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ABSTRACT Modern microwave radar technologies and systems are taking important roles in healthcare,
security, and human—machine interface by remote sensing of human life activities. This paper first reviews
the developments in the past decade on the sensing front-end, transponder tag, and leveraging of other wire-
less infrastructure such as Wi-Fi. Based on the state-of-the-art engineering technologies, several emerging
applications will then be studied, including continuous authentication, behavior recognition, human-aware
localization, occupancy sensing, blood pressure monitoring, and sleep medicine. As radio frequency spec-
trum becomes a scarce resource, the allocation and spectrum sharing of life activity sensing bandwidth with
other wireless infrastructures will be discussed. Several future research directions will be laid out to solve
challenges for ubiquitous deployment of these sensing technologies at the human—microwave frontier.

INDEX TERMS Continuous-wave, energy, healthcare, human sensing, identification, life activities, localiza-

tion, radar, security, sensing.

I. INTRODUCTION

The past decade has witnessed tremendous progresses in mi-
crowave theory and techniques for biological studies, med-
ical applications, and interaction with humans. From very
low frequency (kHz) to sub-millimeter wave (THz), a variety
of instrumentation, device fabrication, theoretical modeling,
and clinical/pre-clinical studies have achieved success based
on novel methods utilizing microwaves. As new technical
challenges are identified for emerging applications, more re-
searchers have joined the task force to develop advanced
solutions so that science and engineering advancements can
benefit the wellbeing of humans.

Among many prominent research and development (R&D)
sub-areas at this human-microwave frontier, using microwave
signals to wirelessly sense life activities has attracted grow-
ing interests from researchers and practitioners in radar sys-
tems, signal processing, circuit and system integration, as
well as healthcare sectors. In 2013, the authors reviewed the

achievements in Doppler radar for remote detection of heart-
beat and respiration of human subjects, including front-end ar-
chitectures, baseband signal processing methods, system-level
integrations, and validations in pre-clinical environment [1].
Since then, researchers have pushed the technologies further
with technologies such as embedded DSP with support vec-
tor machines (SVM) [2], stepped-frequency continuous-wave
radar [3], ultra-wideband frequency-modulated continuous-
wave (FMCW) [4], channel imbalance compensation [5], dig-
ital post-distortion [6], six-port [7], adaptive beam-steering
[8], and various deep learning algorithms [9]. The contribu-
tors are not only from academia, but also from industrial re-
search labs [10], [11]. The applications have been extended to
many other areas such as Internet of Things (IoT), occupancy
sensing, security authentication, and wireless human-machine
interaction.

This paper reviews some of the progresses made since 2013
with frequency-conversion based continuous-wave (CW)
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radar architectures. Due to page limit and research area of
the authors, the paper does not cover impulse-radio ultra-
wideband (IR-UWB) [12] and injection-locked detection ar-
chitectures [13], although they also have unique advantages
for sensing of life activities. The rest of the paper will
start from new front-end technologies. It will then discuss
emerging applications at the human-microwave frontier, in-
cluding security authentication, behavior/gesture recognition,
occupancy sensing, blood pressure monitoring, and sleep
medicine. The use of microwave frequency bands and need of
spectrum sharing will be discussed in Section IV. After that,
the challenges for ubiquitous deployment and future research
directions will be presented in Section V, followed by a con-
clusion and brief discussion of future outlook.

1. MICROWAVE TECHNOLOGY FOR REMOTE SENSING OF
LIFE ACTIVITIES

A. TRANSCEIVER ARCHITECTURES FOR DETECTORS
Compact life activity sensing radar started with the well-
known homodyne architecture that offers range correlation for
effective cancellation of the oscillator phase noise [14]. How-
ever, direct down-conversion to dc and the subsequent base-
band amplification circuit will introduce high flicker noise
around the signal of interest, which has significant content
around dc. To tackle the problem, coherent low-intermediate-
frequency (IF) systems were adopted [15]. A comprehensive
analysis showed that this architecture has the range correlation
benefits of the homodyne system, while minimizing the base-
band flicker noise [16]. Measurements on a mechanical tar-
get demonstrated effective signal-to-noise ratio improvement.
Measurements on a human subject about 3 m away demon-
strated low-IF heart rate detection with a root-mean-square
error of less than 0.8 beats/min, whereas a reference direct
conversion system failed in that case [16].

A variation of the low-IF architecture is the pulse Doppler
radar [17]. In the transmitter, a CW RF signal is multiplied
with an ON/OFF pulse signal with a pulse repetition fre-
quency (PRF) of 100 Hz. The receiver down-converts the
target reflected signal using the original CW signal. There-
fore, the receiver output spectrum is shifted from dc to an IF
that is equal to the PRFE. This single-channel pulse Doppler
low-1F radar architecture overcomes limitations of conven-
tional quadrature receiver, including complexity and quadra-
ture channel imbalance. A low-IF demodulation method was
also developed in [17] based on digital filters and complex
signal multiplication to retrieve the physiological information.
Successful detection of different mechanical motion patterns
was demonstrated.

Driven by the need of higher sensitivity, the first 100-
GHz Doppler radar transceiver with double-sideband low-1F
architecture for mechanical vibration and vital sign detec-
tion was developed in 65-nm CMOS process [18], [19], as
shown in Fig. 1. The whole radar chip transceiver consumes
262 mW with a size of 0.9 mm x 2.0 mm. The transceiver
was driven by a push—push frequency doubler with a 50-GHz
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FIGURE 1. Block diagram and chip microphotograph of the first 100-GHz
Doppler radar transceiver with double-sideband low-IF architecture. From

[18].

external source. The chip could transmit 4-dBm power over
93-105 GHz with a 40-mV 1-kHz IF carrier. It achieved
good I/Q performance of < 1° phase mismatch and <1 dB
amplitude mismatch over 95-104 GHz. Benefiting from the
short wavelength at 103 GHz, a probe-station-based test setup
was able to successfully detect 1-pm mechanical vibration
from 1.5 m, a human vital-sign signal from 2 m, and a small
bullfrog’s hybrid respiratory motion from 0.6 m.

Conventional synchronous demodulation low-IF method
typically consumes a large amount of ADC resources because
of the elevated signal speed. To address this issue, a new enve-
lope detection method to reduce the ADC sampling rate from
20 kHz to 20 Hz in a double-sideband low-IF continuous-
wave Doppler radar was reported [20], [21]. Hardware im-
plementation of carrier compensation and envelope detectors
were key to recover and extract the envelopes in the IF do-
main. Experiments showed that, when the IF carrier frequency
is higher than 1 kHz, the signal-to-noise ratio of this method
would be comparable to that of a conventional synchronous
demodulation.

Since transmitter (TX) signal is usually many orders of
magnitude stronger than (RX) signal, it is important to mini-
mize TX-to-RX leakage, to avoid saturating the RX and inter-
fering correct detection due to TX noise or modulation. One
way to reduce the leakage is to use separate antennas. How-
ever, this does not eliminate the leakage due to antenna cou-
pling and echo from the static clutter, and leads to higher cost
and bulky size. Single antenna system with quadrature hybrid,
directional coupler or circulator, can achieve isolation in the
order of 20-30 dB, but the performance is ultimately limited
by specifications of the devices such as impedance matching.
In [22], a TX leakage cancellation method based on antenna
image impedance, i.e., the passive network synthesized to
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replicate the antenna impedance in the band of interest, was
proposed. The concept was verified for a patch antenna array
operating in the Ku band, where the achieved isolation is
measured to be better than 35 dB in the 17-17.4 GHz range.

Since the first demonstration of fully integrated chip-scale
vital sign radar in [14], [23], most of the chip-scale CW vital
sign radars only integrated various analog front-end archi-
tectures without the ADC. To address this deficiency, [24]
reported a 5.8 GHz radar receiver that integrates variable gain
amplifiers and A/D converters on a single chip for non-contact
vital sign detection. The system-on-chip was realized in a
TSMC CMOS 0.18 pm process. To keep the baseband output
signal in the optimal dynamic range, a clutter cancellation
mechanism was also implemented in the system. Experimen-
tal results demonstrated successful detection of respiration
and heartbeats of human subjects with an overall power con-
sumption of 55 mW.

Although its detection principle has been established for
years, the six-port interferometer has recently gained new
attention as an alternative RF front-end structure for the radar
detector. Its basic concept, applications in human sensing, as
well as comparison with other front-end architectures were
reviewed in [7], [25]. Since six-port detectors are based on
planar passive microwave structures and RF diodes, they are
attractive as low-cost board-level products for applications
that feature a short development cycle. On the other hand, it
was shown that special attention should be paid to impairment
effects and non-ideal behavior, as well as compensation and
linearization. In this inaugural special issue, another review
article will cover six-port and its industrial applications.

Conventional radar-based localization solutions rely on a
large RF bandwidth to achieve desirable range resolution,
which is equally deployed to everything in the antenna field
of view. This leads to heavy burdens to the limited spec-
trum resource and the on-board power supply. At the human-
microwave frontier, a more efficient way to distribute spec-
trum and energy resources is adaptive delivery of resource
to users. The unique human behavior that is distinct from
natural/manufactured objects in the surrounding makes multi-
mode sensing a valuable approach to efficiently allocate spec-
trum, power, and computational resource in a dynamic fash-
ion. For example, the Doppler/interferometry mode is ideal
to track the vital signs information of a single human subject
at a fixed location. When the location of a subject needs
to be known, a modulated waveform should be transmitted:
an FSK probing signal can be used in a clear environment
with limited clutters for its simple operation and small RF
bandwidth requirement [26], while FMCW signals can be
used for its range resolution in a cluttered environment. When
multiple objects are present, the high range resolution FMCW
mode is preferable to resolve the locations of different ob-
jects. Based on this concept, prototype multi-mode radar was
first developed with the help of a benchtop RF signal gen-
erator [27]. Moreover, because the range correlation effect
generally applies to the aforementioned modulation schemes,
simple analog waveform synthesizers can be designed to
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FIGURE 2. Block diagram (a) and RF front-end (b) of the K-band RF
beamforming FMCW radar reported in [29].

(b)

control free-running VCOs in the radar front-end for mode
switching [28].

Antenna is a key component not only because it has a
strong influence on the angular resolution, but also because
they largely affect the device size and weight for portable
applications. Higher carrier frequency is desirable to reduce
the physical size and more elements, either physically im-
plemented or digitally synthesized, are beneficial for angular
resolution. In recent years, analog and digital beamforming
has been used to enable biomedical radar to scan a target
area and dynamically track subjects in real time. A K-band
portable FMCW radar with RF beamforming, as shown in
Fig. 2, uses an array of RF vector controllers to continuously
steer its beam within +45° on the H-plane [29]. Each vector
controller is capable of simultaneously controlling the phase
and the amplitude of the array element around 24 GHz. In
[30], a K-band multiple-input and multiple-output (MIMO)
radar featured 3-D imaging capability to obtain the range,
azimuth angle, and zenith angle of a target. A planar array was
synthesized with 2-D digital beamforming based on a small
number of transmitter and receiver (T/R) channels. Further-
more, a nonuniformly spaced array configuration effectively
reduced the number of T/R channels without sacrificing the
beamwidth and sidelobe level. The concept can be extended
to a 16-TX channels and 16-RX channels design as shown in
Fig. 3.

B. MICROWAVE TECHNOLOGIES FOR TAGS

Although advanced antenna arrays have been improving the
angular resolution for radar transceivers, compared with other
sensing technologies such as radio-frequency identification
(RFID) and lidar, compact radar sensors have limited capa-
bility to differentiate target from clutters in a complex in-
door environment. To overcome these deficiencies, nonlinear
radars were developed to detect targets that carry a tag with
nonlinear response to impinging electromagnetic waves [31],
[32], based on the electronic characteristics present in compo-
nents such as diodes and transistors. Since naturally occurring
things are mostly linear in behavior with few exceptions such
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FIGURE 3. Block diagram (a) and RF front-end (b) of a K-band MIMO
digital beamforming radar with non-uniformly spaced array and 3-D
imaging capability.

as the rusty bolt effect [33], they can be distinguished from
nonlinear tags. In nonlinear radars, fundamental tone(s) is sent
towards a nonlinear tag, which in return reflects nonlinear
tones along with the fundamental tone(s). The radar receiver
extracts the nonlinear response to distinguish between targets
and clutter.

Commonly used nonlinear radars work on the detection of
harmonics of the transmitted tone(s) and have found important
applications for decades. For instance, the RECCO system
initially developed in 1980 are now standard equipment with
many ski resorts, mountain rescue teams, and parks world-
wide. The system consists of a reflector integrated into cloth-
ing and a detector used by professional rescue teams. If the
signal sent by the detector hits a reflector, which integrates a
foil antenna and a diode, it will bounce back with its frequency
doubled. As a result, the second-harmonic detector can tell the
direction of the reflector tag.

Despite great success achieved, the harmonic-based nonlin-
ear detection also leads to some major challenges for modern
applications that demands for ultra-small feature size, low-
cost, and high spectrum efficiency. For example, the tag re-
turns a frequency that is at least twice as high as the detector’s
transmit frequency, thus occupying different frequency bands
and leading to radio spectrum licensing burdens. According
to the free space path loss model, the higher path loss of
the harmonic tones reduces either the detection range or the
energy efficiency. In addition, the inherent requirement of
dual-band transceiver design for the harmonic tag increases
the hardware size and cost.

An attracting alternative is to explore the intermodulation
response of a nonlinear tag, if more than one tone could be
transmitted simultaneously from the detector. Since the 3rd.
order intermodulation can be located within the same band
as two transmitted tones, some challenges of harmonic radar
could be resolved. For instance, the intermodulation response
can lie in the same band as the fundamental tones, avoiding
the extra 6 dB path loss of the 2"d_order harmonic. Unlike
harmonic tags that require dual-band design, intermodulation
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tags can use a single-band design for both the antenna and
converters. Recently, an intermodulation radar receiver and a
nonlinear tag was reported in [34]. A dedicated coherent sig-
nal generation scheme was developed to select the 3"_order
tone at the receiver. Various experiments were performed to
demonstrate the clutter rejection capability in mechanical mo-
tion and vital signs detection.

Furthermore, an intermodulation sensing in frequency shift
keying (FSK) mode was developed for localization of human
subjects based on life activities [35]. Another feature of this
nonlinear detection setup was that the heartbeat signal compo-
nent received more gain than the respiration signal, so that the
sidelobes and harmonics of respiration do not interfere with
heartbeat signal. This enhanced the heartbeat signal quality
for easy track of cardiac activities. Experiments performed
in nonlinear FSK mode demonstrated high accuracy in target
motion detection and localization.

Besides enhancing the signal from the desired target, elec-
tronic tags also take important role as a reference for removal
of undesired motion of the radar detector itself. In [36], a
low-IF RF tag device was studied for motion artifact com-
pensation in measuring vital signs using a mobile Doppler
radar. The AC and DC coupling effects in low-IF tag assisted
Doppler radar system was analyzed by investigating the cou-
pling requirements of the amplifiers for signal conditioning of
the received RF signal. With the help of the RF tag placed
near the human subject in a lateral position and exposed to
the moving transceiver, adaptive filtering can be performed to
remove unwanted motion artifact from the radar baseband out-
put. More works on motion artifact removal will be discussed
in Section V.

C. SYSTEMS LEVERAGING WI-FI TECHNOLOGIES
The past decade has witnessed great progress in Wi-Fi based
sensing, including vital signs monitoring [37], [38], gesture
recognition [39], [40], through-the-wall imaging [41], [42],
and localization [43]. The fundamental mechanism is that
human subjects and physiological motions can be sensed by
analyzing their impacts on the signals emitted from Wi-Fi
devices. Gesture codes composed of forward and backward
steps were successfully decoded through a wall in [39] with
a customized MIMO device based on three USRPs. A con-
tactless exercise monitoring system leveraged the Doppler
displacement information extracted from the Wi-Fi channel
state information (CSI) signal for bodyweight exercise type
classification and repetition counting [40]. Leveraging the
high sensitivity of injection-locking mechanism, a quadrature
injection-locked radar used ambient wireless signals for ges-
ture sensing [44]. Instead of requiring a cooperative source,
the radar receiver captures Wi-Fi signals from a far IEEE
802.1Ib/g/n access point to identify several gestures.
Advances in Wi-Fi technologies for through-the-wall imag-
ing have also been reported, such as flash effect elimi-
nation based motion tracking [39], finer-grain information
based entire human figure imaging [45], and cross-modality
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supervision based three-dimensional mesh model extrac-
tion [41]. Nevertheless, these works adopted customized RF
transceivers instead of commodity Wi-Fi devices. A passive
bistatic Wi-Fi radar was designed to work with existing Wi-
Fi access point in [42]. However, a reference receiver was
required to be placed in the same room as the transmitter and
with a clock synchronization between them. As for indoor
localization, device localization was realized by performing
synthetic aperture radar (SAR) processing using off-the-shelf
Wi-Fi cards and motion sensors equipped in mobile devices
[43].

Many Wi-Fi related vital signs sensing approaches re-
quire either conventional antenna arrays, wideband frontend,
customized RF transceivers, or additional sensors. To truly
leverage the existing Wi-Fi infrastructure, researchers have
exploited information retrieved from off-the-shelf Wi-Fi de-
vices, including CSI [46]-[50], Fresnel zone model [51], [52],
and Cross ambiguity function (CAF) [38], [53]. Fundamen-
tally, Wi-Fi systems can be regarded as bistatic radar systems,
in which the transmitter and receiver do not share a signal
source, and thus lack coherency. While lack of coherency lim-
its sensitivity, it is partially compensated by the synchroniza-
tion mechanism of the Wi-Fi protocol. Wi-Fi method holds
promise for continuous human monitoring in environments
with existing Wi-Fi infrastructure without the need for addi-
tional hardware. However further research and development
may be needed for robust operation under varying wireless
channel characteristics.

1. APPLICATIONS AT THE HUMAN-MICROWAVE
FRONTIER

New applications are being pursued at the human-microwave
frontier, ranging from security, smart living, future of work,
to healthcare. Based on the authors™ experience in this field,
several typical applications are discussed in this section.

A. IDENTIFICATION AND AUTHENTICATION FOR
NON-CONTACT SECURITY
Physiological Doppler radar is an emerging approach for con-
tinuous and unobtrusive identity authentication, which can
reduce the vulnerability of traditional one-pass validation
authentication systems. It is attractive as it requires neither
contact nor line-of-sight and does not raise privacy concerns
associated with video imaging. A Cardiac Scan system was
studied in [54] based on geometric and non-volitional features
of the cardiac motion. A DC-coupled continuous-wave radar
was used to detect cardiac motion, which is an automatic heart
deformation caused by self-excitement of the cardiac muscle,
unique to each user, and difficult to counterfeit. Fiducial-based
invariant identity descriptors of cardiac motion were extracted
after the radar signal demodulation. A pilot study with 78
subjects in controlled environment evaluated the accuracy,
authentication time, permanence, and vulnerability.

On the other hand, respiratory activities provide another
means for identity authentication [55]-[57], as shown in
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FIGURE 4. Radar authentication concept (a) and examples of respiratory
dynamics pattern classifier and cardiac signal power spectral density (PSD)
used for subject recognition (b). Modified based on [59].

Fig. 4. In [58], the feasibility of extracting identifying fea-
tures from radar respiratory traces was tested for sedentary
subject conditions and just after activities such as walking
upstairs. Respiratory breathing dynamics related features ex-
tracted from radar captured signals include breathing rate,
spectral entropy, breathing depth, inhale/exhale area ratio,
mean and standard deviation of the peaks. Variations in fea-
ture parameters after physiological activities were assessed.
Experiments demonstrated the uniqueness of residual heart
volume after expiration for recognizing each subject even
after short exertions. A Support Vector Machine (SVM) with
a radial basis function kernel achieved high identification
success rate for both sedentary-only conditions and a com-
bined mixture of conditions (i.e., sedentary and after short
exertion).

A review of radar-based identity authentication systems can
be found in [59]. It evaluates the applicability of different
research efforts and identifies aspects of future research re-
quired to address remaining challenges for practical deploy-
ment. It is expected that the advancement of machine learning
and artificial intelligence will enable radar-based continuous
authentication to serve a wide range of valuable functions in
society [60].

B. BEHAVIOR/GESTURE RECOGNITION FOR SMART LIVING
AND FUTURE OF WORK

Radar signatures such as micro-Doppler has been studied for
human activity classification [61]. In the past decade, radar-
based hand gesture recognition became attractive for wireless
human-machine interfaces. Aided with advanced semicon-
ductor technology and high computational power of mobile
devices, industry is pushing for the use of such an interface
for devices such as smart phones [10] and computers [62].

In [63], hand gesture recognition using a convolutional neu-
ral network was applied to radar echo I/Q plot trajectories.
The radar echo trajectories were converted to low-resolution
images for training and evaluation. Experiments demonstrated
accurate recognition of six types of hand gestures for ten
participants. In [62], a dual-channel Doppler radar aided with
symmetric subcarrier modulation, bandpass sampling, arcsine
demodulation, and a motion imaging algorithm was developed
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FIGURE 5. Flow chart of various feature extraction and fusion for
classification of FMCW radar signals in inattentive driving behavior
detection. Modified based on [67].

to reconstruct the hand and finger motions in a 2-D plane.
A challenge is gesture recognition in the presence of random
body movements. To tackle this issue, [64] adopted a single-
input multiple-output frontend and a blind motion separa-
tion algorithm. Assisted by an additional receiving channel,
Doppler signals caused by different motions can be separated
by extending an algorithm originally developed for voice sep-
aration. Taking advantage of FMCW radar’s range resolution,
a range-gating technique can be adopted to extract gesture of
interest and suppress interferences at other distances [65]. For
signal processing, methods such as a barcode-based approach
was also proposed [66], which classifies gestures based on
barcodes generated from time-domain zero-crossing charac-
teristics of the quadrature demodulated signal.

The hardware and signal classification methods can be ap-
plied to other fields such as human gait detection, behavioral
identification, and anomaly detection. For example, 5.8-GHz
and 24-GHz FMCW radar devices have been tested for inat-
tentive driving behavior detection [67]. Based on the flow
chart of Fig. 5, features of seven typical driving behaviors
that result in reduced attentiveness were extracted from time-
Doppler, range-Doppler, and radar cross-section (RCS). The
influences of radar center frequency, individual diversity, and
radar view angle are also investigated. With the help of an
artificial neural network, another study demonstrated remote
identification of a potential active shooter with a concealed ri-
fle/shotgun based on radar micro-Doppler and range-Doppler
signatures [68].

C. HUMAN LOCALIZATION AND OCCUPANCY SENSING

Occupancy information and user location have significant im-
pact on building automation and energy management. Prop-
erly deployed occupancy sensors can effectively save energy
used for lighting and heating, ventilation, air conditioning
(HVAC) systems. However, major drawbacks of mainstream
passive infrared (PIR) and ultrasonic sensors include high
rates of false alarms and failure to detect stationary human
subjects. Radar sensors can detect the presence of stationary
human subjects with high sensitivity. Aided with Doppler
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processing, direction-of-arrival detection, and spatial beam-
forming, they can track humans even in through-the-wall sce-
narios [69]-[71]. CW Doppler radar monitoring systems can
estimate occupant count based on the received signal strength
(RSS) indicator, which is directly related to radar cross section
[72]. Based on different time domain root mean square (RMS)
values, the effects of motion on the noise floor of a room
can be leveraged as a measure to discern an occupied room
vs. an unoccupied one [73]. To track the locations of human
subjects, FMCW radar can be leveraged for range detection
while MIMO and beamforming can be used to obtain angular
information [30].

An overview of occupancy sensor technology illustrated
that the detection of human cardiopulmonary motion with CW
radar could provide a promising approach to overcome the
problems of false negatives and dead spots in conventional
sensors [74]. Furthermore, true presence can be detected by
discerning motions associated with vital signs activities from
nonhuman motion that could otherwise trigger false positives.
For commercial success of radar occupancy sensors, low-
power and low-cost will be a focus of future R&D efforts.

D. BLOOD/PULSE PRESSURE MONITORING

Measuring the beat-to-beat blood pressure is valuable for
cardiovascular diseases prevention. Unfortunately, traditional
sphygmomanometry with a cuff is unable to measure the beat-
to-beat blood pressure and extract the variability. Microwave
radar has the potential to continuously measure pulse wave
and blood pressure because of its sensitivity to small cardiac
movements [75], [76]. A beat-to-beat blood pressure measure-
ment method was proposed based on pulse transit time (PTT),
which is the time of a pulse wave traveling between two
arterial cites [77]. However, the system needs simultaneous
measurement of electrical bioimpedance, electrocardiogram,
and CW radar, which is not suitable for long-term monitoring.
A similar approach was reported based on PTT determined
from a radar for non-contact detection of heart beat and a
piezoelectric finger pulse sensor [78]. To overcome the lim-
itation of requiring multiple sensors, completely non-contact
beat-to-beat blood pressure measurement was demonstrated
using a single low-IF Doppler radar [79]. Upon acquiring
the tiny displacement on body surface induced by the central
aortic artery, the carotid-femoral PTT (cf-PTT) was extracted
from the central aortic pulse wave [80]. This enables the
measurement of both beat-to-beat systolic and diastolic blood
pressures.

The above microwave radar-based approaches usually re-
quire remote line-of-sight alignment to the chest area by an
off-body reader. An alternative microwave sensing approach
was near-field coherent sensing, which can retrieve the heart
sound through layers of clothing using ultrahigh frequency
(UHF) band (300MHz — 3 GHz) signals [81]. This enables
multi-point near-field assessment of motion and pressure at
different parts of the heart [82]. Furthermore, the Hilbert-
Huang frequency-time transform can be used to derive the
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FIGURE 6. Photograph from sleep apnea detection clinical study (a) and
corresponding examples of radar amplitude-time signatures for apnea and
hypopnea events measured at 2.4 GHz (b) and 1-Q trace signatures
measured at 24 GHz. Modified based on [85].

central blood pressure from the vascular vibration character-
istics as continuous transients.

E. SLEEP MEDICINE RESEARCH

Sleep quality is an important health indicator. The “gold stan-
dard” for sleep monitoring is polysomnography (PSG), which
is available in specialized labs and confines the subject’s ac-
tivities with complex electrodes. Existing in-home sleep mon-
itoring devices either fail to provide adequate information or
are obtrusive to use. Radar sleep monitoring has the potential
to guarantee natural conditions during sleep. A radar-based
system with a sleep status recognition framework was tested
for recognition of the sleep status, including on-bed move-
ment, bed exit, and breathing section [83].

Sleep stage estimation is crucial to the evaluation of sleep
quality and is a proven biometric in diagnosing cardio-
vascular diseases. A CW radar was used in [84] to mea-
sure sleep-related signals, including respiration, heartbeat,
and body movement. Body movement index, respiration per
minute (RPM), variance of RPM, amplitude difference ac-
cumulation (ADA) of respiration and heartbeat, rapid eye
movement parameter, sample entropy, heartbeat per minute
(HPM), variance of HPM, and time feature have been ex-
tracted and fed into machine learning classifiers. Eleven all-
night polysomnography recordings from 13 healthy exami-
nees were used to validate the system’s ability to detect sleep
stage.

Another system was studied in [85] for wireless sleep ap-
nea detection, as shown in Fig. 6. It consists of two radar
front-ends at 2.45 GHz and 24 GHz, respectively, to achieve
both high sensitivity and high resolution. An algorithm was
designed to perform real-time actigraphy and sleep apnea de-
tection in two steps — first excluding unwanted body motion,
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FIGURE 7. Frequencies of references cited in this article vs. their
publication date.

then detection of apnea by the power of signal. The system
was validated with clinical PSG in a sleep study facility on
ten consented volunteers with known obstructive sleep apnea.
Data obtained from both the radar monitoring and clinical
PSG systems were rated by a sleep technician and show an
excellent agreement in the detected apnea and hypopnea
events. The apnea-hypopnea events were distinguished with
an overall sensitivity of 86%, the specificity of 91% and accu-
racy of 92%.

For comprehensive reviews of microwave sensing of sleep
interested readers are referred to [86] and [87].

IV. PLANNING OF MICROWAVE FREQUENCIES

Following the first demonstration of life-sign detection using
10-GHz microwave signals in 1975 [88], [89], researchers
have been using different frequencies from UHF to mm-wave.
In the beginning, particularly in academic research environ-
ment, the choice of frequency often depends on the available
equipment and components, but it could also be driven by ap-
plications. In the first 25 years (1975-2000), 10 GHz (X-band)
was more frequently used than other frequencies [88]-[96],
but for searching life signs under concrete or bricks, lower
frequency bands (UHF, L- and S-bands) which can penetrate
deeper would be better choices [97]. Partly because of FCC
regulations, ISM bands defined by FCC Part 18 naturally
became the choices for this research field even though the
transmission power could be low enough to meet FCC Part
15 requirements to operate as unlicensed devices at permitted
bands other than ISM bands. Another main reason that ISM
bands became popularly used is because of vastly available
components with low cost in modern wireless era. Fig. 7 plots
the frequencies of references cited in this article vs. their
publication date. It can be seen that 2.4 GHz, 5.8 GHz, and 24
GHz ISM bands became popular choices in the recent decade
(2010-2020). In addition, enabled by the same device tech-
nologies driving 5G wireless communications and automobile
radar, compact integrated radar sensor chips operating in mm-
wave bands such as 60 GHz [7], [10], [98], 77 GHz [65], and
even above 100 GHz [18], [19] were developed for sensing life
activities. As wireless systems and networks continue rapid
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growth, spectrum sharing and co-existence among wireless
systems become an important issue and researchers working
on life activity radar sensors also need to pay attention to
future development of spectrum allocations.

A. FREQUENCY RANGES FOR DIFFERENT APPLICATIONS

If not limited by availability of components and technologies,
the main driving factor of selecting carrier frequency is the
sensitivity needed for the intended application. On the one
hand, higher frequencies are desirable for higher sensitivity,
smaller device size, and potentially larger available band-
width. On the other hand, as the carrier frequency increases,
the nonlinear effect to the radar detected spectrum will be
more pronounced and harmonics of respiration signal compo-
nent may interfere with heartbeat detection [99]. To address
this issue, special care should be taken and techniques such
as those can cancel respiration harmonics [100]-[102] should
be used for vital signs radar sensors operating at frequen-
cies in millimeter-wave region. While mm-wave frequencies
might not be suitable for human vital sign sensing because the
short wavelength is too sensitive to relatively large displace-
ments, mm-wave vital sign radar sensors can easily detect
vital signs of small animals [103], [104] or detect fine fea-
tures of hand gestures [10]. Some radar sensor systems also
used multiple frequencies to enhance the performance (e.g.,
[85]). As multiple carrier frequencies are used for sensing,
similar to solving multiple unknows with multiple equations,
additional information can be extracted to improve sensing
performance.

B. SPECTRUM SHARING AND SPECTRUM REGULATION
Biomedical radar sensors enable new applications that
promise significant societal and economic benefits. But at
the same time, many mission-critical government and civilian
wireless services including emergency response, navigation,
radio astronomy observatories, geoscience remote sensing,
and weather radar systems need to operate in quiet EM en-
vironments without interference from other wireless systems.
While a low-power CW radar used for vital sign sensing is
very narrow band and might not cause harmful interference
to other systems, in certain scenarios requiring high range
resolutions (e.g., sensing multiple human subjects) or multiple
frequency bands, the demands on the spectrum may threaten
the operations of existing technologies that offer critical ser-
vice to society. Innovation in spectrum use and management
may provide a means to ensure that the spectrum resources are
utilized in a manner that benefits all applications, both current
and emergent, including those operating at higher frequencies,
such as mm-wave and THz.

As more wireless systems and devices are deployed and the
wireless spectrums become more congested, spectrum sharing
and management become inevitable, and this will eventually
affect all wireless devices transmitting RF signals. While
FCC and relevant government agencies might release or
share more spectrums, the demand of wireless spectrum will
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continue, and more research is needed to ensure harmonious
co-existence of various wireless systems. US National Science
Foundation (NSF), for example, started a new program Spec-
trum and Wireless Innovation enabled by Future Technologies
(SWIFT) [105] under the NSF Spectrum Innovation Initiative
[106] to support research addressing challenges of effective
spectrum utilization and spectrum sharing among various
wireless systems. In this program, radars for motion sensing
is mentioned along with other emerging applications such
as 5G wireless. While researchers working on life-activity
sensing radar may explore various frequency bands, certain
bands may require a license to operate and researchers
should check spectrum management organizations before
experiments.

Significant advances in detection theory, networking, and
protocol are needed to allow effective coordination and max-
imum utilization of the spectrum. New approaches could be
considered within an Al framework to ensure effective spec-
trum sharing and coordination. Especially, leveraging exist-
ing infrastructure for passive uses, such as sensing of human
behaviors and physiological signals from ambient wireless
signals/devices as discussed in Section II-C, is a promising
direction being pursued by many researchers. Using Wi-Fi or
other signals from existing wireless systems for life-activity
sensing avoids the need of spectrum sharing, however, the
operating frequency and performance could be limited by the
wireless standards’ frequency bands.

V. CHALLENGES FOR UBIQUITOUS DEPLOYMENT AND
FUTURE RESEARCH DIRECTIONS

Although many advancements have been made, there remains
several key challenges to be resolved for ubiquitous deploy-
ment of microwave human sensing.

A. MOTION SEPARATION AND CLASSIFICATION IN
DYNAMIC ENVIRONMENT

Random motions of both the human subject and the radar
platform are one of the biggest challenges toward reliable
extraction of physiological signals. Noise induced by random
motions may not only corrupt the desired physiological signal,
but also saturate the sensing front-end. Therefore, researchers
have been developing innovative methods to separate unde-
sired motions.

A high-dynamic-range radar can be aided with algorithms
such as matched filters to retrieve signals concealed by body
motion noise [107]. The characteristic of the frequency spec-
trum of the vital sign signal under body motion can be lever-
aged. In [108], the direction of body motion is extracted along
with the new position of the respiration peaks in the frequency
spectrum and respiration rate was calculated. When no prior
knowledge of the body motion waveform is available, a low-IF
SIMO system employed a two-step blind motion separation to
sequentially tackles signal separation and nonlinear demodu-
lation [109]. Experiments were able to separate combinations
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of triangular, sinusoidal, and random motions when the veloc-
ities or initial phases of such motions are different.

Unmanned aerial vehicle platforms are ideal for remote
sensing in military, humanitarian, and post-disaster search and
rescue operations. However, the vibration and motion of the
platform need to be addressed. In [110], respiration signal was
recovered by measuring the platform motion with a secondary
radar and removing the motion induced phase modulation
from the primary radar signal that contains both the desired
vital signs signal and the platform motion. A 26-dB improve-
ment in signal-to-motion interference ratio was measured on
an airborne quadcopter. In [111], the vital signs signal fidelity
was improved using RSS indicator and Direction of Arrival
(DOA) to compensate for the platform motion via a closed
loop control system that modulates the UAV electronic speed
controller. In addition, an optical tracking system [112] or an
RF tag [113] can be used to achieve adaptive platform motion
noise cancellation.

Instead of compensating for platform motion, SAR lever-
ages platform motion to sample the target at different loca-
tions and synthesize an image. The portable size of modern
radar sensors makes it ideal to be mounted on small UAVs
and robots. This is especially useful as the radar can also
differentiate humans from clutters based on physiological
signal patterns. For example, a precise phase-based human
target 2-D SAR imaging and recognition system based on
vital sign tracking was demonstrated [114]. It first relies on
FMCW phase detection to extract the vital signs of multiple
human targets, then applies a SAR algorithm to obtain the 2-D
imaging of the scene and labels human targets.

Despite the progresses made, more innovative solutions,
likely with the help of Al techniques, are desirable to enhance
the robustness of radar sensors, especially in the presence of
large-scale random motions.

B. CROWD DETECTION AND SIGNAL-OF-INTEREST
EXTRACTION

Effectively extract signal-of-interest from a multi-user or
crowded environment has been challenging. Many reported
systems have so far been constrained on subject separation
based on radar range resolution and antenna beamwidth. Re-
cent works tried to overcome such a limit. An SNR-based
intelligent decision algorithm integrated two different ap-
proaches to isolate respiratory signatures of two subjects
within the radar beamwidth [115]: Independent Component
Analysis with the JADE algorithm (ICA-JADE) [116] and
DOA [117], as shown in Fig. 8. They also estimated angu-
lar location with phase-comparison monopulse and extracted
respiratory information with an integrated beam switching
mechanism.

Continued efforts are expected on both physical layer and
baseband signal processing, to detect signals from more hu-
man subjects. In the meantime, it is worthwhile to investigate
integration of the system and algorithm in portable devices
with reasonable size, speed, and power consumption.
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FIGURE 9. Signal processing chain for time series heartbeat reconstruction
with the help of a supervised machine learning algorithm in [118].

C. INTERACTION OF MICROWAVE TECHNOLOGY AND
ARTIFICIAL INTELLIGENCE

Recent years have witnessed rapid progress of integrating Al
and advanced signal processing techniques to expand the ca-
pabilities of microwave radar systems. To overcome the non-
linearities and harmonics that pollute the radar detected spec-
trum, a supervised machine learning algorithm, the gamma
filter, was used to model the time series heartbeat signal under
the influence of respiration and respiration harmonics, which
enables extraction of heartbeat from respiration in real time
[118]. Its signal processing chain for time series heartbeat
reconstruction is shown in Fig. 9. In a multi-domain fusion
approach, a dynamic range-Doppler trajectory method for
FMCW radar was developed to extract range, Doppler, RCS,
and dispersion features as inputs to a machine learning clas-
sifier for continuous human motions recognition [119]. To
achieve both fast detection and high accuracy, a time-window-
variation technique [120] and a wavelet-transform-based data-
length-variation technique [121] were developed.

It is expected that more advanced Al techniques with target-
ing specific application scenarios will be investigated. For ex-
ample, for radar-based anomaly detection (e.g., fall detection,
cardiac failure detection), few-shot learning could be valuable
in handling such extreme situations, where the number of
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instances belonging to a minority class is very limited. In
many biomedical radar applications such as smart living and
elderly care, the number of anomaly events is significantly
smaller than that of non-anomaly events, some anomaly event
may hardly occur during the training stage, while the system
must be responsive to multiple emergency. Therefore, multi-
anomaly detection algorithms, including imbalanced learning,
rare anomaly detection, and unseen anomaly detection, could
be important areas of research and development.

V1. CONCLUSION AND FUTURE OUTLOOK

It is evident that microwave sensing of life activities is bring-
ing profound benefits to modern society. Its broad impacts
range from healthcare, energy efficiency to military and de-
fense. The authors wish this review could not only serve as a
resource for both researchers and practitioners to understand
the state-of-the-art, but also attract experts in various areas to
collaborate and devote their expertise to solve the potential
challenges and push forward the technology for promising
applications.
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