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Abstract— Unmanned Aerial Vehicles (UAVs) with onboard
Doppler radar sensors can be used for health reconnaissance
including the remote detection of respiratory patterns
associated with COVID-19. While respiratory diagnostics have
been demonstrated with radar, the motion of the airborne
introduces motion interference. An adaptive filter method is
applied here which uses a second radar facing a non-moving
surface (ceiling) for a nose cancellation reference signal.
Variations in respiratory rate and displacement have been
demonstrated which is consistent with the need for detecting
tachypnea associated with COVID-19.
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1. INTRODUCTION

With modern advances in technology, unmanned aerial
vehicles (UAVs), commonly referred to as drones, have
become increasingly accessible and applicable for
reconnaissance and triage [1]. Commercially available UAVs
can travel anywhere a person can and beyond, only limited by
communications range and battery life, and can relay triage
relevant information to safely-isolated human responders via
optical imagery. While the efficacy of UAV enhanced triage
has been supported in several investigations [2] these studies
were carried out under optimal visibility. UAV-bome radar
motion sensors could potentially enhance reconnaissance
capability as radar can detect respiration and heart rates in the
dark, through smoke, and through loose clothing [3].
Furthermore, accurate radar tracking of cardiopulmonary
activity can provide a sensitive measure of health suitable for
diagnostic screening of subjects that may have respiratory
disorders such as COVID-19.

The use of radar to sense respiratory variations has been
well established, including measurements of respiratory sinus
arrhythmia (RSA) and tidal volume, as well as the recognition
of obstructive sleep apnea events [4-7]. Furthermore, radar
measurements of respiration have been successfully
demonstrated for authentication of the identity of an
individual from a group [8]. Respiratory patterns associated
with COVID-19 are considered to be generally distinct from
those associated with flu or the common cold with many
infected persons exhibiting Tachypnea [9]. While normal
breathing involves rates of about 12 breaths/min and chest
displacement on the order of 1 cm, COIVID-19 related rates
can be 20-30 breaths/min with chest displacements of 0.5 cm
or less. While radar respiratory measurements are straight
forward for stationary systems, UAV-based radar systems
must compensate for interference imposed by the motion of
the UAV on the measurement of desired subject motion.
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Farlier research [10] utilized a second radar to measure
drone movement and stabilize UAV motion through error
feedback. This method requires access to drone flight control
which is not typically available in commercial systems.
Another study [11] used empirical mode decomposition to
distinguish radar movement from the cardiopulmonary
movement in the radar signal, relying on foreknowledge of the
discerning characteristics of both the desired and noise
signals. Thus, if the signals are slightly different than
expected, accuracy is reduced, as it would also be reduced in
a real-time implementation which is a necessity in triage.

II. THEORY

A. Doppler Radar for Physiological Sensing

Despite these shortcomings, the studies strongly indicate
that with an accurate reference for the characteristics of the
noise, obtained in real-time with the use of a second radar, the
respiratory signal could be accurately reconstructed. Recently,
an adaptive filter method was applied to compensate for
experimentally simulated UAV-platform motion while
successfully extracting the respiratory rate of a phantom
mover [12-13]. In this study the efficacy of an adaptive filter
approach is examined for tracking both the respiratory rate and
respiratory displacement variations associated with COVID-
19, asillustrated in Fig. 1. An RLS adaptive filter is applied to
data from experiments with a robotic respiration phantom
measured by a radar supported by a robotic shaker, and
respiration rate variations rates from 0.2Hz to 0.5Hz were
accurately recognized as well as displacement variations of
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Fig. 1. Indoor drone radar concept for search and rescue operation and it can

also be used in hospital environment. Radar 1 is attached to the drone for

measuring drone motion and breathing motion while Radar 2 (attached to
the ceiling) measures only drone motion. From [12]
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375, 5.0 and 10mm. Resolution of these variations is on the
order of 0.1hz and 1mm or better.

B. Theory of Doppler Radar for Physiological
SensingRadar

A typical continuous wave (CW) Doppler radar transmits
an electromagnetic signal towards a human target
continuously. When the signal is reflected, the phase change
of the signal occurs directly proportional to the movement of
the chest surface due to cardio-respiratory activities [3]. In a
stationary CW radar platform, clutter can be detected only as
a DC offset [ 12]. However, in UAV radar respiration sensing,
the platform itself creates motion artifacts. The combined
motion is detected by the radar sensor in a UAV platform is
[12]:

Scomposice (£) = 08 (==sin(w, £) + Z=sin(w,t)), (1)

Where, w, 1s the angular frequency for the tiny movement of
the chest surface and w, is the undesired platform motion that
must be suppressed to extract respiratory information. The
indoor drone radar concept is shown in Fig. 1. The proposed
system can also be employed in a hospital environment by
pointing secondary radar at the ceiling or the floor, but an
angle of view outside of the radar.

C. Adaptive Filters

An Adaptive noise canceller (ANC) is a popular technique
mostly employed in the dual-microphone noise-canceling
system [13]. Generally, it receives a noise corrupted signal and
independent noise signal as an input. The output of the ANC
system is represented as:

s'=s+n-n 2)

s =s24+n—-n)2+2s(n—-n"). 3)

Here, the noise, input n,, passes through a filter to produce

an output n'. Taking ensemble average on both sides and
assuming that s is uncorrelated with n, and n’ we have:

E[s'z] = E[s?]+ E[(n —n")?] + 2E[s(n — n")] @)
= E[s?] + E[(n—n")?]. )

Fundamentally, the goal of the adaptive filter is to minimize
E[s"?] as signal power E[s?] will be unaffected by adjusting
different filter coefficients. There are different popular
algorithms in, among them least mean square (LMS) and
recursive least square (RLS) is mostly used [14]. The LMS
filter tries to adapt its coefficient at one iteration. On the other
hand, RLS recursively finds the filter coefficients that
minimize the linear least square function of the input signal
[14]. In this work, we employed the RLS technique as in our
prior attempt it outperformed with LMS for motion
compensation [12].

This work was supported in part by the National Science Foundation
(NSF) under grant IIS-1915738.

III. EXPERIEMNT AND DATA
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Fig. 2. Simulated drone and mechanical breather, with two radars. Note
Radar 2 is pointed towards a reference surface to gather noise for the adaptive
filter.

Two 24GHz-KLC-1LP monopulse radar modules were
used, each with two channels (I, Q) and connected to Low
Noise Amplifiers (LNA) SR560. The LNAs were AC-coupled
with a gain of 500 and low-pass filtered with a cut-off
frequency of 3 Hz. The LNA outputs were connected to a NI
DAQ which connected to the computer through a USB
interface. Finally, a customized MATLAB recording interface
was used to record the signals. The two radar modules were
mounted on a linear actuator, with one pointing towards the
simulated breather, and the other to a reference surface,
simulating indoor overhead cover. Fig. 2 represents the setup.

Samples

Fig. 3. Raw data capture from DAQ before any filtering or processing for
Radar 1 and 2, each with I and Q channel. Note zero drone movement,
followed by initialization and then sinusoidal drone movement.

Each recording consisted of thirty seconds of reference
data with only the phantom breather moving, followed by the
initialization of the simulated UAV movement (Fig. 3). The
sampling rate was 500Hz, with a range of -10 to 10V.
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Fig. 4a. Frequency sweep plot from 0.2Hz to 0.5Hz with phantom breather
displacement of Smm. Note interference of noise signal at 0.2Hz makes
detection at 0.3Hz unclear.
Fig. 4b. Amplitude sweep at 0.4Hz. Note Corresponding peak reduction for
decreased mover displacement.
Fig 4c. Demodulated and filtered signal from Radar 2 compared to the
reference measurement. Notice slight variations due to noise signals still
present.

To determine if the system is capable of distinguishing
variations in breathing rate and depth necessary to detect the
changes that occur in patients with COVID-19, fifteen trials
were conducted. Breathing was simulated as a sinusoidal
pattern with frequency varied between 0.1 and 0.5 Hz in
increments of 0.1Hz. Three breathing depths were selected:
3.75, 5, 10mm. The motion of the drone was simulated as a
sinusoid with a frequency of 0.2Hz and an amplitude of
10mm peak-to-peak. To account for DC drift, the low-noise
amplifiers (LNAs) were operated in AC-coupling mode, and
samples were centered on the y-axis using a mean-subtraction
method. An RLS filter with an order of 32 was used. Fig. 4a
illustrates the reconstructed signal for a reference respiration
signal, measured by the system. The reference signal was
measured using the same system, with no simulated drone
motion. Then a motion was induced, and the RLS filter
reduced noise from the motion of the drone. It was assumed
that the motion of the breathing simulator is repeatable
enough to serve as a reference signal to compare the filtered
signal against for accuracy purposes. Fig 4b shows the result
of the trials for a breathing depth of Smm, with distinct peaks
present at each corresponding frequency. However, there is
still a peak at 0.2Hz corresponding with the motion from the
simulated drone movement that has not been completely
filtered. Fig 4c. illustrates the ability to distinguish varying
breathing depths.

lactual frequency — reconstructed frequency|

=100 —
accuracy ( actual frequency

*100)

With an average calculated error of 86% in the frequency
domain, the system is capable of accurately determining
frequency within 0.1Hz and amplitude within 0. lmm. Further
work should be done to vary the noise motion to include more
random and realistic noise and developing a wireless data
acquisition system to collect data from a radar system flying
on a UAV. Detection in this exploratory work is limited at

lower frequencies by the choice of ac-coupling with a high-
pass filter. If the noise is significantly higher than the breather
amplitude, the peak is still detected, but is not the primary
peak. A dc-coupled system is more complicated to implement
but would mitigate low frequency distortion.

IV. CONCLUSION

UAV detection of respiratory disorders is dependent on the
ability to detect slight variations in frequency and amplitude
that distinguish healthy from distressed breathing. Motion
compensation algorithms, such as the RLS algorithm,
suppress simulated noise, but only to a certain extent. If the
noise is within 0.1Hz and on the same order as the signal,
distinguishing the two is difficult, but not impossible. In
realistic scenarios, it is unlikely that drone motion signal will
be periodic and persist in the same frequency range as the
breathing signal. The rapid, and shallow breathing that is
typically indicated in COVID-19 patients is detectable and
distinguishable in a simulated environment. Further testing on
a flying drone should prove the robustness of the RLS
algorithm when faced with real flight motion.
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