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6TiSCH’s built-in random slot selection scheduling algorithm,
however, often leads to large and unbounded transmission
latency, thus can hardly meet the real-time requirements of
IIoT applications. This paper proposes an adaptive partition-
based scheduling framework, APaS, for 6TiSCH networks. APaS
introduces the concept of resource partitioning into 6TiSCH
network management. Instead of allocating network resources to
individual devices, APaS partitions and assigns network resources
to different groups of devices based on their layers in the network
so as to guarantee that the transmission latency of any end-to-
end flow is within one slotframe length. APaS also employs a
novel online partition adjustment method to further improve
its adaptability to dynamic network topology changes. The
effectiveness of APaS is validated through both simulation and
testbed experiments on a 122-node multi-hop 6TiSCH network.

Index Terms—6TiSCH, partition-based scheduling, end-to-end
latency, dynamic topology

I. INTRODUCTION

Internet of Things (IoT) is a fast-growing domain that
promises ubiquitous connection to the Internet, turning com-
mon objects into connected devices [1], [2]. The industrial
subset of IoT, namely Industrial IoT (IloT), aims at creat-
ing a unified sensing, computing and control framework to
interconnect industrial assets with information systems and
business processes, which helps streamline the manufacturing
process and lead to optimal industrial operations [3]. Many
industries — including but not limited to chemical process
control, automotive and aerospace manufacturing [3]-[5] —
will benefit from this revolution.

IIoT systems are typically deployed in distributed indus-
trial environments, supporting a dense array of sensing and
actuation devices. In the past decade, we have witnessed the
rapid development of real-time wireless networking (RTWN)

*The first two authors have equal contribution to this work.
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Fig. 1. Overview of the 6TiSCH architecture and hardware in our testbed.

technologies and their wide adoption in various IIoT applica-
tions [6]-[11]. This is mainly due to their great advantages
over their wired counterparts on easier deployment, enhanced
mobility, and reduced maintenance cost. Among the many
emerging RTWN technologies, 6TiSCH [12] has been receiv-
ing increasing attention in recent years. It has a nice feature
of gluing a real-time link-layer operational technology (OT)
standard (802.15.4e), for offering deterministic communica-
tion performance, together with an IP-enabled upper-layer
Information Technology (IT) stack, for supporting seamless
Internet services. Fig. 1 gives an overview of the 6TiSCH stack
architecture and example device and gateway platforms used
in our 122-node 6TiSCH network testbed.

Although 6TiSCH has high potential to become the de
facto standard for real-time wireless edge networks in IIoT,
its network management techniques are still rudimentary and
under development. Most of the 6TiSCH networks currently
deployed in industrial fields adopt a randomized packet sched-
uler at the data link layer. This randomized scheduler allocates
network resources (in the form of cells to be described in
detail later) randomly to the requesting communication tasks.
Such an approach, although can lead to good network resource
utilization, may cause high transmission latency for multi-hop
flows and even violate their end-to-end timing requirements.

We use actual measured data obtained from example
6TiSCH networks to show the impact of the randomized
scheduler on end-to-end latencies. Fig. 2 illustrates two
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Fig. 2. Average uplink latency in two multi-hop 6TiSCH networks with the built-in randomized scheduler.

6TiSCH networks that we created in our testbed, one with 17
nodes organized into a 2-hop network and the other with 101
nodes forming a 5-hop network topology. In both networks,
each device is configured to publish its sensor readings to
the gateway periodically, with period set to be 1.27 second
(i.e., the slotframe length of the network). From the collected
statistics on the uplink transmission latency, we have the
following observations. (i) The end-to-end latency can be
rather long even for very few hops. In the 2-hop 17-node
network, although the average uplink transmission latency is
only 0.167 second, the average latency of the 2-hop flows
is already close to one second. (ii) The uplink transmission
latency grows quickly along with the increase in the network
size and hop counts. In the 5-hop 101-node network, the
average uplink transmission latency of the 5-hop flows can
reach 3.38 seconds which is almost three times larger than the
designated timing requirement.

The above limitation of the randomized scheduler is exacer-
bated by the fact that 6TiSCH networks are typically deployed
in industrial environments where interference and disturbance
happen throughout the network lifetime. Those harsh envi-
ronments cause the network nodes to frequently change their
associated parents to seek for better communication links and
thus change the network topology. Although several methods
have been proposed in the literature to minimize the latency of
multi-hop flows in 6TiSCH networks (see Section VIII for a
detailed discussion), they are mainly designed for constructing
communication schedules for static networks. They either can-
not handle dynamic topology updates in a timely fashion, or
incur significant network overhead for updating the schedules.

In this paper, we tackle the problem of link scheduling
at data link layer for 6TiSCH networks by introducing an
adaptive partition-based scheduling framework, APaS. APaS
aims to guarantee the end-to-end packet transmission latency
in multi-channel multi-hop 6TiSCH networks, even in the pres-
ence of frequent network topology changes. APaS employs
the concept of resource partitioning. Specifically, it divides a
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slotframe into multiple partitions, and assigns the partitions
to specific links based on the links’ types and distances
to the gateway. Each partition contains a group of cells to
not only ensure that the latency requirements by the current
workload are satisfied but also provide reservation for future
demands due to topology changes. Our main contributions are
summarized below.

1) We introduce a novel partition-based, link-type guided
scheduling scheme at data link layer to help satisfy the
end-to-end real-time requirements of multi-hop flows.
The scheme divides time slots into different partitions
to schedule links of different types (uplink, downlink,
broadcast) and hop counts to the gateway. As long as a
link is assigned in the right partition, the transmission
latency of end-to-end flows is guaranteed to be within
the length of a single slotframe.

To improve the network scalability and support more
devices, we extend the baseline partition-based scheme
to perform further partitioning in the channel dimension
to allow channel reuse among different partitions.

We propose an efficient online partition adjustment
method to adjust allocations and boundaries of the parti-
tions for adapting to topology changes.

We implement APaS on a 122-node 6TiSCH network,
and validate the effectiveness of APaS through both
simulations and testbed experiments.

The remainder of the paper is organized as follows. Sec-
tion II describes the system model and presents the problem
statement. Section III introduces the baseline design of the
adaptive partition-based scheduling framework, APaS. Sec-
tion IV presents a two-dimensional partitioning scheme to
further increase the network scalability. Section V details the
dynamic partition adjustment method to improve the adapt-
ability of APaS. Section VI and VII evaluate the performance
of APaS via simulations and real-world testbed experiments,
respectively. Section VIII summarizes the related work. Sec-
tion IX concludes the paper and discusses future work.

2)

3)

4)
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II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we present the 6TiSCH network model and
describe the problem to be studied in this work.

A. Network Model

We adopt a typical RTWN model, in which sensors and
actuators are wirelessly connected to a controller node (the
gateway) either directly or through one or multiple relay nodes.
The network topology is modeled as a tree G = (V,E),
where node set V.= {{V;, V4,---,},V,} and root node
Vy represents the gateway. At any given time, each node is
only associated with one parent node but can have multiple
child nodes. If two nodes are directly connected (without any
intermediate nodes) and one node has fewer hops to the root
node than the other, we say the former is the parent of the latter
and the latter is a child of the former. Link e; ; € E represents
the directed wireless communication between nodes V; and
V;, where V; is the sender and Vj is the receiver. Each link
is associated with two attributes, type and layer. The type of
link e; ; is uplink (downlink) if V; is the child (parent) and V;
is the parent (child). The layer of a link is the child node’s hop
count to the gateway. We use e(U, 1) or e(D,!) to denote an
uplink or a downlink in layer /, respectively. Fig. 3(a) shows
a 6TiSCH network topology with 16 nodes and three layers.

An end-to-end (e2e) communication task (or simply task) in
a 6TiSCH network can be either a broadcast task or a unicast
task. A broadcast task is originated from the gateway and is
responsible for broadcasting network-wide configuration infor-
mation to all the nodes. A unicast task typically originates at
a sensor node. Following real-life RTWN settings, we assume
that each unicast task periodically samples the environment
and passes sensor readings along a pre-defined uplink routing
path to the gateway for data collection and control decision-
making. The generated control signals at the gateway are then
forwarded along a pre-defined downlink routing path to an
actuator node for execution. The information transmitted for
one instance of a task is referred to as a packet. See Fig. 3(b)
for the task related concepts and an example task.

In our network model, the 6TiSCH network employs a
Time-Division Multiple Access (TDMA) based data link layer
and adopts a centralized link-based scheduler to allocate
network resource for individual links [13]. We use the concept
of cell (denoted as ) to represent the basic resource unit
that can be allocated to individual links, where s is the time
slot offset and c is the channel offset. Consecutive time slots
in a 6TiSCH network are grouped into a slotframe. The
assignment of the cells to individual links in the slotframe
defines the communication schedule of the network and the
schedule repeats every slotframe during the course of the
network operation. When a device joins the network and
a task is created, the scheduler allocates specific cells to
the links along the routing path of the task; when a node
leaves the network, the assigned cells are revoked!. We use

INote that when a node leaves the network, all its descendants rejoin the
network by choosing a new parent. This will incur topology change(s).

322

1-hop / layer 1
2-hop / layer 2

3-hop / layer 3

(a) A 6TiSCH network topology with 16 nodes and three layers.
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Fig. 3. Important concepts of network resource management in 6TiSCH.

A(zs,c) = e; ; to denote that cell z, . is allocated to link e; ;
and use AL(z,.) = (U,1) to denote that z, . is allocated to
an uplink in layer [. If cell z, . is not assigned to any link in
the communication schedule, we say it is an idle cell. Fig. 3(c)
illustrates the cell and schedule concepts in our network model.

B. Problem Statement

A key performance metric of 6TiSCH networks is the e2e
packet transmission latency which is defined as the time
duration between the generation of the packet at the sensor
node’s application layer and the reception of the control signals
at the actuator’s application layer. We assume that all tasks
have the same e2e latency requirement that is bounded by
the slotframe length?. Our work aims to guarantee the e2e
transmission latency in multi-hop 6TiSCH networks, even in
the presence of frequent network topology changes. Our work
uses the following two assumptions.

Assumption 1. Instead of directly focusing on the e2e appli-
cation layer latency, we consider the e2e MAC layer latency,
which is defined as the time duration between the transmission
of the packet at the sensor node’s MAC layer and the reception
of the packet at the actuator node’s MAC layer. We make this
assumption because the data link layer scheduler is not aware
of the generation time of the packet at the application layer
which can be arbitrary, and the e2e MAC layer latency is a

2The APa$S framework can be readily extended to be applied in the scenario
where the latency requirements of the e2e tasks are diverse.
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more precise performance metric to evaluate the effectiveness
of data-link layer scheduling schemes.

Assumption 2. We assume that for each task, the number
of cells required by each link along its routing path has
been determined and each packet is assigned with sufficient
number of cells to transmit within each slotframe. We make
this assumption because extensive studies (e.g. [14], [15]) have
been conducted on how to decide the proper number of cells
for individual links in static networks to reduce the queuing
delay. Thus, this work focuses on (i) how to appropriately
allocate the determined number of cells for individual links in
a slotframe to guarantee the e2e MAC layer latency, and (ii)
how to adjust the allocation with moderate network overhead
in the presence of network topology changes.

Overall, the design objectives of our proposed scheduling
framework for 6TiSCH networks include: (i) guarantee the e2e
MAC layer latency of each packet to be within one slotframe
length; (ii) achieve high network scalability to support more
devices and tasks running in the network; and (iii) adapt to
network topology changes in an online and efficient manner,
so as to satisfy the e2e MAC layer latency requirements.

To achieve these design objectives, we introduce an adaptive
partition-based scheduling framework, APaS, which consists
of three key components. First, a baseline partition-based
scheduler is designed to achieve objective (i), where cells in
the schedule are allocated to links in groups according to their
types and layers. Second, the baseline design is extended to
a two-dimensional partition-based method to perform further
partitioning in the channel dimension to support channel
reuse by different partitions to realize objective (ii). Finally, a
dynamic partition adjustment strategy is developed in response
to online dynamic topology changes to achieve objective (iii).
Details of these innovations are presented in Section III,
Section IV and Section V, respectively.

III. BASELINE PARTITION-BASED SCHEDULING
APPROACH

As described in the introduction section, a major limitation
of the randomized scheduler in 6TiSCH networks is that it may
cause high e2e transmission latency for multi-hop flows and
violate their e2e timing requirements. In this section, we first
present a motivating example to show that an employed cell
allocation strategy (i.e., schedule) can significantly impact the
e2e latency, especially in the presence of topology changes.
Based on two important observations made from this example,
we then describe a baseline design of the proposed partition-
based, link-type guided scheduling scheme.

A. Motivating Example

6TiSCH is a representative type of TDMA-based multi-
channel multi-hop real-time wireless networks. In such net-
works, each packet has to wait for the allocated cell(s) for each
hop, and the e2e latency of the packet is an accumulation of the
waiting time of all its transmissions on the routing path from
the sensor node to the actuator node. In our study, we observed
that the following two key factors can affect the transmission
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(a) An example topology with five nodes.
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Schedule 1: the schedule constructed following the inverted order of the
routing path. It takes 16 slots and 4 slotframes to forward the packet.
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Schedule 2: the schedule constructed following order of the routing
path. It takes 4 slots and 1 slotframe to forward the packet.

(b) Two schedules constructed following different orders of the routing path.

(c) An updated topology with six nodes.
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Schedule 3: the schedule constructed following order of the routing path, but
with no reserved cell. It takes 6 slots and 2 slotframes to forward the packet.
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Schedule 4: the schedule constructed following order of the routing path with
one cell reserved. It takes 3 slots and 1 slotframe to forward the packet.

(d) Two schedules constructed with and without reserved cells.

Fig. 4. Comparison of e2e packet transmission latencies for four different
schedules. The latency in each schedule is indicated by the number of time
slots between the “release” red arrow and the “receive” red arrow. The purple
arrows indicate the slots where forwarding takes place.

latency of a packet: i) the sequence (or ordering) of the cells
allocated to the links along the routing path of the packet, and
ii) the positions of these cells in a slotframe. In the following,
we will use an example to illustrate how the two factors affect
the e2e transmission latency.

For simplicity of discussion, we consider a single-channel
6TiSCH network with a slotframe size of 6 and an uplink
packet transmission with routing path V;—V3—=Vo—=V =V
(see Fig. 4(a)). If the communication schedule is constructed
following an inverted order of the packet routing path (Sched-
ule 1 in Fig. 4(b)), 4 slotframes are needed to transmit the
packet from the sensor (V}) to the gateway (V). More specif-
ically, after the first-hop transmission via cell x4 ; allocated
to link ey 3 in the first slotframe, the second-hop transmission
has to wait for the next available cell x3; allocated to link
es 2 in the next slotframe. Similarly, the third-hop and fourth-
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hop transmissions are transmitted in the cells z2; and xq 3
in the third and fourth slotframes, respectively. Thus, it takes
4 slotframes to complete the transmission of the packet and
the e2e latency is 16 slots. However, if we allocate the cells
following the sequence of the links along the routing path
(Schedule 2 in Fig. 4(b)), 4 slots within one slotframe are
sufficient. This leads us to the following observation.

Observation 1 (Cell allocation sequence). If the cells assigned
to the links of a packet are allocated in the slotframe following
the packet’s routing sequence (i.e., the order of the links along
the packet’s routing path starting from the sensor node), the
packet experiences a shorter e2e transmission latency.

Besides the cell allocation sequence in a slotframe, another
key factor that affects the e2e transmission latency of a packet
is the network topology change, which in turn may change the
routing path of the packet. In 6TiSCH networks, a topology
change usually happens during the network operation when
new node(s) join the network, old node(s) leave the network,
or existing node(s) change their parents.

Fig. 4(c) shows a scenario when a new node V; joins the
network and chooses node V. as its parent. Assume that
a packet is generated at node V5 with node V, set as its
destination. If Schedule 3 as shown in Fig. 4(d) is adopted,
there is no idle cell between cells x5 ; and z3; which are
allocated to link e3 o and link ep 1, respectively. In this case,
we have to allocate the first idle cell (25,1) in the slotframe
to link es . This schedule violates the routing sequence of
the packet, thus does not satisfy Observation 1. The e2e
transmission latency of the packet from node V3 to Vj is
6 slots. By contrast, if we leave cell 3 ; idle before node
V5 joins the network, we can use Schedule 4 (as shown in
Fig. 4(d)) after V5 joins the network. Since Schedule 4 satisfies
Observation 1, i.e., all the cells follow the routing sequence
of the packet even after the topology change, the e2e packet
transmission latency is reduced to 3 slots. This example leads
us to the following observation.

Observation 2 (Idle cell reservation). Idle cells should be
judiciously reserved during the network operation so as to
help satisfy Observation 1 when topology changes occur.

Although reserving idle cells may negatively impact the e2e
transmission latency of the existing packets, it can significantly
improve the e2e latency when new devices join the network in
the future. The above observations provide useful guidelines
to reduce the e2e transmission latency for both existing and
newly joining devices. Then the question is how to utilize
these observations to construct the communication schedule,
especially when considering potential future topology changes.

B. Design of the Baseline Partition-based Scheduler

We now present an adaptive partition-based scheduling
scheme to allocate cells to links for a given network topology.
The key idea behind the scheduling scheme is to construct
schedules that satisfy Observation 1& 2. Before we go into the
details, we first introduce the concept of compliant schedule.
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Fig. 5. Slotframe layout of the base-line partition-based scheduler with one
broadcast partition and 3 partitions for uplinks and downlinks each.

Definition 1 (Compliant Schedule). A schedule S is a com-
pliant schedule if it satisfies the following three conditions.

Condition 1. Cells allocated to all the uplinks are placed
before the cells allocated to all the downlinks in the slotframe.
That is, VAL(zs, ¢,) = (U, 1), AL(zs, c,) = (D, l2), it holds
that s1 < So.

Condition 2. Among all the cells allocated to the uplinks,
the ones allocated to any links with larger layer indices
are scheduled before those cells allocated to the links with
smaller layer indices in the slotframe. That is, VAL(xs, ¢,) =
(U, 1), AL(zs, ¢,) = (U,1l2), if Iy > lg, it holds that 51 < sa.

Condition 3. Among all the cells allocated to the downlinks,
the ones allocated to any links with smaller layer indices
are scheduled before those cells allocated to the links with
larger layer indices in the slotframe. That is, VAL(zs, ¢,) =
(D, 11)7AL(£L'52’02) = (D7l2), lfll < lo, it holds that s1 < ss.

Based on the definition of compliant schedule, we have the
following lemma.

Lemma 1. The e2e transmission latency of each packet in a
compliant schedule is bounded by one slotframe length.

The proof of Lemma 1 is straightforward and its detail
is omitted due to the page limit. According to Assumption
2 in the problem statement, the number of cells needed by
each link along a packet’s routing path is known and can
be accommodated in one slotframe. Further, according to
Definition 1, all the cells allocated to the links in the network
are compliant with their routing sequences. These two facts
together guarantee that the e2e transmission latency of each
packet does not exceed one slotframe length.

Based on Lemma 1, we propose a baseline partition-based,
link-type guided scheduling scheme that constructs a com-
pliant schedule by partitioning each slotframe in the time
dimension. Specifically, we first divide each slotframe into
three super-partitions in the time dimension. The three super-
partitions are allocated to uplinks (U), downlinks (D) and
broadcast tasks (B), respectively, and scheduled in the slot-
frame according to Condition 1 in Definition 1. The uplink and
downlink super-partitions are then further divided into L parti-
tions where L is an estimate of the maximum number of layers
in the network. Uplink and downlink partitions are scheduled
in the slotframe according to Condition 2 and Condition 3
in Definition 1, respectively. That is, the uplink/downlink
partitions are arranged in the descending/ascending orders
of their associated layers. Fig. 5 shows an example of the
partitioned slotframe with one broadcast super-partition and 3
partitions for uplinks and downlinks each. In the rest of the
paper, when it is not necessary to distinguish between partition
and super-partition, we simply refer to both as partition.
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Note that, initially we divide the slotframe equally among all
the partitions. If the total number of cells required by the task
set exceeds the capacity of the allocated partition, the online
partition adjustment method (to be elaborated in Section V)
is triggered to adjust the size and boundaries of the partition
to adapt to the change(s) from either the network topology or
the task specification. Below, we give the formal definitions
of uplink/downlink/broadcast partitions.

Definition 2 (Uplink/Downlink Partition). An uplink (down-
link) partition, denoted as Py (Pp,), is a set of consecutive
time slots in the slotframe. Each cell in Py, (Pp) can only
be allocated to an uplink (downlink) in layer 1.

Definition 3 (Broadcast Partition). A broadcast partition, Pp,
is a set of consecutive time slots in the slotframe. Each cell in
Pgp can only be allocated to broadcast tasks.

After a slotframe is partitioned, the next question is how to
allocate the cells in each partition to the corresponding links,
i.e., constructing a compliant schedule. Since each node in
a 6TiSCH network is equipped with a single omni-directional
antenna, a node can only receive (send) a packet from (to) one
child node through an uplink (downlink) within one time slot.
Thus, a cell allocation should satisty the following constraint.

Constraint 1. Cells with a same slot offset cannot be allocated
to links with a same sender or receiver.

Given that the number of slots in each partition is limited
and more slots may be needed when the network topology
or task specification changes, we desire to use the minimum
number of slots in a partition Py/p; to satisfy the required
number of cells for all uplinks/downlinks in layer /. We thus
formulate the following slot minimization problem.

Problem 1 (Slot Minimization). Given partition Py p; in a
6TiSCH network with M channels and N uplinks/downlinks
in layer 1, determine a cell allocation (i.e. schedule S) that
can provide the number of cells required by the N links while
using the minimum number of slots in Py, p ; (denoted as p).

We introduce an optimal solution below to solve Problem 1.
For simplicity of presentation, we describe the solution for
the case where all the N links are uplinks and each link
requires one cell. The solution can be readily extended to
the cases where all links are downlinks or each link requires
an arbitrary number of cells. Let o be the maximum number
of links associated with a same receiver. Let 8 = [N/M]
which denotes the minimum number of slots that needs to be
allocated to all the links if Constraint 1 is not considered. We
first claim that p = max{«, 3}. Below, we describe how to
allocate the cells using p slots and prove its optimality.

Optimal Cell Allocation Policy (OCAP). (1) Group N links
into link groups, where all the links in a link group, LG}
(1 < k < I), share a common receiver (i.e., parent node)
and [ is the total number of link groups. (2) For each LG}
(1 < k < 1) in the decreasing order of the number of links
in LGy, allocate the links to the cells in FPy;; from right to
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left in the time dimension (i.e., in a decreasing order of the
slot offset), and from top to bottom in the channel dimension.
Once p cells in a channel are occupied and there are still links
in LG}, to be handled, these links are allocated to the cells in
the next channel again from right to left in the time dimension.

It is easy to see that following OCAP, the number of slots
used by all the links is equal to p according to its definition.
The lemma below guarantees that OCAP satisfies Constraint 1.

Lemma 2. Links associated with the same receiver are always
assigned to cells with different slot offsets under the optimal
cell allocation policy, OCAP.

Proof. For an arbitrary group LG}, according to the definition
of p, the number of links in LGy, is less than or equal to p,
i.e. |[LGg| < p. There are two cases when assigning cells to
links in LG),.

Case 1: All the links in LGy, are assigned to cells in the
same channel. Obviously, in this case, all the links in LGy,
are assigned to different slots.

Case 2: Links in LGy, are assigned to cells in two different
channels. Suppose s* and s’ are the slot offsets of the right
partition boundary and the cell allocated to the first link in
LG}, respectively. According to OCAP, links in LGj, are
assigned to cells in a decreasing order of their slot offsets (i.e.,
s',8" —1,...). Once the cell with slot offset s* — p+1 in the
current channel is occupied by a link in LGy, (i.e., hitting the
left boundary of the partition), the remaining links in LG}, are
assigned to cells in the next channel starting from slot offset
s*. Since |LGy| < p, the slot offset of the cell allocated to
the last link in LGy must be larger than s’. That is, all the
cells allocated to links in the next channel are to the right of
the cells in the previous channel. L

Theorem 1. OCAP uses the minimum number of slots to
allocate N links in Py, p; while satisfying Constraint 1.

Proof. According to Lemma 2, OCAP satisfies Constraint 1.
Next, we prove that p, the number of slots allocated by OCAP
to N links in P/ p ;. is the minimum number of slots required.
If p = a, the number of allocated slots cannot be less than
p since all « links associated with the same receiver must be
assigned into cells with different slot offsets. If p = /3, the
conclusion directly holds according to the definition of 5. [

The computational complexity of OCAP is O(n?) where
n is the number of links. Thus, the computation overhead of
OCAP is scalable considering that the algorithm runs on the
gateway. Fig. 6 shows an example schedule constructed by the
proposed partition-based scheduler for the 16-node 6TiSCH
network as shown in Fig. 3(a). As the network consists of 3
layers, 3 uplink and downlink partitions are created to allocate
cells for uplinks and downlinks in the corresponding layers.
Each partition contains 4 slots. As can be observed from
Fig. 6, the generated schedule is a compliant one, and the
e2e transmission latency of all the packets are guaranteed to
be within one slotframe length according to Lemma 1.
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Fig. 6. A schedule constructed by the baseline partition-based scheduler for the 16-node 6TiSCH network in Fig. 3(a). Assume each link needs one cell.

IV. TWO-DIMENSIONAL PARTITION-BASED SCHEDULING

The baseline partition-based scheduler presented in Sec-
tion III-B can guarantee that the e2e transmission latency of
all packets are bounded by one sloftframe length, if the two
assumptions in the problem statement are satisfied. However,
the baseline scheduler may have rather low cell utilization,
which leads to low schedulability especially as the network
size grows. In this section, we first discuss the root cause of
low cell utilization and then propose a novel two-dimensional
(2D) partition-based scheduling approach to address this issue.

A. Cell Utilization Challenge

In the baseline partition-based scheduler, partitioning is
done along the time dimension. Hence all the cells along
the channel dimension in the same time slot belong to the
same partition, which can lead to some cells not usable even
when other partitions need more cells. Consider the example
in Fig. 6, where all the cells in the first channel in partition
Py 1 are allocated. Suppose a new cell is requested by some
uplink in layer 1 due to either a new device joining or a new
task. It is clear that this request cannot be accommodated in
Py 1 since all the links in layer 1 share the same receiver
(gateway). This limitation is mainly caused by Constraint 1
which states that links with a same sender or receiver cannot
be assigned in the cells with a same slot offset. Though the
cells in the lower two channels in Py o could be used for this
new request, the baseline schedule restricts these cells for the
second-layer uplinks only.

In general, in the baseline partition-based scheduler, once
the number of cells requested by the links with a same sender
(receiver) reaches the corresponding partition size, no further
cell request from the same sender (receiver) can be accom-
modated even when idle cells still exist in that partition or
other partitions. This leads to low cell utilization. The problem
becomes more severe for higher-layer partitions since links in
these layers tend to have fewer packets to transmit (as these
links are shared by fewer routing paths) so most of the cells
in such partitions are wasted. Given that 6TiSCH networks
often need to deal with topology changes (such as new nodes
joining or existing nodes changing their parents/children), this
cell utilization challenge can be a large obstacle to handling
topology changes under the baseline partition-based scheduler,
which significantly reduces the scalability of the system.

To address this low utilization challenge, we note that
according to OCAP, cells in each partition are allocated in
a top-down fashion in the channel dimension. Thus, idle cells
in the bottom channels can be allocated to links in other

Row 1| U3,1 ‘ U,2,1 U,1,1 D,1,1 D,2,1 ‘ D,3,1
Row2|UJ32 (U22 U112 B D,1,2 | D22 | D32
Row 3|U3,3 [U23|U,1,3 D.13|D23 D33

Fig. 7. Slotframe layout of the 2D partition-based scheduler with 3 rows.
Each row has 3 sub-partitions for both uplinks and downlinks.

partitions. In Fig. 6, for example, if a link in Py ; requests
an additional cell, this link can be allocated to cells in the
bottom channels in Py . This insight motivates us to perform
judicious partitioning not only in the slot dimension but also in
the channel dimension. Then the question is how to guarantee
the transmission latency bound when designing such a 2D
partition-based schedule.

B. Two-Dimensional Partition-based Scheduling Approach

We introduce a novel 2D partition-based scheduling ap-
proach to overcome the low cell utilization challenge. The
approach is built on two key ideas: i) let links in lower
layers (i.e., layers closer from the gateway and having smaller
layer index) borrow cells from higher layer partitions; and
ii) the lower the layer, the more cells it can borrow. it is
easy to see that the ideas are derived from the discussions
in Section IV-A. The 2D partition-based scheduler consists of
four major parts: (1) divide a slotframe into multiple rows in
the channel dimension, where each row consists of a group of
channels; (2) divide the slotframe in each row into partitions;
(3) assign links to the partitions in each row; (4) allocate cells
in each partition to specific links. The objective of this 2D
partition-based scheduler is to improve the network scalability
while ensuring that the constructed schedule is still a compliant
schedule. Below we describe the scheduler in detail.

The first two parts of the scheduler are to create partitions in
both the time and channel dimension. The resulting partition
layout should help the scheduler to eventually generate a
compliant schedule. Thus, the partition layout must satisfy
Condition 1 in the compliant schedule definition. That is,
cells allocated to all the uplinks are scheduled before the cells
allocated to all the downlinks in the slotframe. The following
process achieves the goal outlined above.
2D Partition Layout Generator (2D-PLG). (1) Divide a
slotframe into R rows according to the network specification,
including the max hop count, slotframe length, partition size
and the topology. (2) For the first row, create partitions
by applying the baseline partition-based scheduler. (3) For
the immediate next row, the uplink partitions start from the
beginning of the slotframe and ends at the left boundary of
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Py1 in the previous row. Similarly, the downlink partitions
start from the right boundary of Pp ; and ends at the end of
the slotframe. The relative sizes (i.e., the number of time slots)
of the partitions in the current row are the same as those in
the previous row. (4) Repeat (3) for the remaining rows.

Fig. 7 illustrates an example slotframe layout obtained from
applying 2D-PLG. Here 3 rows are considered and (U/D, 1, )
represents a uplink/downlink partition allocated for layer-/
links in row r. The sizes of the partitions within each row
are the same. We use Py p;, (I € [1,L],r € [1,R]) to
denote an uplink (downlink) partition where 7 is the row
index. (Note that some cells (e.g., the grey ones in Fig. 7)
do not belong to any partitions under the 2D partition-based
scheduler. Those cells will be used as buffer to be assigned
to links in the presence of dynamic topology change(s). This
will be elaborated in the next section.) It is easy to see
that the partition layout obtained by 2D-PLG indeed satisfies
Condition 1.

Next, we present the details of the third part in the 2D
partition-based scheduler, i.e., assigning links to the partitions
in each row. Condition 2 and Condition 3 in the compliant
schedule definition collectively specify some requirements
when assigning links to partitions. Though they are appro-
priate conditions for the baseline scheduler, they are over-
constraining for the 2D case. Hence, we first discuss how to
relax these conditions while still guaranteeing the e2e trans-
mission latency bound. Then, we introduce our link to partition
assignment policy that satisfies the relaxed conditions.

Consider two links of the same type (e.g., uplink) but in
different layers. The two may or may not be on the same
routing path from a sensor node to the gateway for a packet.
Links eq1,6 and es; in Fig. 3a belong to the latter as they
are on the routing paths of different packets. According to
Observation 1, the cells assigned to the links of a same packet
should be assigned in the slotframe following the packet’s
routing sequence, but this is not required for the cell sequence
for different packets. Thus, there is no need to impose any
constraint on the cell sequence for the links on the routing
paths of different packets. Based on this observation, we relax
Condition 2 and Condition 3 as follows.

Condition 4. For any two cells allocated to two different
uplinks, if the two uplinks are on a same routing path to the
gateway for a packet, the cell allocated to the uplink in a
higher layer should be scheduled before the cell allocated to
the uplink in a lower layer.

Condition 5. For any two cells allocated to two different
downlinks, if the two downlinks are on a same path from the
gateway for a packet, the cell allocated to the downlink in a
lower layer should be scheduled before the cell allocated to
the downlink in a higher layer.

To develop a link assignment policy satisfying the above
two conditions, we make use of the “branch” concept in
the tree structure, and specifically refer to the collection of
all nodes/edges having a common layer-1 edge as a branch.
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Algorithm 1 2D Partition-based Scheduler

1: Divide the slotframe into R rows in the channel dimension
according to the network specification;

2: Create partitions for the 1°' row by applying the baseline
partition-based scheduler;
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4: while r < R do

5. P(U,L,r) starts from the beginning of the slotframe and
P(U,1,r) ends at the left boundary of P(U, 1,7 — 1);

6:  P(D,1,r) starts from the right boundary of P(D,1,r — 1)
and P(D, L,r) ends at the end of the slotframe;

7: The relative sizes of P(U/D,l,r)(1 <1 < L) are the same
as those of P(U/D,l,r —1)(1 <1< L);

8: r<r+1;

9: end while

10: while unassigned branches exist do

11: Select the branch B,, with the maximum number of links;

12: if P(U/D,1,1) is empty then

13: Assign e(U/D, 1) in By, to P(U/D,1,1);

14:  else if current row 7 is unfilled and has enough capacity then

15: Assign e(U/D, 1) in By, to P(U/D,1,r);

16:  else

17: Assign e(U/D,1) in B,, to P(U/D,1,rs) where rs is

the unassigned row with the smallest index;
18:  end if
19:  Assign all the links in the higher layers (i.e., [ > 1) in B,, into

the corresponding partitions in the same row as e(U/D, 1);
20: end while

Observe that by our definition, the links not belonging to the
same branch will never have shared routing paths, and thus
they do not need to satisfy Condition 4&5. The key idea of
our link assignment policy is to assign all links in a same
branch to a same row, thus allow links in different branches
to share slots if needed. The detail of the policy is given below.
Link to Partition Assignment. (1) Select the branch with the
maximum number of links among the unassigned branches.
(2) Assign the layer-1 link of this branch to the corresponding
partition in row-1 if this is the first link assignment, or in
the current unfilled row if the row has enough capacity, or in
the unassigned row with the smallest index. (2) Assign all the
links in the higher layers (i.e. [ > 1) in this branch to the
corresponding partitions in the same row as the layer-1 link.
(3) Repeat (1) and (2) until no more unassigned branches.

The last part of our 2D partition-based scheduler is allo-
cating cells to links. This step can simply use the optimal
cell allocation policy, OCAP. The four parts collectively en-
sure that any generated schedule is a compliant one. Hence,
the 2D partition-based scheduler can guarantee that the e2e
transmission latency is bounded within one slotframe length.
Alg. 1 summarizes the 2D partition-based scheduler.

V. DYNAMIC PARTITION ADJUSTMENT

The 2D partition-based approach enables 6TiSCH to accom-
modate more nodes and tasks in the network, and thus improve
the system scalability. However, when the network size grows
or the network topology changes, it is still possible that the
cell allocation requests from some new or existing links cannot
be fulfilled in their corresponding partitions. This will cause
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the e2e transmission latency of some packets to exceed the
slotframe length and degrade the overall network performance.
In these cases, dynamic partition adjustment is desired to adapt
the schedule to make it complaint again.

The communication schedule of a 6TiSCH network may
need to be changed in three different scenarios depending on
if the cell allocation requests from packets are updated.

Scenario 1: The cell allocation request decreases. This case
happens when some existing node leaves the network or the
data rate of some communication task decreases.

Scenario 2: The cell allocation request increases. This case
happens when some new node joins the network or the data
rate of some communication task increases.

Scenario 3: The cell allocation request does not change but
some nodes change their parents.

In the first scenario, the partition-based scheduler can read-
ily release the corresponding cells in the slotframe. Handling
the network dynamics in Scenario 2 and 3 is more compli-
cated since both scenarios require on-line cell and/or partition
adjustments in the current schedule. In the following, we first
describe our solution for handling Scenario 2 by assuming that
a cell allocation request from an uplink e(U, ) is to be satis-
fied. If e(U, 1)’s corresponding partition is not fully used, the
request is simply fulfilled by one of the cells in the partition.
On the other hand, if e(U,)’s corresponding partition, Py,
is full, we perform partition boundary adjustment to enlarge
Py .» whenever possible. This dynamic partition boundary
adjustment approach needs to decide when and how to adjust,
and we discuss the details below.

Regarding “how”, the partition boundary adjustment is
realized in two ways depending on whether the entire neighbor
partition needs to be shifted, or only the boundary of the
neighbor partition needs to be changed. For the former case,
the partition adjustment information is broadcast in a Beacon
packet to all the nodes within that partition. Upon receiving
such information, those nodes update their slot offsets in the
schedule. On the other hand, the latter case indicates that
idle slot(s) exist in the neighbor partition which is able to
accommodate e(U, ) (e.g., the leftmost slot in Py 5 in Fig. 6).
Since the partition boundary information is only known by the
scheduler, we can directly allocate e(U, () into the idle cell in
the neighbor partition.

Regarding when to perform dynamic partition adjustment,
we do not perform the adjustment immediately when new
nodes join in the network or additional cell request exists for
transmitting packets. Instead, in order to keep the run-time
overhead under control, we perform partition adjustment either
periodically or based on certain loading condition. For this
“delayed” adjustment to work, we need to temporarily allocate
the new links or new requests somewhere before the next
partition adjustment. We make use of the unassigned partition,
i.e., the cells do not belong to any partition Py, p ;. (e.g., the
grey blocks in Fig. 7) for this purpose. That is, we assign the
new links to the unassigned partition. This assignment may
cause unbounded transmission latency for packets with links
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assigned in the unassigned partitions. While, if we choose
a random cell in another partition for such temporary cell
allocations, that partition’s capacity would be affected and
may not be able to serve future cell allocation requests, even
causing a cascading effect.

The partition adjustment to respond to Scenario 3 can be
easily achieved based on the above operations for Scenario 1
and 2. Specifically, we first move the cells allocated to the links
impacted by the topology change to the temporary partition.
Then the situation becomes the same as Scenario 2 and we can
follow the aforementioned process to make the adjustment.

VI. SIMULATION STUDIES

We have performed extensive experiments to evaluate the
performance of the APaS framework. In this section, we
present our key findings in the simulation studies. We further
implemented APaS on a 122-node 6TiSCH network testbed
and summarize our performance evaluation in Section VIIL

A. Simulation Setup

In the simulation studies, we compare APaS with the
baseline randomized scheduler (RS), and two state-of-the-
art low latency scheduling functions designed for 6TiSCH
networks, LLSF [16] and LDSF [17]. RS simply allocates a
random cell for the requesting link. LLSF takes the following
two steps for cell allocation: (i) for each 1-hop link, it allocates
a random cell; (ii) for each multi-hop link, it allocates the next
available cell after the cell allocated for its previous link on the
routing path. LDSF is a block-based scheduling framework,
and it divides each slotframe into small blocks which repeat
over time. Similar to LLSF, links in LDSF are assigned to
consecutive blocks to minimize the e2e latency.

Our simulation studies aim to evaluate the e2e latency
of flows with different hop counts, and exam whether their
transmission latency bounds can be guaranteed. We use the
following two performance metrics in our studies.

E2e Latency (EL): EL is defined as the e2e MAC layer
latency of a packet. To better control the hop count of a packet,
we set its sensor and actuator to be a same device.

Success Ratio (SR): SR is defined as the fraction of packets
whose e2e transmission latencies are within one slotframe
length over all the packets transmitted in the network.

We randomly generate 200 network topologies. The num-
ber of nodes in the network is selected from the uniform
distribution over {20, 40, 60, ...,160}. 25 random topologies
are generated for each selected network size. The network
topology is formed in the same way as in the 6TiSCH network
initialization phase. Specifically, we first distribute the gateway
and nodes on a 25x25 grid randomly and let the gateway
broadcast Beacons. When nodes within the communication
range of the gateway (set to 5 unit distance) receive the
Beacons, they choose the gateway as their parents and broad-
cast Beacons to allow other nodes to join the network. This
process repeats until all nodes join the network and each node
originates a task. The slotframe lengths of all the networks are
set to 127 slots and each slot length is 10 milliseconds. We
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enable all the 16 channels in 6TiSCH and cell reuse is only
allowed for broadcasting Beacons to save slots.

B. Simulation Results

We conduct two sets of experiments in our studies. In
the first set of experiments, we compare the performance
of APaS, RS, LLSF and LDSF in static network settings.
Fig. 8 compares the average EL and average SR among all the
schedulers by varying the network size from 20 to 160. Each
point in the figure represents the average value of 25 trials
with different topologies. We observe from the results that RS
suffers a high average EL especially when the network size
is large. On the other hand, the average ELs of APaS, LDSF
and LLSF are all within 1 slotframe length. Although LLSF
achieves the lowest average EL, its SR drops to 80% when the
network size increases to 160. LDSF demonstrates a similar
trend with LLSF on both EL and SR since it also allocates
a random cell for each 1-hop link and the available cells in
the subsequent blocks for links corresponding to the following
hops. Due to the block-based design, in LDSF each link can
only be allocated to its corresponding blocks and thus LDSF
suffers a larger EL compared to LLSF. By contrast, APaS
can always achieve 100% SR and guarantee that its ELs are
bounded by one slotframe length.

In the second set of experiments, we compare the per-
formance of APaS, LLSF and LDSF on handling dynamic
network topology changes. We randomly create a 100-node
network and generate 50 interfering events in the network
at randomly selected times and locations. The duration of
each event is set to be small enough so that no concurrent
events will appear in the network. During an interfering
event, each node within the interference range (set to 2.5 unit
distance) of the interferer will choose another neighbor node
located outside the interference range as the new parent for
seeking better connectivity. At the bottom of Fig. 9, we show
the number of nodes that change their parents during each
interfering event. The top two subfigures in Fig. 9 illustrate
the dynamic changes of EL and SR in responding to the 50
interfering events under APaS, LLSF and LDSF, respectively.
It can be observed that both EL and SR of LLSF and LDSF
degrade significantly when the network topology changes.
However, APaS can maintain a stable EL and guarantee a
100% SR during the simulation.

VII. TESTBED IMPLEMENTATION AND EVALUATION
A. Testbed Implementation and Deployment

We implemented the 6TiSCH stack and the gateway soft-
ware on COTS hardware and established a 122-node full-
blown 6TiSCH network testbed. The 6 TiSCH stack is imple-
mented on TT CC2650 SensorTag device [18] (see Fig. 10(a)).
We use TI-RTOS as the real-time operating system to run
multiple tasks on the devices. For the gateway, we use a
Beagle Bone Black (BBB) embedded Linux system to serve
the boarder router and a SensorTag device to serve the Access
Point (AP) (see Fig. 10(a)). We mount the gateway and the
devices at designated locations in our testing environment
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Fig. 9. Comparison of APaS, LLSF and LDSF with dynamic topologies. If
the number of affected nodes is 0, it means no nodes are in the interference
range of the randomly generated interferer, and no topology change happens.

(see Fig. 10(b)). The SensorTag device provides multiple on-
board sensors. These sensor readings are collected through a
CoAP task and updated through the gateway to the cloud-based
network management system of our testbed (see Fig. 10(c)).

Similar to the simulation studies, we set the slotframe
length to 127 slots in the experiments, and each slot is 10
milliseconds. We enable all the 16 channels in 802.15.4e, and
cell reuse is only allowed for Beacons to save slots.

B. Performance Evaluation

We performed extensive experiments on the testbed to

compare the performance among APaS, LLSF and RS, under
both static and dynamic network settings.
Uplink Latency (UL): After the sensor data is subscribed
from the gateway, each device generates a CoAP packet every
10 seconds. We record the packets” MAC layer transmission
time at the device and the MAC layer reception time at the
gateway to measure the uplink latency.
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TABLE I
AVERAGE UPLINK AND E2E LATENCY COMPARISON BY LAYERS.

Average UL (s) Average EL (s)

Layer APaS | LLSF RS APaS | LLSF RS
1 0.224 | 0.246 0.221 0.629 | 0.868 1.025
2 0.609 0.585 0.614 0.799 1.141 1.943
3 0.742 0917 1.005 1.058 1.539 2.909
4 0.881 1.106 1.556 1.110 1.562 3.948
5 1.070 1.796 2.777 1.496 1.865 4.922
Overall | 0.604 | 0.717 0.873 0.894 1.248 2.362
SR 85.7% | 80.5% | 78.1% || 87.3% | 70.3% | 39.9%

E2e Latency (EL): Each device sends a CoAP packet to the
gateway and then to another device every 30 seconds. Similar
to the simulation studies, both source and destination are set
to the same device. We record the MAC layer transmission
and reception time at the device to measure the e2e latency.
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Fig. 11. Comparison of uplink latency and e2e latency for all the devices

under the three schedulers: APaS, RS and LLSF.
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To evaluate the performance of all the methods in a static
network, we collect 2-hour data trace when the network is
running stably, including 87,120 uplink packets and 29,040 e2e
packets. Table I summarizes the average uplink and e2e latency
for the devices in each layer of the network, and the overall
success ratio of all the packets. Although the transmission and
reception of 1-hop packets are in the same time slot and their
ideal MAC-to-MAC latency should be zero, as there is queuing
delay and packet loss in the testbed, some 1-hop packets may
also need one or more slotframes to finish the transmission.
Thus, the average uplink latency of layer-1 devices of the three
schedulers are all around 0.2 seconds. For higher layer packets,
the performance of RS degraded quickly as the layer increases
(e.g., layer-5’s average uplink and e2e latency of RS could
reach 2.777s and 4.922s, respectively). APaS and LLSF are
less sensitive to the hop counts. However, the average latency
of multi-hop packets under the LLSF scheduler is much higher
than that under APaS. This is because it allocates cells as close
as possible, and thus there is no reserved space to allocate new
cells along the routing path when the traffic changes. When
the network size increases, LLSF is more likely to suffer from
queuing delay than APaS.

Since more than half of the devices in the testbed are in
layer 1 and 2 (hop distribution is shown in Fig. 11), the overall
average uplink latency of the three schedulers are close, and
the overall average e2e latency of LLSF and RS are near one or
two slotframes length. But the difference in SR is significant.
For the e2e latency, APaS can guarantee 87.3% packets to
be finished within one slotframe, while the success ratios of
LLSF and RS are only 70.3% and 39.9%, respectively. Fig. 11
compares the average uplink and e2e latency for every device
under the three schedulers. Both the uplink and e2e latency
of LLSF and RS are increasing linearly with the hop counts,
while the performance of APaS is stable and most of packets
can be finished within 1 slotframe.

Note that the ELs of LLSF, RS and APaS all increase in
the testbed experiments compared with those in the simulation
evaluations (the SRs decrease accordingly). The main reason
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Fig. 12. Comparison of APaS and LLSF with dynamic topology changes.

lies in the system assumptions made in the simulation experi-
ments, ie., reliable links and sufficient cells without queuing
delay. These two assumptions typically do not hold in the
testbed and hence lead to increased ELs.To mitigate the impact
of packet loss and queuing delay, we allowed retransmission
of packets upon link failure and allocated certain number of
redundant cells in the slotframe for such retransmissions for
all the methods in the testbed implementation. Benefiting from
the compliant schedule design of APaS, these redundant cells
allocated in the idle slots reserved within each partition can
considerably help reduce the e2e latency. However, LLSF does
not make idle slot reservation along the packet routing path
and redundant cells have to be randomly allocated into idle
slots. This is the reason why APaS outperforms LLSF in the
testbed experiments.

To evaluate the performance of all the methods in handling
network topology changes, we randomly select nodes in the
network to restart, which forces the descendants of the selected
nodes to rejoin the network through new parents. We generate
these topology change events every 40 minutes and collect the
performance data for 30 minutes after the network becomes
stable for each event. For fair comparison, we use the same
random number generator seed and guarantee that the topology
change events are the same for all the methods. Fig. 12 shows
the average EL and SR of APaS and LLSF on handling 10
consecutive network topology change events. (We omit the
results of RS in the figure since the performance of RS is
significantly lower than both APaS and LLSF.) The results
show that compared with LLSF, APaS maintains stable EL and
SR values in the presence of topology changes. By contrast,
the EL of LLSF gradually increases and exceeds one slotframe
length after the third topology change event. In the meantime,
the SR of LLSF decreases from 75% to 52% as well. This is
because LLSF does not have the built-in functions for handling
network topology changes. After a node (re)joins the network
after the topology change, LLSF cannot guarantee that the
updated schedule is compliant. By contrast, APaS judiciously
reserves idle slots within each partition along the tasks’ routing
paths, and thus can adapt to topology changes.
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VIII. RELATED WORK

In recent years, significant research efforts have been made
in designing data link layer scheduling methods for 6TiSCH
networks. [12] applies the Minimal Scheduling Function
(MSF) as a bootstrap mechanism [19] for 6TiSCH networks
based on random cell selection. [20] proposes 6TiSCH oper-
ation sublayer protocol (6p) where neighbor devices are able
to negotiate the communication schedule locally. The 6TiSCH
community standardizes several negotiation-based distributed
scheduling functions using 6P transaction, including Schedul-
ing Function Zero (SF0) [21] and Scheduling Function One
(SF1) [22]. SFO enables each node to dynamically adjust the
amount of resources between itself and its neighbors based on
the current resource allocation. On the other hand, SF1 is an
end-to-end resource scheduler with hop-by-hop reservation in
a distributed manner. [23] proposes a distributed scheduling
policy based on PID control, enabling each node to determine
the cell allocation based on bandwidth estimation using a PID
controller. However, the above scheduling approaches have
the following two drawbacks: 1) transmission conflicts and
possible interference among nodes are not considered; 2) end-
to-end packet transmission latency can be large and unbounded
under a distributed scheduling policy.

Several works in the literature studied the end-to-end latency
optimization problem in 6TiSCH networks. Based on SFO,
[16] develops an advanced scheduling method called LLSF
to minimize the transmission latency by allocating the cells
for the packets along their routing paths. However, LLSF
does not make any cell reservation and thus suffers high
latency in the presence of network dynamics. [24] proposes
a localized scheduling algorithm enabling slot reservation for
nodes in each layer, but does not support on-line adjustment.
[15] proposes the Traffic Aware Scheduling Algorithm (TASA)
to reduce transmission latency for 802.15.4e networks. A
distributed version of TASA, called DeTAS, is also proposed
in [25]. However, both approaches require that the topology
under study is static and known a priori. [17] proposes a
block-based scheduling framework, called LDSF, to allocate
retransmission cells in the slotframe to improve reliability.
However, LDSF’s low latency and reliability are achieved by
adding a large number of redundant cells for each flow, and
thus unnecessarily sacrifice the network utilization.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose an adaptive partition-based
scheduling framework called APaS for 6TiSCH networks.
APaS aims to guarantee the e2e packet transmission latency
in multi-channel multi-hop 6TiSCH networks, and handle
frequent network topology changes by employing a novel
online partition adjustment method. We implement APaS on
a 122-node 6TiSCH network and validate its effectiveness
through both simulations and testbed experiments. As the
future work, we will extend APaS to a distributed version,
support tasks with diverse e2e latency requirements, and
apply machine learning techniques to handle different kinds
of network dynamics and further improve APaS’s scalability.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.



X. ACKNOWLEDGEMENT

This research is partially supported by National Science
Foundation under awards CCF-2028875 and CCF-2028879.
We thank Dr. Tao Gong for assistance with the methodology
discussion and experimental testbed setup.

(1]

[6

(71

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645-1660, 2013.

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347-2376, 2015.

E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” /EEE
Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724-4734,
2018.

L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233—
2243, 2014.

H. P. Breivold and K. Sandstrom, “Internet of things for industrial
automation—challenges and technical solutions,” in 2015 IEEE Interna-
tional Conference on Data Science and Data Intensive Systems. 1EEE,
2015, pp. 532-539.

T. Zhang, T. Gong, C. Gu, H. Ji, S. Han, Q. Deng, and X. S. Hu,
“Distributed dynamic packet scheduling for handling disturbances in
real-time wireless networks,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 1EEE, 2017, pp. 261-
272.

T. Zhang, T. Gong, Z. Yun, S. Han, Q. Deng, and X. S. Hu, “Fd-pas: A
fully distributed packet scheduling framework for handling disturbances
in real-time wireless networks,” in 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 1EEE, 2018, pp. 1-
12.

T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu, “Distributed dynamic
packet scheduling framework for handling disturbances in real-time
wireless networks,” IEEE Transactions on Mobile Computing, vol. 18,
no. 11, pp. 2502-2517, 2018.

T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu, “Fully distributed
packet scheduling framework for handling disturbances in lossy real-
time wireless networks,” IEEE Transactions on Mobile Computing,
vol. 20, no. 2, pp. 502-518, 2021.

T. Gong, T. Zhang, X. S. Hu, Q. Deng, M. Lemmon, and S. Han,
“Reliable dynamic packet scheduling over lossy real-time wireless
networks,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019), 2019.

T. Zhang, T. Gong, X. S. Hu, Q. Deng, and S. Han, “Dynamic resource
management in real-time wireless networks,” in Wireless Networks and
Industrial IoT. Springer, 2020, pp. 131-156.

D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
deterministic IP-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 3641, 2014.

D. De Guglielmo, G. Anastasi, and A. Seghetti, “From ieee 802.15. 4
to ieee 802.15. 4e: A step towards the internet of things,” in Advances
onto the Internet of Things, 2014.

P. Djukic and S. Valaee, “Delay aware link scheduling for multi-
hop tdma wireless networks,” IEEE/ACM Transactions on networking,
vol. 17, no. 3, pp. 870-883, 2008.

M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic aware scheduling algorithm for reliable low-power multi-hop
IEEE 802.15.4e networks,” in 2012 IEEE 23rd International Sympo-
sium on Personal, Indoor and Mobile Radio Communications-(PIMRC).
IEEE, 2012, pp. 327-332.

T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low
latency scheduling function for 6TiSCH networks,” in 2016 International
Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, 2016, pp. 93-95.

332

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
“Ldsf: Low-latency distributed scheduling function for industrial internet
of things,” IEEE internet of things journal, vol. 7, no. 9, pp. 8688—8699,
2020.

“SimpleLink multi-standard CC2650 SensorTag kit.” [Online].
Available: http://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG

X. Vilajosana, K. Pister, and T. Watteyne, “Minimal IPv6 over the TSCH
mode of IEEE 802.15.4e (6TiSCH) configuration,” Internet Requests for
Comments, RFC Editor, BCP 210, May 2017.

Q. Wang, X. Vilajosana, and T. Watteyne, “6TiSCH operation sublayer
(6top) protocol (6P),” RFC 8480, Nov. 2018. [Online]. Available:
https://rfc-editor.org/rfc/rfc8480.txt

D. Dujovne, L. A. Grieco, M. R. Palattella, and N. Accettura, “6TiSCH
6top scheduling function zero (SF0),” Internet Engineering Task
Force, Internet-Draft draft-ietf-6tisch-6top-sf0-05, Jul. 2017, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-
ietf-6tisch-6top-sf0-05

S. Anamalamudi, B. L. (Remy), M. Zhang, A. R. Sangi, C. E. Perkins,
and S. Anand, “Scheduling function one (SF1): hop-by-hop scheduling
with RSVP-TE in 6TiSCH networks,” Internet Engineering Task
Force, Internet-Draft draft-satish-6tisch-6top-sf1-04, Oct. 2017, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-
satish-6tisch-6top-sf1-04

M. Domingo-Prieto, T. Chang, X. Vilajosana, and T. Watteyne, “Dis-
tributed PID-based scheduling for 6TiSCH networks,” IEEE Communi-
cations Letters, 2016.

I. Hosni, F. Théoleyre, and N. Hamdi, “Localized scheduling for end-to-
end delay constrained low power lossy networks with 6TiSCH,” in 2016
IEEE Symposium on Computers and Communication (ISCC). 1EEE,
2016, pp. 507-512.

N. Accettura, E. Vogli, M. R. Palattella, L. A. Grieco, G. Boggia, and
M. Dohler, “Decentralized traffic aware scheduling in 6TiSCH networks:
Design and experimental evaluation,” IEEE Internet of Things Journal,
vol. 2, no. 6, pp. 455-470, 2015.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 22,2021 at 17:16:42 UTC from IEEE Xplore. Restrictions apply.



