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Abstract — Unmanned Aerial Vehicles (UAVs) have
demonstrated efficacy as a platform for remote life sensing in post-
disaster search and rescue applications. Radar-assisted UAV
respiration motion sensing technology also shows promise yet a
significant technological challenge remains associated with
interfering motion artefacts from the moving UAV platform. The
feasibility of integrating an adaptive filter approach for the
compensation of platform motion artefacts is investigated here for
the extraction of respiratory motion signatures. A 24-GHz dual
radar system was attached to a mechanical mover to emulating
motion artefacts while measuring the motion of a robetic
breathing phantom designed to reproduce breathing motion
patterns. Recursive least square (RLS) and a least mean square
(LMS) adaptive filter algorithms were employed to test efficacy for
extracting respiratory rate from the motion corrupted breathing
signal. Experimental results demonstrated that the RLS
performed best with an accuracy of 98.24% for extracting the
frequency of the robotic breathing phantom mover. The proposed
system has several potential applications including military,
humanitarian, and post-disaster search and rescue operations.

Keywords — Adaptive filter, recursive least square, least mean
square, motion compensation.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have demonstrated
potential for finding trapped or injured people in post-disaster
rescue scenarios and can potentially aid with triage assessments
using an on-board Radar sensor for detecting vital signs [1].
UAV-borne radar sensors can provide a broad range of
information about victims which can be useful for remote
assessment by rescuers [2]. Non-contact sensing of
physiological motion using stationary microwave Doppler
radar has shown efficacy with proof of concepts demonstrated
for vital signs sensing in various applications over the past four
decades, and could be a powerful triage assessment tool if
implemented on a mobile platform like a UAV. However,
mobile platform motion will induce extraneous noise which
will add an undesired phase component to the radar baseband
signal making the extraction of respiratory information much
more challenging [3,4].

Prior UAV-borne vital signs radar research has focused on
the use of the received signal strength indicator (RSSI) and RF
Direction of Arrival (DOA) for commercial radar modules to
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provide flight control feedback to stabilize the air-borne
platform [4-5]. While the results were promising, the extent to
which the platform can be stabilized is not sufficient for
challenging real-world environmental conditions and ultimately
requires additional noise compensation signal processing.
Suppression of clutter noise has also been considered, with the
assumption of a stable radar platform [6]. While optical image-
processing systems have been created to measure respiration
and heart rates from a remotely operated vehicle (i.e. drone),
such systems are will likely prove inadequate under common
post-disaster conditions such as darkness, fog, and smoke, and
cannot resolve respiratory motion when subjects are wearing
loose clothing [7]. Radar measurements are unaffected by light
conditions and can penetrate normal clothing. One significant
limitation of using radar on a moving drone to measure vital
signs is that the movement of the drone will corrupt the
measurement of heart and respiratory motion. Thus, a reliable
and robust motion compensation technique is required to bring
this sensor technology into real world implementations.

The use of an adaptive filter for motion compensation for
UAV-borne remote radar respiration sensing is investigated
here, with preliminary results based on a testbed using robotic
movers to simulate drone and breathing motion reported. An
indoor scenario is examined, with a secondary radar used to
track UAV motion with respect to a stationary clutter point
(ceiling) to provide a reference which can be cancelled from the
primary radar measurement of a respiration-motion target. An
approach for using least mean square (LMS) and recursive least
square (RLS) adaptive filter algorithms is described, with
performance compared. The RLS algorithm performed best
with a respiration frequency measurement accuracy of 98.24%.

II. THEORY AND BACKGROUND

A. Theory of Doppler Radar Transceiver

A typical continuous wave (CW) Doppler radar vital signs
transceiver sends a continuous electromagnetic signal towards
a human subject and measures the phase change of the reflected
signal associated with physiological motion [6-8]. The phase
change of the reflected signal is directly proportional to the
minute movement of the chest surface due to cardio-respiratory
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activities [3,4,6]. In a stationary CW system, stationary clutter
is detected only as a dc offset. The radar transmits the waveform
as:

T(t) = Acos(2rfit + ¢ (b)) @)
and the received waveform is:
R(t) = Acos@nfit +p() + 0+t =) . ()

where, A4 is the amplitude, f; is the transmitter frequency, ¢ (t)
is the transmitter phase offset, 6 is the fixed phase offset
inherent in the receiver hardware, p(t) is the phase modulation
from the respiration motion and ¢ (t — 2R /c) is the phase delay
due to roundtrip signal propagation. For CW Doppler radar, the
phase change of the backscattered signal from the target is the
critical measurement. Defining the physiological motion of the
thorax expanding and contracting as x(t), the phase modulation

detected by radar is defined as: p(t) 4THx(t). After down-
conversion of the receiver signal the simplified form is:

Sresp (t) = cos(Z2sin(w; 1)) €)
and the platform signal is represented as:
Spiat = €05 (52sin(w, 1)) , @)

where B is the platform motion amplitude. The combined
composite motion of detected by the radar sensor in an UAV
platform is:

4ATTA . 4B .
Scomposite (t) = cos (% Sln(wl t) + %SIH((’JZ t)): ®)

where, w, is the angular frequencies for the respiration signal
to be recovered and w, is the undesired platform motion that

must be supressed. For an indoor triage radar application, a
primary radar module would be mounted on the bottom of the
drone, facing the subject, and a secondary radar would be
mounted on top of the drone, facing the ceiling. The primary
radar captures the breathing movement combined with the
movement of the drone, while the second radar module captures
only the movement of the drone. Fig. 1 illustrates the indoor
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Fig. 1. Concept for an indoor search and rescue drone. One radar can be attached
to the UAV (drone) bottom, facing the subject (Radar 1), while the second is
attached on top facing the ceiling (Radar 2). Radar 1 measures drone motion
and breathing motion while Radar 2 measures only drone motion. An adaptive
filter can use Radar 2 data as a basis to filter drone motion from Radar 1 to
produce a signal of only breathing motion.

drone radar concept. In effect, the clutter reflection associated
with the stationary environment approximates an error
correction signal to compensate for drone-motion noise. The
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system could potentially also operate in locations without a
ceiling by pointing the secondary radar at the floor, but an angle
which keeps the subject out of its view.

B. Theory of Adaptive Filter Techniques

An adaptive noise canceller (ANC) has a primary input and
a reference input. The primary input receives a signal, s, that is
corrupted by the presence of noise, n, which is uncorrelated
with the signal [9-12]. Fig. 2 illustrates the adaptive noise
cancellation technique. The reference input receives a noise n,
uncorrelated with the signal but correlated in some way with the
noise, n. The noise n, passes through a filter to produce an
output n’ thatis a close estimate of the signal noise, . The noise
estimate is subtracted from the corrupted signal to produce an
estimate of the signal s’. The output of the ANC system is:

(6)
()

Taking expectation on both sides and assuming s is
uncorrelated with ny and n' we have

s'’=s+n—n'

s?2=s2+(m—-n")2+2s(n—n') .

E[s’*] = E[s?] + E[(n — n")?] + 2E[s(n — n)]
= E[s?]+ E[(n —n")?].

(®)
)

The basic adaptive filtering technique is based on adjusting
the filter coefficients to minimize E [s'?] as signal power E[s?]
will be unaffected [10-12].

min E[s"?] = E[s?] + min E[(n — n")?] (10)
There are two popular algorithms for minimization of E[s'?]
one is least mean square (LMS) and another is recursive least
square (RLS) [9-12]. An LMS filter tries to adapt its
coefficients based on the differences between the desired signal
and actual signal minimum differences [9-12]. On the other

Adaptive Noise Canceller Output

Primary |
Signal _input, W\ ! signal,
Source S*N = —
! Filter
Reference. output,
Noise  input, "
Source Z i Adaptive Filter
o
Error, ¢

Fig. 2. Block diagram illustration of the generalized adaptive noise cancellation
(ANC) method.

hand, RLS recursively finds the filter coefficients that
minimizes the weighted linear least square cost function of the
input signals [11-12].

III. EXPERIMENTAL SETUP AND DATA COLLECTION

Two 24-GHz KMC4 monopulse radar modules were used,
each with two channels (/;,Q;) connected to low noise
amplifiers (LNA’s) (SR560). The LNA’s were ac-coupled with
gain of 200, and low-pass filtered with cut-off frequency of 30
Hz, and the LNA outputs were connected to a DAQ. Finally, a
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Fig. 3. Concept, (a), and experimental setup, (b), for measurements using two
24-GHz K-MC4 radar receivers. The radar transceivers were mounted on one
mechanical mover, and a second respiratory phantom mover was used to
emulate respiration motion.

customized MATLAB interface was used to capture the signals.
The two radar modules were mounted on one mover which
represented drone motion. One radar module was pointed at a
second programmable robotic phantom mover, which was
designed to simulate dynamic respiratory motions associated
with breathing [13]. The other radar module faced a stationary
wall, which represented the ceiling or another non-moving
reference surface. Fig. 3 illustrates the concept and the
hardware setup for the experiment.

IV. RESULTS

In order to assess the effectiveness of the LMS and RLS
filter designs, initial measurement simulations were conducted
for both sinusoidal and pulse breathing motion signals at a
frequency of 0.2 Hz. For dc drift compensation, the LNAs were
ac-coupled and the mean part of the signal from the samples
was removed in MATLAB post processing. An RLS filter with
an order of 32 and an initial covariance estimate of 0.1 was
implemented, along with an LMS filter with an order of 32. Fig.
4 illustrates the reconstructed signal for a pure sinusoidal
simulated respiration signal input and a random number
generated noise signal, achieved using the RLS filter. The
effectiveness of the LMS and RLS filters were both also tested
with real data experiments. An additional radar module was not
available to make a simultaneous respiration-motion-only
reference measurement. However, it was assumed that the
respiration phantom mover had a regular, repeating movement
pattern, and so an initial measurement its motion could be made
with the drone motion mover turned off, and used as a reference
signal to compare with the reconstructed breathing signal once
the drone mover was turned on. Fig. 5 shows a plot of the
experimental result for the reconstructed signal using the RLS
adaptive filter. In the plot it is evident that the reconstructed
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signal using the RLS filter closely matches the original signal
recorded during initial reference measurement. For comparative
analysis between two different adaptive filter algorithms, the
mean square error and cross-correlation coefficient of the signal
were also investigated. Recovery of the oscillation frequency of
the respiration phantom mover was targeted as it represented
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Fig. 4. Respiration motion was initially simulated with sinusoidal motion, (a),
and an RLS filter was applied to reconstruct the breathing motion signal from
the combined mixture of signal and noise, (d).
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Fig. 5. Experimental results using an RLS adaptive filter with robotic movers.
Breather motion episode, (a), platform motion or simulated drone movement
(b), and combined breather motion and platform motion are shown, along with
the reconstructed signal obtained using the adaptive filter, (d).

the breathing rate of interest which would be useful for triage
decisions. A Fast Fourier transform (FFT) was used on the
reconstructed signal to extract the highest vibrational frequency
content using the LMS and RLS algorithms. Fig. 6 illustrates
the reconstructed signal frequency domain plots. The actual
respiration phantom mover frequency was around 1 Hz. The
performance metric for both implemented adaptive filters was
calculated based on the following equation:

(Iactual frequency—reconstructed frequency|

*100)
(11)

accuracy = 100 —
actual frequency
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Fig. 6. Reconstructed time domain signals using an RLS filter, (a), and an LMS
filter, (b). The FFT plots for the signal reconstructed using an RLS filter, (c),
and an LMS filter, (d), are also shown.

After reconstructing the signal using the RLS filter, the
extracted frequency was 1.02 Hz which matches the actual 1 Hz
motion. For the LMS filter the extracted signal frequency was
1.12 Hz. For the comparative analysis, an FFT was performed
on 6000 one-minute data samples to extract the breathing rate
information. Compared to the LMS algorithm, the RLS
approach offers less error which offsets the fact that it requires
more computational feedback. More computational feedback
provides better adaptation of filter coefficients hence provides
less error [9-13].

V. CONCLUSION

The feasibility of using an adaptive filtering approach for
motion compensation in respiration motion measurements from
a moving UAV platform was evaluated. From the experimental
results using robotic movers to represent UAV and respiratory
motion for an indoor scenario, it was demonstrated that by
incorporating the RLS algorithm in a Doppler radar
physiological monitoring system, breathing rate can be
extracted from motion corrupted signals when a secondary
radar targeting stationary clutter is used to separately assess
UAV motion. The tested RLS algorithm outperformed other
algorithms due to its iterative feedback mechanism for adapting
appropriate filter coefficients, resulting in an accuracy of
98.24%. The results indicate promise for use of this method in
suppressing the interfering motion of a UAV platform when
making radar measurements of respiratory motion for a subject
situated beneath the moving aircraft.
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