Optimality of the Discrete Fourier Transform for
Beamspace Massive MU-MIMO Communication

Sueda Taner' and Christoph Studer?

!School of Electrical and Computer Engineering, Cornell University, Ithaca, NY; e-mail: st939@cornell.edu
’Department of Information Technology and Electrical Engineering, ETH Ziirich, Switzerland; e-mail: studer@ethz.ch

Abstract—Beamspace processing is an emerging technique to
reduce baseband complexity in massive multiuser (MU) multiple-
input multiple-output (MIMO) communication systems operating
at millimeter-wave (mmWave) and terahertz frequencies. The
high directionality of wave propagation at such high frequencies
ensures that only a small number of transmission paths exist be-
tween user equipments and basestation (BS). In order to resolve
the sparse nature of wave propagation, beamspace processing
traditionally computes a spatial discrete Fourier transform (DFT)
across a uniform linear antenna array at the BS where each
DFT output is associated with a specific beam. In this paper,
we study optimality conditions of the DFT for sparsity-based
beamspace processing with idealistic mmWave channel models
and realistic channels. To this end, we propose two algorithms
that learn unitary beamspace transforms using an £*-norm-based
sparsity measure, and we investigate their optimality theoretically
and via simulations.

I. INTRODUCTION

Massive multi-user (MU) multiple-input multiple-output
(MIMO) and millimeter-Wave (mmWave) as well as terahertz
(THz) communication are key technologies for 5G and fu-
ture wireless systems [2], [3]. Since wave propagation at
mmWave and THz carrier frequencies is highly directional
and experiences a strong path loss, only a small number of
dominant transmission paths between each user equipment
(UE) and the basestation (BS) antenna array is typically
present [3], [4]. Hence, by taking a spatial discrete Fourier
transform (DFT) across the antenna array (e.g., a uniform linear
array) one can convert the antenna-domain system into the so-
called beamspace in which mmWave and THz channel vectors
are sparsified [[5]-[9]. As demonstrated in [5], [9]-[15], low-
complexity baseband algorithms and hardware architectures for
channel estimation, detection, and precoding can be designed by
exploiting the sparse nature of channel vectors in the beamspace
domain. It is, however, an open question whether the DFT is
indeed the optimal sparsifying transform for modeled as well
as real-world mmWave and THz channels.

A. Contributions and Prior Art

We formulate an ¢*-norm-based optimization problem for
a complex-valued stochastic data model that enables us to
learn beamspace transforms for mmWave and THz systems.
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In order to solve this optimization problem, we adapt the real-
valued matching, stretching, and projection (MSP) algorithm
from [16] to our complex-valued and stochastic data model, and
we propose an alternative algorithm based on coordinate ascent
(CA) via a sequence of Givens rotations. We then prove that
the DFT is a stationary point of the MSP algorithm and locally
optimal (in the /*-norm sense) for the CA algorithm for free-
space line-of-sight (LoS) mmWave channels. We then show
numerical experiments with synthetic and real-world channel
vectors in order to demonstrate that learned transforms are able
to improve the performance of sparsity-exploiting baseband
algorithms in real-world massive MU-MIMO systems.

Dictionary learning algorithms have been proposed in [[17]-
[22] for sparse channel estimation. In contrast to these results,
we analyze optimality properties of learned dictionaries for
mmWave and THz channels and build upon on a recent problem
setup that uses a smooth, /4-norm-based sparsity measure with
orthogonal dictionaries, as proposed recently in [[16], [23]. We
note that unitary dictionaries are advantageous as they do not
alter the noise statistics. We furthermore extend the real-valued
framework and analysis in [16], [23] to the complex case
and study optimality conditions of the DFT for beamspace
processing in mmWave and THz systems. A related approach to
our complex-valued unitary dictionary learning setting has been
employed recently in [24], which proposes an ¢3>-norm-based
blind data detection algorithm. In contrast to this result, we
study the more general problem of learning a fixed beamspace
transform via £*-norm maximization that is applicable to any
channel realization from the given distribution.

B. Notation

Bold lowercase and uppercase letters represent column
vectors and matrices, respectively. We use ay, for the kth entry
of a, A; , for the (4, k)th entry of A, and a;, for the kth column
of A. The superscripts (-)*, (-)7, and (-) stand for the matrix
conjugate, transpose, and Hermitian, respectively. The N x M
all-zeros matrix is Oy x s, the N x NN identity matrix is I,
and the N x N unitary DFT matrix is F . We denote the set
of N x N orthogonal and unitary matrices with O(N;R) and
U(N;C), respectively. A complex-valued permutation matrix
is defined as a unitary matrix in which every row and column
has exactly one non-zero entry; the set of complex-valued
permutation matrices of dimension N x N is CP(N). We
denote the element-wise multiplication, absolute value, and rth
power by o, ||, and (-)°", respectively. Following [16], we call
A2 =37,  [Aix]? the “¢P-norm,” even though the pth root




is missing. The Frobenius norm is ||A|r = (3, , |A4ix|?) /2.
Real and imaginary parts are indicated by R{-} and 3{-}.
The expectation operator is E[-]. We use d[n] to refer to the
Kronecker delta function for n € Z, such that §[0] = 1 and
d[n] = 0 for n # 0. We denote the Kronecker product by ®.
All complex-valued gradients follow the definitions of [25].

II. PREREQUISITES
A. System and Channel Model

We consider a massive MU-MIMO uplink system in which U
single-antenna UEs transmit data to a BS equipped with B
antennas. Let H € CP*V and s € SY denote the MIMO
channel matrix and the data symbols from constellation S,
respectively. For narrowband transmission, we can express the
receive vector r € CP in the antenna domain as

r =Hs +n, (D

where n € C® models circularly-symmetric Gaussian noise.

We focus on wave propagation at mmWave and THz
frequencies [4], and assume a sufficiently large distance
between the BS and the UEs (or scatterers). For a BS equipped
with a uniform linear array (ULA) and \/2 antenna spacing,
where A is the wavelength, the columns of the MIMO channel
matrix H representing the channel between a specific UE and
the BS antenna array can be modelled as follows [26]:

h = ZZL;Ol amp(we), pw)= [1, v .., ej(B’l)‘*’]T. )

Here, L refers to the total number of paths arriving at the
antenna array (including a potential line-of-sight path), ay € C
is the complex-valued channel gain associated with the /th
propagation path, and wy is the angular frequency usually given
by the relation w; = 7 sin(¢y), where ¢; is the incidence angle
of the /th path to the antenna array.

We obtain the beamspace (or angular domain) representation
by applying a DFT to the receive vector in (I) as in [5],
[9], which yields ¥ = Fyr = Hs + n. We note that the
beamspace representation transforms the superposition of L
complex sinusoids in (2) into the frequency domain, which
results in sparse beamspace channel vectors if L is small.
However, real-world mmWave or THz channel vectors are
only approximated by (2), due to scattering, diffraction, and
system or hardware impairments. This key fact motivates us
to examine the DFT’s optimality for beamspace transforms
and to learn alternative unitary transforms that exhibit superior
sparsifying properties than the widely-used DFT.

B. Problem Formulation

Reference [[16] recently developed an ¢*-norm-based dictio-
nary learning framework over the orthogonal group O(N;R)
for a set of given real-valued vectors. The intuition behind this
framework is that maximizing the ¢/*-norm of a matrix over
a hypersphere promotes sparsity, i.e., the sparsest points on
an ¢2-norm-hypersphere have the smallest £*-norm and largest
¢*-norm [16]. In what follows, we build upon this insight and
consider the complex-valued case with a stochastic data model
in order to use this framework for beamspace processing.

Suppose the data samples y(2) € CV depend on a random
variable 2 with probability density function (PDF) fq(2). Our

goal is to learn a unitary transform that sparsifies these random
samples in expectation. Specifically, we measure the sparsity
of these data samples after a unitary transform A € U(N;C)
via the ¢*-norm using the following:

34, 7() 2 Ea | Ay@I}] = [ 1Ay )} falw)de. O

In order to learn unitary transforms for the stochastic data
model, we propose to solve the following optimization problem:

A = argmax g(A7y(Q)> subject to A € U(N;C). (Ol)
A

The fundamental properties of the ¢*-norm over the real-
valued orthogonal group O(N;R) were established in [16,
Lemmas 5 and 6] and can be generalized to the complex
case by replacing signed permutation matrices with complex
permutation matrices, and standard canonical vectors with the
columns of complex permutation matrices. A detailed analysis
of the complex case will be provided in an extended version
of this paper [27]. One important property is the invariance of
the /*-norm with respect to complex permutations, i.e., for any
C € CP(N), we have ||CA||j = ||A||i, so that the solutions
to the problem in (OT)) are unique up to a complex permutation.

III. LEARNING A SPARSIFYING TRANSFORM

We now propose two algorithms to solve (OI). We keep
our explanations general while introducing our algorithms, and
discuss concrete beamspace applications in Sections [[V]and [V.

A. MSP: Matching, Stretching, and Projection

The proposed MSP algorithm builds upon [16, Algorithm
2] for our complex-valued stochastic model instead of using a
finite set of real-valued observation samples. This adaptation
can be interpreted as having an infinitely large set of data
vectors that follow a probabilistic distribution. In essence, the
MSP algorithm performs a projected gradient ascent in the
objective (OT) with an infinite step size. In each iteration ¢,
we match the estimate A; to the observation y(w), stretch
all entries of A;y(w) with the cubic function in the gradient
|Asy(w)]°? o (Ayy(w)), and project it back onto the unitary
group [16]. Given the singular value decomposition (SVD) of
A as SVD(A) = UX V¥, projection onto the unitary group
is accomplished by

Puve)(A) 2 argmin [M—A|7 =UVH 4
MEeU(N;C)

where [16, Lemma 9] is extended to the complex set. The
resulting MSP procedure is summarized as follows:

Algorithm 1 (MSP). Initialize Ay € U(N;C). For every
iteration t = 0,1,..., until convergence, compute the
gradient of the objective with respect to A; as

Va, 9(A, y ()
~ [2(A5@I? o (Ay))y@ falw)ds ©)
and project the gradient onto the unitary group

Aivy =Puwic)(Va,9(At,y(Q))). (6)




We note that the analysis of real-valued MSP algorithm
in [16, Propositions 12-15, Theorem 16] can be generalized
to the unitary case, which we will provide in our journal ver-
sion [27]. In order to identify stationary points of Algorithm [I]
we will use the following result:

Lemma 1. Ler A € U(N;C) be a unitary matrix with
SVD(A) = UXV# and D € RN*N be a diagonal matrix.
Suppose we have the matrices A1 = DA and A = AD with
SVD(A1) = U121V{{ and SVD(AQ) = UQEQVQH. Then,
there exist SVDs for A1 and Ao such that ¥1 = 35 = D and
A=UVH =U,VH =U, VI

Proof. Since the left and right singular vectors of full rank
matrices are unique up to complex rotations, UV# is unique.
Since A is unitary, one SVD of A is U = Iy, ¥ = Iy,
V = A. Then A; = DA =DV = U;X;Vy, so there exists
an SVD of A such that U; = Iy,3; = D, and V| = A.
Another SVD of Ais U=A, ¥ =1y, and V =1Iy. Then,
A = AD = UD = Uy3X,V,, so there exists an SVD of Ay
such that U, = A, 35 = D, and V, = Iy. Consequently, we
have U, VH = U, VE = A, O

We now use Lemma || to determine the following condition
when a unitary matrix is a stationary point of Algorithm

Lemma 2. Let y(2) € CN represent the stochastic data to be
sparsified and A € U(N;C) be a dictionary for y(2). Then,
the matrix A is a stationary point of Algorithm|[I|if there exists a
diagonal matrix D € RN*N such that Vag(A,y(2)) = DA
or Vad(A. y(0) = AD.

Proof. Suppose A; = A such that Va,§(A:, y(2)) = DA,
or Va,i(At,y(Q2)) = A;D. Then, we have

Avi1 = Puwnio)(Va,9(Ay(Q)) = Ay, )

where the last equality follows by Lemmal[l] Since A = A; =
A4, the matrix A is a stationary point of Algorithm u} O

In Section|[[V-A, we will use Lemma [2]to examine the DFT’s
optimality for beamspace transforms. Proving local optimality
of a stationary point of Algorithm [T is difficult as it requires
an analysis of the Hessian—such results are also missing for
the real-valued MSP algorithm in [[16]. Nonetheless, we are
able to study local optimality via the procedure detailed next.

B. CA: Coordinate Ascent

We now propose a CA algorithm to find a solution to the
optimization problem in by directly walking on the Stiefel
manifold. In each iteration, this method preserves unitarity
avoiding a projection on the unitary group altogether; this key
property enables us to analyze local optimality. The algorithm
bases on the decomposition of unitary matrices into a set of
complex-valued phase shifts and real-valued Givens rotations
on pairs of rows as done in [28]], [29].

Let G(i,k,a; ) € CN*N for i > k denote the (real-
valued) Givens rotation matrix of the form G;; = Gir =
cos(i k), Gig = —Gr; = sin(a, 1), Geo = 1,0 # i, k, and
Gy,m = 0 otherwise. Multiplying a matrix with G(i, k, o; 1)
from the left amounts to a counterclockwise rotation of «; j
radians in the (i,k) coordinate plane. Now let us define a

phase rotation matrix R.(k, 8) € CN*¥, which is a diagonal
matrix with Ry, = e/ and Ry, = 1 if £ # k. Note that the
multiplication of Givens and phase rotation matrices with a
unitary matrix is still unitary. Hence, we can maximize the
¢*-norm by iteratively optimizing over the angles oy, 3;, and
Bk while preserving unitarity of the transform at every iteration
of the CA algorithm. Note that since the ¢*-norm is invariant
to complex permutations, in each iteration, we first optimize
for oy, and then over 3; and ) accordingly. The resulting
procedure is summarized as follows:

Algorithm 2 (CA). Initialize Ay € U(N;C). For every
iteration t = 0,1, ..., until convergence, and for every
(i, k) pair such that i = 1,...,N — 1 with i > k, find

Qi — arg max / 1G (i, b ) Ary ()| fa(w)dw, @)
a€f0,7/2)

{Bi, B} = arg max

Bi,Br€[0,2m)
[ etk iR, 5)RE A)A @) fol)de,
9)
and apply the update
Avy1 = G(i, k, o 1) R(E, Bi)R(K, Br) A (10)

We have observed that the results obtained by CA are
indistinguishable from those obtained by MSP, while its
complexity is typically higher, as we have to iterate through
all (4, k) index pairs at least once. Rather than using CA in
practice, its main advantage is that we can establish local
optimality. Here, the first and second derivatives are with
respect to single variables (the Givens rotation angles) only,
whereas MSP requires the gradient with respect to an N x NV
matrix. The optimality criteria of Algorithm [2] are as follows:

Lemma 3. Let y(Q2) € CN represent the stochastic data to
be sparsified and A € U(N;C) be a dictionary for y(2). Let
the matrix G as defined in Section and x(w) = Ay (w).
Then, the matrix A is a local maximum of Algorithm 2| if and
only if the two following conditions hold for all (i, k), i > k:

8 [11GG, k. a)x(w) ! folw)dw
oo a0
- / (e (—i)(h)? + a3l (—a)
+aizk(2])? + oixlal) fo(w)dw =0 (11)
iy PLIGG ke a)x(w) [ fofw)de
aa2 a=0
—4 / (2R{a2 ()2} + s P

— |zg|* = |z *) fo(w)dw < 0.

i)

(12)

The proof of Lemma [3| immediately follows from first- and
second-derivative tests [30]]. We will utilize this lemma when
examining DFT’s optimality for beamspace in Section



IV. OPTIMALITY OF THE DFT

We now discuss concrete applications of our algorithms
in Section [[lI] to learn beamspace transforms. Since our prime
goal is to sparsify channel vectors of mmWave and THz systems
as explained in Section[[I-A] we adopt the stochastic data model

y(Q)=e Q ~ Unif (0, 2), (13)

where b= [0, 1, ..., B —1]7, thus y(Q) € CZ. We adopt
this single-path model, which corresponds to free-space propa-
gation with a uniform distributio over the angular frequency
in @), for simplicity in our derivations. We emphasize that the
results in this section also hold for an independent, identically-
distributed multipath model as it will be shown in [27]]. Based
on existing results on beamspace transforms [5]—[9], it is known
that the DFT is a good candidate to sparsify channel vectors.
Thus, we use the DFT to initialize both our MSP and CA
algorithms in order to (i) examine their optimality and (ii)
find potentially better beamspace transforms. The optimality
analysis of DFT for both algorithms is detailed next.

jOb
)

A. Optimality Analysis with MSP

We prove that the DFT is a stationary point of MSP algorithm
for the stochastic data model in (I3) with the following result:

Theorem 1. For the stochastic data model y(Q)) as given
in (I3), the DFT matrix ¥ p is a stationary point of Algorithm

Proof. Let F = Fp for simplicity. Inserting F for Ay,
fo(w) = £1{w € (0,2m)} in (3), we obtain

1 2 4
o | Pyl

To establish that F is a stationary point, we utilize Lemma [2]
to show that the gradient is equal to a column-scaled DFT
matrix, i.e., Vr§(F,y(Q)) = FD for some full-rank diagonal
matrix D € CV*V satisfying

9(F,y(Q)) = (14)

0g(F,y(Q
99y D) _ g vke 0,1,....,B—1}. (15
ot} ’
Equivalently, our aim is to show that 8“x(l;Fi’i(kQ))F;‘k is inde-
pendent of ¢ and only depends on k with )
06(F,y(
Mﬂc—Dkk,Vzke{Ol B—1}. (16)
oF7y,

By expanding the gradient, we obtain
B-1B-1B-1

99(F,y(Q
—_— FyF} L F;
o, 2”1;;0;) y C(0m,n, k),
(17
where 2r
C(&mm,k):/ glwt=mtn=k)q, (18)
0

=2m[l — m+n — k. (19)

L Another stochastic data model would be ef7sin®b & ~ Unif (0, 27),
which assumes a uniform distribution over the incidence angle [26]. However,
we use the model in (13) to facilitate our theoretical analysis.

Inserting F; , = e~ F" into (11_71) and simplifying, we obtain
99(F,y())
I,
B-1B-1B-1

Z Z S Ol —m—+n—k]

=0 m=0 n=0
—1B-1B—

ZZZ £ —m+n— K|

£=0 m=0 n=0

Finally, inserting into . gives that ag(gj:{(ﬂ)) F7) indeed
only depends on

(20)

2L

dg(F, y(Q)
OF;,

B—1B—-1B—
Fy, ZZZ —m+n—Fk (22

D k,\ﬁ ke{O,l,...,Bfl}. 23)

Hence, we have that Vg, G(Fg,Y) = FD and by Lemma
the DFT matrix F'p is a stationary point of MSP algorithm. [

Note that this analysis does not establish whether the DFT
is a saddle point or a local maximum of (OI). Fortunately, we
can use the proposed CA algorithm to reach this conclusion.

B. Optimality Analysis with CA
We now use the following result to establish that the DFT is
a local maximum of Algorithm [2] for the model y(Q) in (13).

Theorem 2. For the stochastic data model y(Q)) as given
in , the DFT matrix ¥ is a local maximum of Algorithm 2}

Proof. Let x(w) = FBy(w) = Fpe/“P. Then

w = Ny e B = 0 T E R 24

Inserting x), from [@4) into (II) and (I2) followed
by a sequence of tedious algebraic simplifications
give (i) 9 Jo "G ik ) F 5y (@) 3dw ’ = 0 and (i)

o
2 2w
O JoTIG ik, alFB‘Y(w)ludw‘ aeo < 0. Therefore by Lemma |3,

the DFT matrix Fp is a local maximum of Algorithm [2]

Although we do not know whether the DFT is a global
maximum of the CA algorithm, we have observed no solution,
upon perturbations and random initialization, that reaches a
higher objective in (3) for the stochastic data model y(2)
in (I3). Establishing global optimality is left for future work.
We would like to remark that the optimality of the DFT is not
obvious, since we will show in [27] that any known type of
the discrete cosine transform (DCT) is not #*-norm optimal.

V. NUMERICAL RESULTS

We now utilize Algorithm [I|to learn a beamspace transform
from a given, finite-size data set of observation samples for two
experiments: (i) a synthetic system model and (ii) a real-world
example. We emphasize that in these cases, optimality of the
DFT for sparsifying channel vectors is no longer guaranteed.
We also note that for a finite-size data set, our MSP algorithm
is essentially equivalent to y having a uniform probability mass
function (PMF) over the given samples, which reduces our
method to the complex equivalent of [[16, Algorithm 2].
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Fig. 1. Uncoded BER for beamspace processing with the DFT or learned
transform (LT) using synthetic QuaDRiGa channels with LMMSE and the
sparsity-exploiting LE detector, B = 256 BS antennas, and U = 16 UEs.
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Fig. 2. Uncoded BER for beamspace processing with the DFT or learned
transform (LT) using measured channel vectors |[1] with LMMSE and the LE
detector, B = 64 BS antennas (with eight malfunctioning), and U = 1 UE.

In both of our experiments, we split the channel matrices
into training and test sets; we use the columns of the training
set to learn a beamspace transform, then we measure the 04
norm and simulate the uncoded bit error rate (BER) with
respect to signal-to-noise ratio (SNR) on the test set. In
our simulations, we use the following sparsity exploiting
algorithms: (i) Beamspace channel estimation (BEACHES)
from [S]] and (ii) the beamspace largest-entry (LE) data detector
from [9] with density coefficient 0.125, which operates on a
(B/8) x U-sized channel matrix by picking the largest entries
to reduce complexity. As a baseline method, we also include
an antenna-domain linear least-squares minimum mean-square
error (LMMSE) data detector combined with BEACHES.

A. Synthetic Channel Vectors

We first simulate line-of-sight (LoS) channel conditions using
the QuaDRiGa mmMAGIC UMi model [31]], which includes
multipath scattering, at a carrier frequency of 60 GHz with
a ULA having \/2 antenna spacing. We generate channel
matrices for a mmWave massive MIMO system with B = 256
BS antennas and U = 16 single-antenna UEs. The UEs are
placed randomly in a 120° circular sector around the BS
between a distance of 10m and 110 m, and we assume a
minimum UE separation of 1°. We add BS-side power control
so that the UE with highest received power has at most 6 dB
more power than the weakest UE. We show the BER results
for this channel vector set using the DFT and the learned
transform (LT) in Figure [I We observe that the LT has
only a slight advantage in BER compared to the DFT under
the same detector; this “advantage” is due to the sparsity-
exploiting channel estimation for slightly more sparse channels
in beamspace—here, the ¢*-norm of the test set in beamspace

domain with LT was only 18% higher than that of the DFT,
which can be interpreted as only an approximately 2% higher
magnitude in the signal’s peaks. This result demonstrates that
the DFT is (i) no longer optimal but (ii) remains to be an
excellent sparsifier for simulated mmWave LoS channels with
multipath components. Consequently, it is not worth learning
another beamspace transform, which is in congruence with our
proof of optimality of DFT for the simple model used in (I3).

B. Real-World Measured Vectors

We now show results for measured channel vectors provided
for the IEEE Communications Theory Workshop Localization
Competition [1]. These channel measurements are based on
single-UE transmission to a BS with an 8 x 8 square antenna
array with \/2 spacing at a carrier frequency of 1.27 GHz.
Eight BS antennas were malfunctioning and their output was
excluded from the dataset. For beamspace processing with
rectangular arrays, one would typically apply a two-dimensional
DFT on this data as follows: Zero-pad for the malfunctioning
antennas, vectorize the data to have vectors of size 64, then
multiply with Fg ® Fg. Instead, we use these 64-sized vectors
as a training set to learn a beamspace transform. We show
the BER results for this channel vector set using the DFT
and the learned transform (LT) in Figure 2| For the LMMSE
detector, we observe that the LT can achieve a target BER of
0.1% with approximately 1dB smaller SNR than the DFT as
a result of the sparsity-exploiting channel estimation—here,
the /*-norm of the test set in the beamspace domain with the
LT was up to 4x higher than that of the DFT. However, for
the sparsity-exploiting LE detector, we observe that the LT
can achieve the same target BER with approximately 5dB
smaller SNR than the DFT, allowing the performance of LE to
be comparable to antenna-domain LMMSE, as a result of the
enhanced sparsity. This result demonstrates that, although the
DFT is well-suited for beamspace processing under idealistic
LoS channel conditions, learning new beamspace transforms
enables significant improvements for real-world channels and
communication systems that suffer from hardware impairments.

VI. CONCLUSION

In this paper, we have formulated an optimization problem
to learn unitary dictionaries for a complex stochastic model
by generalizing the real-valued dictionary learning problem
in [[16]. We have proposed two algorithms for this optimization
problem: (i) a projected gradient ascent-based algorithm
adapted from [16, Algorithm 2] and a novel coordinate ascent
algorithm that avoids projection onto the unitary group. We
have used the latter algorithm to establish local optimality of
the DFT for a free-space mmWave/THz LoS channel model.
We have used synthetic results to demonstrate that the DFT
performs well for idealistic mmWave channel models, but can
be improved significantly for real-world measurements with
non-ideal hardware using a learned beamspace transform.

We will show more aspects of our derivations and results in
the journal version of this paper [27]. Although our focus was
on mmWave and THz communication systems, our algorithms
are applicable to more general dictionary learning problems,
potentially including other stochastic data models or optimality
claims, which leads to many avenues for future work.
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