
1

Hardware-Aware Beamspace Precoding for
All-Digital mmWave Massive MU-MIMO
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Abstract—Massive multi-user multiple-input multiple-output

(MU-MIMO) wireless systems operating at millimeter-wave

(mmWave) frequencies enable simultaneous wideband data trans-

mission to a large number of users. In order to reduce the com-

plexity of MU precoding in all-digital basestation architectures

that equip each antenna element with a pair of data converters,

we propose a two-stage precoding architecture which first gener-

ates a sparse precoding matrix in the beamspace domain, followed

by an inverse fast Fourier transform that converts the result

to the antenna domain. The sparse precoding matrix requires

a small amount of multipliers and enables regular hardware

architectures, which allows the design of hardware-efficient

all-digital precoders. Simulation results demonstrate that our

methods approach the error-rate performance of conventional

Wiener filter precoding with more than 2ˆ̂̂ lower complexity.

I. INTRODUCTION

Massive multi-user (MU) multiple-input multiple-output
(MIMO) systems operating at millimeter-wave (mmWave) fre-
quencies enable simultaneous, wideband wireless transmission
to a large number of user equipments (UEs) [1], [2]. While
the large contiguous bandwidths available at mmWave enable
high per-UE data rates, the strong atmospheric absorption
necessitates MU precoding to provide sufficiently high signal-
to-noise ratios (SNRs) at the UE side. Since massive MU-
MIMO equips the infrastructure basestations (BSs) with a
large number of antennas, fine-grained beamforming and
simultaneous data transmission to multiple UEs via spatial
multiplexing is possible. Hybrid analog-digital beamforming
architectures for mmWave systems have been proposed in
the past [3], [4]. However, the trend is towards all-digital
architectures [5], [6] that enable superior beamforming and
spatial multiplexing capabilities and achieve comparable system
costs and power consumption by deploying low-precision data
converters at each antenna element. In order to successfully
deploy all-digital architectures in practice, novel hardware-
efficient baseband processing techniques for channel estimation,
data detection, and MU precoding are necessary.

An emerging approach towards low-complexity baseband
processing algorithms and simpler hardware architectures for
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all-digital BSs is to exploit beamspace sparsity [7]–[13]. Since
mmWave propagation is highly directional, the UE signals
arrive at the BS from only a few incident angles [2]. By taking
a spatial discrete Fourier transform (DFT) across the antenna
array (e.g., a uniform linear array), the received signal is
transformed from the antenna domain to the beamspace domain,
which concisely reveals the underlying angular sparsity [3],
[14], [15]. The sparse nature of the received beamspace signals
can then be exploited to design low-complexity baseband
algorithms and simpler hardware architectures [7]–[13]. In
the uplink, beamspace data detectors have been proposed in
[12], [13] and beamspace channel estimators in [10], [16]–[18].
In the downlink, MU beamspace precoders have been proposed
only recently in [9], [11], [19], [20].

1) Contributions: We propose two-stage beamspace precod-
ing algorithms for all-digital mmWave massive MU-MIMO
systems. Our algorithms rely on orthogonal matching pursuit
(OMP) to compute sparse linear precoding matrices in the
beamspace domain, which can result in lower precoding
complexity than conventional, linear antenna-domain precoders
that perform a dense matrix-vector product. The precoded
output is then converted to the antenna domain using an inverse
fast Fourier transform (IFFT). We use simulations for line-of-
sight (LoS) and non-LoS mmWave channels to demonstrate that
our algorithms approach the bit error-rate (BER) performance
of conventional, antenna-domain Wiener filter (WF) precoding,
while enabling more than 2ˆ lower complexity.

2) Notation: Boldface lowercase and uppercase letters
represent vectors and matrices, respectively. For a vector a,
the kth entry is ak “ rask. For a matrix A, the transpose
is A

T and the conjugate transpose is A
H; the kth column is

ak “ rAsk and the kth row is a
k

“ rAT sT
k

. For an index set ⌦,
A⌦ refers to the submatrix of A with columns taken from ⌦.
The `2-norm of a is }a}, the number of nonzero entries of a
is denoted by }a}0, and the Frobenius norm of A is }A}F .
The N ˆ N identity matrix is IN and the N ˆ M all-zeros
matrix is 0NˆM . The NˆN unitary discrete Fourier transform
(DFT) matrix is FN . The unit vector en contains a 1 in the nth
entry and zeros otherwise. Vectors and matrices in the antenna
domain are denoted with a bar, e.g., ā and Ā. The set of integers
t1, . . . , Nu is vNw. The multivariate complex-valued circularly-
symmetric Gaussian probability density function (PDF) with
covariance matrix ⌃ is denoted by CN p0Nˆ1,⌃N q.

II. MMWAVE MASSIVE MU-MIMO DOWNLINK

A. Downlink Channel and System Model

We consider the mmWave massive MU-MIMO downlink,
in which a BS with a B-antenna uniform linear array (ULA)
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transmits data to U single-antenna UEs. We assume that the
UEs are in the far-field and mmWave propagation conditions [2].
For illustrative purposes, we can model wave propagation from
the BS to UE u with the standard plane-wave approxima-
tion [21] h̄

u
“ ∞

L´1
`“0 ↵`ap�`q, where L refers to the number

of transmission paths between UE u and the BS antenna array
(including a possible LoS path), ↵l P C is the complex-valued
channel gain of the `th transmission path, and

ap�`q “
“
1, ej�` , ej2�` , . . . , ejpB´1q�`

‰
, (1)

where �` is the spatial frequency determined by the `th path’s
incident angle to the ULA. The downlink channel matrix H̄ P
CUˆB comprises the rows h̄

u
for u P vUw. In Sec. IV, we

show simulation results with more realistic mmWave channel
vectors generated from the mmMAGIC QuaDRiGa model [22].

We consider a block-fading frequency-flat channel, in which
the channel stays constant over a block of T time slots. We
model the downlink input-output relation as follows:

ȳ “ H̄x̄ ` n̄. (2)

Here, the U -dimensional vector ȳ P CU comprises the
signals received at all U UEs and the noise vector is n̄ „
CN p0Uˆ1, N0IU q, where N0 is assumed to be known at the
BS. To mitigate MU interference, the BS must precode the
transmit symbols. To this end, a B-dimensional antenna-domain
precoded vector x̄ is formed according to

x̄ “ Pps, H̄, N0, ⇢
2q, (3)

where the transmit vector s P O
U contains the U data symbols

to be transmitted to the UEs, O is the constellation set (e.g.,
16-QAM), the transmit signals are assumed to be i.i.d. zero-
mean and normalized so that E

“
|su|2

‰
“ Es for all u P vUw

and ⇢2 is the average power constraint so that Es

“
}x̄}2

‰
§ ⇢2.

As in [23], we define the SNR as SNR fi ⇢2{N0.

B. MSE-Optimal Linear Precoding

To minimize the precoding complexity, we focus on linear
precoders for which the function in (3) is linear, i.e.,

x̄ “ Pps, H̄, N0, ⇢
2q “ Ps, (4)

where P P CBˆU is a precoding matrix. Since multi-antenna
transmission causes an array gain, each UE u performs scalar
equalization of the received signal yu with a precoding factor
�u P C according to ŝu “ �uyu, u “ 1, . . . , U . As in [24],
we consider pilot-based estimation of the precoding factors: In
the first time slot, the BS transmits U pilots with energy Es,
which are then used at each UE to estimate �u. We focus on
linear precoders that minimize the UE-side mean-square error
(MSE) for a common � P C so that

MSE fi Es,n

“
}s ´ ŝ}2

‰
“ Es,n

“
}s ´ �y}2

‰
(5)

“ Es

“
}s ´ �H̄x}2

‰
` |�|2UN0 (6)

is minimized. The MSE-optimal linear precoder is known as
the Wiener filter (WF) precoder [25], where the precoding
matrix P

WF “ 1
�pQ̄WFqQ̄

WF is given by

Q̄
WF “

`
H̄

H
H̄ ` WF

IB

˘´1
H̄

H . (7)

Here, WF “ UN0{⇢2, and � : CNˆN Ñ R is a function that
computes a pre-factor to satisfy the power constraint:

�pQq “
b
tr

`
Q̄HQ̄

˘
Es{⇢2. (8)

As it will become useful later, one can alternatively obtain
the (unnormalized) WF precoding matrix Q̄

WF in (7) by solving
the following unconstrained optimization problem [26]:

Q̄
WF “ arg min

Q̄PCBˆU

}H̄Q̄ ´ IU }2
F

` WF}Q̄}2
F
. (9)

C. Linear Precoding in the Beamspace Domain

In order to reduce the complexity of conventional, antenna-
domain WF precoding x̄ “ P

WF
s, one can perform linear

precoding in the beamspace domain [11]. The key idea is to
deploy linear precoders of the form

x̄ “ Pps, H̄, N0, ⇢
2q “ F

H
B
Ps, (10)

where the inverse DFT matrix F
H

B
converts the beamspace

domain precoding vector x “ Ps into the antenna domain.
Such two-stage precoders are able to exploit the sparse nature
of the rows of the channel matrix H̄ in the beamspace domain,
because the rows consist of a superposition of a few complex-
valued sinusoids as in (1), i.e., the rows of the beamspace-
domain mmWave MIMO channel matrix H “ H̄FB are
typically sparse [3], [15], [27], [28]; this property allows for
the design of precoding matrices P whose columns are also
sparsely populated [11]. For such sparse precoding matrices,
computing (10), which is carried out at symbol rate, requires
lower complexity than antenna-domain precoding as in (4).

III. SPARSE BEAMSPACE PRECODING ALGORITHMS

We now propose algorithms to compute sparse precoding
matrices that are suitable for beamspace precoding as in (10).
We start by an OMP-based algorithm, and then propose
alternative algorithms with additional structure on the sparse
matrix P, which simplify corresponding hardware architectures.

A. Sparse Beamspace Precoding (SBP)

In order to design SBP matrices, we modify the optimization
problem in (9) to deliver sparse matrices. As a first method,
we propose to solve the following optimization problem

Q
SBP “

#
minimize
QPCBˆU

}HQ ´ IU }2
F

` WF}Q}2
F

subject to Q P SSBP
(11)

where we impose a constraint that ensures each column of Q
to have exactly K entries, i.e.,

SSBP fi tQ P CBˆU : }qu}0 “ K,u “ 1, . . . , Uu. (12)

We then normalize the matrix Q
SBP to obtain the SBP matrix

P
SBP “ 1

�pQSBPqQ
SBP, where �pQSBPq was defined in (8). It is

important to realize that one can solve the problem in (11) on
a per-column basis, i.e., we can solve

q
SBP
u

“
#

minimize
qPCB

}Hq ´ eu}22 ` WF}q}22
subject to }q}0 “ K,

(13)
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for u “ 1, . . . , U . Unfortunately, this sparse approximation
problem is NP-hard [29] and thus must be solved using
approximate methods. We propose to compute an approximate
solution to (13) using OMP [30], as detailed next.

Let qpkq
u P Ck be the vector computed after the kth OMP

iteration, and r
pkq
u the associated residual. Let

⌦pkq
u be the set

of indices of the k nonzero entries of qu, and let ⌦pkq
u be

the set of available indices for the new nonzero entry in the
pk ` 1qth iteration. Here, ⌦pkq

u “ vBwz ⌦pkq
u ,@k. We initialize

the available and already-selected indices ⌦p0q
u “ vBw,

⌦p0q
u “

?, and the residual rp0q
u “ eu. Then, repeat the following three

steps for iterations k “ 1, . . . ,K: (i) Identify the next best
beam index by correlating the residual with the columns of H,

bpkq
u

“ arg max
bP⌦pk´1q

u

|hH
b
r

pk´1q
u

|, (14)

and augment the support set,

⌦pkq
u “ ⌦pk´1q

u Y tbpkq
u u. By

definition, bpkq
u is unavailable for selection in subsequent

iterations and we use ⌦pkq
u “ ⌦pk´1q

u ztbpkq
u u. (ii) Update the

SBP vector as for the WF precoder,

q
pkq
u

“ pHH

⌦pkq
u

H ⌦pkq
u

` WF
Ikq´1

H
H

⌦pkq
u

eu. (15)

(iii) Update the residual,

r
pkq
u

“ eu ´ H ⌦pkq
u

q
pkq
u

. (16)

After K iterations, qpKq
u gives the nonzero entries rqusb, b P⌦pKq, of the SBP column qu; and this procedure is repeated

for all columns qu, u P vUw, of the unnormalized SBP matrix
Q

SBP. We then normalize the sparse matrix Q
SBP to obtain

the SBP matrix P
SBP “ Q

SBP{�pQSBPq, where the precoding
factor is calculated according to (8). The resulting SBP matrix
P

SBP contains—as desired—exactly KU nonzero entries.

B. Row-Select Sparse Beamspace Precoding (RS)

Although the above approach results in a sparse precoding
matrix with KU nonzero entries, the unstructured nature of the
nonzero entries in P prevents efficient hardware architectures
that perform the sparse matrix-vector multiplication at high
rates. To overcome this issue, we propose to enforce structured

sparsity in the matrix P such that its rows have either all
(U ) non-zero entries or all zeros, so we can only store the
non-zero rows and use efficient hardware for the sparse matrix-
vector multiplication. Concretely, we aim to solve the sparse
beamspace precoding problem in (11) with the constraint set

SRS fi
!
Q P CBˆU : }q

b
}0 “

#
U, if b is selected
0, otherwise

,

}qu}0 “ K,u “ 1, . . . , U
)
, (17)

which requires us to find K non-zero rows of the unnormalized
precoding matrix Q with each having U non-zero entries. This
problem resembles a multiple measurement vector (MMV)
problem [31] and we use an OMP-MMV-like algorithm; we
call the method Row-Select SBP, simply denoted by RS.

Let

⌦pkq denote the rows of Q that are selected as nonzero in
the first k iterations, and ⌦pkq “ vBwz ⌦pkq the remaining ones,

i.e., rows available for selection in the pk ` 1qth iteration. Let
Q

pkq P CkˆU denote a submatrix of the precoding matrix
computed at the kth iteration, and R

pkq the residual. We
initialize the set of selected nonzero rows

⌦p0q “ ? and
the residual R

p0q “ IU . We repeat the following steps for
iterations k “ 1, . . . ,K: (i) Identify the next best beam index,

b̂pkq “ arg max
bP⌦pk´1q

}hH

b
R

pk´1q}2, (18)

and add this index to the support set

⌦pkq “ ⌦pk´1q Y tb̂u. By
definition, ⌦pkq “ ⌦pk´1qztb̂u. (ii) Update the submatrix of
the precoding matrix,

Q
pkq “ pHH⌦pkqH ⌦pkq ` WF

Ikq´1
H

H⌦pkq . (19)

(iii) Update the residual,

R
pkq “ IU ´ H ⌦pkqQ

pkq. (20)

After K iterations, the rows of QpKq deliver the nonzero rows
q
b
, b P ⌦pKq, of the unnormalized RS matrix Q

RS, which has
exactly KU nonzero entries with q

b
containing exactly U

nonzeros. The RS matrix is obtained by P
RS “ Q

RS{�
`
Q

RS
˘

with the pre-factor in (8).

C. Simplified One-Shot SBP Algorithms

All of the above methods require K iterations to construct
K-sparse beam vectors for each UE. To further reduce the
preprocessing complexity, we propose simplified methods that
require only one iteration. For the counterpart of SBP, we
construct the support set ⌦u per user u by selecting K beam
indices that maximize the criterion in (14). For the counterpart
of RS, we construct the support set of nonzero rows by selecting
the K beam indices maximizing (18). We call each of these
methods One-Shot SBP (1S-SBP) and One-Shot RS (1S-RS).

IV. RESULTS

A. Simulation Setup

We simulate LoS and non-LoS channel conditions using the
QuaDRiGa mmMAGIC UMi model [22] at a carrier frequency
of 60 GHz with �{2-spaced antennas arranged as a ULA.
We generate channel matrices for a mmWave massive MIMO
system with B “ 128 antennas, and for U “ 16 and U “ 32
UEs. The UEs are placed randomly in a 120˝ circular sector
around the BS between a distance of 10 m and 110 m, and
we assume a minimum UE separation of 1˝. We add BS-side
power control so that the UE with highest received power has
at most 6 dB more than the weakest UE. In order to account for
channel estimation errors, we assume that the BS has access
to a noisy version of H modeled as Ĥ “ ?

1 ´ ✏H ` ?
✏Z

as in [23]. Here, Z „ CN p0UˆB , IN q models the error for
pilot-based channel estimation and we set ✏ “ 0.0099 so that
the error corresponds to operating the system at 20 dB SNR.

We simulate uncoded BER with respect to SNR for the
simulation scenarios for K “ U and K “ 2U using the
sparse beamspace precoding methods in Sec. III. We also
simulate the performance of WF in Sec. II-B and maximum
ratio transmission (MRT) as baseline methods. We further
include an algorithm, which we call “local Wiener filter” (local
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TABLE I
COMPLEXITY OF VARIOUS PRECODING METHODS.

Algorithm Preprocessing complexity Precoding complexity

WF 2U3 ` 6BU2 ´ 2UpU ` 1q ` 1 4TBU
SBP 4KBpU ` 2q ` 2UKpK ` 1q 4TKU`2TB log2 B

`2
∞K

k“1pk3 ` 3Uk2 ´ pU ` 1qk ` 1q
1S-SBP Up4BpU`2q`2K3`6UK2´2pU`1qK`1q 4TKU`2TB log2 B
Local WF 2U3 ` 6KU2 ´ 2UpU ` 1q ` 1 4TM`2TB log2 B
MRT 0 4TBU

WF), that follows the idea put forward in [11] by using
approximate channel vectors whose entries are equal to the
entries of hb, b P vBw in the window of hb with highest energy
and zero otherwise. To enable a fair comparison with this
approach, the precoding coefficients are selected to minimize
the MSE as in (6), whereas the original objective in [11]
maximizes the minimum UE-side SINR. For local WF, we
set the window size to K to allow for a fair performance and
complexity comparison with our SBP-based methods.

B. Complexity Analysis

We provide a complexity analysis in Tbl. I, where we
list the number of real-valued multiplications required during
preprocessing (calculating the precoding matrix) and precoding
(applying the precoding matrix to T transmit vectors), following
the analysis in [26]; as in [12], we assume a complexity of
2B log2 B for a B-point IFFT. Since RS has the same total
complexity as SBP, SBP represents both—the same holds for
1S-SBP and 1S-RS. For local WF, M denotes the average
number of nonzero entries in the precoding matrix, where we
assume a zero entry if the absolute value is smaller than 10´7.
In Fig. 1, we show the speed-up of the algorithms compared
to MRT, which we define as the ratio of the complexity
required by MRT to that of the algorithm, with respect to the
number of transmissions T within a channel coherence interval.
For T Ñ 8, the asymptotic speed-up of our algorithms is
� “ 2BU

B log2 B`4UK
. Fig. 1 reveals that for small coherence times

T , WF is less complex than all of the sparsity-based methods,
which renders it the most preferable given that it achieves the
smallest MSE. However, since in practical mmWave systems,
the coherence time T can be as large as 105 [12], we see that
already for T ° 103, 1S-SBP is up to 2.91ˆ faster than all of
the baseline methods. SBP requires larger T and smaller K
than 1S-SBP to outperform the baseline methods.

C. Bit Error-Rate Performance

Fig. 2 and Fig. 3 show the uncoded BER for the scenarios
in Sec. IV-A under LoS and non-LoS conditions, respectively,
for U “ 16 users with K “ 16 (a) and K “ 32 (b) sparsity
levels; and for U “ 32 with K “ 32 (c) and K “ 64 (d). To
compare the algorithms, we consider a target BER of 5%, for
which all of our algorithms outperform local WF and MRT.
For LoS channels with U “ K, Fig. 2 (a) and (c) demonstrate
that the SNR required by SBP and 1S-SBP methods to achieve
the target BER is at most 1.5 dB and 2.5 dB higher than WF,
respectively. We observe that the performance of RS methods
significantly improves when K “ 2U in Fig. 2 (b) and (d).
Here, 1S-RS requires approximately 1 dB higher SNR than

WF, which renders it the most preferable when T ° 103

considering the speed-up and the structure of P that allows for
efficient precoding hardware. For non-LoS channels, we focus
on the K “ 2U cases in Fig. 3 (b) and (d) for comparable
performance to WF, where SBP and 1S-SBP methods require
at most 1 dB higher SNR than WF. Considering the speed-up,
we find 1S-SBP the most preferable in such scenarios.

V. CONCLUSIONS

We have proposed four different algorithms to perform sparse
precoding in the beamspace domain. Our algorithms consist
of two stages: The first stage computes a sparse precoding
matrix; the second stage converts the precoded vector to the
antenna domain using fast Fourier transform. Having a sparse
precoding matrix reduces complexity and enables hardware
efficient digital precoding architectures. Our simulation results
for LoS and non-LoS mmWave channels have demonstrated
that our sparse beamspace precoding algorithms enable more
than 2ˆ complexity reduction compared to traditional, antenna-
domain Wiener filter precoding.
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Fig. 1. Speed-up compared to MRT vs the number of transmissions (T ) evaluated by the number of real-valued multiplications for B “ 128 BS antennas,
U “ 16 and U “ 32 users for sparsity values K “ U and K “ 2U . The proposed sparse beamspace precoding algorithms are up to 2.91ˆ faster than MRT.
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(a) U “ 16, K “ 16
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(c) U “ 32, K “ 32
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Fig. 2. BER results of LoS scenario with B “ 128 BS antennas, U “ 16 and U “ 32 users for sparsity values K “ U and K “ 2U . The proposed sparse
beamspace precoding algorithms are able to achieve near-WF performance for sparsity levels K “ 2U for LoS mmWave channels.
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(a) U “ 16, K “ 16
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(c) U “ 32, K “ 32
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Fig. 3. BER results of non-LoS scenario with B “ 128 BS antennas, U “ 16 and U “ 32 users for sparsity values K “ U and K “ 2U . The proposed
sparse beamspace precoding algorithms are able to achieve near-WF performance for sparsity levels K “ 2U for non-LoS mmWave channels.
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