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Abstract— Unmanned Aerial Vehicles (UAVs) with onboard 
Doppler radar sensors can be used for health reconnaissance 
including the remote detection of respiratory patterns 
associated with COVID-19. While respiratory diagnostics have 
been demonstrated with radar, the motion of the airborne 
introduces motion interference. An adaptive filter method is 
applied here which uses a second radar facing a non-moving 
surface (ceiling) for a nose cancellation reference signal. 
Variations in respiratory rate and displacement have been 
demonstrated which is consistent with the need for detecting 
tachypnea associated with COVID-19.

Keywords— Doppler radar, triage, adaptive filter, COVID-19, 
respiration

I. In t r o d u c t i o n

With modern advances in technology, unmanned aerial 
vehicles (UAVs), commonly referred to as drones, have 
become increasingly accessible and applicable for 
reconnaissance and triage [1]. Commercially available UAVs 
can travel anywhere a person can and beyond, only limited by 
communications range and battery life, and can relay triage 
relevant information to safely-isolated human responders via 
optical imagery. While the efficacy of UAV enhanced triage 
has been supported in several investigations [2] these studies 
were carried out under optimal visibility. UAV-borne radar 
motion sensors could potentially enhance reconnaissance 
capability as radar can detect respiration and heart rates in the 
dark, through smoke, and through loose clothing [3]. 
Furthermore, accurate radar tracking o f cardiopulmonary 
activity can provide a sensitive measure o f health suitable for 
diagnostic screening o f subjects that may have respiratory 
disorders such as COVID-19.

The use of radar to sense respiratory variations has been 
well established, including measurements o f respiratory sinus 
arrhythmia (RSA) and tidal volume, as well as the recognition 
of obstructive sleep apnea events [4-7]. Furthermore, radar 
measurements o f respiration have been successfully 
demonstrated for authentication o f the identity o f an 
individual from a group [8]. Respiratory patterns associated 
with COVID-19 are considered to be generally distinct from 
those associated with flu or the common cold with many 
infected persons exhibiting Tachypnea [9]. While normal 
breathing involves rates o f about 12 breaths/min and chest 
displacement on the order of 1 cm, COIVID-19 related rates 
can be 20-30 breaths/min with chest displacements of 0.5 cm 
or less. While radar respiratory measurements are straight 
forward for stationary systems, UAV-based radar systems 
must compensate for interference imposed by the motion o f 
the UAV on the measurement o f desired subject motion.

Earlier research [10] utilized a second radar to measure 
drone movement and stabilize UAV motion through error 
feedback. This method requires access to drone flight control 
which is not typically available in commercial systems. 
Another study [11] used empirical mode decomposition to 
distinguish radar movement from the cardiopulmonary 
movement in the radar signal, relying on foreknowledge o f the 
discerning characteristics o f both the desired and noise 
signals. Thus, i f  the signals are slightly different than 
expected, accuracy is reduced, as it would also be reduced in 
a real-time implementation which is a necessity in triage.

II. Th e o r y

A. Doppler Radar fo r Physiological Sensing

Despite these shortcomings, the studies strongly indicate
that with an accurate reference for the characteristics o f the 
noise, obtained in real-time with the use of a second radar, the 
respiratory signal could be accurately reconstructed. Recently, 
an adaptive filter method was applied to compensate for 
experimentally simulated UAV-platform motion while 
successfully extracting the respiratory rate o f a phantom 
mover [12-13]. In this study the efficacy of an adaptive filter 
approach is examined for tracking both the respiratory rate and 
respiratory displacement variations associated with COVID- 
19, as illustrated in Fig. 1. An RLS adaptive filter is applied to 
data from experiments with a robotic respiration phantom 
measured by a radar supported by a robotic shaker, and 
respiration rate variations rates from 0.2Hz to 0.5Hz were 
accurately recognized as well as displacement variations o f

Breathing Motion

Floor
Fig. 1. Indoor drone radar concept for search and rescue operation and it can 
also be used in hospital environment. Radar 1 is attached to the drone for 
measuring drone motion and breathing motion while Radar 2 (attached to 
the ceiling) measures only drone motion. From [12]
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3.75, 5.0 and 10mm. Resolution of these variations is on the 
order of 0.1hz and 1mm or better.

B. Theory ofDoppler Radar fo r Physiological
SensingRadar
A typical continuous wave (CW) Doppler radar transmits 

an electromagnetic signal towards a human target 
continuously. When the signal is reflected, the phase change 
of the signal occurs directly proportional to the movement of 
the chest surface due to cardio-respiratory activities [3]. In a 
stationary CW radar platform, clutter can be detected only as 
a DC offset [12]. However, in UAV radar respiration sensing, 
the platform itself creates motion artifacts. The combined 
motion is detected by the radar sensor in a UAV platform is 
[12]:

^composite (t) = cos (^p s in C ^ t) + ^ s in ( w 2t)), (1)

Where, is the angular frequency for the tiny movement of 
the chest surface and w2 is the undesired platform motion that 
must be suppressed to extract respiratory information. The 
indoor drone radar concept is shown in Fig. 1. The proposed 
system can also be employed in a hospital environment by 
pointing secondary radar at the ceiling or the floor, but an 
angle of view outside of the radar.

C. Adaptive Filters
An Adaptive noise canceller (ANC) is a popular technique 

mostly employed in the dual-microphone noise-canceling 
system [13]. Generally, it receives a noise corrupted signal and 
independent noise signal as an input. The output of the ANC 
system is represented as:

s' — s + n — n' (2)
s'2 = s2 + (n — n ')2 + 2s(n — n'). (3)

Here, the noise, input n0, passes through a filter to produce 
an output n’. Taking ensemble average on both sides and 
assuming that s is uncorrelated with n0 and n' we have:

F [s '2] = F[s2] + E[(n — n ')2] + 2E[s(n — n ')] (4)
= E[s2] + E[(n — n f 2] . (5)

Fundamentally, the goal of the adaptive filter is to minimize 
E[s'2] as signal power E[s2] w ill be unaffected by adjusting 
different filter coefficients. There are different popular 
algorithms in, among them least mean square (LMS) and 
recursive least square (RLS) is mostly used [14]. The LMS 
filter tries to adapt its coefficient at one iteration. On the other 
hand, RLS recursively finds the filter coefficients that 
minimize the linear least square function of the input signal 
[14]. In this work, we employed the RLS technique as in our 
prior attempt it outperformed with LMS for motion 
compensation [12].

III. Ex p e r ie m n t  a n d  Da t a

Drone Motion Drone Motion + Breathing Motion

Fig. 2. Simulated drone and mechanical breather, with two radars. Note 
Radar 2 is pointed towards a reference surface to gather noise for the adaptive 
filter.

Two 24GHz-KLC-1LP monopulse radar modules were 
used, each with two channels (I, Q) and connected to Low 
Noise Amplifiers (LNA) SR560. The LNAs were AC-coupled 
with a gain of 500 and low-pass filtered with a cut-off 
frequency of 3 Hz. The LNA outputs were connected to a NI 
DAQ which connected to the computer through a USB 
interface. Finally, a customized MATLAB recording interface 
was used to record the signals. The two radar modules were 
mounted on a linear actuator, with one pointing towards the 
simulated breather, and the other to a reference surface, 
simulating indoor overhead cover. Fig. 2 represents the setup.

Fig. 3. Raw data capture from DAQ before any filtering or processing for 
Radar 1 and 2, each with I and Q channel. Note zero drone movement, 
followed by initialization and then sinusoidal drone movement.

Each recording consisted of thirty seconds of reference 
data with only the phantom breather moving, followed by the 
initialization of the simulated UAV movement (Fig. 3). The 
sampling rate was 500Hz, with a range of -10 to 10 V.
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Fig. 4a. Frequency sweep plot from 0.2Hz to 0.5Hz with phantom breather 
displacement of 5mm. Note interference of noise signal at 0.2Hz makes 
detection at 0.3Hz unclear.
Fig. 4b. Amplitude sweep at 0.4Hz. Note Corresponding peak reduction for 
decreased mover displacement.
Fig 4c. Demodulated and filtered signal from Radar 2 compared to the 
reference measurement. Notice slight variations due to noise signals still 
present.

To determine i f  the system is capable o f distinguishing 
variations in breathing rate and depth necessary to detect the 
changes that occur in patients with COVID-19, fifteen trials 
were conducted. Breathing was simulated as a sinusoidal 
pattern with frequency varied between 0.1 and 0.5 Hz in 
increments of 0.1Hz. Three breathing depths were selected: 
3.75, 5, 10mm. The motion o f the drone was simulated as a 
sinusoid with a frequency of 0.2Hz and an amplitude of 
10mm peak-to-peak. To account for DC drift, the low-noise 
amplifiers (LNAs) were operated in AC-coupling mode, and 
samples were centered on the y-axis using a mean-subtraction 
method. An RLS filter with an order of 32 was used. Fig. 4a 
illustrates the reconstructed signal for a reference respiration 
signal, measured by the system. The reference signal was 
measured using the same system, with no simulated drone 
motion. Then a motion was induced, and the RLS filter 
reduced noise from the motion of the drone. It was assumed 
that the motion of the breathing simulator is repeatable 
enough to serve as a reference signal to compare the filtered 
signal against for accuracy purposes. Fig 4b shows the result 
of the trials for a breathing depth of 5mm, with distinct peaks 
present at each corresponding frequency. However, there is 
still a peak at 0.2Hz corresponding with the motion from the 
simulated drone movement that has not been completely 
filtered. Fig 4c. illustrates the ability to distinguish varying 
breathing depths.
accuracy = 100 —

|actual frequency — reconstructed frequencyl 
actual frequency

* 100)

With an average calculated error of 86% in the frequency 
domain, the system is capable of accurately determining 
frequency within 0.1Hz and amplitude within 0.1mm. Further 
work should be done to vary the noise motion to include more 
random and realistic noise and developing a wireless data 
acquisition system to collect data from a radar system flying 
on a UAV. Detection in this exploratory work is limited at

lower frequencies by the choice o f ac-coupling with a high- 
pass filter. I f  the noise is significantly higher than the breather 
amplitude, the peak is still detected, but is not the primary 
peak. A  dc-coupled system is more complicated to implement 
but would mitigate low frequency distortion.

IV. Co n c l u s io n

UAV detection of respiratory disorders is dependent on the 
ability to detect slight variations in frequency and amplitude 
that distinguish healthy from distressed breathing. Motion 
compensation algorithms, such as the RLS algorithm, 
suppress simulated noise, but only to a certain extent. I f  the 
noise is within 0.1Hz and on the same order as the signal, 
distinguishing the two is difficult, but not impossible. In 
realistic scenarios, it is unlikely that drone motion signal w ill 
be periodic and persist in the same frequency range as the 
breathing signal. The rapid, and shallow breathing that is 
typically indicated in COVID-19 patients is detectable and 
distinguishable in a simulated environment. Further testing on 
a flying drone should prove the robustness o f the RLS 
algorithm when faced with real flight motion.
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