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Abstract

The U.S. National Institute of Standards and Technology (NIST)’s Commu-

nity Resilience Planning Guide uses recovery times of infrastructure functions

as key metrics for disaster resilience. Although estimating the recovery times

is critical to measuring and improving disaster resilience, this process remains

challenging in the pre-event planning due to lack of historical data. To address

this challenge, we consider a situation where infrastructure experts are asked

to estimate the time for different infrastructure systems to recover to certain

functionality levels after a scenario hazard event. We propose a methodological

framework to use expert-elicited data to estimate the expected recovery curve

of an infrastructure system. This framework uses the Gaussian process regres-

sion (GPR) to capture the experts’ estimation-uncertainty and satisfy known

physical constraints of recovery processes. The framework is designed to bal-

ance between the data collection cost of expert elicitation and the prediction

accuracy of GPR. We evaluate the framework on simulated expert-elicited data

concerning two case study events, the 1995 Great Hanshin-Awaji Earthquake

and the 2011 Great East Japan Earthquake. It is shown that the framework is

robust against different configurations such as the number of experts, how the

quantities of interest are elicited, and uncertainty in the experts’ estimates.
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1. Introduction

This work is motivated by a recent trend of resilience planning initiatives.

Our current ability to estimate infrastructure recovery trajectories is limited,

as revealed in the recent resilience planning efforts of U.S. communities, which

started in San Francisco, CA [1] and became state-wide initiatives in Washington5

State [2] and Oregon [3]. These efforts inspired the U.S. National Institute of

Standards and Technology (NIST)’s Community Resilience Planning Guide [4]

as a model for other jurisdictions. The current estimation practice is largely ad

hoc. Although there is a growing body of literature on computational modeling

of recovery [5, 6, 7, 8, 9], most models are often viewed as resource-intensive10

black-box approaches and not utilized by communities on the ground.

The NIST Guide defines time to recovery of function as “a measure of how

long it takes before a building or infrastructure system is functioning” and “uses

time to recovery of function as the primary metric for community resilience.”

This echoes the widely-recognized importance of characterizing disaster recov-15

ery for assessing community resilience [10, 11, 12, 13]. As the quote by Lord

Kelvin says “if you cannot measure it, you cannot improve it,” the first step to

resilience improvement should be the reliable method to estimate the current

system resilience. However, there are many challenges in this estimation exer-

cise. There is usually not sufficient historical data on extreme events, in both20

magnitude and variation, that put infrastructure systems under challenge [14].

In addition, the lack of rigorous and sound estimation methods for recovery time

impedes the measurable progress of resilience improvement.

The above needs and constraints are the major motivation for this work.

This paper proposes a statistical framework to estimate infrastructure recovery25

curves (e.g., see Figure 1) for a hazard scenario using a combination of expert

elicitation and Gaussian process regression (GPR). The result will facilitate the

resilience planning process by providing estimations that reflect the domain ex-
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perts’ opinions on the current resilience of infrastructure systems. GPR model

and experts’ estimate complement each other to provide satisfactory solutions30

to this problem. Estimates gathered from experts will provide initial guidelines

on how long it will take for a particular infrastructure to recover to some in-

termediate functionality levels. GPR will then use these estimates to predict

the full recovery curve while capturing potential uncertainty in its prediction,

as well as the uncertainty in the experts’ estimates. GPR is also flexible enough35

to enforce important constraints on its predictions to allow the predicted curve

to follow the physical behaviour of the actual recovery curve (e.g., monotoni-

cally increasing and bounded between 0 and 100%). The framework aims to be

extensible to various types of infrastructure, while being intuitive and easy to

be interpreted by the stakeholders.40
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Figure 1: Empirical restoration curves of the 1995 Great Hanshin-Awaji Earthquake

Disaster and the 2011 Great East Japan Earthquake Disaster.

While more data would generally yield a more accurate estimate, there is a

practical limitation on collecting expert-elicited data. We study how to balance

between the cost of collecting data from expert elicitation and the estimation
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accuracy of GPR. We consider multiple expert elicitation schemes to identify

the best way to estimate the recovery curve with a reasonable cognitive burden45

on experts while maintaining good estimation accuracy.

We simulate expert-elicited data by randomly generating expert estimates,

which are assumed to be generally close to the empirical recovery curve observed

in a case study event. We evaluate the proposed estimation method based on

different empirical recovery curves from different prefectures and infrastructures50

after the 1995 Great Hanshin-Awaji Earthquake and the 2011 Great East Japan

Earthquake [15]. We chose these events as they are the two major, extensively

studied disasters that affected major infrastructure systems in Japan. Although

they are different in quantities of damage, causes of damage, and spatial extents

of damage, the recovery patterns are noteworthily similar. Their recovery data55

is also widely available, which facilitates our intensive modelling experiments

and sensitivity analyses.

The rest of this paper is organized as follows. Section 2 briefly reviews

relevant literature on expert elicitation and GPR. Section 3 presents the pro-

posed estimation methodology. Section 4 shows the performance of this method60

through extensive numerical studies and sensitivity analyses. Section 5 draws

insights for potential users of this method and concludes the paper.

2. Background

2.1. Expert elicitation for disaster recovery estimation

Participatory methods, especially expert elicitation, have been used exten-65

sively in disaster research especially in the areas where empirical data are scarce

[16, 17]. The study in [18] elicits from experts infrastructure recovery estimates

(at 0 hours, 72 hours, and 2 weeks from a hypothetical event) and qualitative

inter-dependencies between those infrastructures. However, the study limits it-

self to short-term restoration and does not factor uncertainties into the recovery70

time estimation.
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Expert elicitation itself is a well-established research domain [19, 20]. One of

the most well-known elicitation approaches is the Delphi method [21, 22] char-

acterized by its iterative, anonymous approach for developing consensus among

experts. This method has been used widely in governments and industries75

[23, 24]. Another approach is the Cooke Classical Model [19, 25], also known

as Cooke’s method, which is one of the most established methods in expert

elicitation literature. This method uses calibration questions, for which true

values are known to the facilitator, to measure both accuracy and informative-

ness of an individual expert’s judgement. These performance measurements,80

called calibration score and information score, respectively, are used as weights

for aggregating multiple experts’ judgements. Although developing calibration

questions requires extra efforts, this performance-based weighting scheme has

empirically proven effective [26] and represents the state-of-the-art among vari-

ous weighting schemes [27, 28, 29]. In this paper, we propose to elicit data from85

the expert panel using both Delphi and Cooke’s methods. The Delphi method is

used to estimate a crucial quantity that needs a consensus across experts. The

Cooke’s method is used to aggregate recovery estimates across experts according

to performance-based weights.

Although many studies elicit point estimates or probability distributions90

from experts, there are only a few studies on eliciting functions (e.g., recov-

ery curve) from experts [30, 31, 32]. Arguably, the most systematic expert

elicitation approach to functional estimation is developed in [33]. This study

estimates seismic collapse fragility functions by eliciting quantiles of probability

distributions, which encompass uncertainties of both seismic shaking intensity95

and resulting building collapse, from earthquake-engineering professionals. The

reported estimates therein are created by first fitting lognormal distributions to

the elicited probability estimates and then aggregating the distributions using

Cooke’s method. While this approach using the lognormal distribution (often

used to model collapse fragilities) is defensible for this study, generalizing the ap-100

proach to other functional estimation (especially recovery time estimation) has

a major modelling drawback. Using a parametric distribution like lognormal is
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too restrictive to reflect the uncertainties underlying the complex recovery pro-

cesses being modeled, especially when we are using expert-elicited data, which

will at least contain within-expert and across-expert uncertainties. Thus, this105

study uses GPR, which allows us to nonparametrically model recovery curves

and the associated uncertainties.

Integration of expert judgements and empirical data is briefly mentioned in

the NIST Guide [4], but no specific guideline is provided on the integration.

The Oregon Resilience Plan [3] was the only resilience planning initiative that110

explicitly used both expert judgements and past event data, but the estimation

process was still ad-hoc. Currently, to our best knowledge, there is no sys-

tematic statistical inference method being used for expert-based recovery time

estimation in practice. This gap inspired us to develop the proposed method.

2.2. Gaussian process regression115

Gaussian Process Regression (GPR) is a nonparametric model that offers

the flexibility to model a stochastic process. It has been used successfully in

many applications, such as engineering, physics, biology, economics, or other

fields, in both regression and classification problems [34, 35, 36, 37]. In contrast

to more parametric models where assumptions are more rigidly made about the

data such as linear or polynomial regression, GPR specifies a prior distribu-

tion over function spaces, where the relationships over data are encoded in the

covariance functions k(x1, x2) of multivariate Gaussian distributions. The co-

variance between function values f(x1) and f(x2) only depends on the distance

∥x1 − x2∥ between the data points instead of their vector coordinates. Once

the input data is available, GPR can model the posterior over function spaces.

The covariance will determine properties or constraints of the process, such as

characteristic length scale, smoothness, or variance [38]. One commonly used

covariance function is the squared exponential function,

k(x1, x2) = σ2
f exp

(︄
− (x1 − x2)

2

2l2

)︄
,
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where σf is the variance, which specifies how noise the data can be, and l is the

characteristic length scale parameter, the higher of which will make the function

smoother. In this study, we are estimating recovery curves, so we will focus on

GPR where x ∈ R1 is the time for recovery to achieve a certain functionality

level, and f(x) is the functionality level.120

Besides its low bias towards any functional form, GPR is also more suitable

to our task than other parametric methods. It can capture both the uncer-

tainty in the region where training data is not available and the variability in

the training data itself. As a well-known issue in judgement-based forecasting,

no matter how rigorous the elicitation process is, the results still depend on125

the experts’ ability to estimate the quantity of interest. Because the expert

estimates are noisy, GPR will capture the variability as an extra source of un-

certainty during the inference step. Figure 2 shows two different ways to fit

GPR to estimate a recovery curve, with or without noise in the training data.

The grey bands show the 95% confidence interval to capture the uncertainty130

around the predicted curves.

(a) GPR with Noise-free observations (b) GPR with Noisy observations

Figure 2: GPR fitting with noise-free and noisy observation for Fukushima prefecture

electricity recovery.

Due to the physical nature of the recovery curve, we also need to impose

some constraints on the GPR model. First, the functionality level should be be-

tween 0% and 100%. Therefore, we will bound the prediction of the GPR model

to be strictly between 0 and 1. Second, although it is possible that functionality135
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level may temporarily decrease in reality (e.g., due to an aftershock), it should

generally increase over time. Hence, to capture this behaviour and reduce the

prediction error, we also enforce that the curve is monotonically increasing with

respect to time. Montonicity and boundedness are the linear inequality con-

straints actively researched in the GP framework [37, 39, 40, 41, 42]. In Figure 3,140

we show the effects of imposing only monotonicity, only [0,1] boundedness, and

both constraints in the model for the Fukushima prefecture electricity recovery

using the R package lineqGPR [41, 42]. It is helpful to have both constraints in

the model. Otherwise, the model may behave in contrast to the expected physi-

cal behaviour of infrastructure recovery. In addition, the constraints will help to145

reduce the variance of the prediction. However, imposing these constraints may

be potentially too rigid to capture the flat region near 0% and 90% of recovery.

We can alleviate this issue by eliciting the boundary points so that the GPR is

only interpolating between the elicited data points. Furthermore, the recovery

curve can be constructed up to a functional level below 100% (e.g., 90%) as150

suggested by the NIST Guide [4]. We will apply these measures in Section 4 for

the numerical studies.

3. Method

3.1. Consideration in recovery curve estimation

Our goal in this study is to estimate the infrastructure recovery curve from155

point estimates given by experts using GPR. The two steps (i.e., expert elicita-

tion and GPR) are not designed independently. We carefully design the whole

framework considering the logistical, computational, and theoretical constraints

of both steps. The curve is characterized by two dimensions, namely, the recov-

ery level measured in percentage (100% means the system is fully functional) and160

the recovery time measured in either days or hours from the disruption. GPR,

similarly to other regression methods, is more suitable for interpolation between

training data (as opposed to extrapolation). To achieve better performance, it

is desired for the expert-elicited data to possess two properties. First, it should
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(a) GPR with monotonicity constraint

only.
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(b) GPR with boundedness constraint only.
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(c) GPR with both monotonicity and

boundedness constraints.

Figure 3: Different GPR constraints for the Fukushima prefecture electricity event.

be as evenly distributed as possible so that the interpolated prediction does not165

exhibit too much uncertainty. Second, it should cover the boundary values to

avoid predicting values beyond the range of the given data. It may seem best

from a statistical perspective to elicit the data in both the range of recovery

level (e.g 10%, 30%, 50%, 70%, 90%) and recovery time (e.g 2.5D/10, 5D/10,

7.5D/10, 9D/10), where D is the (estimated) earliest time for the infrastructure170

to recover to 100% or another high functional level (e.g. 90%) depending on

what kind of recovery curve we want to construct, to follow the NIST Planning

Guide [4]) given by the expert. However, it may not be very intuitive to elicit

recovery levels at some certain time, e.g. “What is the estimated recovery level
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at day 11 after the event?”. Therefore, in our proposed method below and the175

numerical studies in Section 4, we only elicit the recovery time at some certain

recovery levels. This choice is also consistent with the NIST Planning Guide

[4].

In addition to eliciting recovery times at different recovery levels, we also

want to elicit D, as introduced above, so that we can normalize the recovery180

time to be in the range of [0, 1] for the following reasons:

1. The constructed curve could be more generalizable to future disaster

events. If we face another similar events in the future, where similarity

is defined by dominant characteristics of the events (e.g., Richter magni-

tude and earthquake resilience of the area, or Saffir–Simpson scale and185

hurricane resilience of the area), we can significantly reduce the elicitation

effort by either using the existing recovery curves or simply eliciting the

earliest full recovery time D and scaling the recovery time based on the

particular D values of new events.

2. It is easier to compare different recovery curves of different natures on the190

same scale in the range of [0, 1].

3. We can offer some insights from the shape or pattern (e.g., for hurricane

category 1 vs. 5; magnitude 6 vs. 8; power vs. water; urban vs. rural) of

recovery, which has formed consensus across many communities, so that

other communities lacking the opportunity/resource to conduct extensive195

elicitation procedure can still use these curves as references of possible

recovery trends.

4. In terms of GPR modelling, we want to have both axes in the process to

be between [0, 1] in the fitting and inference following the implementation

in [41, 42]. The actual unit of recovery time can be easily scaled back to200

days or hours after the inference procedure.
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3.2. Challenges in expert data elicitation and modelling

From the design considerations above, we anticipate some challenges in the

elicitation process as follows:

1. Obtaining the earliest time to full recovery D: D should be universal205

across all experts. One way to obtain this is to have an open discussion

among experts until they reach a general consensus on how long D should

be. Another way is to employ point-based expert elicitation methods, for

example in [43], to estimate the probability distribution of D. Another

possibility is to use the individual expert’s D value to normalize their own210

recovery time estimate.

2. Obtaining the input noise level σ: This is required for the statistical mod-

elling process. This can be interpreted as how uncertain the experts’ esti-

mates are. We may gather the data and estimate the uncertainty based on

their data after the elicitation process. This σ will account for both within-215

expert and across-expert uncertainty. The GPR framework assumes that

one type of noise is present in the data, which accounts for all the uncer-

tainty, and that the noise level is constant across all levels of input. In case

we want to decompose the uncertainty further, it is more straightforward

to estimate the across-expert uncertainty since we have different expert220

data at each recovery level. However, within-expert uncertainty estima-

tion is tricky. One way to estimate it is through Cooke’s method where

calibration questions are used to measure the inherent estimation uncer-

tainty. However, one can challenge the underlying assumption that the

estimated uncertainty based on calibrating questions remains the same as225

the uncertainty for main questions. Regardless, it is reasonable to assume

that within-expert variability is negligible compared with across-expert

variability.

3. Obtaining more elicited data: While we may drive down the estimation

uncertainty by collecting more data, this would impose more logistical230
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burden to the experts. In addition, the experts may have some cognitive

difficulty to distinguish between smaller difference in recovery levels, e.g

10% and 20%.

On the other hand, there are also some challenges in the modelling and

inference process:235

1. If we ask each expert to give an estimate ofD, it is challenging to determine

which D to use and how to normalize the time.

2. If we have noise/uncertainty in both dimensions (input and output), it

does not follow the conventional GPR framework, in which y = f(x) + ϵ,

where ϵ follows N(0, σ2). To further elaborate this point, in the GPR240

framework, we assume that the input is fixed, i.e. if we want to predict

the recovery time at each functionality level, we fix the functionality level

and the prediction of recovery time will exhibit some level of uncertainty.

This is consistent with our experiment implementation in Section 4.

3.3. Recovery curve estimation framework245

In this section, we present a few potential elicitation schemes for consid-

eration. Each scheme has its own advantage and disadvantage. In terms of

workshop design, we can adopt the Cooke Classical Model [19] to perform elici-

tation of expert judgments. In this work, experts are mathematically defined as

those who can provide informed estimates of infrastructure recovery times such250

that the across-expert mean estimates are arbitrarily close to the true recov-

ery curve when a sufficiently large number of experts are elicited. In practice,

experts may include but not limited to utility operators, emergency managers,

and infrastructure researchers. There are several ways to aggregate experts’

estimates, such as linear pooling or performance based weighting. Linear pool-255

ing, although with its least logistical cost of designing calibration questionnaire,

is shown to under-perform other performance based methods [26]. Although

questionnaire design is beyond the scope of this work, we outline one way to

perform calibration on the expert judgments following the performance based
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weighting methods. There should be a set of calibration questions, which is260

closely related to the quantity of interest we are trying to estimate. An exam-

ple question could be, given a functionality level, what is the estimated time

that the expert thinks an infrastructure can take to achieve. An expert will be

asked to give different quantile estimates on the quantity, and they form their

subjective probability mass about such quantity. Under the Cooke Classical265

Model, there will be two types of scores being generated from this calibration

exercise. The first is an information score, or how confident an expert is about

her estimates. The second score is a calibration score, which is the likelihood

that her judgement corresponds to the actual results. A product of the two

quantities can be used as a general score to determine the performance weight,270

which is then used to take the weighted average of experts’ estimates. To fur-

ther optimize for performance, we can vary the selection threshold, below which

will render an expert’s weight to 0, to get the best performance metric on the

calibration questions. Then, that set of optimized weights can be used to elicit

the quantity of interest.275

Scheme 1: Maximum elicitation on two dimensions.

1. Ask each expert for the earliest time to full recovery D, recovery times

at fixed functionality levels (10%, 30%, 50%, 70%, 90%), and functional

levels at fixed recovery times (e.g 2.5D/10, 5D/10, 7.5D/10, 9D/10).

2. Use the sample mean/median (across experts) of all elicited data as the280

training data, with Cooke’s method weighting if necessary.

3. Use all estimates (across experts) at each level to estimate the noise level.

4. Fit GPR and construct a recovery curve with its estimation uncertainty.

Advantage: Full range of data over both dimensions. Impose less burden in

elicitation logistics than scheme 2. Elicitation can finish in one stage.285

Disadvantage: Uncertainty in D estimation can lead to erroneous and high

uncertainty in prediction. Furthermore, as mentioned above, the GPR frame-
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work assumes one dimension as fixed input. Eliciting in both dimensions violates

this assumption.

Scheme 2: Two-stage elicitation. The earliest full recovery time D will be290

iteratively discussed among the experts until reaching consensus.

Stage 1:

1. Ask each expert for the earliest time to full recovery D.

2. Show all the experts the (range of) elicited D values.

3. Ask experts to revise their D estimate until reaching agreement.295

Stage 2:

4. Ask each expert for a full range of fixed recovery level (10%, 30%, 50%,

70%, 90%) and recovery time (e.g 2.5D/10, 5D/10, 7.5D/10, 9D/10),

with Cooke’s method weighting if necessary.

5. Use the mean/median of across-expert estimates as the training data.300

6. Use all elicited data to estimate the noise level.

7. Fit GPR and construct a recovery curve with its estimation uncertainty.

Advantage: Full range of data over both dimensions. Reduce uncertainty in

the earliest full recovery time D.

Disadvantage: Two-stage elicitation will require more effort from the expert.305

Scheme 3: Using either scheme 1 or scheme 2 but with smaller elicited data

(e.g., 3 points for each dimension)

Advantage: Less burden on the expert.

Disadvantage: May result in a sub-optimal fit and prediction.

Scheme 4: Elicitation on only one dimension, fixing recovery levels and ask for310

recovery times.

1. Obtain estimate of D, following either scheme 1 or scheme 2. (The nu-

merical studies in Section 4 will use scheme 4 with each expert’s estimate
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of recovery time being normalized by her own estimate of D.) In case

it is hard to reach a consensus D among the experts, the recovery time315

estimates at each functionality level can be aggregated (e.g., via equal-

weighting) across the experts first, and normalized by the maximum value

of D.

2. (OPTIONAL) Repeat the process for the 3 scenarios (worst, best, most

likely)320

Advantage: Straightforward in modelling. Simple to interpret and imple-

ment.

Disadvantage: Data may be sparse. In some events (e.g the Fukushima

electricity recovery in Section 4), the recovery is expected to be very fast in the

first few hours. The expert may say the recovery is up to 70% in the first day325

and 90% the next day. In this case, the GPR model may not provide much

additional values to stakeholders in recovery planning.

Scheme 1 will speed up the elicitation process since we can elicit on both

dimensions. However, the question is whether we need to elicit in both ways (fix

the level then elicit the time, and fix the time then elicit the level). Scheme 2 is330

almost identical to scheme 1, except with the elicitation of the earliest full re-

covery time D to reach either 100% or 90% to normalize the time axis. Scheme

3 is a less resource-demanding version of Scheme 1 and 2. In Section 4, we

will study the optimal number of elicitation levels through sensitivity analysis.

Although we can try to elicit in both ways, to be consistent with the GPR frame-335

work, we can only use one dimension (either recovery time or recovery level) as

input and predict the remaining dimension. Instead of spending experts’ re-

sources on eliciting in both ways, we can use their effort to elicit more recovery

time at higher granularity of functionality level or elicit more scenarios (best,

worst, most likely). In view of the above considerations, we will demonstrate340

the framework of Scheme 4 in the numerical studies in Section 4.
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4. Numerical Studies

To demonstrate the performance of the framework, we evaluate it on different

empirical recovery curves from different prefectures and infrastructures after

the 2011 Great East Japan Earthquake and the 1995 Great Hanshin-Awaji

Earthquake. The framework is designed to be applied where an expert elicitation

workshop is run in conjunction with statistical modelling. For demonstration

purpose in this paper, we will simulate the expert opinion. Assuming that the

experts are capable of estimating the true recovery curve with a reasonable

accuracy, we use the entire available empirical data (such as those in Figure 1)

to fit the polynomial regression model as a surrogate to the expert opinion. The

simulated expert can be queried for recovery time given a functionality level

and vice versa. In Scheme 4, we provide a functionality level as an input to the

simulated expert and obtain the recovery time estimate as the output. Each

expert can be modelled using Eq. (1):

days = fpoly(recovery) + ϵdays, (1)

where days is the number of days from the beginning of disruption (e.g., earth-

quake, hurricane landfall), recovery is the functionality level of the system that

is recovering, fpoly is the polynomial regression function, and ϵdays is assumed345

to follow a normal distribution with mean 0 and variance σ2 that captures the

estimation variability.

However, it is better for the model to utilize the fact that the output (i.e.,

recovery time) is always positive by taking log transformation on the output

variable. Thus, the expert model in Eq. (1) becomes

log(days) = gpoly(recovery) + ϵlog(days) (2)

The fitted polynomial regression function gpoly is demonstrated in Figure 4.

Furthermore, it is desirable to model two distinct sources of the estimation

variability ϵlog(days). Thus, a layer of Gaussian noise ϵ1 is added to the output

to model within-expert variability. A second layer of Gaussian noise ϵ2 is then

16



(a) Polynomial fit in the log scale of the

days/recover time

(b) Predicting recovery time in the original

scale

Figure 4: Expert simulated model is built based on all the available data of a past

event using polynomial regression, which will allow the sampling from the curve will

be very close to the actual values. The model represents an average prediction across

multiple replications and multiple expert. In other words, if we have infinite amount

of experts, we assume that their average prediction will converge to the fitting curve

or the actual data.

added to model across-expert variability. The two noise terms are additive in the

log-transformed model because we model the errors to be multiplicative in the

original scale. The log transformation will then make the multiplicative errors

become additive, to be consistent with the polynomial regression framework.

The multiplicative errors are intuitive. For example, consider a scenario event

that makes the recovery estimation challenging for all experts (i.e., high across-

expert variability, V ar(ϵ2)). Then, the individual expert’s large uncertainty

perhaps due to lack of experience (i.e., high within-expert variability, V ar(ϵ1))

will amplify the effect of the challenging estimation problem, thus resulting in

highly variable recovery time estimates. In summary, the elicited recovery time

estimates are simulated using

dayssimulated = exp(gpoly(recovery) + ϵ1 + ϵ2). (3)

As an implementation note, due to the randomness from ϵ1 and ϵ2, sometimes

the sequence of simulated expert’s estimates could be non-monotonic. How350
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likely it happens depends on the variance of the errors. Since we assume the

experts are only providing estimates for a monotonic recovery curve (i.e., no de-

terioration of infrastructure functionality in the midst of recovery, for example,

due to aftershocks), they will only provide monotonically increasing recovery

time estimates with respect to the functionality level. In our simulation, to355

ensure that the simulated recovery estimates satisfy this assumption, we reject

the non-monotonic estimate paths until a monotonic sequence is generated.

Using the simulated data, the GPR model with monotonicity and bounded-

ness is fit as follows:

recovery = GPR(dayssimulated). (4)

The GPR models in the numerical studies use a squared exponential kernel,

with variance parameter σ2
f = 0.1 and characteristic length scale l = 1. These

choices of hyperparameters are based on the physical nature of the problem and360

the workshop. The variance is picked to model reasonable noise in the experts’

estimate, which could be estimated empirically during the elicitation workshop.

The length scale is chosen for a smooth recovery process, which is generally the

case for infrastructure recovery. Since the purpose of the model is to provide re-

silience estimate when historical data is not available, we did not perform cross365

validation to optimize for the hyperparameters or kernel functions as our mod-

elling framework is less intended for a forecasting or predictive exercise. Figure

5 shows the performance of this modeling framework on the same infrastructure

sector in different prefectures (electricity recovery of Miyagi, Fukushima, and

Iwate) and Figure 6 shows different infrastructures within the same prefecture370

(water and gas recovery in Great Hanshin). We simulate the process of elic-

iting from 5 experts, asking for recovery time at 10%, 30%, 50%, 70%, 90%

functionality levels, with within-expert and across-expert noise variance to be

V ar(ϵ1) = V ar(ϵ2) = 0.1. We then take the average of their estimates with

equal weighting, and construct the GPR curve.375

It is observed that the method is very flexible. In Fukushima electricity

recovery, although the actual recovery started at about 40% in day 1, we can
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still capture the rest of the recovery curve simply by eliciting from 30% onward.

This translates to some freedom to the experts in actual workshops. They can

skip some levels if they think it does not make sense to estimate when they380

think the recovery actually will happen quickly initially.

In Figure 6, it may seem that the model does not capture the initial recovery

stage (e.g., below 10% functionality) very well. This often happens with infras-

tructures whose recovery tends to follow others, such as gas, which is usually

recovered after electricity and water. The model still captures the majority of385

the recovery curve (between 10% and 90%) quite well with high confidence.

We also investigate how sensitive the estimation framework is to the number

of experts by monitoring the root mean square error (RMSE) of prediction

on the available test data (different from the recovery levels elicited from the

experts). We first perform simulation to measure the performance in terms of390

RMSE of the framework with 1, 3, 5, 7, 9, 11 experts based on Miyagi electricity

recovery to see if there is an “elbow” of performance change point to balance the

logistics of elicitation and accuracy, as shown in Figure 7. In Table 1, we vary the

number of simulated experts to be 3, 5, or 10. Given a fixed noise level within

and across experts, it seems that the result is quite stable with 5 experts. We395

acknowledge that in this simulation, all the experts are modelled to exhibit the

same level of uncertainty, which is not realistic in practice. In fact, in usability

testing experiments in [44], where the participatory performance, involving both

expert and novice users, is measured in a group of 5 and beyond, the study shows

that some randomly selected group of 5 participants can perform relatively well400

although the risk is that the performance variance is high. However, in actual

workshops, there could be more than 5 experts (among whom, the expertise

level is theoretically more consistent than the study in [44]), and as long as

their opinions converge to some underlying quantity, the estimation still can

provide a reasonable recovery curve.405

We conduct another analysis to measure how the framework performs with

different levels of elicitation. Our initial hypothesis is that performance will

improve as we elicit more data, which may increase more logistical burden to
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the expert. The hypothesis is generally confirmed from Figure 8. It also does

not penalize performance very much to have custom spacing of levels, so we can410

focus more on asking the experts at more intuitive recovery levels.

Table 1: Sensitivity analysis on the framework performance to the number of experts. In this

table, the experts are simulated to have equal weights to their estimate, and the simulated

noise variance in Eq. (3) is V ar(ϵ1) = V ar(ϵ2) = 0.1. Note that the unit for RMSE is

the fraction of recovery level. The RMSE presented is the average across 100 simulation

replications.

Prefacture/ Infrastructure Number of Experts RMSE

Fukushima electricity 3 0.0637

5 0.0567

10 0.0524

Miyagi electricity 3 0.0405

5 0.0340

10 0.0297

Iwate electricity 3 0.0457

5 0.0398

10 0.0373

Great Hanshin water 3 0.0447

5 0.0352

10 0.0334

Great Hanshin gas 3 0.0542

5 0.0516

10 0.0497

5. Conclusion

We demonstrated in this research a framework to assist the community re-

silience planning through estimating potential infrastructure recovery curves.

The framework combines experts’ opinions and Gaussian process regression to415

unify domain knowledge and uncertainty quantification in the estimated curves.
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Table 2: Sensitivity analysis on the framework performance to the uncertainty in expert

estimation (V ar(ϵ1), V ar(ϵ2) in Eq. (3). In this table, data is simulated from 5 experts for

100 simulation replications.

Prefacture/ Infrastructure V ar(ϵ1), V ar(ϵ2) RMSE

Fukushima electricity 0.1 0.0567

0.3 0.0600

0.5 0.0985

Miyagi electricity 0.1 0.0340

0.3 0.0583

0.5 0.0811

Iwate electricity 0.1 0.0398

0.3 0.0549

0.5 0.0686

Great Hanshin water 0.1 0.0352

0.3 0.0427

0.5 0.0546

Great Hanshin gas 0.1 0.0484

0.3 0.0636

0.5 0.0916

We performed extensive sensitivity analyses to draw insights into various elici-

tation schemes and the effects of number of experts, number of elicited points,

and elicitation levels on the predictive performance. Although the framework

was developed for modeling post-event infrastructure recovery, it can be gen-420

eralized to other recovery modeling, such as for different capitals and services

that are important for community resilience [45]. We do not explicitly consider

dependencies between infrastructures in this study. Future work may directly

model their dependencies to improve the predictive performance and/or reduce

the reliance on expert estimates.425
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(c) Fukushima electricity recovery curve with

95% confidence interval
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10 mean predictions
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(e) Iwate electricity recovery curve with 95%

confidence interval
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(f) Iwate electricity recovery curve with 10

mean predictions

Figure 5: Numerical results on different prefectures (Miyagi, Fukushima, and Iwate).

The figures on the left column show the result of GPR model built on one simulated

draw of expert opinion. The grey bands show the 95% confidence interval to capture

the uncertainty around the predicted curves. The figures on the right column show

different mean predictions based on different simulated draws of expert opinion. In all

cases, we simulate the process of elicitation from 5 experts.
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(a) Great Hanshin water recovery curve with

95% confidence interval
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10 mean predictions
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(c) Great Hanshin gas recovery curve with

95% confidence interval
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(d) Great Hanshin gas recovery curve with 10

mean predictions

Figure 6: Numerical results on water supply and natural gas infrastructures in Great

Hanshin. The data simulates the process of elicitation from 5 experts.
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Figure 7: The plot shows the performance of the framework for electricity recovery

at Fukushima, Miyagi, and Iwate prefactures as a function of the number of experts.

The error bar at each number of experts shows the 95% confidence interval of test

RMSE in 100 simulation replications. Although the more number of experts involved

in the elicitation process results in better performance, it is observed that there is a

diminishing marginal return as the number of experts increases in 2 out of 3 prefac-

tures. The rate of performance gain is fastest when engage from 1 to 3 experts. The

rate is slower from 3 to 7 experts. It drops to the slowest rate if we increase from 7 to

11 experts.
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Figure 8: The plot shows the performance of the framework in terms of test RMSE

in 100 simulation replications for electricity recovery at Miyagi and Iwate prefectures

as a function of the number of elicitation levels. We evaluate the performance when

eliciting 2, 3, 4, 5, 6 levels from the experts. Custom spacing means we fix the elicited

recovery levels at intuitive levels to the experts such as 10%, 30%, 50%, etc, regardless

of the number of levels. Equal spacing means we get the levels by equally dividing

the range from 10% to 90% by the number of levels, which results in some odd levels,

such as 10%, 36.67%, 63.33%, 90% at 4 elicitation levels. The plot shows some general

trends that at 4 to 5 elicitation levels, the performance can be satisfactory.
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