
31

PRISM: Strong Hardware Isolation-based So!-Error
Resilient Multicore Architecture with High Performance
and Availability at Low Hardware Overheads

HAMZA OMAR and OMER KHAN, Universty of Connecticut

Multicores increasingly deploy safety-critical parallel applications that demand resiliency against soft-errors
to satisfy the safety standards. However, protection against these errors is challenging due to complex com-
munication and data access protocols that aggressively share on-chip hardware resources. Research has ex-
plored various temporal and spatial redundancy-based resiliency schemes that provide multicores with high
soft-error coverage. However, redundant execution incurs performance overheads due to interference e!ects
induced by aggressive resource sharing. Moreover, these schemes require intrusive hardware modi"cations
and fall short in providing e#cient system availability guarantees. This article proposes PRISM, a resilient
multicore architecture that incorporates strong hardware isolation to form redundant clusters of cores, en-
suring a non-interference-based redundant execution environment. A soft error in one cluster does not e!ect
the execution of the other cluster, resulting in high system availability. Implementing strong isolation for
shared hardware resources, such as queues, caches, and networks requires logic for partitioning. However,
it is less intrusive as complex hardware modi"cations to protocols, such as hardware cache coherence, are
avoided. The PRISM approach is prototyped on a real TileraTile-Gx72 processor that enables primitives to im-
plement the proposed cluster-level hardware resource isolation. The evaluation shows performance bene"ts
from avoiding destructive hardware interference e!ects with redundant execution, while delivering superior
system availability.

CCS Concepts: • Computer systems organization → Multicore architectures; • Hardware → Redun-
dancy; System-level fault tolerance;

Additional Key Words and Phrases: Soft-errors, hardware interference, strong isolation

ACM Reference format:
Hamza Omar and Omer Khan. 2021. PRISM: Strong Hardware Isolation-based Soft-Error Resilient Multicore
Architecture with High Performance and Availability at Low Hardware Overheads. ACM Trans. Archit. Code
Optim. 18, 3, Article 31 (June 2021), 25 pages.
https://doi.org/10.1145/3450523

1 INTRODUCTION
Semiconductor technology miniaturization has instigated a serious reliability challenge in micro-
processors, making them susceptible to transient faults, also known as soft-errors. These faults

This research was supported by the National Science Foundation under Grant No. CNS-1929261. This research was also
supported in part by the Semiconductor Research Corporation (SRC).
Authors’ address: H. Omar and O. Khan (corresponding author), University of Connecticut, 371 Fair"eld Way, Storrs, CT
06269; emails: {hamza.omar, khan}@uconn.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
1544-3566/2021/06-ART31
https://doi.org/10.1145/3450523

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

https://doi.org/10.1145/3450523
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3450523

31:2 H. Omar and O. Khan

can potentially cause programs to execute in an incorrect fashion by causing machine code bit-
%ips, altering signal transfers or stored values. Multicore processors are thriving and commonly
deployed in numerous real-time environments [14, 32] to execute a variety of safety-critical appli-
cations (e.g., path planning, motion detection) [36], requiring high soft-error resiliency for safety-
criticality [43] yet high performance for their timing constraints. However, multicores introduce
numerous challenges for soft-error protection due to their complex communication and memory
access protocols that aggressively share on-chip resources [11, 24, 39].

Researchers have explored a diverse set of software and hardware-based resiliency schemes
for protection against soft-error perturbations. The e!ectiveness of any given resiliency scheme
predominantly depends on three major factors: (1) availability: the capability of the resiliency
solution to protect against all types of faults (such as deadlocks, crash/hangs, etc.) and provide
user(s) with the "nal output as quickly as possible; (2) hardware/software intrusiveness: the hard-
ware and/or software overheads incurred to enable protection against all soft-error faults; and
(3) e!ciency: the ability of the system to enable soft-error protection without hurting the sched-
uled application’s execution performance. Several software-based resiliency solutions [8, 19, 21,
28] have been developed to improve the coverage of silent data corruptions (SDCs). However,
these solutions fall short in providing high system availability in presence of a crash, deadlock,
and live-lock situations as such events require a system-level reboot. Additionally, these schemes
are notorious for their performance and software-support overheads. Hardware-based resilience
schemes [35, 39, 45] generally enable redundancy mechanisms, such as thread-level redundancy
(TLR) [4, 11, 17, 27] or n-modular redundancy (nMR) [41, 44]. These solutions perform check-
point-based temporal or spatial redundant execution, where the check-pointing mechanism either
incurs high performance overheads or require complex per-core hardware support for assuring
soft-error protection. Regardless, a crash or hang requires these schemes to go through a system-
level recovery, hurting the overall system availability. Examples of such hangs/crashes include
cache coherence protocol lockups due to soft-error strikes. Even though these cache structures
are generally protected via ECC and CRC techniques, a soft-error strike can still cause a message
to get lost, resulting in the intended destination to continuously wait and cause the directory to
lock-up. Moreover, these schemes provoke extensive performance overheads (∼4× average over-
head is reported in Reference [44]), primarily due to sharing of hardware resources (such as on-chip
caches, network, and o!-chip memory) resulting in interference among applications being redun-
dantly executed [11]. To address the performance e#ciency challenge, researchers have explored
selective resiliency mechanisms for an application such that performance and error coverage de-
mands are both ful"lled simultaneously [13, 18, 26, 29, 38, 40]. Selective resiliency trades o! either
program accuracy [26, 38, 40] or vulnerability [18, 29] with resilience overheads. However, these
solutions incur intrusive hardware changes to enable redundant execution and system availabil-
ity. Keeping the aforementioned challenges in mind, the objective is not only to provide multicore
systems with performance e#cient soft-error protection, but devise such a resiliency solution that
also delivers high system availability while incurring non-intrusive hardware modi"cations.

Inspired by previously explored fault-tolerance concepts, such as sphere-of-replication [47] and
fault-containment domains [6, 42], this article proposes PRISM, a multicore resiliency architec-
ture that applies the principle of strong hardware isolation1 to create equally sized spatial clus-
ters of cores in a multicore. The application instances execute in their respective clusters in a
dual-modular redundancy (DMR) fashion without sharing any data or metadata. Each cluster
in PRISM is similar to a containment domain [42], which is provided with its own set of dedi-
cated core-level resources, i.e., core-pipeline, private–shared caches and TLBs, on-chip network

1No process must be allowed to access dedicated hardware resources of concurrently executing process(es) [25].

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:3

routers, and memory controllers. A per-cluster, light-weight software kernel is implemented that
is responsible for creating isolated memory regions (at page granularity) for the application(s)
deployed in the respective cluster. Later, this kernel pins/maps these memory regions to clusters’
dedicated memory controllers (physically connected to separate memory modules). The kernel
then pins/maps each cluster’s data (at cache-line granularity) to the dedicated private and shared
caches of the dedicated set of physical cores. Naturally, for all clusters, the shared cache misses are
forwarded to dedicated on-chip memory controllers. Last, PRISM utilizes deterministic X-Y and
Y-X on-chip network routing protocol to disable all means of communication between clusters,
i.e., no inter-core coherence or memory tra#c is allowed to the cross the cluster boundary. This
allows PRISM to enable high performance e#ciency for DMR, as these strongly isolated clusters
execute independently and do not experience resource sharing (interference) e!ects, leading to
improved system availability and resource utilization. Moreover, this independent execution of
clusters ensures high system availability, because even if one cluster faces network (e.g., coher-
ence protocol) lock-ups due to a soft-error strike, the other independent cluster continues with
its execution. In terms of the design’s intrusiveness, the proposed cluster formulation in PRISM
requires recon"gurable selection logic at the shared cache and memory controller levels to form
isolated clusters. Such hardware capabilities are also being made available in modern commercial
processors [9]; thus, PRISM requires light-weight hardware and software support.

To improve performance, PRISM enables an adaptive strongly isolated clustering capability. At
a given time instance, the kernel dynamically recon"gures the system to enable a single cluster
of all available core-level resources, or multiple spatially distributed redundant clusters of equally
distributed resources. Consequently, this supports an e#cient selective resiliency scheme that tem-
porally utilizes the cluster re-sizing capability to guarantee both resiliency and e#ciency. For se-
lective resiliency, the kernel "rst identi"es crucial and non-crucial iterations of a given iterative
decision algorithm using the approach proposed in Reference [22]. The crucial iterations are exe-
cuted in the resilience mode by spatially executing two instances of the algorithm in two strongly
isolated clusters of cores. Before executing non-crucial iterations in the non-resilience mode, the
kernel intervenes and reallocates the core-level resources by invoking an operation that remaps
application data structures from the two clusters to a single cluster of cores comprising all available
resources. An application executes crucial iterations in resilience mode, while non-crucial iterations
with integrated software bounds-based checkers are executed in the non-resilience mode.

PRISM is prototyped on a real TileraTile-Gx72 multicore processor [46] because of its hardware
level capabilities to enforce the formation of strongly isolated clusters of cores [23–25]. For a set
of task-parallel iterative applications, PRISM’s redundant execution is shown to improve perfor-
mance by 12% over state-of-the-art TLR scheme that utilizes all available multicore parallelism.
Moreover, the selective resilience capability is shown to further improve performance from to
∼43% over the baseline TLR scheme, while ensuring a program output accuracy loss of <1%. Most
importantly, alongside the performance advantages, PRISM also guarantees high system availabil-
ity while incurring low hardware overheads.

2 RELATED WORK
Prior software- and hardware-based resiliency schemes are summarized in Table 1 in terms of per-
formance, hardware overhead, multicore applicability, and soft-error coverage. The soft-error cov-
erage shows four di!erent soft-error e!ects: (1) crash: the system stops functioning correctly and
exits; (2) deadlock: the system resources become unavailable to applications, leading to a system-
level hang or lock-up; (3) livelock: the applications constantly change their resource allocation
states with none of them progressing; and (4) SDC: the state of the application perturbs but re-
mains undetected.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:4 H. Omar and O. Khan

Table 1. Comparisons to Related Works

Resilience Performance Hardware Soft-Error Coverage (System Availability) Selectively Multicore
Schemes Overhead Overhead Crashing Deadlock Livelock SDC Trading-O! Applicability

Inst. Duplication [8] Moderate None Low Low Low High None No
Invariant Check [28] Moderate None Low Low Low High None No

TLR/DMR [4, 27, 41, 44] Moderate Low Moderate Moderate Moderate High None Yes
HaRE [39]/FluidCheck [11] Low Moderate Moderate Moderate Moderate High None Yes

Khudia et.al. [13] Low None Low Low Low High Accuracy No
Omar et.al [26] Low High Moderate Moderate Moderate High Accuracy Yes

dTune [29] Moderate Moderate Moderate Moderate Moderate Moderate Vulnerability Yes
RASTER [18] Moderate Moderate Moderate Moderate Moderate Moderate Vulnerability No

PRISM (Proposed) Low Low High High High High Accuracy Yes

“High” means that the error can be detected and recovered, “Moderate” implies the scheme is e!ective for some faults
but not all, and “Low” shows that it is unlikely the system is protected under such faults. Better if viewed with colors.

The software-based resiliency solutions (cf. Table 1: "rst block), such as instruction duplica-
tion [8, 21], and invariant checking [19, 28] have been developed for single core processors to
improve the coverage of SDCs. However, they fall short in providing high system availability in
presence of a crash, deadlock, and live-lock. Additionally, these schemes are notorious for their
performance and software-support overheads. Prior works [35, 45] have also explored symptom-
based soft-error detection/recovery mechanisms, but they provide low soft-error coverage, since
they rely on coarse-grain detectors, such as fatal-traps, hangs, panics, and so on. Under hardware-
based resilience schemes [35, 39, 45], the solutions enable redundancy mechanisms, such as TLR [4,
11, 17, 27] or nMR [41, 44] to provide soft-error protection. For instance, prior work [44] focuses
on applying DMR on a multicore (GPU) setting, where it redundantly executes two copies of the
same application, and delivers high soft-error coverage by performing cross checks in a dupli-
cated thread. However, as shown in Table 1, such schemes introduce added hardware complexity
for providing holistic soft-error coverage and fall short in assuring high availability in case of sys-
tem crash/hang. Additionally, these schemes incur extensive performance overheads (∼4× aver-
age overhead is reported in Reference [44]) due to (1) sharing of hardware resources that induces
interference among redundant applications and (2) reduced hardware’s thread-level parallelism
opportunities for applications to exploit. Another work, HaRE [39] (cf. Table 1: second block) pro-
poses a resilience scheme for multicores that performs check-point-based temporal (time-sliced)
redundant execution, and relies on a per-core re-execution mechanism to support recovery from
detected errors. However, every crash or deadlock requires a system-level reboot to start the re-
covery mechanism, by means of which the system availability su!ers. Moreover, HaRE requires
hardware modi"cations to the cache coherence protocol for protection against soft-error lock-
ups, as each core needs protected access to data and synchronization variables. Similarly to HaRE,
another recent work, FluidCheck [11] proposes a resiliency scheme that relies on temporal re-
dundant execution. However, FluidCheck is also expected to su!er from cache coherence protocol
hangs/lock-ups due to a soft-error strike, essentially su!ering from low system availability.

To improve the performance e#ciency of resilience schemes, researchers have also explored
selective resiliency mechanisms for an application, such that performance and error coverage de-
mands are both ful"lled [18, 26, 29, 38, 40]. These schemes are also listed in Table 1 (the third block).
For instance, certain works [18, 29, 30] obtain e#ciency by providing high resiliency for high
vulnerability code; however, they tradeo! performance with soft-error coverage (vulnerability).
Similarly, SWIFT-R [31] uses the concept of selective hardening to design a mitigation technique
that trades o! reliability and resilience overheads for %exibility and reduced overheads. Contrarily,
ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:5

Fig. 1. The temporal dual-modular redundancy scheme is shown on a multicore, where each instance of the
application shares and utilizes all available hardware resources of the system.

some solutions [13, 26, 38, 40] assure improved performance by employing selective resiliency that
trades o! program accuracy with resilience overheads. For instance, a recently proposed work [26]
exploits performance–accuracy, where it bifurcates an application into crucial/non-crucial regions
and enables redundancy only for protecting crucial regions, whereas non-crucial regions are par-
tially protected via software resiliency mechanisms. Even though this work assures impeccable
soft-error coverage (cf. Table 1), its e!ectiveness is debatable as it requires intrusive hardware
changes to the core-pipeline and private caches for re-execution, and also demands a resilient
cache coherence protocol [3] for functional correctness. Additionally, due to the interference ef-
fects and moderate soft-error coverage, these works provide low system availability.

The proposed PRISM architecture is inspired by fault-tolerance concepts of sphere-of-
replication [47] and fault-containment domains [6, 42]. However, it applies the principle of strong
hardware isolation [25] to create interference-free equally sized spatial clusters of cores to exe-
cute an application using dual-modular redundancy. Forming domains using the strong isolation
concept not only enables high-end performance, but also enables high system availability, i.e.,
protection against system hangs and crashes.

PRISM also supports a selective resiliency capability that is enabled by adaptively recon"guring
the core-level resources in the proposed strongly isolated clusters. The selective resiliency scheme
is shown to provide both high resiliency and e#ciency for iterative decision algorithms that o!er
opportunities to tradeo! program output accuracy. To the best of our knowledge, no prior work
has adopted strong hardware isolation primitives to formulate a highly available and performance
e#cient resilient multicore architecture that incurs low hardware overheads.

3 BACKGROUND AND MOTIVATION FOR PRISM ARCHITECTURE
This article primarily focuses on soft-error resiliency in multicore architectures that comprise of
numerous cores, per-core private–shared cache hierarchy, per-core interconnection routers, and
multiple memory controllers connected to their respective memory channel modules (DIMMs).
The dual-modular redundancy (TLR/DMR) approach is selected due to it its multicore applicabil-
ity and low hardware overhead requirements. In DMR, two identical instances of an application
are executed concurrently on the multicore system. Upon completion, the output data structures
for both instances are passed over to each other for veri"cation to ensure correct execution. This
redundant execution is conducted either temporally or spatially with both incurring di!erent in-
tricacies in their designs.

3.1 Temporal Dual-Modular Redundancy for Resiliency
In temporal dual-modular redundancy schemes (such as TLR [11, 20, 27, 33]), execution of the two
application instances is time-sliced on the multicore, where these instances time-share hardware
resources for performance. Figure 1 shows a general timeline schema for performing dual-modular
redundancy on two identical instances of the application (APP) in a time-sliced (temporal) fashion.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:6 H. Omar and O. Khan

Fig. 2. The spatial dual-modular redundancy scheme is shown on a multicore, where each instance of the
application executes spatially on the system, but large stateful memory resources still remained shared.

First, the system performs initialization steps (such as thread spawning and memory allocations),
and then starts the execution of application instances APP1 and APP2. During the execution of
APP1, either epoch-based [4] or idempotency-based [16] checkpoints (CP1, . . . ,CPn) are gener-
ated to capture the state of the application for proper roll-back in case of a soft-error upset. Upon
completion of APP1’s time window, it context switches out of the system and allows the other
application instance APP2 to start with its execution. During execution, the APP2 instance cap-
tures the checkpoint (CP1) at the same epoch or idempotency point, and compares it with APP1’s
checkpointCP1 state. If the checkpoint values match, then the application instances continue their
execution. However, if they mismatch, then the APP2 context switches and APP1 re-executes from
the point of failure. These comparison steps continue till the last checkpoint value (CPn), andAPP2
terminates when all checkpoints pass their comparison check.

Temporal isolation for dual-modular redundancy provides the processor with high soft-error re-
siliency against SDC, as shown in Table 1. However, such schemes do not ensure strong protection
against crashes and deadlocks, since they allow all cores to access the directory and o!-chip mem-
ory without any protection, potentially causing cache coherence protocol lock-ups in case of a
soft-error strike. Temporal redundancy schemes also exhibit low system availability, as each crash
or hang requires a system-level reboot before letting the system continue from the saved check-
point state. Another aspect that requires attention is that all hardware resources (core pipeline,
on-chip networks, cache hierarchy, and memory controllers) are time-shared across the tempo-
rally executing applications instances (cf. Figure 1). This indeed ampli"es the utilization of each
of these shared hardware resources. However, it causes the application instances to compete for
utilizing them. This competition in turn induces destructive interference across the application
instances, which further exacerbates performance [24]. For example, when instances compete for
same shared cache resources, it increases the stress on available cache capacity, resulting in re-
duced data locality.

3.2 Spatial Dual-Modular Redundancy for Resiliency
The spatial dual-modular redundancy schemes rely on spatial execution of two copies/instances
of the same application. The timeline of spatial dual-modular redundancy on a multicore is shown
in Figure 2, where two identical instances of the application (APP) execute spatially. Similarly to
the temporal scheme, the system "rst goes through necessary initialization steps. However, the
thread spawning is done such that each instance’s threads are spawned on half of the cores. Each
application instance (APP1) then executes on its dedicated cores, where it shares the large stateful
memory resources (i.e., shared caches/TLBs, and o!-chip memory) with the other application
instance (APP2). During the concurrent execution, each application instance captures its own sys-
tem state (i.e., collecting check-points or computing hash of the output), which are later used for
veri"cation and roll-back purposes as done for the temporal redundancy scheme (cf. Section 3.1).

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:7

Similarly to temporal redundancy schemes, spatial dual-modular redundancy also provides sys-
tems with high soft-error protection against SDCs (cf. Table 1). However, this scheme also does
not provide protection against deadlocks, essentially yielding low system availability due the nec-
essary system-level reboot in case of soft-error induced crash or hang. In addition to these short-
comings, spatial redundant execution also experiences signi"cant performance degradation, e.g.,
a prior work [44] has shown average dual-modular redundancy overheads of ∼4×. Unlike tem-
poral redundancy schemes, this degradation is not only attributed to destructive interference due
to aggressive hardware resource sharing (cf. Section 3.1) but also due to the loss of thread-level
parallelism, which further aggravates performance [24].

3.3 Motivation for PRISM
The aforementioned sections list out the potential drawbacks for the temporal and spatial DMR
schemes. Various optimizations have been adopted to make these schemes e#cient in terms of
performance, such as dynamically using resources of the SMT cores for checking the results of
other threads [11]. However, at the fundamental level, these schemes still su!er from performance
loss due to destructive interference on shared hardware resources. Moreover, they incur intrusive
hardware modi"cations for soft-error resiliency, yet enable low system availability against crashes
and hangs.

Given these challenges, the goal of PRISM architecture is to provide safety-critical systems with
exquisite soft-error protection (high system availability), while ensuring minimal hardware mod-
i"cations for simplicity, and e#cient performance for satisfying the real-time constraints. The
performance of aforementioned schemes su!er due to redundant application instances compet-
ing for the shared hardware resources, resulting in destructive interference e!ects. The proposed
PRISM architecture is inspired by fault-tolerance concepts of sphere-of-replication [47] and fault-
containment domains [6, 42], and applies the principle of strong hardware isolation [25] to cre-
ate interference-free equally sized spatial clusters of cores to execute an application using dual-
modular redundancy. In PRISM, each cluster of cores is provided with its own set of hardware
resources, such that each cluster’s code and data remains mapped to it, and never interferes with
the other cluster’s resources. Strong isolation ensures that the network (coherence) messages never
overlap the cluster boundaries, essentially requiring no modi"cation to the cache coherence pro-
tocol and hardware. Consequently, PRISM o!ers impeccable system availability, as one of the two
strongly isolated clusters always remains active even if the other cluster hangs as a consequence
of a soft-error strike. To provide further improvements, PRISM also incorporates a selective re-
siliency mechanism, whilst satisfying error coverage and application output accuracy demands
simultaneously.

4 THE PROPOSED PRISM ARCHITECTURE
This section provides a detailed overview of the proposed PRISM architecture. Section 4.1 high-
lights the essential steps for ensuring strong hardware isolation for interference-free execution of
redundant application instances in a multicore setting, whereas Section 4.2 provides details on the
proposed selective multicore resiliency in PRISM.

4.1 Ensuring Non-Interference for Dual-Modular Redundancy
Figure 3 shows the PRISM architecture for performing interference-free dual-modular redundancy,
where the two identical application instances execute in their respective clusters, i.e., instance
APP1 is executed on Cluster1, while instance APP2 executes on Cluster2. This section outlines
the core-level formation of two strongly isolated clusters in PRISM. Note that traditional spatial
clustering approaches generally su!er from load-imbalance. However, at the fundamental level,

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:8 H. Omar and O. Khan

Fig. 3. The multicore PRISM architecture with strong hardware isolation primitives for non-interference.

dual-modular redundancy requires the two clusters to be exactly equal in terms of their size and
resources, as the two application instances are completely identical. Therefore, PRISM does not
su!er from load-imbalance challenge. Each cluster in PRISM implements a light-weight software
kernel (or even an operating system) that enforces the strong isolation capabilities across the clus-
ter. This kernel executes temporally alongside the user application(s) within its own cluster. The
strong isolation capabilities enforced by the kernel are discussed next.

4.1.1 Isolation of Core-Pipeline and Private Caches. The PRISM architecture forms two clusters
of cores that spatially execute the redundant instances of the same application, i.e., APP1 and
APP2. Each cluster is assigned a set of cores, and the respective process threads are pinned to its
assigned cluster. For strong isolation, cores are allocated such that clusters do not overlay with
each other, i.e., {CPUCluster1 ∩CPUCluster2 } ∈ ∅. Naturally, providing application instances with
dedicated sets of cores also results in spatially partitioning the private cache and TLB resources
for both application instances (cf. Figure 3: !).

4.1.2 Isolation of Shared Cache Resources. Multicores deploy last-level cache that is logically
shared, but physically distributed as cache slices across all cores. By default, an entire memory page
is interleaved across all shared caches at cache line granularity, essentially forming interference
channel(s). To avoid this situation, it is important to keep each application’s data within its own
set of shared cache slices (clustered together). Therefore, PRISM adopts a local homing policy,
where an entire memory page (or data structure) is mapped to a single shared cache slice. Data
replication in last-level cache is disabled for the case of inter-cluster data sharing. This ensures
that each access to a shared cache slice in a given cluster is made by the application executing
in that cluster. Essentially, this limits clusters from accessing each others shared cache slices (cf.
Figure 3: "). It is noteworthy that spatial partitioning schemes for the last-level cache are now
being adopted in various commercial processors [9].

4.1.3 On-Chip Network Isolation. For each cluster, the network tra#c needs to be routed in such
a way that all network packets remain within the boundary of the cluster. Thus, a deterministic
network routing protocol supporting bidirectional routing [37] (allows both X-Y and Y-X routing)
is employed to enable isolation of network tra#c. The X-Y routing with two-dimensional (2D)
mesh network topology recognizes each router by its coordinates (X, Y), and transmits packets
"rst in the X direction followed by the Y direction, whereas in Y-X routing, the packets traverse
the network in the Y direction "rst. In a square %oor plan, rows of cores are assigned to each
cluster with respective memory controller(s) on the outside edges. However, if cores within a row

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:9

are allocated among two clusters, then the Y-X routing gets triggered to ensure that packets do
not drift outside the cluster boundary (cf. Figure 3: #).

4.1.4 Isolation of O!-Chip Memory. Multicore processors deploy multiple memory controllers,
each connected to their physically isolated memory channels (DIMMs). Generally, all memory
pages of applications are interleaved (hashed) across all memory controllers to maximize for mem-
ory bandwidth. However, shared bu!ers/queues in the memory controllers become a reason for
causing destructive interference. To ensure chip level isolation, all means of data accesses must
be isolated among clusters. Therefore, PRISM statically partitions the on-chip memory controllers
across the two clusters, as shown in Figure 3: $. The memory pages of any given application
are mapped in such a way that they are only accessible from their own dedicated on-chip mem-
ory controller(s). This allows each cluster to access an independent physical channel, a mem-
ory bank, and a memory row. Naturally, the last-level cache misses of any given application are
routed to dedicated memory controller(s) that map their respective memory pages. For example,
theCluster1’s accesses to o!-chip DDR memory components are realized by forwarding its tra#c
to MC0 and MC1 memory controllers (cf. Figure 3). Note, this work primarily focuses on DMR;
therefore, PRISM forms only two clusters. To implement n-modular redundancy with n strongly
isolated clusters, the number of memory controllers (and their respective physical memory chan-
nels) present in the system determine the limit for n to ensure ensure complete physical isolation
across the data for n clusters.

4.1.5 Output Verification. For dual-modular redundancy in PRISM, the redundant application
instances APP1 and APP2 execute on their respective clusters, utilizing their dedicated isolated
hardware resources. Upon completion, each cluster computes a 64-bit XOR hash of the applica-
tion output(s) to capture its own cluster/system state. For ensuring correct execution, these com-
puted hash values need to be compared and veri"ed (cf. Sections 3.1 and 3.2). Indeed, this requires
both clusters to share their hash values with each other. The shared memory protocol is generally
adopted for this veri"cation step, where a shared memory inter-process communication region (ac-
cessible to both application instances) is created to exchange respective hash values. Similarly, this
veri"cation can also be done using in-hardware core-to-core messages, which have been explored
by numerous multicore processor architectures [2, 34, 46]. We have empirically observed that both
protocols incur similar veri"cation overheads. However, PRISM adopts the latter approach as it
enables a redundant communication method for verifying the output hashes, as compared to each
cluster’s data accesses. In PRISM, each cluster compares its locally computed hash value with the
received hash value of the other cluster. If hash values from both clusters do not match, then a
roll-back mechanism re-executes the redundant application instances. Otherwise, the application
is allowed to proceed with executing new inputs, or terminate.

4.2 Adaptive Selective Resiliency for Improved Performance
The PRISM architecture mitigates performance degradation from interference of shared hardware
resources due to redundant execution. However, resilience with redundancy leads to loss of par-
allelism, and hence performance. To improve e#ciency, prior works [26, 38, 40] have explored
avenues to selectively apply resiliency schemes on various safety-critical applications by parti-
tioning them into crucial and non-crucial regions. These selective resiliency schemes have been
shown to improve the performance and e#ciency of systems by trading o! resiliency overheads
with program output accuracy. The primary reason for achieving the bene"ts is because resiliency
and performance demands for safety-critical systems vary based on the surrounding conditions
and constraints. For example, an unmanned aerial vehicle would require high resiliency guaran-
tees while maneuvering a mission through harsh weather. However, during normal conditions,

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:10 H. Omar and O. Khan

providing weak resilience against soft-errors is acceptable, as long the system output converges
to a satisfactory and acceptable result.

In this context, PRISM also enables an adaptive selective resilience capability that provides an ef-
"cient soft-error resiliency solution. The system enables dynamic recon"guration between a single
cluster and two spatially redundant clusters of equally distributed core-level resources. However,
this capability is devised while keeping a non-intrusive resiliency solution in mind. In this selective
resiliency solution, the crucial and non-crucial regions of any given iterative decision algorithm
are "rst identi"ed. The crucial regions are executed in the resilience mode by spatially executing
two instances of the algorithm in two strongly isolated clusters of cores (cf. Section 4.1). Before
executing non-crucial regions in the non-resilience mode, the kernel intervenes and reallocates the
hardware resources from the two clusters to a single cluster of cores. For ensuring functional cor-
rectness of the underlying application in the non-resilience mode, the kernel implements a smart
bound checking mechanism to verify that the computed results are within certain bounds.

4.2.1 Selective Resilience for Iterative Parallel Applications. A variety of parallel iterative appli-
cations are deployed in real-time systems, such as single source shortest path (SSSP) for path
planning [5]. These parallel applications iterate over a shared output data structure for (monotonic)
convergence, based on the ordering constraints [1]. Numerous applications have been shown to
bene"t from selective resilience by partitioning them into crucial and non-crucial regions [26, 38].
Moreover, a recent work [22] has shown that the initial iterations for output convergence of such
iterative parallel application are more sensitive in de"ning the output accuracy of the application.
Therefore, the idea of selective resilience is employed here by executing certain initial iterations
of the parallel application in resilience mode (that incorporates dual-modular redundancy aspects
described in Section 4.1), whereas the remaining iterations execute in the clear without strong re-
siliency guarantees (referred to as non-resilience mode in this article). The process of application
bifurcation is driven based on the conditions surrounding the system that de"ne the fault injection
rate, the application’s output accuracy, and naturally, the crucial iterations. Upon determining the
bifurcated regions, the bound checkers are added to the application to ensure functional and out-
put correctness. This bound checking process requires understanding of the application’s iterative
behavior and later, the bound checkers are added based on this understanding. In this article, these
modi"cations are made at the higher-level application loops using a similar strategy adopted in
Reference [22]. Indeed, modi"cations at "ner-grain levels of the loops can potentially open more
performance optimization opportunities, but they are expected to become more intrusive, since
they will require pro"ling support [26].

As shown in Figure 4, an e#cient selective resiliency mechanism is proposed and adopted in
PRISM for iterative algorithms that utilize the cluster recon"guration capability to guarantee both
resiliency and e#ciency. The scheme initializes two clusters, Cluster1 and Cluster2, with half of
the core-level resources allocated to each cluster. Initially, for the resilience mode, the redundant
application instances (APP1 and APP2) execute on their respective clusters, utilizing their respec-
tive dedicated (half) system resources for a certain number of application iterations (say, X%).
Executing these X% of iterations results in computing an intermediate output (∂-Output). To en-
sure correct resilient execution, ∂-Output veri"cation is done for both clusters by comparing the
64-bit hash of the outputs (cf. Section 4.1). Upon completion of resilience mode, PRISM activates
its resource recon"guration capability and switches the system state to the non-resilience mode
for executing remaining N-X% iterations (cf. Figure 4: ! and "). In the non-resilience mode, the
Cluster1 is provided with all available core-level resources to exploit thread-level parallelism for
performance (cf. Figure 4: "). This is done by re-spawning APP1’s threads on all system cores and
remapping the memory pages of that process from initially allocated home slices to all available

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:11

Fig. 4. Design flow of PRISM’s selective resilience scheme is shown in !. APP1 and APP2 execute X% cru-
cial iterations in the resilience mode. " shows APP1 cluster reconfiguration for e!icient execution of the
remaining (N-X)% non-crucial iterations in the non-resilience mode.

shared cache slices. However, Cluster1 still executes APP1 with half of the memory controller re-
sources (cf. Figure 4: "). The allocations for the on-chip memory controllers are not modi"ed,
since they incur substantial overheads due to re-initialization of all structures.

To achieve output correctness, a bound checking mechanism is added in the non-resilience mode
to verify that the computed results are within certain bounds (cf. Figure 4: !). The primary idea of
adopting bound checkers is that if the speci"ed bounds of the program output are not satis"ed, then
this indicates a soft-error perturbation (potentially a silent data corruption) and the computed "nal
result in no longer acceptable. Therefore, PRISM uses the ∂-Output (computed at the end of the
resilience mode) as a back up to commit it to the "nal output. The selective resiliency mechanism
is primarily evaluated using iterative parallel applications; however, this scheme is not limited
to only such applications. Evaluating the selective resiliency mode of PRISM for more application
domains is left as part of future work. For applying selective resiliency on iterative applications, the
process of adding bound checking varies from one application to the other, and the bound checkers
are designed based on the unique properties of these iterative parallel applications. The key insight
here is that these parallel applications iterate over a common output data structure and generally
converge to the "nal output in a monotonically increasing or decreasing fashion [1]. The selective
resiliency of PRISM takes advantage of this monotonic convergence property to decide the output
bounds, independent of whether the "nal output is known or unknown beforehand. The target
iterative applications considered in this work and their respective bound checking mechanisms
are discussed next.

4.2.2 Target Iterative Parallel Applications. This article adopts seven real-time graph analytic
applications [1], and one mission-planning algorithm from advanced driver-assistance system [24].
The graph applications are provided with California road network graph as an input [7], whereas
the mission-planning algorithm is provided with radar image stream. Each application is discussed
in the context of its adoption for PRISM.
(1) The SSSP algorithm "nds shortest paths from a source to all vertices in a graph. A distance ar-
ray in shared memory, D[] maintains the distances for each vertex from the source vertex. These
distance values are initialized at a large number, and these values monotonically reduce as the

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:12 H. Omar and O. Khan

algorithm progresses. Upon completion of the algorithm, it uses the "nal converged distance val-
ues to return the path-cost as its "nal output. If a soft-error strike perturbs the distance values to
become larger or smaller during the execution of the algorithm, then these perturbation e!ects in-
deed re%ect in the "nal computed path-cost. Certainly, we have strong con"dence on the ∂-Output
(i.e., list of D[] values and path-cost), as it is computed via redundancy checks in the resilience
mode. Therefore, ∂-Output is used as a pivot to de"ne the upper and lower bounds for the cor-
rectness of the "nal path-cost. As each vertex relaxation step in SSSP must always monotonically
decrease the D[] values with increasing iteration counts, the "nal computed D[] values (and the
path-cost) must never exceed ∂-Output. Hence, the upper bound is set to the ∂-Output values for
the path cost. Contrarily, for the lower bound, the "nal D[] values (path-cost) are again compared
against the ∂-Output, such that these computed values decrease no more than a predetermined
percentage (say, 10%) of the ∂-Output. If any of these de"ned bound checks fail, then this indicates
a soft-error e!ect resulting in an unacceptable output and PRISM uses ∂-Output as a back up to
commit it to the "nal output.
(2) A* Shortest Paths (A-STAR) relies on a heuristic to prune the work done by the traditional
SSSP algorithm by not visiting all vertices of the input graph. Similarly to SSSP, the heuristic
distances from the source vertex are also tracked using a monotonically decreasing distance array,
D[] to return a "nal path-cost as an output. Given their extensive similarities, A-STAR algorithm
employs exactly similar bound checking mechanisms as devised for SSSP.
(3) Minimum Spanning Tree (MST) uses a priority queue and checks for keys based on the
input graph to update critical sections. These checks on keys decrease monotonically, which are
tracked using the shared array, Key[]. The MST algorithm returns the minimum cost of the tree
as an output, similar to the path-cost provided by SSSP and A-STAR. Given the computational
and behavioral similarities, the bound checker employed for MST follows identical bounds (using
minimum cost) as adopted for SSSP and A-STAR.
(4) Breadth-First Search (BFS) starts from a source vertex, and searches vertices in a graph using
edge-"rst method. As edges are searched, the distance of the search increases from the source
vertex. This distance increases monotonically, and tracked using a shared distance array, D[]. As
it "nal output, this algorithm uses these D[] values to return the number of successfully searched
vertices in the provided graph as it output. Similarly to SSSP, ∂-Output is used as a reference point
for de"ning the upper and lower bounds to the satisfy the number of correctly searched vertices of
the input graph. As D[] values of BFS monotonically increase with increasing iteration count, the
"nal computed D[] values (used to extract the number of searched vertices) must never be lower
than the ∂-Output. Therefore, the lower bound is set to the ∂-Output values for returning the "nal
searched graph vertices. For the upper bound, the "nal D[] values are compared against ∂-Output
values, such that these computed values must never escalate more than a prede"ned percentage
of ∂-Output values.
(5) Connected Components (CC) labels edges to a component in an input graph. These vertex’s
components in the input graph increase monotonically, and are tracked using the shared array,
CC[]. Like BFS, CC returns a per-vertex connected component count as its output, and thus em-
ploys exactly a similar bound checker as adopted for BFS.
(6) Graph Coloring (COLOR) implements vertex coloring based on their saturation degree. These
vertex colors increase monotonically, and are tracked using the shared array, Color []. This algo-
rithm returns the number of unique identi"ers required to color each vertex in the input graph as
it output, which is identical to the BFS and CC algorithms. Thus, COLOR employs exactly similar
bound checking primitives as employed for BFS and CC.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:13

(7) Page-Ranking (PR) algorithm compute ranking of pages in a given graph using a probabilis-
tic model that speci"es the likelihood of a person visiting a certain page (vertex). The algorithm
provides per-vertex probability value, PR[] in the range of 0 and 1, as its "nal output. Since the
lower and upper bounds for the output (i.e., 0 and 1, respectively) are inherently de"ned in PR,
these bounds are directly employed within the bound checker.
(8) Arti!cial Bee Colony (ABC) algorithm iterates over the autonomous vehicle’s radar image
stream to compute the velocity, acceleration, and distance values using matrix computations. It
returns an output vector,V [], which satis"es prede"ned upper and lower bound values for each of
the aforesaid vehicle’s characteristics. Similarly to PR, ABC algorithm also comprises of prede"ned
lower and upper bounds, which directly form the bound checker.

4.2.3 Accuracy-Centric Fault-Injection Analysis. Clearly, the selective resilience capability in
PRISM enables dynamic cluster re-sizing to exploit performance bene"ts; however, it leads to lower
output accuracy. To measure the impact of exploiting this tradeo! on the "nal output accuracy of
the iterative parallel applications, this work also performs a fault injection analysis to test the ef-
fectiveness of PRISM’s bound checking mechanism. Upon identifying the crucial and non-crucial
iterations to execute in respective modes of PRISM, the entire application is subjected to program-
level fault injection. Priors works [10, 15] have proposed various methods to inject faults at both
hardware and software-level. The di!erence between hardware and software methods mainly lies
in the fault injection points they have access to, the cost they adhere, and the intensity level of
that perturbation. This article primarily focuses on program-level (or software-level) fault injection
modeling, and follows the similar accuracy analysis approach as proposed in Reference [48]. The
soft-errors can impact an application’s data being processed with a noise phenomenon anytime,
anywhere in the application. Due to the unpredictable and uncontrollable nature of soft-errors,
random errors are introduced during the execution of non-crucial iterations via software-level
fault injection. In this work, both realistic (single error) and aggressive error rates are applied
to build up the con"dence. However, this article focuses more on single soft-error perturbations
happening during the program’s execution, as it re%ects a more realistic scenario [12].

These errors are exposed to the instruction’s op-codes and operands. To model a silent-data cor-
ruption, the operand data is perturbed in such a way that variable(s) of a random program instruc-
tion (belonging to the non-crucial program iterations) are exposed to random values (determined
based on the data type). For instance, if variable(s) belonging to the randomly selected program
instruction of any given non-crucial iteration has an integer data type, then any random value
from the range of −2147483646 to +2147483647 (minimum and maximum values for an integer
data type) is committed to that variable(s). The impact of injecting such errors is re%ected in the
application’s "nal output in the sense that it becomes larger and/or smaller, essentially impacting
the application’s output accuracy. Contrarily, to model a crash/hang, the instruction opcode is per-
turbed with random values in a similar fashion; however, this injection results in the application
to experience faults and/or exceptions.

The application speci"c output structures and their respective employed bound checkers are
listed in Section 4.2.2. The accuracy metric is de"ned as “the absolute percentage di!erence be-
tween the golden reference output (program’s output with error-free execution) and the output
observed when the error was injected.” Following this de"nition, the accuracy for SSSP, A-STAR,
and MST is the percentage di!erence between the minimum path/tree costs. The accuracy for
COLOR is the percentage di!erence in the number of unique identi"ers (CC[]) required to color
an input graph, whereas the percentage di!erence in the vehicle’s output vector (V []) determines
the accuracy for ABC. The remaining algorithms, i.e., BFS, CC, PR, return per-vertex-based val-
ues in their output arrays D[], CC[], and PR[], respectively. Thus, accuracy measurements for

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:14 H. Omar and O. Khan

such algorithms is done by computing the percentage di!erence in values at a per-vertex basis.
However, measuring accuracy using a single metric is insu#cient, as not all vertices’ values for
such algorithms are pivotal for the real-time system. For example, "nding the ranks of all web-
pages (vertices) is not always important when PR is employed in a real-world setting. Thus, the
e!ective accuracy now becomes a function of the number of web-pages of interest. In such a case,
remaining web-pages/vertices are irrelevant and must not be considered for measuring the accu-
racy. Therefore, for such algorithms, di!erent accuracy metrics (such as monitoring top 10 or 20
vertices and computing their percentage di!erence for accuracy measurement) are considered to
model di!erent queries issued by an analyst/programmer/consumer using the system.

Note, the crucial iteration count varies from one application (and its respective deployment en-
vironment) to the other. For example, a system deployed in a harsh environment would require
a higher number of crucial iteration count (more resilient execution) for better accuracy and sys-
tem availability, alongside reasonable performance. In contrast, if that same system is deployed in
a normal environment, then the crucial iteration count could be dropped (by ample amount) for
capturing acceptable accuracy, and high performance and availability. Thus, determining the num-
ber of crucial iterations for selective resilience highly depends on the surrounding environmental
conditions and must factor into account the system’s constraints and accuracy demands.

4.3 Key Features of PRISM
4.3.1 Performance E!iciency. Researchers have shown that redundancy frameworks for re-

siliency generally su!er from degraded performance due to sharing of hardware resources, and/or
loss of core-level parallelism [24]. To limit the adverse e!ects of resource sharing on performance
and e#ciency of the system, PRISM creates equally sized spatial clusters of cores for dual-modular
redundancy. Moreover, to cater for performance degradation as a consequence of losing paral-
lelism, PRISM enables an adaptive selective resiliency capability by means of which the core-level
resources of clusters are allowed to be recon"gured for exploiting resiliency–accuracy tradeo!
space. To the best of our knowledge, no prior work has been done that incorporates hardware
isolation principle in the context of assuring performance e#cient dual-modular redundancy (re-
siliency) in multicore systems.

4.3.2 Improved System Availability. Similarly to the resiliency schemes listed in Table 1, PRISM
enables high soft-error protection via isolation-driven dual-modular redundancy. It provides
system-level crash/hang protection and resiliency against coherence protocol lock-ups. This is pri-
marily attributed to the adoption of strong hardware isolation primitive for every shared hardware
resource in PRISM, which ensures that the coherence messages never overlap across the two clus-
ters. Hence, even if any given cluster hangs, the other cluster continues with its execution without
being e!ected. This property allows PRISM to provide high system availability. These resiliency
guarantees remain stringent in case of adopting the selective resilience capability of PRISM. This is
because, even though the non-resilience mode does not implement redundancy, it employs a bound
checking mechanism that ensures output correctness. If a soft-error event causes an upset in the
non-resilience mode, then the system availability never gets impacted as the ∂-Output (computed
by the resilience mode) is always available for the system to utilize.

4.3.3 Non-Intrusive Hardware Design. Generally, TLR schemes require additional hardware
support to provide soft-error protection guarantees. Among others, a general problem in TLR-
based schemes (e.g., References [11, 39]) is that they allow all cores to access the directory and
o!-chip memory resources without any protective measures, essentially leading to cache coher-
ence protocol hangs. Coherence protocol implementation is notoriously complicated, and even if
these cache structures are protected via ECC and CRC techniques, a soft-error strike can still cause

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:15

a message to get lost, resulting in the intended destination to continuously wait and causing the
directory to lock-up. Additionally, the added hardware complexity in temporal TLR schemes in-
creases when selective resiliency concepts are employed in the architecture. For example, a prior
work [26] extends [39] to improve the performance by trading o! program output accuracy with
resilience overheads. However, these performance enhancements come at the cost of intrusive
hardware changes to the core-pipeline and private caches, on top of the cache coherence proto-
col modi"cations. The proposed PRISM architecture not only makes resiliency more e#cient in
terms of performance with hardware isolation and selective resilience capabilities, it also brings
out the potency in terms of its e!ectiveness as it does not require intrusive modi"cations to cache
coherency, and clusters’ core-level resources (i.e., core-pipeline, private–shared caches, and TLBs).

5 METHODOLOGY
The PRISM architecture is implemented on a real multicore TileraTile-Gx72 processor [46]. Tile-
Gx72 is a tiled multicore architecture comprising of 72 tiles with each tile featuring a 64-bit multi-
issue in-order core, 32 KB private L1-I/D caches, and a 256 KB shared L2 cache slice. PRISM is
prototyped using 64 of 72 available cores. The o!-chip DRAM memory is accessible using four on-
chip 72-bit ECC protected DDR3 controllers that are attached to independent physical memory
channels. Moreover, it consists of "ve independent 2D mesh networks with X-Y routing, one for
on-chip cache coherence tra#c, one for memory controller tra#c, and others for core-to-core
and I/O tra#c. The Tilera Multicore Components API library is used for ensuring isolation, that
includes facilities to form clusters of cores, manage network tra#c across clusters, regulate on-chip
and o!-chip data access controls, and manage shared cache data placement. The target iterative
decision applications used for evaluation are listed in Section 4.2.2.

5.1 Architectural Modeling
5.1.1 Temporal Dual-Modular Redundancy. The temporal dual-modular redundancy

(T-DMR) setup (also referred to as, thread-level redundancy) is considered as a baseline in this
work, which is modeled on TileraTile-Gx72 using 64 of 72 available cores. These cores, their respec-
tive core-level resources (i.e., private–shared caches, on-chip network routers), and on-chip mem-
ory controllers are all time-shared across the redundant instances of the application (cf. Figure 1 in
Section 3.1). The data correctness checker for veri"cation purposes is implemented using the shared
memory model, where a 64-bit hash for both instances’ outputs are compared with each other.

5.1.2 Spatial Dual-Modular Redundancy. The spatial dual-modular redundancy (S-DMR)
setup is also modeled, where the redundant application instances spatially execute on the sys-
tem. In this setup, each application instance’s threads are pinned to dedicated cores using
tmc_cpus_set_my_cpu(), such that each application instance is provided with 32 cores, essen-
tially forming clusters. However, the redundant application instances share the large stateful re-
sources, i.e., L2 slices and memory controllers (cf. Figure 2). The S-DMR implements a similar data
correctness checker as discussed for T-DMR.

5.1.3 The PRISM Architecture. The implementation details of the proposed PRISM architec-
ture on TileraTile-Gx72 are similar to S-DMR setup (cf. Section 5.1.2). However, strong hardware
isolation for all hardware resources is ensured across the redundantly executing application clus-
ters. To isolate shared hardware resources, the default hash-for-homing scheme is overridden to
use the local homing scheme for pinning data structures on speci"ed L2 cache slices. This pin-
ning of data on dedicated L2s is done using tmc_alloc_set_home(&alloc, core_id) API call.
To ensure complete shared cache isolation, L2-replication is also disabled. For o!-chip memory
isolation, each application cluster is provided with its own set of on-chip memory controllers via

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:16 H. Omar and O. Khan

tmc_alloc_set_nodes_interleaved (&alloc, pos). Here, pos represents the bit-mask repre-
sentation of memory controllers to be selected, e.g., pos = 0b1100 suggests mapping the data on
MC2 and MC3 controllers. The data correctness checker is implemented using the user-dynamic
network (UDN) of Tile-Gx72 multicore that implements core-to-core messaging that does not in-
terfere with the cache coherence tra#c. For veri"cation, each cluster computes a 64-bit hash of
its output, and sends it over to the other cluster using UDN. The overheads associated with data
correctness (veri"cation) checks are including in the completion time breakdown.

5.2 Selective Resiliency
A selective resilience scheme (SEL) is also applied on both T-DMR and PRISM architectures.
The SEL scheme is evaluated for various iterative applications (listed in Section 4.2.2), where the
starting X% of an application iterations are executed in dual-modular redundancy (the resilience
mode). The remaining iterations (i.e., N-X%) execute in the non-resilience mode, which implements
bound checkers to ensure correct functionality and acceptable application output convergence (cf.
Section 4.2.2). To switch from resilience to non-resilience mode, the redundant instance in case of
T-DMR scheme is terminated for letting the other instance execute without time-sharing hardware
resources. Contrarily, in the case of PRISM, one of the two clusters is terminated and the other
cluster is provided with all 64 cores to exploit core-level parallelism. Moreover, the shared cache
slices are reallocated to the single expanded cluster, where the pages are "rst un-mapped from
their current L2 home cache slices using tmc_alloc_unmap (*addr, size) API call, followed
by remapping the cluster’s data structures and memory pages to all available 64 L2 cache slices
via tmc_alloc_remap (&alloc, size, new_size) call. The overheads for bound checking and
cluster resource reallocation (for PRISM only) are added to the completion time breakdown.

5.2.1 Accuracy Analysis for SEL. The SEL scheme executes certain percentage of application
iterations in the non-resilience mode for achieving better performance by trading o! resilience
overheads with program output accuracy. To observe the e!ectiveness of the adopted bound check-
ers, soft-error fault injection is performed. Considering soft-errors as bit-%ips, which can happen
anywhere during the execution of non-crucial iterations and have unpredictable e!ects to the vari-
ables about to commit, the fault injection analysis mimics these soft-errors using random values.
Although the occurrence of soft-errors is rare [12], under extreme operating conditions, this rate
can be higher. Therefore, the accuracy tradeo! is explored by evaluating the impact of a single
soft-error strike, as well as higher error rates on the program execution. The fault-inject setup
injects random values (based on the data type) in any given (randomly selected) non-crucial iter-
ation of the application. Using such a metric of injecting faults based on a range allows us to cater
for nearly all the possible bit-%ip scenarios [26]. To measure the accuracy of every application, the
percentage di!erence between “the golden output reference (program’s output with error-free exe-
cution) and the output observed when the error was injected” is computed. The outputs returned
by each application in a realistic setting are discussed in Section 4.2.2. For applications that provide
per-node- (or per-vertex-) based outputs (such as BFS, PR, and CC), a variety of accuracy metrics
are considered to observe the overall impact on accuracy. These metrics are considered to model
di!erent queries issued by an analyst (programmer or user of the application). However, the ac-
curacy of remaining applications is measured using a single metric, as they return a single output
vector. Multiple error injection simulations are performed (∼1,000 times in this article) to obtain
the average program accuracy for each iterative parallel application. The 1,000 single bit faults
introduced refer to per application, meaning that in total 8,000 faults were injected for all 8 appli-
cations considered in this work. These accuracy results are collected o&ine and this application
pro"ling involves measuring the application’s accuracy sensitivity to injected errors. For every

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:17

Fig. 5. Normalized completion times for all applications with T-DMR, S-DMR, and PRISM are shown.

Fig. 6. Cache hierarchy miss rates for each application.

application, it takes ∼2–4 ms to inject 1,000 faults and we measure the accuracy by comparing
gathered results with the error-free golden reference.

6 EVALUATION
The proposed PRISM resiliency architecture is evaluated against the temporal and spatial redun-
dancy schemes, i.e., T-DMR and S-DMR. Section 6.1 solely focuses on dual-modular redundancy
and highlights the performance and system availability advantages over the baseline schemes.
Section 6.2 evaluates the selective resiliency capability (referred to as SEL) on PRISM and T-DMR
schemes, where the performance and accuracy variations for both schemes are analyzed with vary-
ing crucial iteration counts. The section concludes by highlighting numerous sensitivity studies.

6.1 Performance and Availability Analysis of PRISM
Figure 5 shows the completion time comparison of T-DMR against S-DMR and the proposed
PRISM architecture. The reported numbers show the completion time (left y-axis) for each appli-
cation (x-axis). These results are normalized to a baseline scheme with no resiliency support. The
T-DMR scheme performs dual-modular redundancy using all 64 system cores, shared cache slices,
and all available memory controllers. It incurs an overhead of ∼2.4× over the no-resiliency base-
line. Contrarily, the S-DMR scheme incurs an average overhead ∼2.79× over the baseline scheme
with no resilience support, i.e., ∼18% worse compared to T-DMR (cf. Figure 5). These overheads are
primarily due to loss of thread-level parallelism (each cluster operates using 32 cores), as well as
the interference on shared hardware resources, i.e., shared L2 slices, on-chip network router, and
memory controllers. In the context of interference, the application instances compete for same
shared L2 cache resources, which leads to increased stress on the available cache capacity (dis-
cussed later in this section using Figure 6). These factors reduce data locality and stress the mem-
ory controller queues, causing higher contention delays to access the o!-chip memory. Finally,
both instances (clusters) of the application generate tra#c that interferes in the routers, causing

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:18 H. Omar and O. Khan

Fig. 7. The output availability of T-DMR and PRISM.

high contention delays in the on-chip networks. On the contrary, T-DMR experiences similar re-
source sharing e!ects; however it overcomes these interference e!ects by exploiting all available
core-level parallelism for performance.

The proposed PRISM scheme elegantly isolates the hardware resources across clusters to limit
interference, which in turn results in providing performance improvements of ∼12% over the
T-DMR scheme (∼30% improvement over S-DMR). These improvements are primarily because
of isolating the hardware resource to diminish resource sharing e!ects. Even though the T-DMR
scheme exploits all available core-level parallelism, it allows time-sharing of core-level resources
resulting in higher number of cache misses, on-chip network router contention delays, and in-
creased stress on the memory controller queues. On the contrary, PRISM isolates all resources at
the hardware level, such that each cluster is provided with its dedicated set of cores-level resources.
The reported completion times in Figure 5 also include the overheads associated with data correct-
ness checker for veri"cation purposes. These overheads include time taken by both applications
to compute, send, receive, and compare the 64-bit XOR hash of the output. Both shared memory
checkers (used by T-DMR and S-DMR) and the UDN checker incur insigni"cant overheads of less
than 1%.

Figure 6 shows the cache hierarchy (per-core L1 and L2) miss rates under all evaluated resiliency
schemes to understand the impact of resource sharing. As expected, both T-DMR and S-DMR
schemes su!er from higher cache hierarchy miss rates, compared to the PRISM architecture. The
S-DMR scheme exhibits higher L2 misses as the spatially co-executing application instances com-
pete for the L2 cache slices, and result in a higher number of misses. However, the L1 caches are
better utilized, since each L1 is occupied by its allocated application instance. However, the T-DMR
scheme primarily su!ers from higher L1 cache misses, since it temporally executes both applica-
tion instances on a given L1 cache, resulting in higher capacity and con%ict misses. The bene"t of
using T-DMR are observed for L2 misses, since the application instances are temporally separated
to better utilize this shared resource. The PRISM architecture seamlessly adopts the L1 cache be-
haviors of S-DMR. Moreover, the strong isolation of the L2 cache resources result in much better
utilization as compared to S-DMR. In fact, the L2 cache utilization is observed to nearly match the
advantages of the T-DMR approach. On average, PRISM improves overall cache performance by
∼16% and ∼27% compared to T-DMR and S-DMR, respectively. Figure 7 compares T-DMR with
PRISM in the context of system availability, which is de"ned as “the time instance at which the
"nal result/output is returned by the application to the system user.” This availability metric is mea-
sured in two di!erent situations (y-axis), i.e., when there exists no soft-error and when the system
crashes as a consequence of a soft-error strike. The geometric mean completion time of all appli-
cations, normalized to T-DMR with NO-ERROR, is reported. In case of error-free scenario, PRISM
improves performance by ∼12% compared to T-DMR, resulting in better output availability.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:19

Fig. 8. Normalized completion times of T-DMR and PRISM with selective resiliency are shown in (a). The
performance improvements and accuracy loss with decreasing crucial iterations are shown in (b).

To model the CRASH scenario, a single error is injected in any one of the two application in-
stances that raises an exception and causes that application to terminate. A check-pointing mech-
anism is also modeled for the T-DMR scheme that logs all the modi"cations made to the output
data structure by an application. This logging is done in parallel to the application execution; thus,
it does not incur any overheads. Assuming the crash happens at 0.2 s of the reported normalized
time, the T-DMR scheme requires a system-level reboot, where it "rst reads the generated logs
and starts the execution of the application from the point of failure. Evidently, the overheads of
reading these logs further impact the performance and output availability of the T-DMR scheme.
However, PRISM provides crash resiliency alongside impeccable output availability, which is in
fact similar in both scenarios (i.e., NO-ERROR and CRASH). This is primarily due to the strong
hardware isolation primitive that makes sure that clusters’ resources are inaccessible to each other.
Indeed, isolation of hardware resources assures that the coherence messages and network packets
never overlap across clusters. All in all, one of the two clusters always stays online and active,
even if the other cluster goes o&ine due to a soft-error crash. The key insight here is that during
the event of one cluster crashing down, the "nal output from the other (active) cluster is always
going to be correct, because the probability of two separate soft-error strikes perturbing the two
independent clusters is quite negligible. Thus, the correct output from PRISM becomes available
for use at the same time when the una!ected cluster terminates.

6.2 Selective Resiliency Analysis for PRISM
Under selective resilience scheme, each application requires a bound checking mechanism during
the non-resilient iterations of the application. The bound checkers for each of the target applications
are discussed in Section 4.2.2. Both T-DMR and PRISM are evaluated for the proposed selective
resiliency scheme, where initial X% iterations of the application execute in resilience (i.e., dual-
modular redundancy) mode. Upon "nishing the resilience mode, the system is switched to the non-
resilience mode to execute the remaining (N-X)% iterations. When switched to the non-resilience
mode, the T-DMR scheme terminates redundant execution of application instances and only lets
one instance to execute while utilizing all system resources, whereas PRISM halts one of the two
clusters, and provides all 64 cores/threads and shared L2 cache slices to the active cluster. However,
this active cluster still accesses o!-chip memory using its original two memory controllers.

Figure 8(a) shows the geometric mean completion time of all iterative decision algorithms when
deployed on the selective resilience scheme (denoted as SEL (X%)) for both T-DMR and PRISM. The
factor X% in SEL (X%) refers to the number of crucial iterations executed in the resilience mode
of the SEL scheme. Note, SEL (100%) represent the complete dual-modular redundant execution in
T-DMR and PRISM (as shown in Figure 5). The numbers reported in Figure 8(a) are normalized
to a baseline scheme with no resiliency support. The overheads for switching from resilience to

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:20 H. Omar and O. Khan

Fig. 9. PRISM’s memory controller reallocation overheads.

non-resilience mode are all added to the Compute component of the normalized completion time
breakdown. Evidently, performance improves for both schemes with lowering the crucial iteration
count, i.e., moving from SEL (100%) to SEL (10%). This is primarily due to the decreasing crucial
iteration count, where both T-DMR and PRISM schemes perform reduced number of redundant
computations.

Figure 8(b) shows the performance improvements over T-DMR at SEL (100%) (left y-axis) for
both T-DMR and PRISM when the crucial iteration count (x-axis) is reduced. The geometric mean
output accuracy loss for all applications (right y-axis) when subjected to a single soft-error in-
jection is also reported. In terms of performance, PRISM performs ∼12% better compared to the
T-DMR baseline at SEL (100%) due to its resistance against adverse interference e!ects (cf. Sec-
tion 6.1). Moving from SEL (100%) to SEL (10%), both schemes continue to improve performance
over the T-DMR scheme at SEL (100%) baseline primarily due to reduction in the redundant work.
These improvements are observed to increase to ∼43% (reduction to ∼1.31× over no resiliency
scheme), whereas performance improvements to ∼42.7% (reduction to ∼1.33× over no resiliency
scheme) are observed for T-DMR. However, with the bound checker employed, advancing from SEL
(100%) to SEL (10%) results in an increase in the accuracy loss of ∼0.07% to ∼0.85%.

Clearly, the di!erence in performance gained from both schemes is observed to become smaller,
as the number of crucial iterations are lowered from SEL (100%) to SEL (10%). Later at SEL (10%)
point, this di!erence becomes approximately zero, exhibiting that T-DMR now performs at par
with PRISM. As the crucial iteration count decreases, the interference e!ects in T-DMR also reduce
due to the reduction in the redundant work. Therefore, the margin for PRISM to take advantage
by limiting interference also gets narrower. Another aspect for this di!erence is that PRISM does
not reallocate on-chip memory controllers when selective resilience is applied. This limits PRISM
to exploit memory-level parallelism. Contrarily, T-DMR continues to fully exploit its core and
memory level parallelism.

6.2.1 Sensitivity to Memory Controller Reallocation. Under selective resiliency, PRISM reallo-
cates all core-level resources to the single active cluster to exploit core-level parallelism. However,
it does not reallocate all memory controllers, essentially disallowing the active cluster to exploit
all available memory bandwidth. The reason for not reallocating on-chip memory controllers is
because it requires a new memory initialization setup for the application. Figure 9 shows the nor-
malized completion time for PRISM with (2-MC) and without (4-MC) memory controller realloca-
tion for di!erent SEL schemes. For each SEL entry, the time for PRISM (4-MC) is normalized to its
respective PRISM (2-MC) number. Evidently, re-allocating memory controllers allows applications
to better exploit memory-level (especially at lower crucial iteration count, e.g., SEL (10%)), which
in turn improves performance. However, the reallocation procedure incurs additional perfor-
mance overhead, overcoming the improvements obtained via memory-level parallelism. Overall,

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:21

Fig. 10. (a) Single-output accuracy loss with and without bound checker, and (b) shows accuracy loss of PR,
CC, and BFS.

performance degradation of ∼16% to ∼8% is observed, when crucial iteration count is reduced from
SEL (75%) to SEL (10%). Thus, memory controller reallocation is not adopted for PRISM.

6.2.2 Sensitivity to Bound Checking. Figure 10(a) shows the geometric mean accuracy loss of
all applications that provide a single result as their output (i.e., SSSP, ASTAR, MST, COLOR, and
ABC), when subjected to a single-error injection. The accuracy comparison is performed with
and without employing the designed bound checkers (BC). As expected, the accuracy loss for
these applications increases as the number of crucial iterations (executing in the resilience mode)
employed under (SEL) reduce. However, the magnitude of the accuracy loss is quite high when
there exists no bound checker, i.e., the accuracy loss rises from ∼0.3% to ∼2.7% when shifting from
SEL (75%) to SEL (10%). This is due to the fact that when an application does not employ bound
checkers, the perturbed value(s) get propagated to the "nal output that impacts the application
output. On the contrary, the accuracy loss reduces signi"cantly when the proposed bound checkers
are employed with the selective resiliency scheme, i.e., the accuracy improves by ∼32% and always
stays below 1%. This is primarily because BC allows only those values to be committed to the "nal
output that satisfy the implemented bounds. If the bounds do not match for certain values, then
they are not allowed to be propagated to the "nal output and are replaced with intermediate output
values computed at the end of resilience mode.

6.2.3 Sensitivity to Di!erent Accuracy Metrics. Figure 10(b) shows the geometric mean accuracy
loss of iterative applications with per-vertex output values (i.e., PR, CC, and BFS), when subjected
to a single soft-error injection. This sensitivity shows impact of using di!erent accuracy mea-
suring metrics on the "nal accuracy. These metrics model di!erent queries issued by an analyst
(programmer/system-user) to compute the applications’ output accuracy. For example, the metric
“All Vertices” implies that the accuracy loss is measured using output values of all the vertices
present in the input graph, whereas the metric “Top Most Node” refers to measuring the accuracy
loss using the output value of just the top most vertex in the input graph. The remaining three
metrics are modeled in a similar fashion. For better understanding, consider Google’s PageRank
algorithm as an example. Certainly, the rank values of all visited web pages are not always impor-
tant. Instead, the most visited web pages are of more interest. Thus, the accuracy loss can also be
measured in di!erent aspects, i.e., "nding the accuracy loss by comparing the top 10 or 20 vertex
values. The insight here is that the accuracy loss not only increases with decreasing crucial itera-
tion count, but also with increasing per-vertex output values considered in de"ning and measuring
the accuracy. For instance, the geometric mean accuracy loss of ∼0.26% is reported for SEL (25%)
in case of the “All Vertices” metric. However, at the same selective resiliency point, the accuracy
loss tends to be signi"cantly lesser, i.e., ∼0.02%, when the “Top Most Node” accuracy measuring

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

31:22 H. Omar and O. Khan

Fig. 11. The performance–accuracy tradeo! space at various aggressive so"-error rates (ϵ).

metric is considered. Thus, it is absolutely imperative to consider a reasonable accuracy measuring
metric. Note, the geometric mean accuracy loss reported in Figure 8(b) uses the conservative “All
Vertices” metric.

6.2.4 Sensitivity to Aggressive Error-Rates. Indeed, the resiliency and performance demands for
safety-critical systems vary based on the surrounding environmental conditions. To model these
conditions, Figure 11 considers di!erent aggressive soft-error rates (i.e., 0.01%, 0.1%, and 1%) to
observe their impact on the accuracy of the applications. This fault injection for an error rate of
ϵ% is done in such a way that ϵ% of the total instructions belonging to each non-crucial iteration
(executing in the non-resilience mode) are exposed to random values. For example, if the error rate
is set to 0.1% Rate and an application executes 50 non-crucial iterations where each iteration has
100 instructions, then random values will be introduced in 1 (100 * 0.1%) randomly chosen instruc-
tion for each of the 50 non-crucial iterations. The “1-Fault Rate” represents the accuracy loss at a
single error injection. Evident from Figure 11, the geometric mean accuracy loss for applications
increases with the increase in error rate. This is expected, as with higher error rates, applica-
tion(s) experience increased number of faults; thus, impacting the application output accuracy.
For instance, the accuracy loss increases from ∼0.35% to ∼5.8% when the error rate is increased
from “1-Fault Rate” to 1% Rate. Note, these accuracy loss numbers are acquired in the presence
of bound checkers. A consistent tradeo! trend is observed for all error rates, that is the application
output accuracy always drops, whereas the performance always improves with decreasing crucial
iterations (i.e., scanning from SEL (75%) to SEL (10%)).

The reported numbers on top of each bar in Figure 11 represent the overall geometric mean
performance improvements over PRISM (or SEL (100%)) assuming an accuracy threshold of 1%.
Clearly, for the accuracy threshold of 1%, the SEL (75%) and SEL (50%) system can withstand an
error rate of 0.01% Rate, essentially improving the performance by ∼21% and ∼27%, respectively.
Contrarily, with low crucial iterations, SEL (25%) and SEL (10%) can only withstand 1-Fault Rate
to satisfy threshold of 1%, resulting in performance boosts of ∼35% and ∼43%, respectively. To
conclude, given these realistic and aggressive soft-error rates and their impact on accuracy, it is
imperative to choose such an accuracy loss threshold that satis"es the system’s output accuracy
demands, whilst guaranteeing high-end performance.

7 CONCLUSION
Multicores have emerged as the norm for general-purpose and domain-speci"c computing.
However, they introduce numerous challenges for protection against soft-errors due to complex
communication and memory access protocols. The resiliency schemes proposed in the literature

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

PRISM: Isolation based Resilient Multicore 31:23

generally incur overheads due to adverse interference e!ects caused by aggressive hardware
sharing. This work proposes PRISM, an e#cient resilience architecture that creates spatially
isolated clusters of cores, where redundant execution does not experience interference. With
strong hardware isolation, the PRISM architecture enables impeccable system availability at
light-weight hardware modi"cations to a multicore processor. PRISM is prototyped on a real
TileraTile-Gx72 multicore processor, where it is shown to improve the performance of redundant
execution by 12% over a TLR scheme that exploits multicore parallelism. Moreover, PRISM enables
a novel selective resiliency scheme that trades o! application output accuracy for lower resilience
overheads. This scheme is implemented for iterative decision algorithms, where PRISM allows
certain iterations of the algorithm to execute redundantly. However, the remaining iterations
execute in the clear without strong resiliency protections, while assuring acceptable output
accuracy. PRISM with its selective resilience capability is shown to further improve performance
by 43% over the TLR scheme, at the cost of <1% accuracy loss in presence of a singe soft-error.

REFERENCES
[1] M. Ahmad, M. Shan, A. Rehman, and O. Khan. 2020. Accelerating relax-ordered task-parallel workloads using multi-

level dependency checking. In Proceedings of the ACM International Conference on Supercomputing (2020).
[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. 2015. A scalable processing-in-memory accelerator for parallel graph

processing. In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA’15). 105–117.

[3] Konstantinos Aisopos and Li-Shiuan Peh. 2011. A systematic methodology to develop resilient cache coherence pro-
tocols. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44). ACM,
New York, NY, 47–58. DOI:https://doi.org/10.1145/2155620.2155627

[4] I. Akturk and U. R. Karpuzcu. 2020. ACR: Amnesic checkpointing and recovery. In Proceedings of the 2020 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA’20). 30–43.

[5] F. Busato and N. Bombieri. 2016. An e#cient implementation of the Bellman-Ford algorithm for Kepler GPU architec-
tures. IEEE Trans. Parallel Distrib. Syst. 27, 8 (Aug. 2016), 2222–2233. DOI:https://doi.org/10.1109/TPDS.2015.2485994

[6] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan, and M. Erez. 2012. Containment domains: A
scalable, e#cient, and %exible resilience scheme for exascale systems. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC’12). 1–11. DOI:https://doi.org/10.1109/SC.2012.36

[7] C. Demetrescu, A. V. Goldberg, and D. S. Johnson (Eds.). 2009. The Shortest Path Problem.
[8] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. 2010. Shoestring: Probabilistic soft error reliability

on the cheap. In Proceedings of the 15th Edition of ASPLOS on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XV). ACM, New York, NY, 385–396. DOI:https://doi.org/10.1145/1736020.1736063

[9] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R. Iyer. 2016. Cache QoS: From concept to
reality in the Intel Xeon processor E5-2600 v3 product family. In Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA’16).

[10] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. 1997. Fault injection techniques and tools. Computer 30, 4 (Apr. 1997),
75–82. DOI:https://doi.org/10.1109/2.585157

[11] Rajshekar Kalayappan and Smruti R. Sarangi. 2015. FluidCheck: A redundant threading-based approach for reliable
execution in manycore processors. ACM Trans. Archit. Code Optim. 12, 4, Article 55 (Dec. 2015), 26 pages. DOI:https:
//doi.org/10.1145/2842620

[12] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar. 2001. Scaling trends of cosmic ray induced soft errors
in static latches beyond 0.18 /spl mu/. In Proceedings of the 2001 Symposium on VLSI Circuits. 61–62. DOI:https://doi.
org/10.1109/VLSIC.2001.934195

[13] D. S. Khudia and S. Mahlke. 2014. Harnessing soft computations for low-budget fault tolerance. In Proceedings of
the 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. 319–330. DOI:https://doi.org/10.1109/
MICRO.2014.33

[14] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. 2013. Parallel scheduling for cyber-physical systems: Analysis and
case study on a self-driving car. In Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS’13). 31–40.

[15] M. Kooli and G. Di Natale. 2014. A survey on simulation-based fault injection tools for complex systems. In Proceedings
of the 2014 9th IEEE International Conference on Design Technology of Integrated Systems in Nanoscale Era (DTIS’14).
1–6. DOI:https://doi.org/10.1109/DTIS.2014.6850649

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

https://doi.org/10.1145/2155620.2155627
https://doi.org/10.1109/TPDS.2015.2485994
https://doi.org/10.1109/SC.2012.36
https://doi.org/10.1145/1736020.1736063
https://doi.org/10.1109/2.585157
https://doi.org/10.1145/2842620
https://doi.org/10.1145/2842620
https://doi.org/10.1109/VLSIC.2001.934195
https://doi.org/10.1109/VLSIC.2001.934195
https://doi.org/10.1109/MICRO.2014.33
https://doi.org/10.1109/MICRO.2014.33
https://doi.org/10.1109/DTIS.2014.6850649

31:24 H. Omar and O. Khan

[16] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, Q. Chen, M. Guo, and V. Janapa Reddi. 2020. Asymmetric resilience:
Exploiting task-level idempotency for transient error recovery in accelerator-based systems. In Proceedings of the
2020 IEEE International Symposium on High Performance Computer Architecture (HPCA’20).

[17] T. Li, R. Ragel, and S. Parameswaran. 2012. Reli: Hardware/software checkpoint and recovery scheme for embedded
processors. In Proceedings of the 2012 Design, Automation Test in Europe Conference Exhibition (DATE’12). 875–880.
DOI:https://doi.org/10.1109/DATE.2012.6176621

[18] T. Li, M. Sha"que, J. A. Ambrose, S. Rehman, J. Henkel, and S. Parameswaran. 2013. RASTER: Runtime adaptive
spatial/temporal error resiliency for embedded processors. In Proceedings of the 2013 50th ACM/EDAC/IEEE Design
Automation Conference (DAC’13). 1–7.

[19] A. Meixner, M. E. Bauer, and D. J. Sorin. 2008. Argus: Low-cost, comprehensive error detection in simple cores. IEEE
Micro 28, 1 (Jan. 2008), 52–59. DOI:https://doi.org/10.1109/MM.2008.3

[20] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. 2002. Detailed design and evaluation of redundant multi-threading
alternatives. In Proceedings of the 29th Annual International Symposium on Computer Architecture. 99–110. DOI:https:
//doi.org/10.1109/ISCA.2002.1003566

[21] N. Oh, S. Mitra, and E. J. McCluskey. 2002. ED4I: Error detection by diverse data and duplicated instructions. IEEE
Trans. Comput. 51, 2 (Feb. 2002), 180–199. DOI:https://doi.org/10.1109/12.980007

[22] H. Omar, M. Ahmad, and O. Khan. 2017. GraphTuner: An input dependence aware loop perforation scheme for
e#cient execution of approximated graph algorithms. In Proceedings of the2017 IEEE International Conference on
Computer Design (ICCD’17). 201–208. DOI:https://doi.org/10.1109/ICCD.2017.38

[23] H. Omar, B. D’Agostino, and O. Khan. 2020. OPTIMUS: A security-centric dynamic hardware partitioning scheme for
processors that prevent microarchitecture state attacks. IEEE Trans. Comput. 69, 11 (Nov. 2020), 1558–1570. DOI:https:
//doi.org/10.1109/TC.2020.2996021

[24] H. Omar, H. Dogan, B. Kahne and O. Khan. 2018. Multicore resource isolation for deterministic, resilient and secure
concurrent execution of safety-critical applications. IEEE Computer Architecture Letters 17, 2 (2018), 230–234. DOI:10.
1109/LCA.2018.2874216

[25] H. Omar and O. Khan. 2020. IRONHIDE: A secure multicore that e#ciently mitigates microarchitecture state attacks
for interactive applications. In Proceedings of the 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA’20). 111–122.

[26] Hamza Omar, Qingchuan Shi, Masab Ahmad, Halit Dogan, and Omer Khan. 2018. Declarative resilience: A holistic
soft-error resilient multicore architecture that trades o! program accuracy for e#ciency. ACM Trans. Embed. Comput.
Syst. 17, 4, Article 76 (Jul. 2018), 27 pages. DOI:https://doi.org/10.1145/3210559

[27] M. W. Rashid and M. C. Huang. 2008. Supporting highly-decoupled thread-level redundancy for parallel programs.
In Proceedings of the2008 IEEE 14th International Symposium on High Performance Computer Architecture. 393–404.
DOI:https://doi.org/10.1109/HPCA.2008.4658655

[28] V. Reddy and E. Rotenberg. 2008. Coverage of a microarchitecture-level fault check regimen in a superscalar processor.
In Proceedings of the 2008 IEEE International Conference on Dependable Systems and Networks with FTCS and DCC
(DSN’08). 1–10. DOI:https://doi.org/10.1109/DSN.2008.4630065

[29] S. Rehman, F. Kriebel, Duo Sun, M. Sha"que, and J. Henkel. 2014. dTune: Leveraging reliable code generation for
adaptive dependability tuning under process variation and aging-induced e!ects. In Proceedings of the 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC’14). 1–6.

[30] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I. August, and Shubhendu S. Mukherjee.
2005. Software-controlled fault tolerance. ACM Trans. Archit. Code Optim. 2, 4 (Dec. 2005), 366–396. DOI:https://doi.
org/10.1145/1113841.1113843

[31] Felipe Restrepo-Calle, Antonio Martínez-Álvarez, Sergio Cuenca-Asensi, and Antonio Jimeno-Morenilla. 2013. Selec-
tive SWIFT-R. J. Electr. Test. 29, 6 (01 Dec. 2013), 825–838. DOI:https://doi.org/10.1007/s10836-013-5416-6

[32] V. Roberge, M. Tarbouchi, and G. Labonte. 2013. Comparison of parallel genetic algorithm and particle swarm opti-
mization for real-time UAV path planning. IEEE Trans. Industr. Inf. 9, 1 (Feb. 2013), 132–141. DOI:https://doi.org/10.
1109/TII.2012.2198665

[33] E. Rotenberg. 1999. AR-SMT: A microarchitectural approach to fault tolerance in microprocessors. In Proceedings
of the 29th Annual International Symposium on Fault-Tolerant Computing. 84–91. DOI:https://doi.org/10.1109/FTCS.
1999.781037

[34] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. 2010. Flexible architectural support for "ne-grain schedul-
ing. SIGPLAN Not. 45, 3 (Mar. 2010).

[35] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi, and Sarita V. Adve. 2009. mSWAT: Low-
cost hardware fault detection and diagnosis for multicore systems. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 42). ACM, New York, NY, 122–132. DOI:https://doi.org/10.
1145/1669112.1669129

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

https://doi.org/10.1109/DATE.2012.6176621
https://doi.org/10.1109/MM.2008.3
https://doi.org/10.1109/ISCA.2002.1003566
https://doi.org/10.1109/ISCA.2002.1003566
https://doi.org/10.1109/12.980007
https://doi.org/10.1109/ICCD.2017.38
https://doi.org/10.1109/TC.2020.2996021
https://doi.org/10.1109/TC.2020.2996021
https://doi.org/10.1109/LCA.2018.2874216
https://doi.org/10.1109/LCA.2018.2874216
https://doi.org/10.1145/3210559
https://doi.org/10.1109/HPCA.2008.4658655
https://doi.org/10.1109/DSN.2008.4630065
https://doi.org/10.1145/1113841.1113843
https://doi.org/10.1145/1113841.1113843
https://doi.org/10.1007/s10836-013-5416-6
https://doi.org/10.1109/TII.2012.2198665
https://doi.org/10.1109/TII.2012.2198665
https://doi.org/10.1109/FTCS.1999.781037
https://doi.org/10.1109/FTCS.1999.781037
https://doi.org/10.1145/1669112.1669129
https://doi.org/10.1145/1669112.1669129

PRISM: Isolation based Resilient Multicore 31:25

[36] I. Sato and H. Niihara. 2014. Beyond pedestrian detection: Deep neural networks level-up automotive safety. In Pro-
ceedings of the GPU Technology Conference.

[37] Daeho Seo, Akif Ali, Won-Taek Lim, Nauman Ra"que, and Mithuna Thottethodi. 2005. Near-optimal worst-case
throughput routing for 2-D mesh networks. In Proceedings of the International Symposium on Computer Architecture
(ISCA’05).

[38] Q. Shi, H. Ho!mann, and O. Khan. 2015. A cross-layer multicore architecture to tradeo! program accuracy and
resilience overheads. IEEE Comput. Arch. Lett. 14, 2 (Jul. 2015), 85–89. DOI:https://doi.org/10.1109/LCA.2014.2365204

[39] Q. Shi and O. Khan. 2013. Toward holistic soft-error-resilient shared-memory multicores. Computer 46, 10 (Oct. 2013),
56–64. DOI:https://doi.org/10.1109/MC.2013.262

[40] Qingchuan Shi, Hamza Omar, and Omer Khan. 2017. Exploiting the tradeo! between program accuracy and soft-
error resiliency overhead for machine learning workloads. arxiv:1707.02589. Retrieved from http://arxiv.org/abs/1707.
02589.

[41] T. J. Siegel, E. Pfe!er, and J. A. Magee. 2004. The IBM eServer Z990 microprocessor. IBM J. Res. Dev. 48, 3-4 (May
2004), 295–309. DOI:https://doi.org/10.1147/rd.483.0295

[42] J. Tian. 2005. Fault Tolerance and Failure Containment. 267–283. DOI:https://doi.org/10.1002/0471722324
[43] A. Vega, C. C. Lin, K. Swaminathan, A. Buyuktosunoglu, S. Pankanti, and P. Bose. 2015. Resilient, UAV-embedded

real-time computing. In Proceedings of the 2015 33rd IEEE International Conference on Computer Design (ICCD’15).
736–739. DOI:https://doi.org/10.1109/ICCD.2015.7357189

[44] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron. 2014. Real-world design and evaluation of
compiler-managed GPU redundant multithreading. In Proceedings of the 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA’14). 73–84. DOI:https://doi.org/10.1109/ISCA.2014.6853227

[45] N. J. Wang and S. J. Patel. 2005. ReStore: Symptom based soft error detection in microprocessors. In Proceedings of
the 2005 International Conference on Dependable Systems and Networks (DSN’05). 30–39.

[46] D. Wentzla!, P. Gri#n, H. Ho!mann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C. C. Miao, J. F. Brown III, and
A. Agarwal. 2007. On-chip interconnection architecture of the tile processor. IEEE Micro 27, 5 (Sep. 2007), 15–31.
DOI:https://doi.org/10.1109/MM.2007.4378780

[47] Xin Xu and H. Howie Huang. 2015. DualVisor: Redundant hypervisor execution for achieving hardware error re-
silience in datacenters. In Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing (CCGRID’15). 485–494.

[48] Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Cheng Lyu, Sayan Mukherjee, and Alvin R. Lebeck. 2020. Beyond
Application End-Point Results: Quantifying Statistical Robustness of MCMC Accelerators. arxiv:eess.SP/2003.04223.
Retrieved from https://arxiv.org/abs/2003.04223.

Received July 2020; revised December 2020; accepted February 2021

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 31. Publication date: June 2021.

https://doi.org/10.1109/LCA.2014.2365204
https://doi.org/10.1109/MC.2013.262
http://arxiv.org/abs/1707.02589
http://arxiv.org/abs/1707.02589
https://doi.org/10.1147/rd.483.0295
https://doi.org/10.1002/0471722324
https://doi.org/10.1109/ICCD.2015.7357189
https://doi.org/10.1109/ISCA.2014.6853227
https://doi.org/10.1109/MM.2007.4378780
https://arxiv.org/abs/2003.04223

