard CC2650 SensorTag kit.” [Online].
Available: http://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG

[19] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal IPv6 over the TSCH
mode of IEEE 802.15.4e (6TiSCH) configuration,” Internet Requests for
Comments, RFC Editor, BCP 210, May 2017.

[20] Q. Wang, X. Vilajosana, and T. Watteyne, “6TiSCH operation sublayer
(6top) protocol (6P),” RFC 8480, Nov. 2018. [Online]. Available:
https://rfc-editor.org/rfc/rfc8480.txt

[21] D. Dujovne, L. A. Grieco, M. R. Palattella, and N. Accettura, “6TiSCH
6top scheduling function zero (SF0),” Internet Engineering Task
Force, Internet-Draft draft-ietf-6tisch-6top-sf0-05, Jul. 2017, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-
ietf-6tisch-6top-sf0-05

[22] S. Anamalamudi, B. L. (Remy), M. Zhang, A. R. Sangi, C. E. Perkins,
and S. Anand, “Scheduling function one (SF1): hop-by-hop scheduling
with RSVP-TE in 6TiSCH networks,” Internet Engineering Task
Force, Internet-Draft draft-satish-6tisch-6top-sf1-04, Oct. 2017, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-
satish-6tisch-6top-sf1-04

[23] M. Domingo-Prieto, T. Chang, X. Vilajosana, and T. Watteyne, “Dis-
tributed PID-based scheduling for 6TiSCH networks,” IEEE Communi-
cations Letters, 2016.

[24] I. Hosni, F. Théoleyre, and N. Hamdi, “Localized scheduling for end-to-
end delay constrained low power lossy networks with 6TiSCH,” in 2016
IEEE Symposium on Computers and Communication (ISCC). IEEE,
2016, pp. 507–512.

[25] N. Accettura, E. Vogli, M. R. Palattella, L. A. Grieco, G. Boggia, and
M. Dohler, “Decentralized traffic aware scheduling in 6TiSCH networks:
Design and experimental evaluation,” IEEE Internet of Things Journal,
vol. 2, no. 6, pp. 455–470, 2015.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.

