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Abstract — Unmanned Aerial Vehicles (UAVs) have 

demonstrated efficacy as a platform for remote life sensing in post-

disaster search and rescue applications. Radar-assisted UAV 

respiration motion sensing technology also shows promise yet a 

significant technological challenge remains associated with 

interfering motion artefacts from the moving UAV platform. The 

feasibility of integrating an adaptive filter approach for the 

compensation of platform motion artefacts is investigated here for 

the extraction of respiratory motion signatures. A 24-GHz dual 

radar system was attached to a mechanical mover to emulating 

motion artefacts while measuring the motion of a robotic 

breathing phantom designed to reproduce breathing motion 

patterns. Recursive least square (RLS) and a least mean square 

(LMS) adaptive filter algorithms were employed to test efficacy for 

extracting respiratory rate from the motion corrupted breathing 

signal. Experimental results demonstrated that the RLS 

performed best with an accuracy of 98.24% for extracting the 

frequency of the robotic breathing phantom mover. The proposed 

system has several potential applications including military, 

humanitarian, and post-disaster search and rescue operations.  

Keywords — Adaptive filter, recursive least square, least mean 

square, motion compensation. 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have demonstrated 

potential for finding trapped or injured people in post-disaster 

rescue scenarios and can potentially aid with triage assessments 

using an on-board Radar sensor for detecting vital signs [1]. 

UAV-borne radar sensors can provide a broad range of 

information about victims which can be useful for remote 

assessment by rescuers [2]. Non-contact sensing of 
physiological motion using stationary microwave Doppler 

radar has shown efficacy with proof of concepts demonstrated 

for vital signs sensing in various applications over the past four 

decades, and could be a powerful triage assessment tool if 

implemented on a mobile platform like a UAV. However, 

mobile platform motion will induce extraneous noise which 

will add an undesired phase component to the radar baseband 

signal making the extraction of respiratory information much 

more challenging [3,4]. 

Prior UAV-borne vital signs radar research has focused on 

the use of the received signal strength indicator (RSSI) and RF 

Direction of Arrival (DOA) for commercial radar modules to 

provide flight control feedback to stabilize the air-borne 
platform [4-5]. While the results were promising, the extent to 

which the platform can be stabilized is not sufficient for 

challenging real-world environmental conditions and ultimately 

requires additional noise compensation signal processing.  

Suppression of clutter noise has also been considered, with the 

assumption of a stable radar platform [6]. While optical image-

processing systems have been created to measure respiration 

and heart rates from a remotely operated vehicle (i.e. drone), 

such systems are will likely prove inadequate under common 

post-disaster conditions such as darkness, fog, and smoke, and 

cannot resolve respiratory motion when subjects are wearing 
loose clothing [7]. Radar measurements are unaffected by light 

conditions and can penetrate normal clothing. One significant 

limitation of using radar on a moving drone to measure vital 

signs is that the movement of the drone will corrupt the 

measurement of heart and respiratory motion. Thus, a reliable 

and robust motion compensation technique is required to bring 

this sensor technology into real world implementations.  

The use of an adaptive filter for motion compensation for 

UAV-borne remote radar respiration sensing is investigated 

here, with preliminary results based on a testbed using robotic 

movers to simulate drone and breathing motion reported. An 

indoor scenario is examined, with a secondary radar used to 
track UAV motion with respect to a stationary clutter point 

(ceiling) to provide a reference which can be cancelled from the 

primary radar measurement of a respiration-motion target. An 

approach for using least mean square (LMS) and recursive least 

square (RLS) adaptive filter algorithms is described, with 

performance compared. The RLS algorithm performed best 

with a respiration frequency measurement accuracy of 98.24%.   

 

A. Theory of Doppler Radar Transceiver  

A typical continuous wave (CW) Doppler radar vital signs 

transceiver sends a continuous electromagnetic signal towards 

a human subject and measures the phase change of the reflected 

signal associated with physiological motion [6-8]. The phase 

change of the reflected signal is directly proportional to the 
minute movement of the chest surface due to cardio-respiratory 
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activities [3,4,6]. In a stationary CW system, stationary clutter 

is detected only as a dc offset. The radar transmits the waveform 

as:  

               𝑇(𝑡) = 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡𝑡 + 𝜙(𝑡))                            (1) 

and the received waveform is:  

            𝑅(𝑡) = 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡 𝑡 + 𝑝(𝑡) + 𝜃 + 𝜙(𝑡 −
2𝑅

𝑐
)  ,        (2) 

where, A is the amplitude, 𝑓𝑡  is the transmitter frequency, 𝜙(𝑡) 

is the transmitter phase offset, 𝜃  is the fixed phase offset 

inherent in the receiver hardware, 𝑝(𝑡) is the phase modulation 

from the respiration motion and 𝜙(𝑡 − 2𝑅/𝑐) is the phase delay 

due to roundtrip signal propagation. For CW Doppler radar, the 

phase change of the backscattered signal from the target is the 

critical measurement. Defining the physiological motion of the 

thorax expanding and contracting as 𝑥(𝑡), the phase modulation 

detected by radar is defined as: 𝑝(𝑡) =
4𝜋

𝜆
𝑥(𝑡). After down-

conversion of the receiver signal the simplified form is: 

                      𝑆𝑟𝑒𝑠𝑝(𝑡) = cos(
4𝜋𝐴

𝜆
sin(𝜔1𝑡))                           (3) 

and the platform signal is represented as:  

                           𝑆𝑝𝑙𝑎𝑡 = cos (
4𝜋𝐵

𝜆
sin(𝜔2𝑡)) ,                        (4) 

where B is the platform motion amplitude. The combined 

composite motion of detected by the radar sensor in an UAV 

platform is:  

        𝑆𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒(𝑡) = cos (
4𝜋𝐴

𝜆
sin(𝜔1𝑡) +

4𝜋𝐵

𝜆
sin(𝜔2𝑡)),      (5) 

where, 𝜔1  is the angular frequencies for the respiration signal 

to be recovered and 𝜔2  is the undesired platform motion that  

must be supressed. For an indoor triage radar application, a 

primary radar module would be mounted on the bottom of the 

drone, facing the subject, and a secondary radar would be 

mounted on top of the drone, facing the ceiling. The primary 

radar captures the breathing movement combined with the 

movement of the drone, while the second radar module captures 

only the movement of the drone. Fig. 1 illustrates the indoor  

 
Fig. 1. Concept for an indoor search and rescue drone. One radar can be attached 

to the UAV (drone) bottom, facing the subject (Radar 1), while the second is 

attached on top facing the ceiling (Radar 2). Radar 1 measures drone motion 

and breathing motion while Radar 2 measures only drone motion. An adaptive 

filter can use Radar 2 data as a basis to filter drone motion from Radar 1 to 

produce a signal of only breathing motion. 

 

drone radar concept. In effect, the clutter reflection associated 

with the stationary environment approximates an error 

correction signal to compensate for drone-motion noise. The 

system could potentially also operate in locations without a 

ceiling by pointing the secondary radar at the floor, but an angle 

which keeps the subject out of its view. 

B. Theory of Adaptive Filter Techniques   

       An adaptive noise canceller (ANC) has a primary input and 

a reference input. The primary input receives a signal, s, that is 

corrupted by the presence of noise, n, which is uncorrelated 
with the signal [9-12]. Fig. 2 illustrates the adaptive noise 

cancellation technique. The reference input receives a noise 𝑛0 

uncorrelated with the signal but correlated in some way with the 

noise, n. The noise 𝑛0  passes through a filter to produce an 

output 𝑛′ that is a close estimate of the signal noise, n. The noise 

estimate is subtracted from the corrupted signal to produce an 

estimate of the signal 𝑠′. The output of the ANC system is:  

        
                      𝑠′ = 𝑠 + 𝑛 − 𝑛′                                             (6) 

                  
𝑠′2 = 𝑠2 + (𝑛 − 𝑛′)2 + 2𝑠(𝑛 − 𝑛′)   .                   (7) 

  

      Taking expectation on both sides and assuming s is 

uncorrelated with 𝑛0 𝑎𝑛𝑑 𝑛′ we have 
 

         𝐸[𝑠′2] = 𝐸[𝑠2] + 𝐸[(𝑛 − 𝑛′)2] + 2𝐸[𝑠(𝑛 − 𝑛′)]         (8) 

                     = 𝐸[𝑠2] + 𝐸[(𝑛 − 𝑛′)2] .                                    (9) 
       

      The basic adaptive filtering technique is based on adjusting 

the filter coefficients to minimize 𝐸[𝑠′2] as signal power 𝐸[𝑠2] 
will be unaffected [10-12]. 

                  min 𝐸[𝑠′2] = 𝐸[𝑠2] + min 𝐸[(𝑛 − 𝑛′)2]              (10) 
  

     There are two popular algorithms for minimization of 𝐸[𝑠′2]  
one is least mean square (LMS) and another is recursive least 

square (RLS) [9-12]. An LMS filter tries to adapt its 

coefficients based on the differences between the desired signal 
and actual signal minimum differences [9-12]. On the other  

Fig. 2.  Block diagram illustration of the generalized adaptive noise cancellation 

(ANC) method.  

 

hand, RLS recursively finds the filter coefficients that 

minimizes the weighted linear least square cost function of the 

input signals [11-12].  

   

        Two 24-GHz KMC4 monopulse radar modules were used, 

each with two channels (𝐼1, 𝑄1 ) connected to low noise 

amplifiers (LNA’s) (SR560). The LNA’s were ac-coupled with 

gain of 200, and low-pass filtered with cut-off frequency of 30 

Hz, and the LNA outputs were connected to a DAQ. Finally, a  
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Fig. 3.  Concept, (a), and experimental setup, (b), for measurements using two 

24-GHz K-MC4 radar receivers. The radar transceivers were mounted on one 

mechanical mover, and a second respiratory phantom mover was used to 

emulate respiration motion.  

 

customized MATLAB interface was used to capture the signals. 

The two radar modules were mounted on one mover which 

represented drone motion. One radar module was pointed at a 

second programmable robotic phantom mover, which was  

designed to simulate dynamic respiratory motions associated 

with breathing [13]. The other radar module faced a stationary 

wall, which represented the ceiling or another non-moving  
reference surface. Fig. 3 illustrates the concept and the 

hardware setup for the experiment.  

 

      In order to assess the effectiveness of the LMS and RLS 

filter designs, initial measurement simulations were conducted 

for both sinusoidal and pulse breathing motion signals at a 
frequency of 0.2 Hz. For dc drift compensation, the LNAs were 

ac-coupled and the mean part of the signal from the samples 

was removed in MATLAB post processing.   An RLS filter with 

an order of 32 and an initial covariance estimate of 0.1 was 

implemented, along with an LMS filter with an order of 32. Fig. 

4 illustrates the reconstructed signal for a pure sinusoidal 

simulated respiration signal input and a random number 

generated noise signal, achieved using the RLS filter. The 

effectiveness of the LMS and RLS filters were both also tested 

with real data experiments. An additional radar module was not 

available to make a simultaneous respiration-motion-only 

reference measurement. However, it was assumed that the 
respiration phantom mover had a regular, repeating movement 

pattern, and so an initial measurement its motion could be made 

with the drone motion mover turned off, and used as a reference 

signal to compare with the reconstructed breathing signal once 

the drone mover was turned on. Fig. 5 shows a plot of the 

experimental result for the reconstructed signal using the RLS  

adaptive filter. In the plot it is evident that the reconstructed 

signal using the RLS filter closely matches the original signal 

recorded during initial reference measurement. For comparative 

analysis between two different adaptive filter algorithms, the 

mean square error and cross-correlation coefficient of the signal 

were also investigated. Recovery of the oscillation frequency of 

the respiration phantom mover was targeted as it represented  

      
Fig. 4.  Respiration motion was initially simulated with sinusoidal motion, (a), 

and an RLS filter was applied to reconstruct the breathing motion signal from 

the combined mixture of signal and noise, (d). 

 Fig. 5. Experimental results using an RLS adaptive filter with robotic movers. 

Breather motion episode, (a), platform motion or simulated drone movement 

(b), and combined breather motion and platform motion are shown, along with 

the reconstructed signal obtained using the adaptive filter, (d).   

 

the breathing rate of interest which would be useful for triage 

decisions. A Fast Fourier transform (FFT) was used on the 

reconstructed signal to extract the highest vibrational frequency 

content using the LMS and RLS algorithms. Fig. 6 illustrates 

the reconstructed signal frequency domain plots. The actual 

respiration phantom mover frequency was around 1 Hz. The 

performance metric for both implemented adaptive filters was 

calculated based on the following equation:  

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 − (
|𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦−𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦|

𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
∗ 100) 

     
(11)
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Fig. 6. Reconstructed time domain signals using an RLS filter, (a), and an LMS 

filter, (b). The FFT plots for the signal reconstructed using an RLS filter, (c), 

and an LMS filter, (d), are also shown.    

 

  After reconstructing the signal using the RLS filter, the 

extracted frequency was 1.02 Hz which matches the actual 1 Hz 

motion. For the LMS filter the extracted signal frequency was 

1.12 Hz. For the comparative analysis, an FFT was performed 

on 6000 one-minute data samples to extract the breathing rate 
information. Compared to the LMS algorithm, the RLS 

approach offers less error which offsets the fact that it requires 

more computational feedback. More computational feedback 

provides better adaptation of filter coefficients hence provides 

less error [9-13].  

V. CONCLUSION 

The feasibility of using an adaptive filtering approach for 

motion compensation in respiration motion measurements from 

a moving UAV platform was evaluated. From the experimental 

results using robotic movers to represent UAV and respiratory 

motion for an indoor scenario, it was demonstrated that by 
incorporating the RLS algorithm in a Doppler radar 

physiological monitoring system, breathing rate can be 

extracted from motion corrupted signals when a secondary 

radar targeting stationary clutter is used to separately assess 

UAV motion. The tested RLS algorithm outperformed other 

algorithms due to its iterative feedback mechanism for adapting 

appropriate filter coefficients, resulting in an accuracy of 

98.24%. The results indicate promise for use of this method in 

suppressing the interfering motion of a UAV platform when 

making radar measurements of respiratory motion for a subject 

situated beneath the moving aircraft.  
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