MANIACS: Approximate Mining of Frequent Subgraph Patterns
through Sampling

Giulia Preti
ISI Foundation
Turin, Italy

giulia.preti@isi.it
“And we’re zany to the max!” — Animaniacs theme song
ABSTRACT

We present MANIACS, a sampling-based randomized algorithm
for computing high-quality approximations of the collection of
the subgraph patterns that are frequent in a single, large, vertex-
labeled graph, according to the Minimum Node Image-based (MNI)
frequency measure. The output of MANIACS comes with strong
probabilistic guarantees, obtained by using the empirical Vapnik-
Chervonenkis (VC) dimension, a key concept from statistical learn-
ing theory, together with strong probabilistic tail bounds on the
difference between the frequency of a pattern in the sample and
its exact frequency. MANIACS leverages properties of the MNI-
frequency to aggressively prune the pattern search space, and thus
to reduce the time spent in exploring subspaces containing no fre-
quent patterns. In turn, this pruning leads to better bounds to the
maximum frequency estimation error, which leads to increased
pruning, resulting in a beneficial feedback effect. The results of our
experimental evaluation of MANIACS on real graphs show that it
returns high-quality collections of frequent patterns in large graphs
up to two orders of magnitude faster than the exact algorithm.

CCS CONCEPTS

» Mathematics of computing — Graph enumeration; Approx-
imation algorithms; « Information systems — Data mining; .
Theory of computation — Sketching and sampling.

KEYWORDS

Minimum Node Image, Pattern mining, VC-dimension

ACM Reference Format:

Giulia Preti, Gianmarco De Francisci Morales, and Matteo Riondato. 2021.
MANIACS: Approximate Mining of Frequent Subgraph Patterns through
Sampling. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD °21), August 14-18, 2021, Virtual Event,
Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3447548.3467344

1 INTRODUCTION

A subgraph pattern (sometimes called “graphlet”) is a small graph,
possibly with labeled vertices. Frequent Subgraph Pattern Mining

KDD 21, August 14-18, 2021, Virtual Event, Singapore

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD °21),
August 14-18, 2021, Virtual Event, Singapore, https://doi.org/10.1145/3447548.3467344.

Gianmarco De Francisci Morales
ISI Foundation
Turin, Italy
gdfm@acm.org

Matteo Riondato
Ambherst College
Ambherst, MA, USA
mriondato@ambherst.edu

(FSPM), i.e., finding the patterns that appear frequently in a single
graph, has many applications, from the discovery of protein func-
tionality in computational biology [36, 51], to the development of
recommender systems for video games [2], to social media mar-
keting [19], to software engineering [24]. It is also a primitive for
graph mining tasks such as classification [17] and clustering [22].

The FSPM task is computationally challenging, for two main
reasons: (i) the number of possible patterns experiences a com-
binatorial explosion with the maximum number of vertices in a
pattern and with the number of possible vertex labels; and (ii) the
subgraph isomorphism operation needed to find a pattern in the
graph is in general NP-complete. Ingenious exact algorithms exist,
but they tend to scale poorly with the size of the graph and with
the maximum size of a pattern.

The use of random sampling is a common solution to speed up
time-consuming data analytics tasks, from approximate database
query processing [16], to itemset mining [47], to other tasks on
graphs [48]. It however comes at the price of obtaining an approx-
imate solution to the task at hand. Such solutions are acceptable
when they come with stringent theoretical guarantees on their qual-
ity. A typical approach for sampling algorithms relies on evaluating
the function of interest only on a randomly chosen subset of the
input domain. In FSPM, one can, e.g., create a small random sample
of vertices, and evaluate the presence of subgraph isomorphisms be-
tween patterns and only those subgraphs of the graph that include
at least one of the sampled vertices.

Random sampling and approximate solutions are necessary when
access to the graph is restricted, as in online networks, where one
cannot inspect the whole graph, but only query a vertex and its
neighborhood through an API. By using vertex sampling schemes [14,
15], an approximation algorithm enables FSPM in this scenario.

The key challenge in using random sampling is understanding
the trade-off between the sample size, the time needed to analyze
the sample (which depends on the sample size, but also on the
analytics task at hand), and the quality that can be obtained from a
sample of the specific size. Large deviation bounds can be applied
when there is only one function to be estimated, but in FSPM, like
in most data analytics tasks, we need to accurately estimate the
frequencies of many patterns from the same sample. Classic simul-
taneous deviation bounds tools such as the union bound, if applied
naively, are inherently loose, so more sophisticated techniques must
be employed. For FSPM, having tight bounds to the maximum esti-
mation error is particularly important, as they are used not only to
decide what patterns to include in the approximate solution, but
also to prune the search space via an apriori-like argument, thus

https://orcid.org/0000-0003-2523-4420
https://doi.org/10.1145/3447548.3467344
https://doi.org/10.1145/3447548.3467344
https://doi.org/10.1145/3447548.3467344

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

avoiding the expensive step of evaluating the frequency of patterns
that are not sufficiently frequent to be included in the output.
Contributions. We present MANIACS (for “MNI Approximate
Computation through Sampling”), an algorithm to compute high-
quality approximations of the collection of frequent subgraph pat-
terns from a single, large, vertex-labeled graph, according to the
MNI-frequency measure [10] (see (3)).

e MANIACS relies on uniform random sampling of vertices and on
computing the patterns to which these vertices belong. MANI-
ACS is scalable w.r.t. the size of the graph and is the first FSPM
algorithm on graphs with restricted access. Sampling allows
MANIACS to be easily parallelized on, e.g., Arabesque [55].

o MANIACS is the first sampling-based algorithm for the task of
FSPM that comes with strong probabilistic guarantees on the
quality of its output. These guarantees are obtained by leverag-
ing sample-dependent quantities: MANIACS extracts information
from the sample to determine the quality of the approximation
in terms of the maximum frequency estimation error, which
is used to avoid false negatives. The estimated quality is out-
put with the approximate collection of frequent patterns. To
upper bound the maximum estimation error, MANIACS relies
on the empirical Vapnik-Chervonenkis (eVC) dimension [58], a
fundamental concept from statistical learning theory [53]. The
eVC-dimension leads to much better quality guarantees than
could be obtained by using classic approaches such as the union
bound. We show that the eVC-dimension of the task at hand is
independent from the number of vertex labels, and we show how
to efficiently compute a tight upper bound to this quantity.

o MANIACS aggressively leverages the anti-monotonicity of the
MNI-frequency measure (Facts 2 and 3), to prune parts of the
search space that provably do not contain any frequent pattern,
and to focus the exploration only on the “promising” subspaces,
therefore avoiding expensive-but-useless computations. Prun-
ing also leads to better bounds to the maximum frequency
estimation error, which enables additional pruning, thus creat-
ing a virtuous cycle that improves both the computational and
statistical properties of MANIACS.

e The results of our experimental evaluation of MANIACS on real
datasets show that it returns a high-quality output very fast,
with even better error than guaranteed by the theory.

2 RELATED WORK

There is a vast body of work on subgraph extraction and counting.
Due to space constraints, we focus on the single, static graph setting,
and we omit others (e.g., transactional, dynamic, or stream). For a
discussion of these many others areas, we refer the reader to the
tutorial by Seshadhri and Tirthapura [52].

The patterns we consider are connected, unweighted, undirected,
vertex-labeled graphs with up to k vertices. The assignment of the
labels to the vertices of the pattern is important, and different
assignments (up to automorphisms of the patterns) generate dif-
ferent patterns (see formal definitions in Sect. 3.1). The collection
of patterns is therefore different from the collections of colored
graphlets [45] and heterogeneous graphlets [50], which respectively
only consider the set or the multiset of vertex labels. Graphlets [42]

Giulia Preti, Gianmarco De Francisci Morales, and Matteo Riondato

are a special case of patterns with a single label.

FSPM requires finding patterns with a global frequency, for in-
stance as quantified by the popular Minimum Node Image (MNI)
frequency measure [10] (see (3)), at least as large as a user-specified
minimum threshold (see (4)). MANIACS can be adapted to many
other frequency measures [20, 29, 34, 35, 57], but due to space
limitations, we postpone this discussion to an extended version.

The presence of a minimum frequency threshold and the use of
the MNI measure distinguish this task from the well-studied task
of counting graphlets or motifs, which require to compute the global
number of vertex- or edge-induced instances of a pattern [4, 8, 9,
23, 25, 38, 41, 44, 59-61]. FSPM is also different from computing the
local counts i.e., the number of instances of each pattern in which
an edge/vertex participates [39, 50]. The techniques used in these
tasks cannot be easily adapted to FSPM.

Algorithms. Elseidy et al. [18] present GRAMI, an exact algorithm
for FSPM. GRAMI transforms the subgraph isomorphism problem
into a constraint-satisfaction problem, and uses ingenious compu-
tation organization to speed up finding the edge-induced frequent
patterns, although not their frequencies. Frequencies are impor-
tant in pattern mining: since the minimum threshold is often set
somewhat arbitrarily, it is important to be able to distinguish be-
tween patterns with frequency much greater than the threshold
and those that are “barely” frequent. We define the FSPM task to
include their exact frequencies (see (4)), which is inherently more
difficult. GRAMI requires complete access to the whole graph. This
assumption is often unrealistic when dealing with online social
networks, in addition to being extremely time consuming. In this
setting, approximations of the collection of frequent patterns are
necessary, and sufficient when they come with stringent quality
guarantees, such as the ones provided by MANIACS (see Thm. 4.5).

Parallel and distributed systems for FSPM try to address the
scalability issue of mining frequent patterns from very large graphs
or when the pattern search space is huge [1, 12, 26, 54, 55, 62]. Ma-
NIACS can be used as a primitive inside these systems, similarly to
how sampling-based approximation algorithms for frequent itemset
mining [47] have been integrated in MapReduce [46].

Early works in approximate FSPM include the use of graph sum-
maries [21] or heuristics for space pruning [28], but they offer
no guarantees. Other works tackled the problem via graph sam-
pling [1, 5, 43], but they also come with no quality guarantees.

Our algorithm samples a set of vertices, but it does not use them
to build a graph from the sample. Neither does it subgraphs, which
is the approach taken by other works on subgraph counting [3, 6-
9, 37] or focusing on output sampling [11]. To the best of our knowl-
edge, our work is the first to use concepts from statistical learning
theory [58] for FPSM. Other works used VC-dimension or other
concepts from statistical learning theory for centrality computa-
tions [48], for subgraph counting [37], or for itemsets mining [49],
but these approaches cannot be easily adapted to FSPM, because
this problem is clearly very different from centrality computation,
and because the itemsets space is less complex and much easier to
“navigate” than the subgraph space that we consider. In particular,
the evaluation of the frequency of an itemset is straightforward and
much cheaper than computing the frequency of a subgraph pattern
(see Sect. 4). Thus, approaches relying on Rademacher averages for
generic pattern families [40] do not perform well for FPSM.

MANIACS: Approximate Mining of Frequent Subgraph Patterns through Sampling

3 PRELIMINARIES

Let us now formally define the important concepts used throughout
this work, and the task we are interested in.

3.1 Graph theory concepts

Any graph G we consider is simple (no self loops, no multi-edges),
unweighted, undirected, and vertex-labeled, ie, G = (V,EL)
where L is a function that assigns labels from a fixed set L =
{A1,...,Am} to vertices (unlabeled graphs can be seen as labeled
graphs with a single label). For brevity, we usually drop L from
the notation, and do not repeat “labeled”, but all the graphs we
consider are labeled, unless otherwise specified. A graph G is con-
nected iff, for each pair of vertices v # u € V, there exists a se-
quence of vertices u, wi,...,wp,v € V and a sequence of edges
(u,w1), ..., (Wi, wiz1),(wp,0) € Efor1 <i<n-—1.

For afixed k € N, let £ be the set of all possible connected graphs
with up to k vertices and whose vertices have labels in L. We call
patterns the elements of P. Let S C V be a subset of vertices of a
graph G = (V,E), and let E(S) = {(u,v) € E : u,v € S}. We say
that Gs = (S, E(S)) is the subgraph of G induced by S.! For k > 0,
we define C to be the set of all connected induced subgraphs with
up to k vertices in G.2 All subgraphs we consider are connected
induced subgraphs, unless stated otherwise.

Two graphs G’ = (V/,E’,L’) and G” = (V”",E”, L") are isomor-
phic if there exists a bijection y : V! — V'’ such that (u,v) € E” iff
(u(u), p(v)) € E” and the mapping y preserves the vertex labels, i.e.,
L’(u) = L”(p(w)), for all u € V’. Isomorphisms from a graph G’ to
itself are called automorphisms and their set is denoted as Aut(G’).

Given a pattern P = (Vp,Ep) in P and a vertex v € Vp, the
orbit Bp(v) of v in P is the subset of Vp that is mapped to v by any
automorphism of P, i.e.,

Bp(v) = {u € Vp : Ju e Aut(P) s.t. u(u) =ov} .

The orbits of P form a partitioning of Vp, for each u € Bp(v), it
holds Bp(u) = Bp(v), and all vertices in Bp(v) have the same label.

3.2 Frequent patterns

Among the many measures of frequency for subgraphs [20, 34, 35],

we adopt the minimum node image-based (MNI) support [10] metric

to count the occurrences of the patterns. MNI is anti-monotonic:

any pattern (e.g., a triangle) has MNI support no larger than any of

its subgraphs (e.g., an edge) (see Sect. 4.1), which avoids counter-

intuitive results. Computationally, anti-monotonicity enables apriori-
like algorithms [56] to prune the pattern space.

Let G = (V,E) be a graph, and let S C V be a subset of vertices.
For any orbit A of any pattern P € P, let the image set Zs(A) of A
on S be the subset of S containing all and only the vertices v € S
for which there exists an isomorphism y from an induced subgraph
G’ = (V',E") € C with v € V' to P such that y(v) € A. Formally,

Zs(A) = {v €S : Fisomorphism y: (V/,E’) — Ps.t.
(V,EYeCArveV Ap(v) EA} . (1)
1Our algorithm can also handle edge-induced subgraphs, with minor modifications,

but we do not discuss them here due to space limitations.
2C depends on k and G but we do not use them in the notation to keep it light.

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

The orbit frequency cs(A) of A on S is the ratio between the size
of its image set Zs(A) and the size of S, i.e.,

csa) = 25 ®

The (relative) MNI-frequency fs(P) of P € P on S is the minimum
orbit frequency on S for any orbit of P, i.e.,

fs(P) = min{cs(A) : Ais an orbit of P} . (3)

When dealing with approximations, it is more straightforward to
reason about this quantity than about the (absolute) MNI-support
(i.e., the minimum size of the image set of any orbit of P).> Given
a (large) graph G = (V,E), and a minimum frequency threshold
7 € (0,1), for any S C V, the set FPs(7) of r-frequent patterns on S
contains all and only the patterns with frequency on S greater than
or equal to 7, together with their frequencies, i.e.,

FPs(r) = {(P,fs(P)) : Pe P Afs(P) =1} . 4)

The task we are interested in requires finding FPy (7). Due to the
exponential number of candidate patterns, and to the hardness of
evaluating the subgraph isomorphisms, finding this collection is
challenging. An approximate solution Q is sufficient, in many cases,
provided it comes with stringent quality guarantees, such as (i) the
lack of false negatives, i.e., every pattern in FPy (7) also appears in
Q, and (ii) guarantees on the frequency estimation error. MANIACS,
outputs a set Q with such guarantees (see Thm. 4.5), by sampling
a subset of vertices from V, which are then used to approximate
the frequency of patterns of increasing size, while exploiting the
anti-monotonicity of the frequency measure to prune the search
space. To understand the trade-off between the sample size and the
accuracy ¢ of the approximation, we use concepts and results from
statistical learning theory [58], described next.

3.3 Empirical VC-dimension and n-samples

We give here the main definitions and results about empirical VC-
dimension, tailored to our setting. For a general discussion, see the
textbook by Shalev-Shwartz and Ben-David [53, Ch. 6].

A range space is a pair (D, R) where D is a finite ground set
of elements called points and R is a family of subsets of D called
ranges. For any A C D, let the projection Pg(A) of R on A be the
set PR(A) = {rNA : r e R} C 24 When Pg(A) = 24, i.e., when
the projection contains all the proper and improper subsets of A,
then we say that A is shattered by R. Given a subset Y C D, the
empirical Vapnik-Chervonenkis (eVC) dimension Ey (R) of R on Y is
the size of the largest shattered subset of Y [58]. The VC-dimension
of R is the empirical VC-dimension of R on D.

The concept of n-sample for (D, R) is crucial for our work. For
0 <n <1,asubset A C D is an n-sample for (D, R) if it holds

IR |ANR]
D]~ A

<n, foreveryRe R . (5)

Given an n-sample A, we can estimate the relative sizes of any range
R € R w.r.t. the domain (i.e., the first term on the Lh.s.) with its
relative size w.r.t. A (the second term on the Lh.s.), and the estimate
is guaranteed to be no more than p-far from its exact value.

3Henceforth, we use “frequency” to refer to the MNI-frequency.

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Given a sample size s, let 7~ be a collection of s points sampled
from O independently and uniformly at random (with or without
replacement). Knowing an upper bound d to the empirical VC-
dimension of (D, R) on 7 allows the computation of an 1 such
that, probabilistically, 7 is an y-sample for (D, R).

THEOREM 3.1 (31). Let ¢ € (0,1) be an acceptable failure proba-
bility. For (D, R), s, T, and d as above, it holds that, with probability
at least 1 — ¢ (over the choice of T), T is an n-sample for (D, R) for

0l
ytind) 0

where ¢ is a universal constant.*

When the upper bound d to E4(R) is computed from 7, the
value 5 from (6) depends only on 7~ and on ¢, i.e., it is a sample-
dependent upper bound to the maximum difference, over all ranges,
between the relative sizes of the ranges w.r.t. the sample and the
relative sizes w.r.t. the domain, i.e., to the Lh.s. of (5).

4 APPROXIMATE FSPM

We now present MANIACS, our algorithm for mining high-quality
approximations to FPy (7) through sampling.®> At a very high level,
MANIACS draws a sample S from V and uses the orbit frequen-
cies, the frequency of the patterns on S, and the eVC-dimension of
appropriately-designed range spaces, to derive the output quality
guarantees. MANIACS does not consider the subgraph of G induced
by S. Rather, it always considers the whole graph G when checking
the existence of isomorphisms from patterns to induced subgraphs
of G. The sample is instead used to compute fg(P) as an estimation
of fy (P), as obtaining the former is faster given that |S| < |V]|.

The following fact is at the basis of MANIACS, and it is immediate
from the definition of MNI-frequency (see (3)).

Fact 1. Given P € P and S C V, let ¢ be such that it holds
lcs(A) — cy (A)| < &, for every orbit A of P. (7)
Then it must be |fs(P) — fy (P)| < e.

This corollary suggests how to identify patterns that cannot be
frequent, and that can therefore be pruned.

CororLARY 4.1. LetP, S, ande as in Fact 1. If it holdsfs(P) < 7—¢,
then it must be fy (P) <z, i.e, P ¢ FPy (7).

Statistical learning theory gives us the tools to compute values ¢
which satisfy the condition from (7). Given the exponential number
of patterns, it would be unfeasible to compute fg(P) for every
P € P. Thus, we rely on properties of the orbit frequency and
of the MNI-frequency functions (see Sect. 4.1) to prune the space of
patterns, in an apriori-like way, and therefore to avoid computing
the frequencies of orbits whose pattern is not in FPy (7).

4.1 Search space and frequency properties

We now define a partial order between patterns in #: we say that
P’ is a child of P’ if (i) P”" has exactly one more vertex than P’;
and (ii) there exists an isomorphism between P’ and some induced

4In our experiments, we follow Loffler and Phillips [32] and use ¢ = 0.5.
SDue to space constraints, all the proofs are in Appendix A.2.

Giulia Preti, Gianmarco De Francisci Morales, and Matteo Riondato

AN

e o0

/// Y] Y ///

Figure 1: Examples of parent-child relations for orbits (la-
bels represented as colors). We represent each orbit using its
pattern with the vertices of the orbit in a thicker border.

subgraph of P””. When P”’ is a child of P’ we say that P’ is a parent
of P”’. A pattern may have multiple parents, while patterns with a
single vertex have no parent. The anti-monotone property of the
MNI-frequency gives the following fact:

Fact 2 ([10]). For any pattern P € P, any pattern Q € P that is
a child of P, and any S C V, it holds that fs(Q) < fs(P).

We define a similar parent-child relation between pairs of orbits.
Given two distinct patterns P, Q € and two orbits Bp and Bo of
each respectively, we say that B is the child of Bp iff Q is a child
of P and there is a subgraph isomorphism from P to Q that maps at
least one vertex of Bp to a vertex of Bg. When By is the child of
Bp, we say that Bp is the parent of Bg, and denote all the children
of Bp as C(Bp). Figure 1 shows some examples of the parent-child
relationships. An orbit can have multiple parents, and the orbits of
patterns containing a single vertex have no parent. Our algorithm
leverages the following important property of this relationship,
which is immediate from the definition, to quickly prune the search
space of patterns.

Fact 3. Let A and D be two orbits such that D is a child of A. Then,
forany S C V, it holds Zs(D) C Zg(A).

Algorithm 1: MANIACS
Input: Graph G = (V, E), maximum pattern size k, frequency
threshold 7, sample size s, failure probability &
Output: A set Q with the properties from Thm. 4.5
S « drawSample(V,s)
Qe— ;i1
H; «— {P € P : P has asingle vertex}
while i < k and H; # @ do
Zi <« getImageSets(H;, S, 7)
do
b} « getEVCBound(Z;)
&; < getEpsilon(b;, 8/k)
H; — H;
10 Hi — {PeH;:fs(P)>1t—¢}
1 while H; # H; and H; # @
12 Q — QU {(P,fs(P),&;) : P e H;}
13 if i < k then H;,; < createChildren(H;, Z;)
u | Pei+ld

—-

© ® N G R W N

15 return Q

4.2 The frequent patterns range spaces

We now define an appropriate set of range spaces and show how
to compute bounds to their eVC-dimensions. Given 7 € (0, 1], let

MANIACS: Approximate Mining of Frequent Subgraph Patterns through Sampling

Fi fori =1,...,k be the set of patterns with i vertices that belong
to FPy(7).° Let R; be the set whose elements are the image sets on
V of all the orbits of all the patterns in 73,1 < i < k, i.e.,

Ri = {Zy(A) : Aisanorbitof P € F;} .

Henceforth, we use the range spaces (V,R;), 1 < i < k. The rele-
vance of these range spaces is clear when looking at Equation (2).
We now show novel results to upper bound the eVC-dimension of
(V,R;) onany S € V. MANIACS computes such bounds to derive
the approximation guarantees and to prune the search space.

The following two results are presented in the most general form
because they hold for any range space. We later tailor them for our
case, and discuss how to compute the presented bounds efficiently.

LEMMA 4.2. Let (D, R) be a range space, and let 7~ C D. Consider
the set Ry = {7 NR : R € R}. Let g* be the maximum g such
that T~ contains at least g points each appearing in at least 297! sets
from Ry If, for at least one set B of such g* points, there exist a set
Zg € Rq such that B C Zg, then Eq-(R) is at most g*, otherwise it
is at most g* — 1.

LEMMA 4.3. Let (D, R) and T as in Lemma 4.2. Let Ry, . . SRR
be a labeling of the ranges in R such that |[R,, N T | = |Ry N T|
for1 < w < u < |R| Let (aj);;1 be a non-increasing sequence
of t > |R| naturals such that aj > |Rj ﬂ‘Tl for1 < j < |R| and
aj > |R|7Q| ﬁT|f0r|R| <j<¢t.

Let h* be the maximum natural h such that, for every 0 < j < h,
ifweletc; = 37_ (7)., it holds ac; > h— j. Then, Eq-(R) < h*.

While the lemma above may seem complex at first, its proof
is essentially an application of the pigeonhole principle, and the
procedure to compute the bound A* from the sequence (a,-)f:1 is
straightforward, as we discuss in Sect. 4.3.

For A € L, let R;) be the subset of R; containing all and only the
image sets of the orbits whose vertices have all label A. Clearly each
(V,R; ») is a range space. The following result ties the empirical
VC-dimension of these range spaces to that of (V, R;).

LEMMA 4.4. For anyS C V, it holds Eg(R;) = maxcr Es(R;).

Lemma 4.4 says that Eg(R;) is, in some sense, independent from
the number |L| of labels, which is surprising, from a theoretical point
of view. MANIACS computes upper bounds to Eg(RR; 1), A € L, using
Lemmas 4.2 and 4.3, and then leverages Lemma 4.4 to derive an

upper bound to Es(R;).

4.3 MANIACS, the algorithm

The intuition behind MANIACS is the following. It creates a sample
S by drawing vertices independently and uniformly at random
without replacement from V. Then it computes from S a value ¢;
such that S is an ¢;-sample for the range space (V,R;),for1 < i < k.
For such an ¢;, thanks to (6) and (2), it holds, for any P € 7, that

cs(A) = cy(A) — & = 7 — ¢; for any orbit A of P,

SThe sets 77,1 < i < k, depend on G and on 7, but the notation does not reflect these
dependencies to keep it light.
"We define (‘3) = 1for any q.

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

which implies that fg(P) > 7 — ¢;. This lower bound to the possible
frequency of P € ¥; C FPy () on S allows us to determine which
patterns may actually belong to FPy (7) and which ones cannot.

Unfortunately, the sets 7, 1 < i < k, are not known a priori, as if
they were, we could use them to exactly obtain FPy (7). MANIACS
therefore computes a superset H; of each set. It uses the sizes of the
image sets on S of the orbits of the patterns in H; to compute an
upper bound to the eVC-dimension of (V, R;), thanks to Lemmas 4.2
to 4.4. By plugging this upper bound in (6), it gets a value ¢; such
that S is (probabilistically) an ¢;-sample for F;.

We first present a simplified version of MANIACS (pseudocode
in Alg. 1), and discuss more details in Sect. 4.3.2. MANIACS takes
as input a graph G = (V, E), a maximum pattern size k, a minimum
frequency threshold 7, a sample size s, and an acceptable failure
probability . It outputs a set Q with the following properties (proof
in App. A.2).

THEOREM 4.5. With probability at least 1 — & over the choice of S,
the output Q of MANIACS contains a triplet (P, fs(P), ep) for every
P € FPy (1) such that |fs(P) — fy (P)| < ep.

The algorithm starts by initializing the empty set @, which
will contain the output (line 2) and by creating the sample S =
{v1,...,0s} of s vertices by drawing them independently and uni-
formly at random from V (line 1).

MANIACS keeps, for every 1 < i < k, a superset H; of the set 7;.
The first such superset H; is initialized to contain every pattern of
a single vertex (line 3). The algorithm then enters a loop (lines 4-14)
which is repeated until i is greater than k or until H; is empty. At
every iteration, MANIACS first calls getImageSets to obtain the
collection Z; of the image sets Zs(A) on S of every orbit A of every
pattern P € H; (pseudocode in Alg. 3 in Appendix). Each set Zg(A)
is obtained by running an existence query (pseudocode in Alg. 4
in Appendix) for each vertex v in the sub-sample S4, to determine
whether v belongs to at least one subgraph isomorphic to P. The
existence query is a recursive function that incrementally builds a
dictionary M, by inserting, at each iteration, a new candidate match
from a pattern vertex to a graph vertex. If a match can be found for
each vertex of the pattern, the query returns true, and v is inserted
into Zgs(A). A match z for a pattern vertex u is added to M only if
it is consistent with the matches already in M, i.e., if the pattern
vertices already matched and u are connected in the same way as
the graph vertices mapped to them (see line 7 in Alg. 4 in Appendix).
If we wish to find the edge-induced subgraph isomorphic to P, we
just need to modify this consistency check.

MANIACS then enters a do-while loop (lines 6-11), whose dual
purpose is to compute an ¢; such that S is a ¢;-sample for (V, R;),
and to iteratively refine H; as a superset of ¥;. To compute &,
we first need an upper bound to the eVC-dimension of (V,R;) on
S (line 7). This bound is computed by the getEVCBound function
(pseudocode in Alg. 2). For each label A € L, let D, be the subset
of Z; containing the distinct sets associated to orbits of vertices
with label 4 (line 2 of Alg. 2). First, g from Lemma 4.2 is computed
(lines 3-7), by taking into account the number of image sets in
D, in which each vertex v € S appears. Then, the value h; from
Lemma 4.3 is computed (lines 8-14). The value b} returned by
getEVCBound is the maximum, over A € L, of min{hj,gj}.

MANIACS uses b in (6) together with n = §/k to obtain ¢; (line 8

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Algorithm 2: getEVCBound
Input: Bag Z; of image sets Z4 (S), V orbit A of each pattern in H;
Output: A value b; > Es(R;)

1 foreach A € L do

2 D) « set of image sets in Z; of orbits of vertices with label A
3 M « |S|-vector with element (v, [{Z € D) : v € Z}|),Vo € S
4 sort M in decreasing order of the 2" component
// Denote with (v;,q;) the i-th element of M
5 gy <« max{g : vg 2 2971}
6 y « max{i : v; > 293_1}
7 if 30 € {o1,...,0,}, |Q| = g}, st. 3Z € Dy s.t. Q € Z then
95 <951
8 N « |Dj|-vector with element |Z|, VZ € D,
9 sort N in decreasing order

// Denote with a; the i-th element of N
10 b < min{ay, [log, (IDA|+1)]}
1 while h; > 1do

12 foreach j € {0,...,h} —1}doc; « > (hj)
13 if 3j € {0,...,h} — 1} st ac; < b} — j then break
14 else h} « h} -1

15 return maxjer min{gy, b} }

of Alg. 1). The value ¢; is used to refine H; by removing from it
any pattern whose frequency in S is lower than 7 — ¢; (line 10), as
they cannot belong to FPy (7) (see proof of Thm. 4.5 in App. A.2).
The frequencies can be obtained from Z;. This refinement process
is iterated until no more patterns can be pruned, i.e., ‘Hi’ = H;,
or H; becomes empty (line 11). At this point, the patterns still in
H; are added to the output set Q, together with their frequencies
on S and ¢; (line 12). If i < k, MANIACS creates the set Hjy1 to
contain the patterns on i + 1 vertices whose parents are all in H;,
by calling the function createChildren (line 13). Thanks to Fact 2,
this requirement ensures that 7; is the smallest superset of 7; that
can be obtained on the basis of the currently available information.
At this point, the current iteration of the while loop is completed.
When the loop condition (line 4) is no longer satisfied, the algorithm
returns the set Q (line 15).

4.3.1 Generating the next set of patterns. MANIACS takes an apriori-
like, level-wise approach that explores a subset of the “level” i of
the pattern search space containing the patterns on i vertices, after
having explored and pruned the level i — 1. This subset is generated
by the createChildren function on the basis of the non-pruned
patterns at level i — 1. In particular, this function extends each
non-pruned pattern in the level i — 1, by adding an edge to every
possible position. As this procedure may generate the same pattern
multiple times (a pattern can have multiple parents), we identify the
canonical form of each pattern generated [27] and prune duplicate
patterns. For each distinct extension, we need to compute its orbits,
in order to compute their image sets (getImageSets function from
Alg. 1). The generation of the orbits and patterns in MANIACS
follows steps similar to the procedure by Melckenbeeck et al. [33],
adapted to take into consideration the fact that we are working
with labeled graphs. We defer the details to the extended version
of this work due to space limitations.

Giulia Preti, Gianmarco De Francisci Morales, and Matteo Riondato

4.3.2 Additional Pruning. An efficient pattern mining algorithm
must take any chance for pruning the search space. This require-
ment is particularly important when dealing with subgraphs, be-
cause computing the collection Z; (line 5) of image sets of the
orbits of a pattern P € H; is particularly expensive. We now de-
scribe how MANIACS can prune as much as possible, as early as
possible, without any effect on its quality guarantees.

Before delving into pruning, we comment on the computation
of the set Zg(A) for an orbit A of a pattern P € H;. Computing
Zs(A) does not require to explicitly verify whether v € Zg(A) for
every v € S. Rather, the algorithm can create, when initializing ;,
a subset S4 C S for every orbit as above such that it holds

Zs(A) S Sa . ®)

For i = 1, this set contains all and only the vertices in S whose
label is the same as the label of the single vertex of the patterns.
For 1 < i < k, we can use Fact 3: when creating #; on line 13,
the algorithm can associate to each orbit A of a pattern in the set
H; returned by createChildren, a set S4 obtained by taking the
intersections of the image sets Zg(B) on S of every parent B of the
orbit A, which are available from Z;, i.e.,

sax)

B parent of A

Zs(B) .

The computation of these sets can be done in the call to the crea-
teChildren function on line 13 of Alg. 1, for 1 < i < k, and just
before the starting of the loop on line 4 for i = 1. The properties
of the orbit child-parent relation (Fact 3) therefore enable a faster
computation of the collection Z; because Zg(A) = Zs, (A), and
we only need to check for subgraph isomorphisms involving S4,
which may be much smaller than S. We remark that, thanks to
Equation (1), we need to find only one subgraph isomorphism for
each vertex in S 4, rather than enumerating all of them.

Maintaining the sets Sy for every orbit A of a pattern P € H;
allows for pruning H; before even computing the collection Z; of
the image sets. The idea is that the sets S4 can be used in place of
the exact image set Zg(A) to compute an upper bound to the eVC-
dimension of (V,R;) on S. It holds by definition that Sy 2 Zs(A)
for every orbit A, so a call to getEVCBound (with the minor tweak
of not getting rid of duplicated sets on line 2 of Alg. 2) using the
collection of these supersets would return a valid upper bound I;:‘ to
the eVC-dimension of (V, R;) on S. Thus, a call to getEpsilon with
parameters I;:‘ and 6/k, would return a value ; that is not smaller
than the value ¢; that would be returned if we used b;‘. We can then
further improve MANIACS by adding a do-while loop as the first
step of every iteration of the loop on lines 4-14. This inner loop
is exactly the same as the do-while loop on lines 6-11, but with
I;:‘ being used in place of b}. At each iteration of this loop, some
orbits and therefore some patterns may be pruned from H; because
not frequent enough, resulting potentially in a lower bound to the
eVC-dimension, thus in a lower ¢;, creating a positive feedback
loop. The improved algorithm has exactly the same properties as
the vanilla MANIACS, i.e., Thm. 4.5 holds.

The pruning strategies above can be incorporated in the call
to the createChildren function. The call to getImageSets on
line 5 also offers opportunities for pruning. MANIACS computes
one image set Zg(A) = Zs, (A) at a time, and it evaluates whether

MANIACS: Approximate Mining of Frequent Subgraph Patterns through Sampling

v € Sy belongs to the image set, one vertex v at a time. With the
goal of maximizing pruning, we can first sort the orbits of a pattern
by increasing size of their sets, and then compute the image sets of
the orbits according to the obtained order. We can stop early the
identification of the image set of an orbit A, if the sum between
the number of vertices in S4 that are left to be examined, and the
number of vertices in S4 that we found to belong to Zg,, (A), divided
by the size of S, is less than 7 — ¢;. Thus, we can also skip computing
the image sets of the remaining orbits of the same pattern, and we
can remove the pattern from ;.

Pruning is extremely important for MANIACS, not only for com-
putational efficiency reasons, but also for statistical efficiency rea-
sons, as aggressive pruning leads to better bounds to the eVC-
dimension, and therefore to a smaller bound to the maximum esti-
mation error, i.e., to a better approximation quality guarantee.

5 EXPERIMENTAL EVALUATION

In this section, we aim to (1) show in which cases a sampling-based
approximate algorithm can be preferred to an exact algorithm, (2)
discuss how much information on the graph is required to obtain
accurate results, (3) assess how strict our theoretical upper bounds
are with respect to the actual estimation errors, and (4) evaluate the
scalability of MANIACS. Additional results are reported in App. A.3.

Datasets. We consider 5 real world networks, whose characteristics
are summarized in Table 2 in App. A.1. All the datasets are pub-
licly available. Citeseer [18] is a citation network where nodes are
publications and edges are citations. Node labels denote Computer
Science areas. Phy-Cit [30] is a citation network covering e-print
arXiv HEP-PH papers from 1993 to 2003. Node labels corresponds
to year of publication of the paper. MiCo [18] is a co-authorship net-
work: nodes represent authors and edges collaborations between
them. Node labels indicate each author’s research field. Patents[30]
is a network of all the citations in utility patents granted between
1975 and 1999. Each node label indicates the year the patent was
granted. YouTube [13] is a network with nodes representing videos.
Two videos are connected if they are related. The vertex label is a
combination of a video’s rating and length.

Experimental Environment. We run our experiments on a 32-
Core (2.54 GHz) AMD EPYC 7571 Amazon AWS instance, with
250GB of RAM, and running Amazon Linux 2. MANIACS and the
exact algorithm are implemented in Java 1.8, and we made the code
publicly available (see App. A.1).

Parameter Configuration. We test several sample sizes and fre-
quency thresholds, while the parameters k, c,and § were always set
to 5, 0.5, and 0.1, respectively. The last two have minimal impact on
the performance (see (6)). Given that the sample extracted from the
graph highly affects the quality of the results, we perform each test 5
times and report the averages. The exact algorithm searches for the
frequent patterns in the whole graph, without the need to compute
any ¢;. We do not compare with other exact Java implementations
such as GraMi [18] because they search for edge-induced patterns,
and do not compute the pattern exact frequencies.

Evaluation Metrics. We evaluate the output quality in terms of:

o the Maximum Absolute Error (MaxAE) in the frequency estima-
tions of the patterns (i.e., what MANIACS guarantees (Thm. 4.5));

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

—0— MaxAE =t €

o e
o o
= I~}
=)

MaxAE Bound
MaxAE Bound

o
o
=
15

.
o >, —. 0.005-
——,
1K 14K 17K 2K 23K 26K 29K
Sample Size

Sample Size

Figure 2: MaxAE, ¢, €3, €4, €5, for various sample sizes, min.
freq. threshold 7 = 0.16, in Citeseer (left) and MiCo (right).

o the Mean Absolute Error (MAE) in the frequency estimations;

e Precision, i.e., the fraction of returned patterns that are actually
frequent; and

o Kendall’s rank correlation coefficient, i.e., the correlation between
the ordered vectors of frequency estimates and actual frequencies.
Values close to 1 indicate strong agreement between the two
rankings, while values close to —1 indicate disagreement. When
FPy (1) = @, we set its value to 0.

We do not report the Recall, i.e., the fraction of frequent patterns
returned by MANIACS, because Thm. 4.5 guarantees a perfect recall.

MaxAE vs epsilon values. Figure 2 displays the MaxAE of MANI-
ACS in Citeseer (left) and MiCo (right), together with its theoretical
upper bounds ¢; computed by MANIACS, at varying sample size,
and with 7 = 0.16. At this frequency threshold, the upper bounds
are quite large, and in the worst case, they lead to values of 7 — ¢;
close to 0.07 in Citeseer, and 0.03 in MiCo. As a consequence, MANI-
ACS explores a large number of unnecessary patterns. Nonetheless,
the actual MaxAE achieved by MANIACS is at least 2.5 times lower
than the upper bound, which implies that MANIACS works even
better in practice than what is guaranteed by the analysis. This fact
is not surprising as some of the bounds we use are pretty loose,
and improving them is an important direction for future work. We
observe similar results for the other datasets.

Accuracy. According to (6), the upper bounds ¢; decrease as the
sample size grows: with larger samples, MANIACS obtains lower
upper bounds and can perform a better pruning of superfluous
patterns. As expected, for small graphs, and especially when the
patterns have small frequencies, the sample size required to achieve
good frequency estimations can be close to the graph size. In Cite-
seer for example, where the patterns have frequencies below 0.173,
for 7 = 0.13, a sample size equal to 1.4k (roughly 42% of the graph
size) leads to a precision of 0.72, but a sample size close to 80% of the
graph size is required to discover that no pattern of size greater than
2 is actually frequent (see Table 1, line 4). In this case, MANIACS
achieves a perfect precision. Small graphs are not really the target
for a sampling algorithm anyway. In contrast, on Patents, where
the patterns have frequencies below 0.367, MANIACS achieves a
precision of 0.71 with a sample size of 9k, which is roughly 0.3% of
the graph size, i.e., a very small sample.

A different situation can be observed in Phy-Cit (Table 1, lines
5-8). Here MANIACS returns up to 4 times more patterns than
the exact algorithm, and hence the precision is low. However, the
frequency estimations are very close to the exact frequencies (max
error is 0.001), and therefore the Kendall’s correlation is high, with

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Table 1: MAE, MaxAE, Precision, and Kendall’s correlation,
for all datasets at fixed freq. thres. 7 and varying sample size.

Dataset T s MAE MaxAE Precision Kendall
1K 0003 0.015 0.538 0.760

. 14k 0004 0.010 0.720 0.760
Citeseer 0.13 2k 0.004 0.008 0.843 0.800
26k 0.003 0.006 1.000 0.800

9K 0.001 0.006 0.278 0.893

) 15k 0.001 0.004 0390 0.918
Phy-Cit 018 1o 0001 0.003 0.437 0.929
21k 0.001 0.002 0.436 0.978

6K 0003 0.006 0.667 0.333

ok 0.003 0.005 0.717 0.349

Patents 025 o1 0002 0.004 0.708 0.374
18k 0.001 0.003 0.750 0.349

6K 0002 0.006 0.488 0.952

. 9k 0.002 0.006 0518 0.938
MiCo 0.09 1k 9002 0.004 0.612 0.973
48k 0.001 0.002 0.714 1.000

60K 0001 0.002 0.632 0.976

120k 0.000 0.002 0.716 0.988

YouTube - 0.09 »u0i 0000 0.001 0.760 0.982
600k 0.000 0.001 0.823 1.000

values greater than 0.89 even for a sample size of 9k. MANIACS does
not and cannot offer guarantees on the precision, because the pre-
cision depends on the distribution of the exact pattern frequencies
around the threshold 7, which is unknown to the algorithm.
MANIACS performs well at small sample sizes also on MiCo and
YouTube. Table 1, lines 9-16, reports the results achieved using a
minimum frequency threshold equal to 0.09, for which there are
roughly a dozen frequent patterns in both datasets. On MiCo, with
a sample size as little as 18k (1.8% of the graph size), the precision
is 0.612 and Kendall’s correlation is 0.973, in 2/7 of the time of the
exact algorithm. Similarly, in YouTube, by sampling only 1.3% of
the graph vertices, the precision is 0.632, the Kendall’s correlation
is 0.976, and the running time is !/17 of the time required by the
exact algorithm. These results prove that, even when the number
of labels is large, MANIACS can find good approximations of the
frequent patterns, while saving a very significant amount of time.
As the pattern size i increases, the number of candidate patterns
to explore grows significantly, so the empirical VC-dimension and
the corresponding upper bound ¢; are likely to increase as well.

Sampling-based vs exact algorithm. Figure 3 shows the running
time of MANIACS when using different sample sizes, varying ,
compared with the exact algorithm, on Patents (left), and Phy-Cit
(right). The advantages of MANIACS are evident when processing
larger graphs such as Patents. Figure 3 (left) shows that MANIACS
is up to 2 orders of magnitude faster than the exact algorithm. The
algorithm can achieve this performance because it has to examine
fewer than 0.6% of the graph vertices. For small graphs such as
Phy-Cit, especially for low frequency thresholds, there is no gain
from MANIACS compared to the exact algorithm. At lower values
of 7, the frequency thresholds 7 — ¢; used to prune the pattern space
are close to 0, hence almost all the patterns are deemed frequent.
The time saved by MANIACS by examining a smaller number of
vertices is counterbalanced by the time required to examine a larger
number of candidate patterns, which, in this case, is up to 3 times
larger than that of the exact algorithm. Conversely, for larger values

Giulia Preti, Gianmarco De Francisci Morales, and Matteo Riondato

‘\.\ —— cact -4 sl8K ‘e, —8— cxact == 518K
105 ~— 9K S30K i 9K 21K
~E- 12K o, - s15K
_C—.\ - v
T 10 T 7
3 g : .
g ¢ 10 W
= = : B
103: :
10°;
2. : \
10 10-1. e
0.20 0.25 0.30 0.20 0.25 0.30

Min Frequency Threshold T

Min Frequency Threshold 7

Figure 3: Running times of MANIACS and exact algorithm
on Patents (left) and Phy-Cit (right).

., Mico-9K

05— . : % Phy-Cit-0K
108 . B Patents-9K
x
0 10%; N
< %
2 102 \\
= e
10%; T
=
Mico
0
10%; . Phy-Cit
10-1 B Patents N
0.05 0.10 0.15 0.20 0.25 010 015 020 025 0.30

Min Frequency Threshold 7 Min Frequency Threshold T

Figure 4: Scalability of the exact algorithm (left), and of Ma-
NIACS with sample size 9000 (right).

of 7, the pruning capacity of MANIACS is similar to that of the exact
algorithm, and therefore the running times are comparable. Once
again, these results are expected: sampling algorithms are meant
for large datasets, i.e., graphs, not small ones.

Scalability. Figure 4 shows the running time of the exact algorithm
(left), and of MANIACS at s = 9k (right) (YouTube and Citeseer are
not reported because respectively too large or too small to have
meaningful results at this sample size). The running time of the
exact algorithm increases with lower frequency thresholds 7, and
is inversely proportional to the number of labels. E.g., even though
MiCo is far larger than Phy-Cit, the exact algorithm takes less time
at the same frequency threshold. This difference is due to the fact
that MiCo has 29 distinct labels, and thus, the patterns have lower
frequencies than those in Phy-Cit (6 labels). MANIACS allows us
to control the complexity of the mining process while achieving
good results. Fig. 4 (right) shows that with a sample size to 9Kk,
the running time of MANIACS on, e.g., Patents is two orders of
magnitude faster, with a maximum error in the range [0.004, 0.007].

6 CONCLUSIONS

We presented MANIACS, a sampling-based algorithm that outputs
high-quality approximations of the collection of frequent subgraph
patterns in a large graph according to the MNI frequency. To com-
pute the quality of the approximation, MANIACS relies on the em-
pirical VC-dimension, a concept from statistical learning theory that
ties the maximum frequency estimation error to sample-dependent
properties. We showed how to compute an upper bound on the
eVC-dimension and how to use the resulting bound on the estima-
tion error to prune the pattern search space to avoid expensive-but-
worthless computations. The results of our experimental evaluation
showed that MANIACS achieves high-precision results, up to two

MANIACS: Approximate Mining of Frequent Subgraph Patterns through Sampling

orders of magnitude faster than an exact algorithm.

ACKNOWLEDGMENTS

We thank Cigdem Aslay and Muhammad Anis Uddin Nasir for their
help in the preliminary phase of this work. Part of this work is
supported by the National Science Foundation grant 2006765. The
authors acknowledge the support from Intesa Sanpaolo Innovation
Center. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

(1]

[2

=

[11]

[12

[13]

[14

[15]

[16

[17]

=
&

[19

[20]

[21

[22]
[23]
[24]
[25]

[26

[27]

[28]

E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour. 2016. Scalemine:
Scalable Parallel Frequent Subgraph Mining in a Single Large Graph. In SC.

1. Alobaidsi, J. Leopold, and A. Allami. 2019. The Use of Frequent Subgraph Mining
to Develop a Recommender System for Playing Real-Time Strategy Games. In
ICDM. 146-160.

Cigdem Aslay, Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales,
and Aristides Gionis. 2018. Mining Frequent Patterns in Evolving Graphs. In
CIKM. 923-932.

S.K. Bera and C. Seshadhri. 2020. How to Count Triangles, without Seeing the
Whole Graph. In KDD. 306-316.

V. Bhatia and R. Rani. 2018. Ap-FSM: A parallel algorithm for approximate
frequent subgraph mining using Pregel. Exp. Sys. Appl. 106 (2018), 217-232.
M.A. Bhuiyan, M. Rahman, and M. Al Hasan. 2012. Guise: Uniform sampling of
graphlets for large graph analysis. In ICDM. 91-100.

M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi. 2017. Counting
Graphlets: Space vs Time. In WSDM. 557-566.

M. Bressan, F. Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi.
2018. Motif Counting Beyond Five Nodes. TKDD 12, 4 (2018).

M. Bressan, S. Leucci, and A. Panconesi. 2019. Motivo: Fast Motif Counting via
Succinct Color Coding and Adaptive Sampling. PVLDB 12, 11 (2019), 1651-1663.
B. Bringmann and S. Nijssen. 2008. What is frequent in a single graph?. In PAKDD.
858-863.

M.H. Chehreghani, T. Abdessalem, A. Bifet, and M. Bouzbila. 2020. Sampling
informative patterns from large single networks. FGCS 106 (2020), 653-658.

X. Chen, J .and Qian. 2020. DwarvesGraph: A High-Performance Graph Mining
System with Pattern Decomposition. arXiv:2008.09682 [cs.DC]

X. Cheng, C. Dale, and J. Liu. 2008. Statistics and social network of YouTube
videos. In IWQoS. 229-238.

F. Chierichetti, A. Dasgupta, R. Kumar, S. Lattanzi, and T. Sarlos. 2016. On
sampling nodes in a network. In WWW. 471-481.

F. Chierichetti and S. Haddadan. 2018. On the Complexity of Sampling Vertices
Uniformly from a Graph. In ICALP.

G. Das. 2009. Sampling Methods in Approximate Query Answering Systems. In
Encyclopedia of Data Warehousing and Mining. 1702-1707.

M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. 2005. Frequent
substructure-based approaches for classifying chemical compounds. TKDE 17, 8
(2005), 1036-1050.

M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. 2014. Grami: Frequent
subgraph and pattern mining in a single large graph. PVLDB 7, 7 (2014), 517-528.
W. Fan, X. Wang, Y. Wy, and J. Xu. 2015. Association Rules with Graph Patterns.
PVLDB 8, 12 (2015), 1502—-1513.

M. Fiedler and C. Borgelt. 2007. Subgraph support in a single large graph. In
ICDMW. 399-404.

S. Ghazizadeh and S.S. Chawathe. 2002. SEuS: Structure extraction using sum-
maries. In DS. 71-85.

V. Guralnik and G. Karypis. 2001. A scalable algorithm for clustering sequential
data. In ICDM. 179-186.

G. Han and H. Sethu. 2016. Waddling random walk: Fast and accurate sampling
of motif statistics in large graphs. In ICDM. 181-190.

T.A.D. Henderson. 2017. Frequent Subgraph Analysis and its Software Engineering
Applications. Ph.D. Dissertation. Case Western Reserve University.

AP.Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and . Stoica. 2018. ASAP:
Fast, Approximate Graph Pattern Mining at Scale. In OSDIL. 745-761.

K. Jamshidi, R. Mahadasa, and K. Vora. 2020. Peregrine: A Pattern-Aware Graph
Mining System. In EuroSys.

T. Junttila and P. Kaski. 2007. Engineering an efficient canonical labeling tool for
large and sparse graphs. In ALENEX. 135-149.

M. Kuramochi and G. Karypis. 2004. Grew-a scalable frequent subgraph discovery
algorithm. In ICDM.

[29]
[30]
(31]
(32]

(33]

(34]
(35]

[36]

(37]

(38]
(39]

[40]

[41]

[42

[43

[44]

[45]

[46

[47]

o
&,

o
=

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

M. Kuramochi and G. Karypis. 2005. Finding frequent patterns in a large sparse

graph. DMKD 11, 3 (2005), 243-271.
J. Leskovec, J. Kleinberg, and C. Faloutsos. 2005. Graphs over time: densification

laws, shrinking diameters and possible explanations. In KDD. 177-187.

Y. Li, P.M. Long, and A. Srinivasan. 2001. Improved Bounds on the Sample
Complexity of Learning. . Comput. System Sci. 62, 3 (2001), 516-527.

M. Loftler and J.M. Phillips. 2009. Shape Fitting on Point Sets with Probability
Distributions. In ESA. 313-324.

I. Melckenbeeck, P. Audenaert, T. Van Parys, Y. Van De Peer, D. Colle, and M.
Pickavet. 2019. Optimising orbit counting of arbitrary order by equation selection.
BMC bioinformatics 20, 1 (2019), 1-13.

J. Meng, N. Pitaksirianan, and Y. Tu. 2019. Generalizing Design of Support
Measures for Counting Frequent Patterns in Graphs. In BigData. 533-542.

J. Meng, N. Pitaksirianan, and Y.-C. Tu. 2020. Counting frequent patterns in large
labeled graphs: a hypergraph-based approach. DMKD (2020), 1-42.

A. Mrzic, P. Meysman, W. Bittremieux, P. Moris, B. Cule, B. Goethals, and K.
Laukens. 2018. Grasping frequent subgraph mining for bioinformatics applica-
tions. BioData Mining 11, 20 (2018).

M.A.U. Nasir, C. Aslay, G. De Francisci Morales, and M. Riondato. 2021. TipTap:
Approximate Mining of Frequent k-Subgraph Patterns in Evolving Graphs. TKDD
(2021).

K. Paramonov, D. Shemetov, and J. Sharpnack. 2019. Estimating Graphlet Statistics
via Lifting. In KDD. 587-595.

N. Pashanasangi and C. Seshadhri. 2020. Efficiently Counting Vertex Orbits of
All 5-Vertex Subgraphs, by EVOKE. In WSDM. 447-455.

L. Pellegrina, C. Cousins, F. Vandin, and M. Riondato. 2020. MCRapper: Monte-
Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining.
In KDD. 2165-2174.

A. Pinar, C. Seshadhri, and V. Vishal. 2017. ESCAPE: Efficiently Counting All
5-Vertex Subgraphs. In WWW. 1431-1440.

N. Przulj, D.G. Corneil, and . Jurisica. 2004. Modeling interactome: scale-free or
geometric? Bioinformatics 20, 18 (2004), 3508-3515.

S. Purohit, S. Choudhury, and L. B. Holder. 2017. Application-specific graph
sampling for frequent subgraph mining and community detection. In Big Data.
P. Ribeiro, P. Paredes, M.E.P. Silva, D. Aparicio, and F. Silva. 2019. A Survey on
Subgraph Counting: Concepts, Algorithms and Applications to Network Motifs
and Graphlets. arXiv:1910.13011 [cs.DS]

P. Ribeiro and F. Silva. 2014. Discovering colored network motifs. In Complex
Networks V. Springer, 107-118.

M. Riondato, J.A. DeBrabant, R. Fonseca, and E. Upfal. 2012. PARMA: A Parallel
Randomized Algorithm for Association Rules Mining in MapReduce. In CIKM.
M. Riondato and E. Upfal. 2014. Efficient Discovery of Association Rules and
Frequent Itemsets through Sampling with Tight Performance Guarantees. TKDD
8, 4 (2014), 20.

M. Riondato and E. Upfal. 2018. ABRA: Approximating Betweenness Centrality
in Static and Dynamic Graphs with Rademacher Averages. TKDD 12, 5 (2018).
M. Riondato and F. Vandin. 2014. Finding the True Frequent Itemsets. In SDM.
R. A. Rossi, N. K. Ahmed, A. Carranza, D. Arbour, A. Rao, S. Kim, and E. Koh.
2020. Heterogeneous Graphlets. TKDD 15, 9 (2020).

T. K. Saha, A. Katebi, W. Dhifli, and M. Al Hasan. 2019. Discovery of Functional
Motifs from the Interface Region of Oligomeric Proteins Using Frequent Subgraph
Mining. TCBB 16, 5 (2019), 1537-1549.

C. Seshadhri and S. Tirthapura. 2019. Scalable Subgraph Counting: The Methods
Behind The Madness. In WWW.

S. Shalev-Shwartz and S. Ben-David. 2014. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press.

N. Talukder and M.J. Zaki. 2016. A distributed approach for graph mining in
massive networks. DMKD 30, 5 (2016), 1024-1052.

C.H.C. Teixeira, AJ. Fonseca, M. Serafini, G. Siganos, M.J. Zaki, and A. Aboulnaga.
2015. Arabesque: A System for Distributed Graph Mining. In SOSP. 425-440.

N. Vanetik, E. Gudes, and S. E. Shimony. 2002. Computing frequent graph patterns
from semistructured data. In ICDM. 458-465.

N. Vanetik, S.E. Shimony, and E. Gudes. 2006. Support measures for graph data.
DMEKD 13, 2 (2006), 243-260.

Vladimir N. Vapnik. 1998. Statistical learning theory. Wiley.

J. Wang, Y. Wang, W. Jiang, Y. Li, and K. Tan. 2020. Efficient Sampling Algorithms
for Approximate Temporal Motif Counting. In CIKM. 1505-1514.

P. Wang, J. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan. 2014. Efficiently
estimating motif statistics of large networks. TKDD 9, 2 (2014), 8.

P. Wang, J. Lui, D. Towsley, and J. Zhao. 2016. Minfer: A method of inferring
motif statistics from sampled edges. In ICDE. 1050-1061.

X. Zhao, Y. Chen, C. Xiao, Y. Ishikawa, and J. Tang. 2016. Frequent subgraph
mining based on Pregel. Comput. J. 59, 8 (2016), 1113-1128.

https://arxiv.org/abs/2008.09682
https://arxiv.org/abs/1910.13011

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

A SUPPLEMENTARY MATERIAL

A.1 Reproducibility

The implementation of our algorithm is publicly available at https://
github.com/lady-bluecopper/MaNIACS, complete with instructions
on how to run it, and a Jupyter Notebook results.ipynb with the full
results of our experimental evaluation. This notebook contains all
the plots omitted here due to space limitations.
Datasets description.

Table 2: Characteristics of the datasets.

Citeseer ~ Phy-Cit MiCo Patents YouTube
Vertices 3.3K 30K 100K 2.7M 4.5M
Edges 4.5K 347K M 13M 43M
Labels 6 6 29 4 12
Density 837107 7.46107% 2.16107* 3.67107° 4.17107°
Avg Label Freq 552 5K 3.4K 689K 382K
Med Label Freq 593 5.9K 2.1K 672K 472K
Avg Edge Freq 218.6 16K 2.4K 1.5M 563K
Med Edge Freq 86 12K 1.0K 1.2M 535K

Pseudocode for the computation of the image sets.

Algorithm 3: GETIMAGESETS

Input: Set of patterns H;, sample S, frequency threshold 7
Output: The image sets Z; of the patterns in H;

1 Zi« @

2 foreach P € H; do

3 foreach orbit A of P do

4 n « avertex of P in A

5 S « vertices in S with the label of A

6 Zs(A) « @, remain « |Sa|

7 foreach v € S5 do

8 M — 2;M[n] <o

9 if existsIsomorphism(P, M) then
10 | Zs(A) —Zs(A) U {o}

11 remain < remain — 1

12 if (remain+ |Zs(A)|)/|S| < 7 — ¢; then
13 L prune P and go to next pattern
14 | Zi— Ziv{Zs(A)}

15 return Z;

Algorithm 4: EXI1STSISOMORPHISM

Input: Pattern P, Partial match M
Output: true iff M contains a match for each vertex of P
if |M| = |Vp| then return true

-

X

u « vertex of P not already in M

@

cands — (\yyeurnm M[w].T
4 foreach z € cands with the same label as u do

5 isMatch « true

6 foreach w € M do

7 if w¢ u.l' and M[w] € z.T then
8 L L isMatch < false; break

9 if isMatch then
10 L Mlu] « z

11 if existsIsomorphism(P, M) then return true

12 return false

Giulia Preti, Gianmarco De Francisci Morales, and Matteo Riondato

A.2 Missing proofs

We now give the proofs for all our theoretical results, restated here
for convenience.

LEMMA 4.2. Let (D, R) be a range space, and let T~ C D. Consider
theset R = {T NR : R € R}. Let g* be the maximum g such
that T contains at least g points each appearing in at least 297" sets
from Ry If, for at least one set B of such g* points, there exist a set
Zp € Rq such that B C Zg, then Eq-(R) is at most g*, otherwise it
is at most g* — 1.

ProOF oF LEMMA 4.2. Each point a in a shattered set A of size
|A| = z must belong to at least 227! distinct sets in Ry, as it belongs
to this number of non-empty subsets of A. Additionally, there must
be a set in Rq- that contains the whole A. O

LEMMA 4.3. Let (D, R) and T as in Lemma 4.2. Let Ry, . . ., R|:R‘
be a labeling of the ranges in R such that |[Ry,NT| > |Ry,NT|
for1 < w < u < |R|. Let (aj)§:1 be a non-increasing sequence
of t > |R| naturals such that aj > |Rj ﬂ‘Ti for1 < j < |R| and
aj 2 |R\R| ﬂ‘7'|for|R| <Jj<¢t

Let h* be the maximum natural h such that, for every 0 < j < h,
ifweletc; = 37 _ (%)%, it holds ac, > h— j. Then, Eq-(R) < h.

ProOOF OF LEMMA 4.3. Let z = Eq(R). Then thereisaset A C T~
with |A| = z that is shattered by R. For a set A with |A| = z to
be shattered by R, there must be, for every 0 < i < z, (f) distinct
ranges H; 1, . . . ’H"»(?) € R such that |Hi,j ﬂA| =z—ias Ahas (3
subsets of size z — i. It must then also hold that |H,~,j n 7'| >z-—i

If £ = |R| and a; = |Rj n ‘7'| for every 1 < j < |R|, it follows
from the definition of h* that it must be z < h*. For a generic
sequence (a J)§:1’ the thesis follows from the fact that the value
h* computed on this generic sequence cannot be smaller than the
value h* computed on the specific sequence for which ¢ = |R| and
aj=|Rjﬂ‘7'|forevery1SjS|7€|. O

LEMMA 4.4. ForanyS C 'V, it holds Es(R;) = max, ¢ Es(R;).
Lemma 4.4 is an immediate corollary of the following result.

LEMMA A.1. No S C V containing vertices with different labels
can be shattered by R;.

Proor. The statement is immediate from the definition of image
set (see (1)). For any orbit A, its image set Zy (A) on V only contains
vertices with the same label, thus there would be no range in R;
that would contain, for example, the whole S, thus S ¢ Pg,(S),
which implies that S cannot be shattered by R;. O

THEOREM 4.5. With probability at least 1 — § over the choice of S,
the output Q of MANIACS contains a triplet (P, fs(P), ep) for every
P € FPy (1) such that |fs(P) — fy (P)| < ¢p.

Proor oF THM. 4.5. For 1 < i < k,let n; be the value n computed
as in Thm. 3.1 for ¢ = d/k, (D, R) = (V,R;), T chosen as S on
line 1, and d being the eVC-dimension of (V,R;) on S. It follows
from Thm. 3.1 and an application of the union bound over the k
sets (hence the use of d/k), that, with probability at least 1 — 4, it

8We define (?) = 1forany q.

https://github.com/lady-bluecopper/MaNIACS
https://github.com/lady-bluecopper/MaNIACS

MANIACS: Approximate Mining of Frequent Subgraph Patterns through Sampling

—— ecact —4- s18K —o— cact =4 2K
6K 48K s1K $2.6K
~E- sOK

Time (sec)
Time (sec)

—o

0.075 0.100 0.125 0.150 0.175 0.200
Min Frequency Threshold +

10-1.

0.05 010 015 020 025 030
Min Frequency Threshold 7

Figure 6: Running time of MANIACS and the exact algorithm,
varying sample size and min frequency threshold 7, on Mico
(left) and Citeseer (right).

'\ 0.007-% - MaAE B &
3 €:
103 \\ 0.006- :
5 10% o
3 G
ry
£
= 10!
100, O eact = s240K
s60K s600K
-l s120K
0.08 0.10 0.12 0.14 60K 240K 600K 900K 12M
Min Frequency Threshold 7 Sample Size

Figure 7: YouTube: running time of MANIACS and the exact
algorithm, varying sample size, and min frequency threshold
7 (left); and Max Absolute Error (MaxAE), ¢, €3, €4, and ¢s5, for
various sample size and min frequency threshold 7 = 0.16

(right).

70-
s6K

- 0K
- 18K

48K
B exact

s9K 30
s15K

s18K
s21K
B exact

, 5.
o || howe ome |‘ Il Mmoo

017 018 02 021 023 O 009 012 014 016 018 02
Min Frequency Threshold 7 Min Frequency Threshold 7

o
=

@

=)
N
@

&

S
N
=)

w

=]
—
@

)

=)
—
=)

Avg Frequent Patterns
Avg Frequent Patterns

-
1)

]
&

Figure 8: Average number of patterns found by MANIACS,
together with the exact number of frequent patterns, varying
minimum frequency threshold 7, in Phy-Cit (left) and Mico
(right).

100-

N
=)

N

2

s9K 60K
. 12K 17.5- 120K
80- [__JBEIS 15.0- . 240K
g s30K 5 : s600K
= oot £125- E exact
a 60- a
[§10.0-
& 40- £ 7.5-
54 5
< < 50- I|

o | I| II 'I]

017 018 0.2 021 023 027 0 009 01 011 012 013 015
Min Frequency Threshold T

o

Min Frequency Threshold 7

Figure 9: Average number of patterns found by MANIACS,
together with the exact number of frequent patterns, vary-
ing minimum frequency threshold 7, in Patents (left) and
YouTube (right).

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

holds that S is, simultaneously, an n;-sample for (V,R;) for every
1 < i < k. Assume for the rest of the proof that that is the case.

We show inductively that, at the end of every iteration of the
“main” loop of MANIACS (lines 4-14), it holds that

(1) Q contains a triplet (P, fs(P), &) for each P € F;, and the

triplet is such that
Ify(P) —fs(P)| < & ;

(2) Fi € Hi, fori <k.
At the beginning of the first iteration, i.e., for i = 1, it obviously
holds 1 C H; from the definition of H; (line 3). Thus, at the first
iteration of the do-while loop on lines 6-11, the value &1 computed
on line 8 using Thm. 3.1 is not smaller than 11, because b7 is an upper
bound to the eVC-dimension of (V,R1) on S, thanks to Lemmas 4.2
to 4.4, and the value 7 on the Lh.s. of (6) is monotonically increasing
with the value d used on the r.h.s. of the same equation. It then
follows, from this fact and from Corol. 4.1, that no pattern P €
FP.(V) may have fs(P) < 7 — ¢1, therefore the refinement of H;
on line 10 is such that it still holds #; € H; at the end of the first
iteration of the do-while loop. Following the same reasoning one
can show that this condition and the fact that &1 > 1; throughout
every iteration of the do-while loop.

The set Q, updated on line 12, therefore contains, among others,
a triplet for every pattern P € FP,(V), and the properties from
the thesis hold because of this fact and the fact that ¢; > 53, thus
completing the base case for point (1) in the list above. Point (2),
i.e., that F, C Hp, then follows from the anti-monotone property
of the MNI-frequency (Fact 2).

Assume now that points (1) and (2) hold at every iteration of the
while loop from i = 1,...,i* < k. The proof that they hold at the
end of iteration i* + 1 follows the same reasoning as above. O

A.3 Additional experiments

0.030- —8— MaxAE —d- s 0.030- —8— MaxAE =4+
N & e . & e
0.025-
-
£0.020-
3
[:3]
w
0015
=
0.010- 00"
-—
0.005- \
0.005- —_—,
6K 9K 12K 18K 30K 6K 9K 19K 15K 18K 21K

Sample Size Sample Size

Figure 5: Max Absolute Error (MaxAE), ¢, €3, €4, and ¢35, for
various sample size, min frequency threshold r = 0.16, in
Patents (left) and in Phy-Cit (right).

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Graph theory concepts
	3.2 Frequent patterns
	3.3 Empirical VC-dimension and eps-samples

	4 Approximate FSPM
	4.1 Search space and frequency properties
	4.2 The frequent patterns range spaces
	4.3 MaNIACS , the algorithm

	5 Experimental Evaluation
	6 Conclusions
	Acknowledgments
	References
	A Supplementary Material
	A.1 Reproducibility
	A.2 Missing proofs
	A.3 Additional experiments

