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Estimating the Cumulative Incidence of SARS-CoV-2 
Infection and the Infection Fatality Ratio in Light of 

Waning Antibodies
Kayoko Shioda,a Max S.Y. Lau,b Alicia N.M. Kraay,c Kristin N. Nelson,c Aaron J. Siegler,c  
Patrick S. Sullivan,c Matthew H. Collins,d Joshua S. Weitz,e,f and Benjamin A. Lopmanc      

Background: Serology tests can identify previous infections and 
facilitate estimation of the number of total infections. However, 
immunoglobulins targeting severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) have been reported to wane below the 
detectable level of serologic assays (which is not necessarily equiva-
lent to the duration of protective immunity). We estimate the cumu-
lative incidence of SARS-CoV-2 infection from serology studies, 
accounting for expected levels of antibody acquisition (seroconver-
sion) and waning (seroreversion), and apply this framework using 
data from New York City and Connecticut.
Methods: We estimated time from seroconversion to seroreversion 
and infection fatality ratio (IFR) using mortality data from March 

to October 2020 and population-level cross-sectional seroprevalence 
data from April to August 2020 in New York City and Connecticut. 
We then estimated the daily seroprevalence and cumulative incidence 
of SARS-CoV-2 infection.
Results: The estimated average time from seroconversion to seror-
eversion was 3–4 months. The estimated IFR was 1.1% (95% cred-
ible interval, 1.0%, 1.2%) in New York City and 1.4% (1.1, 1.7%) 
in Connecticut. The estimated daily seroprevalence declined after 
a peak in the spring. The estimated cumulative incidence reached 
26.8% (24.2%, 29.7%) at the end of September in New York City 
and 8.8% (7.1%, 11.3%) in Connecticut, higher than maximum sero-
prevalence measures (22.1% and 6.1%), respectively.
Conclusions: The cumulative incidence of SARS-CoV-2 infection is 
underestimated using cross-sectional serology data without adjust-
ment for waning antibodies. Our approach can help quantify the mag-
nitude of underestimation and adjust estimates for waning antibodies.

Keywords: Antibody; Case ascertainment ratio; COVID-19; 
Cumulative incidence; Infection fatality ratio; SARS-CoV-2; 
Seroprevalence; Waning antibody

(Epidemiology 2021;32: 518–524)

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the virus that causes coronavirus disease 2019 

(COVID-19), rapidly spread across the world in 2020.1 Globally, 
there have been 36 million documented cases and more than 1 
million COVID-19 associated fatalities as of 15 October 2020, 
with case counts continuing to increase.2 Reliable measurement 
of infection history in a population is a critical epidemiologic 
outcome, and is needed to derive several key epidemiologic 
indices such as the infection fatality ratio (IFR). However, 
the number of SARS-CoV-2 infections reported through pub-
lic health surveillance mechanisms is underestimated because 
of the limited capacity of testing and surveillance systems, 
an overwhelmed healthcare system, low healthcare-seeking 
behavior among those with mild disease, imperfect sensitiv-
ity of diagnostic tests (especially rapid antigen tests), and a 
large fraction of infections that are asymptomatic.3 Imperfect 
specificity could in theory overestimate the number of cases, 
but this may be less of a concern because the specificity of the 
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relevant assays is generally high (e.g., 99.3% as described in the 
Methods). Assays that detect viral antigen or genomic material 
cannot identify individuals who were previously infected once 
viral material is no longer present. In contrast, serology tests 
measuring the level of immunoglobulins have the potential to 
identify those previously infected. Serology results can be used 
to generate an estimate of the cumulative incidence, but this 
requires the relatively strong assumption that antibodies persist 
permanently after infection. Because antibody levels for SARS-
CoV-2 wane over time and can become undetectable, some pre-
viously infected individuals could have already returned to a 
seronegative status at the time of testing (i.e., seroreversion). 
Hence, new methods are needed to account for waning antibod-
ies when using cross-sectional serology data to estimate cumu-
lative incidence of SARS-CoV-2 infection.

Population-level serosurveys for SARS-CoV-2 have 
been conducted across the world, with variation in geographic 
scale, sample demographics, sampling mechanisms, and testing 
methods.4,5 Although the reported incidence of COVID-19 var-
ies widely by location, a consistent finding in all settings is that 
total estimated infections vastly outnumber confirmed cases. 
For example, the Centers for Disease Control and Prevention 
(CDC) and commercial laboratories conducted large-scale geo-
graphic longitudinal serosurveys in 10 sites in the United States 
in the spring and summer of 2020.6 Seroprevalence ranged from 
1% [95% confidence interval (CI) = 0.3%, 2.4%] to 6.9% (95% 
CI = 5.0%, 8.9%) across sites. That study estimated that the 
number of total infections was 6–24 times higher than that of 
documented cases, while acknowledging that these ratios varied 
widely depending on the timing of sampling or the stage of the 
epidemic in each location. These early population-level sero-
surveys provided critical insights on the true burden of COVID-
19; however, as we enter the second year of the US epidemic, 
the ability to estimate the cumulative incidence directly from 
serosurveys is increasingly limited because antibody levels 
continue to wane and the corresponding serologic “record” of 
historical infection is lost. Indeed, Ibarrondo et al. estimated 
that the half-life of anti-SARS-CoV-2 spike receptor-binding 
domain IgG was 36 days.7 Patel et al. reported that over half 
(11/19) of health care personnel who tested seropositive in early 
April became seronegative at the second visit in June (approxi-
mately 60 days after the baseline).8 Taken together, these find-
ings suggest that serosurveys have likely failed to recognize 
previous infection in those whose antibody levels have already 
waned below the detectable limit at the time of sampling. An 
adjustment for waning antibody kinetics must account for the 
interacting timescales of antibody kinetics, case incidence and 
the period over which a serosurvey is conducted.

Here, we describe a framework for estimating the 
cumulative incidence and IFR of SARS-CoV-2 from popu-
lation-level cross-sectional serology data and mortality data, 
by adjusting for the timeline of seroconversion (acquisition 
of the detectable level of antibodies) and seroreversion (loss 
of detectable antibodies). We apply this framework to data 

from New York City and Connecticut because these two sites 
observed a large wave of COVID-19 cases that lasted for a 
relatively short period in spring 2020, followed by low case 
counts in the summer and early fall (eFigure 1; http://links.
lww.com/EDE/B804). We note that it is critical to distinguish 
the ability to detect antibodies from immunity to reinfection, 
which may persist longer than antibodies are detectable.9 We 
make no claim that the time from seroconversion to serorever-
sion estimated from this framework reflects the duration of 
immunity protection against reinfection.

METHODS

Population-level Cross-sectional Seroprevalence 
Data

Details of the serosurvey conducted by the CDC and com-
mercial laboratories can be found elsewhere.6 Briefly, the survey 
collected convenience samples of deidentified residual patient 
sera in 10 US sites (Connecticut, Louisiana, Minneapolis–St 
Paul–St Cloud metro area, Missouri, New York City metro area, 
Philadelphia metro area, San Francisco Bay area, South Florida, 
Utah, and Western Washington State) from March to July 2020, 
and expanded the serosurvey to all 50 states in August. Blood 
specimens were originally collected for reasons unrelated to 
COVID-19, such as for routine medical care or sick visits, but 
information on the reason for specimen collection was not avail-
able. Most of the samples were from outpatients. Multiple rounds 
of surveys have been conducted at each site, approximately 
every 3–4 weeks (eTable 1; http://links.lww.com/EDE/B804). 
Each round tested approximately 1,800 samples from each site.10 
Samples were tested by an enzyme-linked immunosorbent assay 
(ELISA) against the SARS-CoV-2 spike protein that detects the 
total immunoglobulin response (IgA, IgM, and IgG) with sensi-
tivity 96% [95% confidence interval (CI) = 98.3%, 99.9%] and 
specificity 99.3% (95% CI = 98.3%, 99.9%).6 We downloaded 
publicly available seroprevalence data adjusted for age and sex 
distributions on October 8, 2020.11 We focused our analysis on 
New York City and Connecticut because the single, short wave 
of infection in the spring allowed us to evaluate how the antibod-
ies acquired over a short period subsequently waned during a 
time when minimal new infections were occurring in these loca-
tions (eFigure 1; http://links.lww.com/EDE/B804). More details 
can be found in eAppendix 1.

Mortality Data and Case Data
Mortality data are less subject to changes in testing 

capacity and guidelines over time than case data, so we used 
mortality data to estimate parameters. We analyzed daily time 
series data on COVID-19 associated deaths from March to 
September 2020 in New York City and Connecticut. We down-
loaded New York City data 2 October 2020 and Connecticut 
data on 6 October 2020 from their government websites.12,13 
To account for undercounting of COVID-19 deaths, espe-
cially at the beginning of the pandemic, we used the total (i.e., 
probable and confirmed) deaths for our mortality time series 
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(eAppendix 2; http://links.lww.com/EDE/B804). To account 
for a delay distribution between symptom onset and death, 
we used data on the date of symptom onset and date of death 
for 6,999 COVID-19 associated deaths in Georgia, USA from 
February to October 2020.

To estimate case ascertainment ratios (see the “Model” 
section for detail), we also utilized daily time series data 
for the number of documented cases in New York City and 
Connecticut from their government websites (eAppendix 2; 
http://links.lww.com/EDE/B804).12,13

Model
Our Bayesian model aims to estimate the cumula-

tive incidence and IFR, accounting for the time of positivity 
between seroconversion and seroreversion. The model first 
determines the timing of symptom onset from the COVID-19 
mortality time series based on empirical data on the distribu-
tion of time from symptom onset to death from Georgia. The 
model then estimates two parameters, the IFR and the average 
duration of seropositivity (time from seroconversion to sero-
rerversion), by comparing the simulated seroprevalence with 
the observed data (CDC longitudinal seroprevalence) using 
binomial likelihood calculation. These two parameters were 
then used to calculate corresponding daily seroprevalence, 
cumulative incidence, and the case ascertainment ratio.

We estimated the IFR and time from seroconversion to 
seroreversion using the reported number of deaths and CDC 
serosurvey data (Figure  1). Using a Markov chain Monte 
Carlo (MCMC) analysis, we estimated the number of sero-
positive individuals on day t (St) as follows:

S I g y Z t k y t t k tt
k

t

k
y

t k

= − − + ≤ ≤ ≤ ≤ −
=

−

=

−
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1

1
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where Ik is the total number of SARS-CoV-2 infec-
tions on day k, which is the number of reported deaths divided 
by the estimated IFR, after accounting for the delay between 
symptom onset and death (eAppendix 3; http://links.lww.

com/EDE/B804). Therefore, Equation 1 calculates, of those 
who were infected on day k, how many of them have acquired 
the detectable level of antibodies but have not lost them by 
day t. We estimated the IFR, assuming that the IFR was con-
stant over time in the main analysis and relaxed this assump-
tion in a sensitivity analysis. Additional parameters include 
tmax, the total number of days in the daily time series data for 
COVID-19 deaths, and g, the probability density function of 
the Weibull distribution for time from symptom onset to sero-
conversion with the mean 11.5 days and SD 5.7 days,14 which 
is consistent with other reports.15–18 For asymptomatic cases, 
g represents the time from onset of infectiousness to sero-
conversion (eAppendix 3; http://links.lww.com/EDE/B804). 
Z is the cumulative density function of the Weibull distribu-
tion for time from seroconversion to seroreversion. Therefore, 

y
t k g y Z t k y=
− − − +∑ 1 1{ ( ) *[ ( ( ))]}  in Equation 1 represents 

the probability that an individual seroconverted before day t and 
seroreverted after day t, which in other words means the prob-
ability that an individual remains seropositive on day t. We 
estimated the mean of the Weibull distribution for time from 
seroconversion to seroreversion, while fixing SD at 50 days. 
We calculated the daily seroprevalence (Pt) by dividing St  by 
the population (8.3 million for New York City and 3.7 mil-
lion for Connecticut). We compared the estimated Pt  with the 
reported seroprevalence in each round of the CDC commer-
cial laboratory serosurvey and calculated the log-likelihood 
assuming the binomial distribution, which we then used in 
the MCMC analysis for parameter estimation (eAppendix 4; 
http://links.lww.com/EDE/B804). We used the random-walk 
Metropolis–Hastings algorithm to sample new candidate val-
ues centered at current values for the IFR and the average 
duration of seropositivity. The uncertainty of a model param-
eter is quantified and captured by its posterior distribution 
which is being estimated by our MCMC algorithm.

Given an estimated model from above, the number of 
individuals who seroconverted on day t ( Ct) may be calculated 
as follows:

FIGURE 1.  Structure of the analytic framework. aOnset of infectiousness for asymptomatic cases; bData from Georgia Department 
of Public Health; cIyer et al. medRxiv 2020.

http://links.lww.com/EDE/B804
http://links.lww.com/EDE/B804
http://links.lww.com/EDE/B804
http://links.lww.com/EDE/B804
http://links.lww.com/EDE/B804
http://links.lww.com/EDE/B804


Copyright © 2021 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Epidemiology  •  Volume 32, Number 4, July 2021	 Cumulative Incidence of SARS-CoV-2 Infections

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.	 www.epidem.com  |  521

C I G t kt kk

t= −
=
−∑ 1

1 * ( ) � (2)

where G is the cumulative density function of the afore-
mentioned Weibull distribution for time from symptom onset 
to seroconversion. G t k( )− represents the probability that 
infected individuals on day k Ik( )  had seroconverted by day t. 
We calculated the cumulative incidence on day t by dividing 
the cumulative sum of It  by the population. We also calcu-
lated a cumulative case ascertainment ratio ( )At  as follows:

A
T

C
t

t

t

t

t

t

t

= =

=

∑
∑

1

1

max

max

�

(3)

where Tt  is the number of documented cases on day 
t (eAppendix 2; http://links.lww.com/EDE/B804). The ascer-
tainment bias was calculated as 1/At.

The median of the posterior samples was reported as a 
point estimate, and 2.5th and 97.5th percentiles were reported 
as 95% credible intervals (CrIs). We performed all analyses 
with R (Vienna, Austria). The code can be found in the fol-
lowing github repository: https://github.com/lopmanlab/
SARS-CoV-2_CumInc_WaningAntibodies.

Sensitivity Analysis
We performed sensitivity analyses to evaluate how sen-

sitive our results were to different assumptions. We changed 
the fixed value of the SD for time from seroconversion to 
seroreversion from 50 days to 20 and 70 days. We selected 
these values based on previous findings.19 We also relaxed the 
assumption of the constant IFR. It has been reported that the 
IFR and case fatality ratio for COVID-19 declined over time 
in New York City20 and in other countries.21 Therefore, we 
assumed that the IFR decreased by 5% per week from mid-
March to the end of July 2020, reflecting findings reported 
by the previous studies,20 and the model estimated the IFR in 
mid-March (before the decline started). Lastly, we used data 
from Wuhan, China to inform delay between symptom onset 
and death,22 instead of the Georgia data to evaluate the impact 
of variation in this distribution on parameter inference.23

Ethical Considerations
Seroprevalence data, mortality data, and case data in New 

York City and Connecticut were publicly available, deidenti-
fied and aggregated. The Georgia Department of Public Health 
Institutional Review Board (IRB) has determined that the proj-
ect is exempt from the requirement for IRB review and approval.

RESULTS

Estimated Timeline of Seroreversion, IFR, and 
Case Ascertainment Ratio

We estimated the average time from seroconversion to 
seroreversion to be 4.0 months (95% CrI = 3.6, 4.6 months) 

using the New York City data and 3.0 months (95% CrI = 2.3, 
4.1 months) using the Connecticut data with the SD fixed at 
50 days (Figure 2). More than 85% of the infected individuals 
were estimated to become seronegative due to waning anti-
bodies within 6 months after seroconversion (Table).

We estimated the IFR at 1.1% (95% CrI = 1.0%, 1.2%) 
for New York City and 1.4% (95% CrI = 1.1%, 1.7%) for 
Connecticut. The estimated case ascertainment ratio increased 
rapidly in the early phase of the pandemic and continued 
to gradually increase from May to October in both sites 
(Figure  3). The ascertainment ratio was estimated to reach 
13% (95% CrI = 12%, 14%) in New York City and 18% (95% 
CrI = 14%, 23%) in Connecticut at the end of September 
2020, suggesting that the number of estimated infections was 
7.7 times greater than the number of documented cases in 
New York City and 5.6 times greater in Connecticut.

Estimated Daily Seroprevalence and Cumulative 
Incidence

In both New York City and Connecticut, the estimated 
daily seroprevalence decreased over time after the first wave 

FIGURE 2.  Cumulative density function for the estimated Weibull 
distribution for time from seroconversion to seroreversion (New 
York City and Connecticut). Lines and shaded areas represent 
the posterior median and 95% credible intervals, respectively.

TABLE.  Percentage of Infected Individuals Whose Antibody 
Level has Declined and Become Undetectable by Serologic 
Assays Within t Months Since Seroconversion

Months Since  
Seroconversion (months)

New York City  
(95% CrI)

Connecticut  
(95% CrI)

1 1.8% (0.6, 3.9) 8.7% (1.7, 22.2)

2 10.5% (5.2, 17.7) 29.2% (10.0, 49.4)

3 28.4% (17.3, 39.8) 53.7% (27.5, 71.2)

4 50.8% (36.5, 62.3) 73.6% (49.7, 84.7)

5 72.5% (59.8, 80.8) 87.3% (71.7, 92.6)

6 87.5% (79.4, 91.7) 94.6% (87.0, 96.6)

9 99.8% (99.6, 99.8) 99.8% (99.8, 99.8)

12 100% (100, 100) 100% (100, 100)

The mean of the Weibull distribution for time from seroconversion to seroreversion 
was estimated while fixing the SD at 50 days.

CrI, credible interval.
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of COVID-19, diverging from the estimated cumulative inci-
dence adjusted for waning antibodies (Figure 4). The cumu-
lative incidence was estimated to reach 26.8% (95% CrI = 
24.2%, 29.7%) in New York City and 8.8% (95% CrI = 7.1%, 
11.3%) in Connecticut at the end of September 2020. In con-
trast, the estimated daily seroprevalence peaked at 22.1% 
(95% CrI = 20.5%, 23.6%) in mid-May and declined to 4.9% 
(95% CrI = 3.9%, 6.9%) by the end of September in New 
York City. In Connecticut, the estimated daily seroprevalence 
peaked at 6.1% (95% CrI = 5.3%, 7.1%) at the end of May and 
early June and declined to1.3% (95% CrI = 0.9%, 2.0%) by 
the end of September.

Sensitivity Analysis
We ran the analysis with different values of the SD 

for time from seroconversion to seroreversion (20, 50, and 
70 days). The estimated IFR and average time from sero-
conversion to seroreversion were robust to this variation for 
Connecticut, but the estimated mean time increased as the SD 
increased for the New York City data (eTable 2; http://links.
lww.com/EDE/B804). Although changes in the SD had small 
effects on the estimated cumulative incidence, the speed of 
decline in the daily seroprevalence after the peak varied by SD 
(eFigure 2; http://links.lww.com/EDE/B804). When the SD 
was 20 days, the daily seroprevalence declined rapidly after 
the peak and became 1.2% (95% CrI = 0.9%, 2.1%) at the end 
of September, while it declined more slowly with the SD 70 
days [7.4% (95% CrI = 6.1%, 8.7%) at the end of September].

Under the assumption of the decreasing IFR (eFigure 3; 
http://links.lww.com/EDE/B804), the average time from sero-
conversion to seroreversion was estimated to be 4.0 months 
(95% CrI = 3.5, 4.8 months) with the SD 50 days in New 
York City, which was consistent with the result using the con-
stant IFR (eTable 2; http://links.lww.com/EDE/B804). The 
estimated IFR in mid-March was 2.9% (95% CrI = 2.6%, 
3.3%), which automatically decreased by 5% per week and 
reached 1.1% (95% CrI = 0.9%, 1.2%) at the end of July 
(eFigure 3; http://links.lww.com/EDE/B804). The average 
IFR from March to September was 1.4% (95% CrI = 1.2%, 
1.6%). The daily seroprevalence and cumulative incidence did 

not appreciably change between the models using the con-
stant IFR vs. decreasing IFR (eTable 2; http://links.lww.com/
EDE/B804). We also used data from Wuhan, China to account 
for variation in the delay between symptom onset and death 
(eFigure 4; http://links.lww.com/EDE/B804), and found that 
results were robust to this change (eTable 2; http://links.lww.
com/EDE/B804).

DISCUSSION
A reliable estimate of the cumulative number of peo-

ple who have been infected with SARS-CoV-2 is critical for 
understanding and, ultimately, controlling the COVID-19  
pandemic. Measuring severity (in the form of the IFR), 
monitoring progress towards a herd immunity threshold, and 
predicting the impact of vaccination all depend on a robust 
estimate of cumulative incidence of infection. Given evidence 
that anti-SARS-CoV-2 antibodies wane below the detec-
tion limit among a substantial portion of the population, we 
developed an analytical framework to estimate cumulative 
incidence of infection from cross-sectional serologic surveys. 
First, our model was able to capture the observed declines in 
seroprevalence after the first wave of COVID-19 in the spring 
of 2020 in New York City and Connecticut. Second, we were 
able to estimate that the cumulative incidence was 26.8% 
(95% CrI = 24.2%, 29.7%) in New York City and 8.8% (95% 
CrI = 7.1%, 11.3%) in Connecticut by the end of September 
2020, which was greater than the peak daily seroprevalence 
of 22.1% (95% CrI = 20.5%, 23.6%) in mid-May in New 
York City and 6.1% (95% CrI = 5.3%, 7.1%) at the end of 
May in Connecticut. Cumulative incidence could be under-
estimated by cross-sectional serosurveys only a few months 
after the first cases of SARS-CoV-2 in a population because 
individuals no longer have a detectable level of antibodies 3–4 
months after seroconversion on average. Taken together, our 
findings suggest that cumulative incidence of SARS-CoV-2 
should not be estimated directly from cross-sectional serology 
data, especially at later stages of an outbreak. Rather, cumula-
tive incidence should be adjusted given impacts of waning of 
detectable antibodies in serologic assays.

FIGURE 3.  Estimated case ascer-
tainment ratio in New York City 
and Connecticut in 2020. The 
case ascertainment ratio was 
calculated in Equation 3. Lines 
represent the 50th percentile of 
the posterior distributions, and 
shaded areas represent 95% 
credible intervals.
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The timeline of seroconversion and seroreversion 
should ideally be determined by individual-level longitudi-
nal studies that follow up each infected individual multiple 
times, as frequently as possible, for a long enough period to 
observe seroreversion. The timeline for seroreversion after 
SARS-CoV-2 infection reported by the longitudinal studies 
published to date varies. Some studies have reported rapid 
waning of IgG, with substantial attrition of the seropositive 
population in as little as 60 days,7,24 while others reported 
that antibodies remained above the detectable threshold for at 
least 82 days after symptom onset25 or 120 days after qPCR 
diagnosis of SARS-CoV-2.26 These differences are likely due 
to limitations or heterogeneity of the studies reported to date, 
including short follow-up times, small sample sizes, and dif-
ferent serology testing methods and analytic sensitivities.27 
Most of the longitudinal studies published to date have fol-
lowed participants for 14–150 days after symptom onset 
or baseline visits, which is not long enough to understand 
the complete timeline of seroreversion for all participants, 
particularly for IgG.7,8,18,19,24,25 The variation in clinical and 
demographic characteristics and severity of infection of par-
ticipants in each study has also likely influenced these dif-
ferent findings.15,16,19,24 Infected individuals with mild or no 
symptoms who may exhibit lower titer and shorter time to 
seroreversion are often not included in these longitudinal 
studies. Therefore, assessing the timeline using population-
level data, such as cross-sectional serology data and mortality 
data, is a viable alternative approach. Using our framework, 
infected individuals were estimated to remain seropositive 
for about 3–4 months on average. The average duration esti-
mated by the New York City data and Connecticut data were 
mostly in agreement, with overlapping CrIs. Differences in 
these average durations could be attributable to differences in 
demographic and clinical characteristics of infected individu-
als and differences in the testing and reporting practices. It is 
also important to note that the timeline of seroconversion and 
seroreversion is dependent on serologic assays and targeted 

immunoglobulins that may have different thresholds to define 
seropositivity.

We estimated that the IFR was 1.1% (95% CrI = 1.0%, 
1.2%) in New York City, which was consistent with estimates 
from the routine care group at Mount Sinai Hospital in New 
York City.28 Yang et al. estimated the time-varying IFR for 
New York City (1.39%; 95% CrI = 1.04, 1.77),20 matching 
with our estimate under the assumption of decreasing IFR 
[1.4% (95% CrI = 1.2%, 1.6%) on average between March 
and September 2020]. Although the sensitivity analyses did 
not change our central conclusions, we note that different 
values of the SD for time from seroconversion to serorever-
sion changed the estimated seroprevalence in the later phase 
of the study period (August and September 2020; Figure  4 
and eFigure 2; http://links.lww.com/EDE/B804). We ran the 
model with SD 20, 50, and 70 days, because the estimated 
SD for time from seroconversion to seroreversion for IgA 
and IgM was approximately 50 and 25 days, respectively.19 
Our SD could be larger than those estimated for small study 
populations, as we used population-level data that likely have 
greater variation in demographic and clinical characteristics. 
Analyzing seroprevalence data in August and after could pro-
vide critical information on how population-level seropreva-
lence declines over time and would enable better estimates of 
the timeline of antibody waning.

The data used in this study have certain limitations. The 
samples collected for the CDC seroprevalence data may not 
be representative of the general population, as Havers et al. 
discussed.6 The data on the date of symptom onset among 
cases who died in Georgia may be incorrectly recorded and 
subject to recall bias upon case identification, as onset dates 
are largely self-reported. Also, because the model adjusts 
for the delay between the date of symptom onset and date of 
death, estimated cumulative incidence towards the end of the 
time series could be underestimated. This is not a concern for 
this particular study because the daily number of COVID-19  
deaths was very small in the last few months; however, 

FIGURE 4.  Estimated daily seroprevalence and cumulative incidence of SARS-CoV-2 infection in New York City and Connecticut 
in 2020. Lines and shaded areas represent the posterior median and 95% credible intervals, respectively. CDC, Centers for Disease 
Control and Prevention; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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researchers need to be careful when using this model dur-
ing the growing phase of the epidemic. Changes in testing 
and reporting practice over time likely affected the number 
of reported deaths, although mortality data are less sensi-
tive to these changes compared to case data. We conducted 
the sensitivity analysis with a different source of data on time 
from onset to death and considered time-varying IFR instead 
of constant IFR, and found that results were robust to these 
changes (eTable 2; http://links.lww.com/EDE/B804).

In addition to limitations on timing, it is critical to note 
that detection of antibodies by serologic assays may not cor-
relate to protection from reinfection or disease, and thus, 
time from seroconversion to seroreversion estimated in our 
study is not necessarily equivalent to the duration of protec-
tive immunity. Several studies have noted strong correlation 
between results from assays based on antibody binding (such 
as ELISA) and neutralization testing,15,19,25 which may allow 
protective immunity to be inferred from simpler serologic 
tests once more comprehensive longitudinal data sets are 
available. Moreover, T cell immunity may make an important 
contribution to protective immunity but is not assessed by 
serologic methods.29 Therefore, additional studies are needed 
to define immunologic determinants of SARS-CoV-2 protec-
tion against reinfection and severe disease.

Our findings suggest that the cumulative incidence 
estimated from serology data needs to be adjusted for seror-
eversion. We intend to apply this framework to other seroprev-
alence studies30 and we suggest others conducting serologic 
surveys consider doing so as well. Our framework could read-
ily be applied to other data to estimate the duration of seror-
eversion, IFR, ascertainment ratios, daily seroprevalence, and 
cumulative incidence.
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