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Abstract 28 

Pluvial flooding in urban regions is a natural hazard that has been rarely investigated. Here, we 29 

evaluate the utility of three radar (Stage IV, MRMS, and GCMRMS) quantitative precipitation 30 

estimates (QPEs) and the SWMM hydrologic-hydraulic model to simulate pluvial flooding 31 

during the North American Monsoon in Phoenix. We focus on an urban catchment of 2.38 km2 32 

and, for four storms, we simulate a set of flooding metrics using the original QPEs and an 33 

ensemble of 100 QPEs characterizing radar uncertainty through a statistical error model. We find 34 

that Stage IV QPEs are the most accurate, while MRMS QPEs are positively biased and their 35 

utility to simulate flooding increases with the gage correction done for GCMRMS. For all radar 36 

products, simulated flood metrics have lower uncertainty than QPEs as a result of rainfall-runoff 37 

transformation. By relying on extensive precipitation and basin datasets, this work provides 38 

useful insights for urban flood predictions. 39 

  40 
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1. Introduction 41 

Flooding is the most common natural hazard, causing large property losses and fatalities 42 

worldwide (Doocy et al., 2013). For example, in the United States (U.S.) major flooding events 43 

have caused an annual average of $9.1 billion in losses and 71 fatalities between 2004-2015 (The 44 

National Academies Press, 2019). The impacts of flooding are particularly significant in urban 45 

regions, due to population growth concentrated in cities (Cohen, 2006; Hossain et al., 2015); land 46 

cover modifications increasing surface imperviousness (W. Zhang et al., 2018); and climate 47 

change potentially causing more severe precipitation extremes (Emanuel, 2005; Prein et al., 48 

2017; Trenberth et al., 2003). Urban areas may be impacted by pluvial, fluvial, and coastal 49 

flooding. Fluvial flooding results from a river overtopping its banks. Coastal flooding occurs 50 

when storm surge or extreme high tides inundate the shore and/or cause inland flooding through 51 

the drainage network. Pluvial flooding takes place when runoff exceeds the capacity of natural 52 

and built drainage systems to collect water and safely transport it to a receiving water body 53 

(Rosenzweig et al., 2018). Here, we focus on urban pluvial flooding, a process that has been 54 

rarely systematically measured and modeled while being a significant driver of urban flooding 55 

(Rosenzweig et al., 2018; The National Academies Press, 2019). While pluvial flooding is often 56 

considered “nuisance” flooding, it can result in building damage, traffic impacts, power outages, 57 

and weakened infrastructure (ten Veldhuis, 2011).  58 

A key resource to mitigate the impacts of urban flooding is the availability of accurate 59 

hydrometeorological forecasts with sufficient lead times. In the U.S. operational flood and flash 60 

food forecasts are provided by the National Weather Service (NWS), an agency of the National 61 

Oceanic and Atmospheric Administration (NOAA). These forecasts rely on quantitative 62 

precipitation estimates (QPEs) and forecasts (QPFs) generated through the integration of weather 63 
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radar data, rain gage observations, and numerical weather prediction models. QPEs and QPFs are 64 

used as forcings for the Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic model 65 

(Z. Zhang et al., 2012), which produces flood forecasts at ~3,600 locations across the nation 66 

(Salas et al., 2018). Flash flood guidance values are also generated in certain regions of the 67 

country (D. Seo et al., 2013). NWS River Forecast Centers (RFCs) and Weather Forecast Offices 68 

(WFOs) use these different sources of hydrometeorological forecasts to issue flood and flash 69 

flood watches and warnings to inform the public on the potential occurrence and danger of these 70 

events (NOAA, 2020). For urban regions where catchments have small response times and no 71 

streams, flood and flash flood watches and warnings are often based solely on QPEs, QPFs, and 72 

expert knowledge of the area.  73 

Despite the low annual precipitation depths, urban pluvial flooding is of significant 74 

concern also in desert cities (Saber et al., 2020; Thakali et al., 2016). These include the Phoenix 75 

metropolitan region in southwestern U.S., which experiences localized convective thunderstorms 76 

with high rain rates during the North American Monsoon (NAM) summer season (Adams & 77 

Comrie, 1997) resulting in floods and flash floods (Yang et al., 2017, 2019). Due to the 78 

combined effect of increasing urbanization and concentration of population, economic activities 79 

and infrastructure, pluvial flooding events in the Phoenix metropolitan area have been 80 

increasingly impacting transportation, electricity delivery, and properties (NOAA, 2021). 81 

Unfortunately, operational forecasts of floods and flash floods driven by NAM convective 82 

storms are challenged by the limited ability to (i) predict the exact location, timing and rain rates 83 

of convective storms with adequate lead time (Li et al., 2003; Rogers et al., 2017) and (ii) 84 

simulate rainfall-runoff processes in urban catchments with highly heterogeneous surface 85 

properties and presence of stormwater infrastructure (Leandro et al., 2016).  86 
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In this study, we contribute towards the improvement of the predictability and modeling 87 

of urban pluvial flooding caused by NAM convective thunderstorms through two main activities. 88 

First, we quantify the uncertainty of three radar-based QPE products in the Phoenix metropolitan 89 

area during the NAM season (July to October of years 2015-2019). This is a necessary 90 

preliminary step to validate and improve both QPEs and QPFs used for hydrologic predictions. 91 

The QPEs include the National Centers for Environmental Prediction (NCEP) Stage IV analysis 92 

(Y. Lin, 2020), the Multi-Radar Multi-Sensor (MRMS) and its gage corrected version 93 

(GCMRMS) system products (J. Zhang et al., 2011, 2016). They all rely on observations of S-94 

band weather radars of the Next Generation Weather Radar (NEXRAD) network that are merged 95 

with other data sources that depend on the product. Radar-derived rainfall estimates are affected 96 

by errors in (i) reflectivity measurements, (ii) relations converting reflectivity into rainfall rate, 97 

and (iii) geometry of the radar measurement field (Villarini and Krajewski, 2010). Although the 98 

integration of other data sources and gage observations in radar QPEs limits these errors, their 99 

effect can still be significant, especially at hourly and sub-hourly resolutions (Nelson et al., 100 

2016). Here, we characterize the uncertainty of these errors using the multiplicative error model 101 

proposed by Ciach, Krajewski, and Villarini (2007). While error models of radar-derived QPEs 102 

have been applied in humid (Habib et al., 2008; Villarini & Krajewski, 2009, 2010b) and 103 

mountainous regions (Germann et al., 2009; Kirstetter et al., 2010), their application has been 104 

limited in arid sites and, to our knowledge, they have never been tested in the desert 105 

southwestern U.S. Moreover, to calibrate the error model, we use observations of 168 rain gages 106 

in an area of 5,930 km2, resulting in one of the largest densities of ground observations used to 107 

apply these statistical models. 108 
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The second main activity of this study is to set up a hydrologic-hydraulic model in an 109 

urban catchment in Phoenix and use it to assess the propagation of uncertainty of the QPE 110 

products into urban flooding predictions. Simulating urban pluvial flooding in detail is a complex 111 

task that requires (i) identifying and collecting data on small-scale spatial heterogeneities of 112 

catchment features (e.g., roads and buildings) and stormwater infrastructure; and (ii) 113 

incorporating these features in a numerical model that simulates rainfall-runoff processes, 114 

surface overland flow, and pipe flow. Progress has been made during the last decade to address 115 

some of the major challenges of urban hydrologic modeling (e.g., Chen et al., 2009; Cristiano et 116 

al., 2017; Grimley et al., 2020; Leandro et al., 2016; S. Zhang & Pan, 2014). However, current 117 

operational hydrologic forecasts by the NWS still rely on models that do not explicitly simulate 118 

urban hydrologic and hydraulic processes. Here, we take advantage of the availability of high-119 

resolution (0.25 m) terrain from Light Detection and Ranging (LiDAR) and a detailed 120 

infrastructure database provided by the City of Phoenix to explore the utility of the EPA Storm 121 

Water Management Model (SWMM) model (Koustas, 2000; Rossman, 2010), which is widely 122 

adopted for engineering design. After setting up both the 1-D and 2-D versions of SWMM in a 123 

basin of 2.38 km2, we select four storm events and conduct rainfall-runoff simulations using (i) 124 

gage rainfall observations; (ii) Stage IV, MRMS, and GCMRMS QPEs; and (iii) an ensemble of 125 

rainfall fields generated with the error model that characterizes the uncertainty of radar-derived 126 

QPEs. In doing so, this study focuses on a source of uncertainty (precipitation) affecting urban 127 

flood modeling that has received less attention compared to other sources, such as topographic 128 

data and parameter specification (e.g., Abily et al., 2016, Deletic et al., 2012). This work 129 

provides valuable support for local flood management and forecasting agencies, as well as to 130 

improve the recently launched NOAA National Water Model (NWM; NOAA, 2016), which 131 
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relies on MRMS QPEs and a distributed hydrologic model to simulate streamflow at ~2.7 132 

million river locations over the continental U.S. at different lead times. 133 

2. Study Area 134 

The metropolitan area of Phoenix, Arizona (Fig. 1a) is one of the fastest growing urban 135 

regions in U.S., with a population that has risen from 1.86 million in 1985 to over 4.75 million in 136 

2018 (Guan et al., 2020). It is located in the southwestern U.S. in a region with a hot desert 137 

climate (BWh, according to the Köppen classification) where the mean annual rainfall and 138 

temperature are 204 mm and 24 °C, respectively (Mascaro, 2017). The rainfall regime is 139 

characterized by marked seasonality, including (1) a summer season from July to September, 140 

when the NAM leads to diurnally-modulated convective thunderstorms with high rainfall 141 

intensities, very short durations (<1 h) and small spatial extents (Balling & Brazel, 1987), and (2) 142 

a dry period from late fall to early summer which is interrupted by occasional cold fronts leading 143 

to widespread storm systems with low-to-moderate rainfall intensity and relatively longer 144 

durations of up to a few days (Sheppard et al., 2002). The spatial variability of annual, seasonal, 145 

and extreme rainfall is moderately to significantly controlled by terrain, which varies from 220 to 146 

2,325 m above mean sea level (Mascaro, 2017, 2018, 2020).  147 

While floods and flash floods occur both in summer and winter in this urban area, pluvial 148 

flooding events caused by monsoonal thunderstorms occur more frequently than other types of 149 

flood events (Yang et al. 2017; their Fig. 4) and are particularly impactful in small urban 150 

catchments with short response times. To investigate the predictability of these events, we 151 

simulate urban flooding with different radar rainfall products in an urban catchment of 2.38 km2 152 

in downtown Phoenix (Fig. 1b). The basin is largely (~80%) impervious and includes the dense 153 

downtown business district, the Phoenix City Hall, and entertainment venues such as the Citi 154 
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Field Baseball stadium. As detailed in Fig. 1b, the drainage infrastructure in the catchment 155 

includes 657 catch basins, 386 manholes and other junctions, and 1,091 pipe segments totaling 156 

24 km, all draining to one outlet that discharges to the Salt River south of downtown Phoenix. In 157 

addition to this surface discharge, there are 26 drywells which capture and infiltrate stormwater.  158 

3. Datasets 159 

3.1. Rainfall Products  160 

We use three radar-derived QPEs, including Stage IV, MRMS and GCMRMS. Stage IV 161 

QPEs are produced by processing and mosaicking reflectivity data from the NEXRAD network; 162 

rainfall rates are further adjusted with gage and satellite observations and manually quality 163 

controlled (Y. Lin, 2020). MRMS products are derived by integrating radar observations from 164 

the NEXRAD and Canadian networks, with atmospheric environmental data, satellite data, and 165 

lightning and rain gage observations (J. Zhang et al., 2016). We acquire Stage IV and MRMS 166 

QPEs for summers (July to October) of 2015-2019. For MRMS, we obtain version 11 of the 167 

radar-only and gage-corrected (GCMRMS) products. Stage IV (MRMS; GCMRMS) QPEs are 168 

available in polar stereographic coordinates at 4-km, 1-h (1-km, 2-min; 1-km, 1-h) resolution. 169 

We project all radar products into Universal Transverse Mercator (UTM) Zone 12N and 170 

aggregate MRMS at 1-hour time resolution. To quantify errors in the QPEs and apply the 171 

multiplicative error model, we use rainfall records of 168 gages of the Automated Local 172 

Evaluation in Real Time (ALERT) network managed by the Flood Control District of the 173 

Maricopa County (FCDMC; Fig. 1a). For these tipping-bucket gages, we convert the tipping 174 

instants into rainfall intensities at 1-hour resolution following the procedure described by 175 

Mascaro et al. (2013). 176 

 177 
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3.2. Geospatial Datasets for Hydrologic-Hydraulic Simulations 178 

We set up the EPA SWMM hydrologic-hydraulic model in the study basin using several 179 

geospatial datasets. We use the terrain description from a LiDAR product at an equivalent 180 

resolution of 0.25 m that is publicly available (ASU, 2018); soils data from the Natural 181 

Resources Conservation Service Web Soil Survey (NRCS, 2019); and percent imperviousness 182 

from 30-m map from the National Land Cover Database (MRLC, 2016). We obtain information 183 

on drainage infrastructure components from the City of Phoenix, including location of pipes, dry 184 

wells, and manholes; pipe material, diameter, and slope; and elevations of pipe rim and invert. 185 

4. Methods 186 

In the following sections, we first describe the statistical error model used to characterize 187 

the uncertainty of radar errors and, then, we illustrate the setup of the hydrologic-hydraulic 188 

model. Lastly, we detail the approach used to sample the radar rainfall error model to force the 189 

hydrologic-hydraulic model and describe the metrics adopted to quantify the associated 190 

uncertainty.  191 

4.1. Radar Rainfall Error Model 192 

We use a multiplicative model to characterize the radar rainfall model uncertainty. This 193 

type of model has been shown to outperform additive models in terms of predictive skill and 194 

ability to separate systematic and random errors, and capture the non-linear relationship between 195 

the magnitude of errors and measurement (Tang et al., 2015; Tian et al., 2013). Specifically, we 196 

use the model proposed by Ciach, Krajewski, and Villarini (2007) and recently improved by 197 

Villarini et al. (2014), who suggested the use of a mixture of gamma distributions instead of the 198 

Gaussian distribution to characterize positive multiplicative errors, along with techniques to 199 

account for the spatiotemporal structure of the errors. Since the errors of radar-derived products 200 
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are affected by the distance from the radar, we divide the rain gages into two clusters, as shown 201 

in Fig. 1a, and apply the model separately on each cluster. In the following, we provide a brief 202 

description of the model and refer the reader to Ciach, Krajewski, and Villarini (2007) and 203 

Villarini et al. (2014) for a detailed description. We also point out that a recent study by Ciach 204 

and Gebremichael (2020) has proposed an alternative parametrization of the error model based 205 

on a three-parameter modified Laplace model. 206 

The model assumes that the difference between area-averaged radar rainfall estimates and 207 

point gage measurements is negligible. In a previous model application in Oklahoma by Ciach et 208 

al. (2007), this assumption was supported referring to Ciach and Krajewski (2006), who 209 

calculated the spatial correlogram of 1-h rainfall time series observed at pairs of gages with 210 

distances, d, lower than 4 km. These authors found the Pearson’s correlation coefficient, , to be 211 

larger than 0.88, thus suggesting the rainfall spatial variability to be small within a radar pixel. 212 

We perform a similar analysis with our dataset by computing the Kendall’s  correlation 213 

coefficient to better measure the correspondence between samples that are not well described by 214 

the Gaussian distribution (Serinaldi, 2008; Villarini et al., 2014). We then derive  from  using 215 

the formula 𝜌 = 𝑠𝑖𝑛(
𝜋𝜏

2
)  (Fang et al., 2002) and fit the power-law relation: 216 

𝜌(𝑑) = 𝜌0exp (−
𝑑

𝑑0
),    (1) 217 

with parameters 0 and d0, to capture the average behavior. We find  to be larger than 0.88 for d 218 

≤ 1 km (the MRMS grid resolution), which is similar to the value of Ciach and Krajewski 219 

(2006). The minimum  decreases instead to 0.72 for d = 4 km, suggesting that a single rain gage 220 

may not fully capture the rainfall variability within a Stage IV pixel. Dai et al. (2018) showed 221 

that this can introduce uncertainty in the application of a different error model. Since a similar 222 
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study has not been yet conducted for the model adopted here and is out the scope of this paper, 223 

we will still assume that rain gages provide a relatively accurate estimate of the area rainfall. 224 

According to the multiplicative structure of the error model, the true rainfall value in a 225 

radar pixel, Rtrue, can be expressed as the product of a deterministic, ℎ(𝑅𝑟), and a random, 𝑒(𝑅𝑟), 226 

component: 227 

𝑅𝑡𝑟𝑢𝑒 = ℎ(𝑅𝑟) ∙ 𝑒(𝑅𝑟).    (2) 228 

Both functions in equation (2) depend on 𝑅𝑟, which is the radar rainfall value corrected for 229 

unconditional bias (if present), computed as: 230 

𝑅𝑟 = 𝐵0 ∙ 𝑅𝑟
∗.     (3) 231 

B0 is in turn calculated as: 232 

𝐵0 =
∑ 𝑅𝑔,𝑖𝑖

∑ 𝑅𝑟,𝑖
∗

𝑖
,     (4) 233 

where Rg,i is the rain gage measurement at the i-th gage, and 𝑅𝑟,𝑖
∗  is the biased radar rainfall in the 234 

co-located pixel (i.e., the original Stage IV, MRMS and GCMRMS values).  235 

In equation (2), the function ℎ(𝑅𝑟) provides an estimate of the bias conditioned on 𝑅𝑟, 236 

while 𝑒(𝑅𝑟) accounts for residual errors after removing unconditional and conditional biases. We 237 

obtain the two components as follows. We use rain gage observations, Rg, to approximate Rtrue; 238 

next, following Ciach, Krajewski, and Villarini (2007), we compute ℎ(𝑅𝑟) by (i) applying the 239 

Epanechnikov kernel with a minimum of 20 data points, and (ii) fitting the power relation: 240 

ℎ(𝑅𝑟) = 𝑎𝑅𝑟
𝑏,     (5) 241 

with parameters a and b, to the line derived from the kernel. Equation (5) allows obtaining the 242 

sample of errors as the ratio of Rg (approximating Rtrue) and ℎ(𝑅𝑟). We use this sample to find 243 

the best parametric distribution to statistically model the random component 𝑒(𝑅𝑟), testing 244 

different mixtures of gamma distributions, as proposed by Villarini et al. (2014). For each 245 
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distribution, we evaluate the possibility of using parameters that are constant or dependent on Rr 246 

and choose the most appropriate one through the Akaike Information Criterion (AIC; Akaike, 247 

1974).  248 

We also test whether the random errors in our dataset exhibit significant spatial and 249 

temporal dependencies. For each cluster, we compute the spatial correlogram of the random 250 

errors using the Kendall’s  correlation coefficient and the same power model of equation (1), 251 

where (d) and 0 are now replaced by (d) and 0, respectively (Fig. S2). We find the nugget 252 

parameter 0 to range from 0.23 to 0.37 depending on the radar product, thus indicating that the 253 

correspondence between errors at close pixels is rather low (Fig. S2). To further verify this 254 

assumption, we (i) generate 100 spatially correlated error fields following Villarini et al. (2014), 255 

as well as 100 random error fields; and (ii) compute for each field the basin mean areal rainfall 256 

during four selected storms (see section 4.3). We find the uncertainties of the basin mean areal 257 

rainfall derived from spatially correlated and uncorrelated fields to be very similar (not shown). 258 

To quantify the temporal dependencies, we compute the autocorrelation of the errors for N = 462 259 

storms (detected in 85 individual pixels) with durations larger than 4 hours. We then compare the 260 

resulting median and 90% confidence interval with those of N time series of random white noise 261 

with the same duration of the observed events. We find that, apart from MRMS that exhibits a 262 

certain degree of autocorrelation at lag 1, observed and synthetic autocorrelations are similar 263 

(Fig. S3). Based on these empirical outcomes, we consider the spatiotemporal dependencies 264 

among the random errors to be negligible for the purpose of applying the error model in our 265 

basin.  266 

 267 

 268 



 13 

4.2. The Coupled Hydrologic-Hydraulic Model 269 

4.2.1. Brief Model Description 270 

SWMM is a semi-distributed rainfall-runoff model developed by the U.S. EPA (Koustas 271 

2000) for simulating runoff in urban catchments. The model includes a hydrologic component 272 

that transforms rainfall into surface runoff in sub-catchments, and a routing component that 273 

transports this runoff through stormwater infrastructure elements, including pipes, channels, and 274 

storages. As detailed in the user’s guide (W. James et al., 2010), different hydrologic processes 275 

can be simulated that allow applying the model in event-based or continuous fashion. The 276 

routing component includes several hydraulic modeling capabilities largely based on the 277 

application in one dimension (1D) of the momentum and continuity equations. The model 278 

domain is generated by (i) discretizing the catchment into smaller sub-catchments corresponding 279 

to each inlet into the infrastructure drainage system; and (ii) introducing different types of model 280 

elements, such as conduits, junctions (e.g., catch basins and manholes), outfall nodes, and 281 

storage units (see Table 1 for a description of the main elements). Model inputs include rainfall 282 

data, provided through one or more rain gages (or radar pixels; see Table 1), while outputs 283 

include, among others, the flow rate and hydraulic grade lines throughout the drainage system, 284 

and surface flood volumes when surcharge occurs (i.e., water rises above the crown of the 285 

highest conduit) and the hydraulic grade line exceeds surface elevation of the junctions.  286 

In addition to the standard components of SWMM, we also use the proprietary 287 

PCSWMM implementation to model overland routing of flood water and the resulting flood 288 

extent. This is accomplished through an integrated 1D-2D modeling approach where the fully 289 

dynamic 1D approach (i.e. SWMM) is extended to 2D free surface flow using a mesh that 290 

captures topography, geometry and built structures. PCSWMM builds upon the SWMM 1D 291 
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model and discretizes the domain into a square mesh where each 2D cell is represented with a 292 

2D node or a junction, whose invert elevations are assigned as either the ground surface 293 

elevation or the rim elevation of adjacent coupled 1D junctions (Finney et al., 2012; R. James et 294 

al., 2013). In PCSWMM, rainfall-runoff processes and routing in the pipe system are simulated 295 

in 1D, as in SWMM. When flood conditions are simulated, water leaves the drainage system at 296 

catch basin junctions (and manholes, if not bolted) and is then routed on the 2D mesh cells. 297 

Flood water is routed across the land surface and, as the hydraulic grade line drops below the 298 

catch basin rim elevation, water can re-enter the drainage system.  299 

4.2.2. Model Setup 300 

To set up SWMM in our basin, we extensively pre-process and quality control the 301 

LiDAR and infrastructure data through Geographic Information System (GIS) software and field 302 

visits. We use the LiDAR point cloud data with average point spacing of 0.25 m and total point 303 

count of over 37.8 million in the basin to generate a Digital Elevation Model (DEM) at 0.6-m 304 

resolution for the catchment delineation. The elevations of the point cloud data range from 320 m 305 

to 484 m, mainly constituting returns from the road surface and roofs of the buildings. Features 306 

such as buildings are initially retained as they can influence sub-catchment boundaries. Next, we 307 

use the high-resolution DEM to generate 2D computational square grid cells at a lower resolution 308 

of 4.57 m (15 ft) for overland routing of flood waters needed for PCSWMM. This lower 309 

resolution is selected due to the high computational demands of routing overland flow. We then 310 

exclude buildings through a mask of building footprints available from ASU (2018), as they 311 

would artificially raise the grid cell elevation and impact overland flow routing. Using aerial 312 

imagery, we visually identify DEM and 2D cells with abnormally low or high elevations caused 313 

by the presence of overpasses or sites that were under construction when the LiDAR was 314 
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obtained. To prevent ponding at these artificial depressions, those sections are excluded from the 315 

2D computational grid by creating bounding layers over them.  316 

As a next step, we check the reliability of the GIS data of stormwater infrastructure 317 

components through field visits. During these, we verify surface structures (e.g., catch basins, 318 

manholes) in frequently flooded areas identified by project partners in the City of Phoenix and 319 

the FCDMC, as well as areas that deviated from standard design practice. In addition, we 320 

identify a few missing or moved surface components, including catch basins and manholes, as 321 

well as missing subsurface components where stormwater could not reach the outlet from a 322 

portion of the system as documented. These missing pipe segments are specified based on design 323 

standards. Additionally, some components have missing attribute data such as rim or invert 324 

elevations, slope, pipe diameter, and pipe material. Rim elevations are estimated from the DEM, 325 

while invert elevations, slope, pipe size, and material are estimated from adjacent components 326 

and design standards. Once data gaps are assessed and filled, the infrastructure shapefiles are 327 

imported into SWMM to create the drainage network in the model. Finally, pipe material (mostly 328 

concrete) is used to specify Manning’s roughness coefficient (on average, 0.011).  329 

We apply the model for event-based simulations using rainfall data from (i) the only gage 330 

of the FCDMC networks installed within the basin; and (ii) the radar grids (see Fig. 1b). For the 331 

hydrologic component, we specify the percent imperviousness of each sub-catchment using the 332 

NRCS dataset and we simulate infiltration with the Green-Ampt’s method, which is 333 

parameterized with soil properties from the Web Soil Survey database. Parameter values are 334 

reported in Tables 2 and 3. The sub-catchments draining to each of the 26 drywells present in the 335 

basin are modeled as disconnected from the rest of the drainage system unless flooding and 336 

overland flow cross sub-catchment boundaries (modeled only in the 2D PCSWMM). We use the 337 
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1D dynamic wave routing method to model routing in the pipes. PCSWMM simulates surface 338 

flooding by coupling the 1D model of the drainage network with a 2D overland flow model. 339 

When surcharge occurs, flow exiting catch basins (all manholes are bolted in our study basin) is 340 

routed on the 4.57-m x 4.57-m mesh surface using the Saint-Venant flow equations.  341 

4.3. Hydrologic-Hydraulic Simulations 342 

We identify four storm events from the 2015-2019 study period with significant areal 343 

coverage in Phoenix, relatively high average precipitation depth, and for which NOAA has 344 

reported impacts on traffic and properties (NOAA, 2021). The storm characteristics are presented 345 

in Table 4. Two storms occurred in the middle of the NAM season and, as such, are of 346 

monsoonal origin; the other two were observed at the end of September and in October during 347 

the transition from NAM to winter weather conditions and, for one of them, the source of 348 

moisture came partially from a tropical storm (personal communication by Dr. Larry Hopper, at 349 

the NWS). Storm durations range from 6 to 30 hours and gage total rainfall varies from 5 to 10 350 

mm. The impacts of one of the storms (September 23, 2019) on street level flooding in the study 351 

basin is presented in the photograph of Fig. 2 that was taken by a camera installed to monitor 352 

flooding during the event. For each storm, we conduct simulations with SWMM using different 353 

rainfall inputs at 1-h resolution, including (1) rain gage observations (Rg); (2) original (i.e., Rr*) 354 

QPEs from Stage IV, MRMS and GCMRMS; and (3) an ensemble of N = 100 fields generated 355 

through the error model for each radar product. The rainfall inputs derived from the rain gage are 356 

spatially uniform, while those produced by the original radar products and the error model are 357 

spatially variable with a resolution of 4 km (1 km) for Stage IV (MRMS and GCMRMS), as also 358 

shown in Fig. 1b. The procedure used to generate N = 100 fields with the error model is based on 359 

Monte Carlo simulations, consisting of the following steps: 360 
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1. For a given storm with T time steps, the unconditional bias is first removed from the 361 

original radar estimates using equation (3) and the deterministic component ℎ(𝑅𝑟) is 362 

calculated with equation (5) at all pixels and times. 363 

2. Since the spatiotemporal dependencies of the errors are found to be negligible, for each 364 

pixel, a total of T random errors, 𝑒(𝑅𝑟), are randomly generated from the corresponding 365 

probability distribution. 366 

3. The errors and the deterministic component ℎ(𝑅𝑟) are then used to estimate the true rainfall 367 

using equation (2), resulting in T rainfall grids for each of the pixel. This spatiotemporal 368 

rainfall field represents a possible realization of the true rainfall for the analyzed event, 369 

given the original radar-derived QPEs. The spatiotemporal rainfall field is then used to force 370 

SWMM. 371 

4. Steps 2 and 3 are repeated N times. 372 

Since the 2D simulations with PCSWMM are computationally intensive, running this 373 

model N = 100 times is not feasible. Therefore, we select three rainfall sequences generated from 374 

the previous Monte Carlo SWMM simulations for each storm. These sequences correspond to 375 

the 25th, 50th, and 75th percentiles of the distribution of the total flood volume, Vf (i.e., volume of 376 

water that exits the drainage system through catch basins when the hydraulic grade line exceeds 377 

the rim elevation of catch basins) across the 100 Monte Carlo runs. We then apply PCSWMM 378 

for these three realizations for each storm to illustrate the influence of precipitation uncertainty 379 

on flood extent in a computationally efficient manner. 380 

4.4. Uncertainty Quantification 381 

Let {x1, …, xN} be the values of a given variable x (rainfall or discharge at a given time 382 

step) returned by the ensemble runs with the radar rainfall or the hydrologic model. We quantify 383 
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the uncertainty of these ensemble simulations of x through two simple metrics, including: (i) 384 

skewness of the distribution of {x1, …, xN}; and (ii) interquartile range relative to the median: 385 

RIQR = (q0.75 – q0.25)/q0.50 x 100, where qp is the quantile of the empirical distribution of {x1, …, 386 

xN} associated with the non-exceedance probability p. 387 

5. Results 388 

5.1. Characterization of Radar QPE Uncertainty 389 

The first step to apply the error model is to calculate the unconditional bias, B0, which is 390 

needed to compute Rr via equation (3). We find B0 to be 1.26, 0.66, 0.76 for Stage IV, MRMS, 391 

and GCMRMS, respectively, indicating that original Stage IV (MRMS and GCMRMS) QPEs 392 

underestimate (overestimate) the gage observations. Fig. 3 presents the scatterplots between Rr 393 

and Rg (estimating the true rainfall, Rtrue) along with the lines obtained through the Epanechnikov 394 

kernel and the power law of equation (5) for cluster 2 (results for cluster 1 are reported in Fig. 395 

S4). All radar products exhibit a positive systematic bias that becomes larger as Rr increases, as 396 

found in previous work (e.g., Ciach et al., 2007; Villarini et al., 2014; Villarini & Krajewski, 397 

2009, 2010b). The conditional bias for Stage IV QPEs is much smaller than that found for the 398 

MRMS and GCMRMS products. The errors for GCMRMS are slightly smaller (larger) than 399 

those of MRMS for Rr ≤ 15 mm/h (Rr > 15 mm/h), where most (less) data points lie.  400 

As a next step, we use equation (2) to compute the errors, e(Rr), quantifying the 401 

variability of radar rainfall estimates around the h(Rr) lines. Fig. 4 shows the errors along with 402 

the empirical quantiles (dotted lines) derived with the Epanechnikov kernel for cluster 2 (results 403 

for cluster 1 are reported in Fig. S5). For all products, the distribution of the errors is positively 404 

skewed and, importantly, does not vary with Rr. Based on this empirical outcome, we adopt a 405 

parametric distribution with constant parameters (i.e., a distribution that does not change with 406 
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Rr), as in Villarini et al. (2014). We find the mixture of three gamma distributions to be the most 407 

appropriate parametric distribution, as suggested by the lowest AIC values (Table S1). The 408 

quantiles derived from the mixed gamma distribution are shown in Fig. 4 with solid lines, while 409 

the comparison between empirical and parametric distributions is reported in Fig. 5 (Fig. S6 for 410 

cluster 1) and parameters of the gamma distribution for each radar product are summarized in 411 

Table 5. Fig. 5 reveals that, for all products, the distribution of the errors is very well reproduced 412 

up to about e(Rr) = 5; larger values of e are underestimated, but they only account for less than 413 

0.5% of the sample. 414 

5.2 Propagation of Uncertainty from Rainfall to Runoff 415 

5.2.1. Rainfall Uncertainty 416 

Fig. 6 presents, for each storm, the time series of rainfall recorded at the gage (Rg; red 417 

dots) along with the basin mean areal rainfall estimated by the three radar QPEs (Rr*; blue dots) 418 

and simulated by the corresponding error model (boxplots displaying 50% and 90% confidence 419 

intervals of N = 100 values produced by the Monte Carlo runs). For all events, the radar products 420 

estimate nonzero rainfall in a larger number of time steps as compared to the gage. For the gage-421 

corrected Stage IV, Rg is very close to both Rr* and median of the Monte Carlo simulations. As 422 

previously discussed, MRMS QPEs are positively biased, so that Rr* is in most cases larger than 423 

Rg and median of the error model simulations. This bias is reduced when the gage correction is 424 

applied in GCMRMS (see, e.g., event on July 10, 2018). For all three products, higher rainfall 425 

measurements yield a higher magnitude of uncertainty for the error model. Finally, Table 6 426 

presents the mean skewness and RIQR of the ensemble hourly rainfall across each storm 427 

duration. Due to the positive skewness of the distribution of the residual error in the radar error 428 

model (see Fig. 4), the mean skewness of the simulated rainfall is also positive and included 429 
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between 1.0 and 3.2, with higher values for Stage IV, followed by MRMS and GCMRMS. The 430 

relative variability across the ensemble members is quantified via the RIQR, whose average 431 

ranges from 56.1% to 74.6%, with the highest (lowest) values found again for Stage IV 432 

(GCMRMS). 433 

5.2.2. Uncertainty of Basin-Integrated Runoff  434 

We start evaluating the propagation of rainfall uncertainty into runoff by first assessing 435 

the variations in the outlet hydrograph (i.e., outflow at the pipe that discharges to the Salt River) 436 

across radar products and storms. The hydrographs simulated by the SWMM model under the 437 

rainfall forcings of Fig. 6 are displayed in Fig. 7. The use of Stage IV QPEs and rain gage 438 

observations as inputs for SWMM leads to closely aligned hydrographs, which are also very 439 

similar to the median hydrograph of the corresponding ensemble simulations. In contrast, the 440 

outflow generated by the original MRMS QPEs is consistently biased high compared to the 441 

simulation under the gage rainfall observations, with the median of ensemble runs falling 442 

between the two. As found in Fig. 6 for the rainfall values, the gage correction of MRMS QPEs 443 

reduces the bias in the resulting flow, as shown in the hydrographs with GCMRMS forcings. The 444 

uncertainty of the ensemble hydrologic simulations is quantified in Table 6 via the time-averaged 445 

skewness and RIQR of the discharge at the outlet. The mean skewness is still positive with 446 

values in the range 0.4–2.5, which are lower compared to those found for rainfall. This is also 447 

true for the mean RIQR that varies from 22.4% to 66.9%. Metric values are, again, the largest 448 

(smallest) for Stage IV (GCMRMS). 449 

To complement the information provided by the hydrographs at the catchment outlet and 450 

better assess flood impacts and differences across precipitation inputs, we examine additional 451 

metrics simulated by SWMM. These include Qmax: peak flow of the hydrograph at the outlet; and 452 
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Vf: stormwater volume that ponds on the surface of the catchment when the hydraulic grade line 453 

reaches the catch basin rim elevation at one or more locations. In addition, we consider two 454 

metrics that characterize the hydraulic response of the stormwater pipe system under surcharge 455 

conditions, including tmax: maximum total duration of node surcharging across all nodes; and 456 

hmax: maximum height of the hydraulic grade line above pipe invert level. Note that nonzero 457 

values for tmax and hmax do not necessarily imply surface flooding, as mentioned in section 4.2.1. 458 

Fig. 8 presents the simulated metric values for each storm and radar product. Simulations under 459 

gage rainfall, Rg, could be used as reference to compare across storms. The lowest (highest) Qmax 460 

and Vf are obtained for the storm on September 23, 2019 (October 7, 2018), which are 461 

characterized by the lowest (highest) rainfall intensity (see Table 4). hmax exhibits a certain 462 

relation with Qmax and Vf that quantify actual surface flooding, while tmax is largely controlled by 463 

storm duration (reported in Table 4). Turning now our attention to the radar products, all metrics 464 

modeled with Rg are close to those simulated under Stage IV Rr* and in most cases (all cases 465 

except tmax for event 1) within the 50% (90%) confidence interval of the ensemble runs. When 466 

compared to the metrics simulated under Rg, simulations with MRMS rainfall products lead to 467 

longer tmax in two events and larger hmax, Qmax, Vf in most storms. The use of GCMRMS 468 

improves MRMS performance, apart from some metrics in individual storms (e.g., hmax on 469 

September 23, 2019; Vf on July 24, 2017). Finally, when considering the spread of the ensemble 470 

distributions, there is not a specific radar product that leads to wider or narrower distributions for 471 

a given metric across all events. These metrics are further discussed in Section 6. 472 

5.2.3. Uncertainty of Spatial Flooding 473 

The metrics presented in Fig. 8 aid in comparing model output across simulations. 474 

However, information on location and extent of flooding over time is needed to alert residents to 475 
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dangerous conditions, provide timely emergency response, and identify critical locations for 476 

infrastructure investment. Such information is obtained through the 2D simulations of flood 477 

routing with PCSWMM. Figs. 9 and 10 illustrate the uncertainty in maximum flood extent (i.e., 478 

areas that are flooded for at least one time step) simulated under each radar product for the 479 

storms on July 31, 2018 and October 7, 2018, respectively (Figs. S7 and S8 show results for the 480 

other two storms). Uncertainty is captured through the simulations under the rainfall fields of the 481 

error model associated with the 25th percentile (blue), median (green), and 75th percentile (red) of 482 

the distribution of Vf from the 1D SWMM simulations. Thus, if a pixel is blue, flooding has been 483 

simulated for all higher percentiles; when it is green, it has been simulated for the median and 484 

75th percentile; and when the pixel color is red, flooding only occurred for the 75th percentile. 485 

For the monsoonal storm on July 31, 2018, the use of rainfall fields generated by the error 486 

model with Stage IV QPEs (Figs. 9a-c) leads to simulation of street flooding in two distinct basin 487 

locations (Figs. 9b,c), with a total of 0.001, 0.03, and 0.05 km2 of flooded areas for the 25th 488 

percentile, median and 75th percentile, respectively. If rainfall forcings are provided by MRMS 489 

(Figs. 9d-f), street flooding is also predicted in a location in the upper part of the basin (Figs. 490 

9d,f). Given the positive bias of these QPEs, the simulated flooding extent is larger and equal to 491 

0.07 (0.23) km2 for the 25th (75th) percentile. Interestingly, the uncertainty across the percentiles 492 

is low in a relatively large region in the lower part of the catchment (blue area in Fig. 9e). The 493 

gage correction of MRMS QPEs performed for GCMRMS leads to results that are substantially 494 

similar to Stage IV (Figs. 9g-i). Maps of flooded areas for the transition storm on October 7, 495 

2018 are reported in Fig. 10. Flooding is predicted in two of the same basin regions displayed in 496 

Fig. 9. Flooded areas under Stage IV (Figs. 10a,b) are very similar for the median (0.16 km2) and 497 

75th percentile (0.19 km2), while they decrease substantially for the 25th percentile (0.006 km2). 498 
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As found for the monsoonal storm of Fig. 9, using MRMS QPEs (Figs. 10c,d) as model inputs 499 

increases the extent of street level flooding as compared to Stage IV, which reaches 0.04 (0.4 500 

km2) for the 25th (75th) percentiles. The adoption of GCMRMS (Figs. 10e,f) leads instead to 501 

lower flooded areas compared to Stage IV, ranging from no flooded areas for the 25th percentiles 502 

to 0.09 km2 for the 75th percentile. 503 

6. Discussion 504 

While focused on an urban catchment in the Phoenix metropolitan area, results of our 505 

modeling effort are based on extensive precipitation, land surface, and infrastructure datasets, 506 

and, as such, they provide general insights on the utility of radar QPEs and hydrologic-hydraulic 507 

models for urban flood predictions in the NAM region and other areas, as discussed in the next 508 

subsections.  509 

6.1. Comparison of Radar Products and their Utility for Urban Flood Modeling 510 

When applying the error model using the network of 168 gages, we find that, on average, 511 

Stage IV QPEs underestimate gage rainfall by ~20%, while MRMRS and GCMRMS 512 

overestimate it by about 51% and 31%, respectively (see values of B0 reported in section 5.1). 513 

Qualitatively, this result is also confirmed for the four simulated storm events. Our finding is 514 

consistent with the extensive comparison of six radar products, including Stage IV and earlier 515 

versions of MRMS and GCMRMS, performed by Seo et al. (2018) in Iowa, but opposite to two 516 

separate analyses by Lin et al. (2018) and Gao et al. (2021) in Texas during a set of flood events. 517 

The existence of regional differences in performance of Stage IV and MRMRS have been also 518 

recently highlighted in another comparison study in Louisiana by Sharif et al. (2020). Overall, 519 

results of our and other studies suggest that radar-only QPEs are critically improved through 520 

gage-based bias corrections, as done in Stage IV and GCMRMS.  521 
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Fig. 6 shows that nonzero rainfall is observed by the radar QPEs in more time steps 522 

compared to the single point measurement of the gage, indicating that, even in a very small 523 

basin, a single gage may be unable to monitor localized monsoonal convective storms. Despite 524 

this, Figs. 6 and 7 show that flood simulations under the more accurate Stage IV-derived rainfall 525 

products lead to very similar outcomes to those obtained with gage rainfall, Rg. This suggests 526 

two considerations. First, while the basin area is small, the presence of stormwater infrastructure 527 

acts as an integrator of the rainfall spatiotemporal variability, so that, despite differences between 528 

Rg and Stage IV QPEs, the resulting flood simulations are substantially quite similar. Second, an 529 

important consequence of the first consideration is that, when gage observations are not 530 

available, hydrologic simulations with Stage IV QPEs (available throughout the country) can 531 

provide a reliable reference for evaluating the impacts of urban flooding. On the other hand, in 532 

our study basin, the use of MRMS QPEs consistently results in the largest flood volumes and 533 

extent, while the flooding impacts simulated with GCMRMS QPEs are similar to those obtained 534 

with Stage IV (see Figs. 8-10). Thus, our effort demonstrates that the gage correction applied to 535 

MRMS greatly improves the utility of this radar-only product for flood modeling.  536 

6.2. Uncertainty of Radar Rainfall and Corresponding Urban Flood Simulations 537 

Radar QPEs can provide key support for urban flood forecasting and management, 538 

complementing gage observations that may only be available at sparse location and not in real 539 

time. However, radar products are affected by different sources of errors, thus requiring models 540 

to characterize the associated uncertainty. Here, we use an error model with a multiplicative 541 

structure that leads to largest uncertainties for the highest rainfall values (see Fig. 6), as also 542 

found in previous applications (Villarini et al. 2014). As a consequence, the uncertainty of urban 543 

flood predictions is expected to be also relatively high, as these higher precipitation observations 544 
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are more likely to result in flooding. This is in general confirmed by our results because the 545 

largest spread of the basin outflow confidence intervals occurs right after the highest rainfall 546 

events (see Figs. 6 and Fig. 7). However, a closer look at the uncertainty metrics for rainfall and 547 

discharge reported in Table 6 suggests that the hydrologic processes governing the rainfall-runoff 548 

transformation have two effects: (i) they smooth the impact of the highest rainfall values 549 

simulated by the error model, so that the distribution of the ensemble outflows is more 550 

symmetric (i.e., less positively skewed) than the distribution of the rainfall inputs, as also found 551 

by Grimley et al. (2020); and (ii) they reduce the relative spread of the ensemble rainfall 552 

distribution, as shown by the mean RIQR decreasing from an average of 64.7% to 48.2% when 553 

considering all events and radar products. These conclusions should be refined in future work 554 

quantifying the effect of other sources of uncertainty for the hydrologic-hydraulic model. 555 

We also highlight that the uncertainty of the basin outflow is greater in the rising than the 556 

falling limb of the hydrographs (Fig. 7). Specifically, across all storms and radar products, the 557 

50% (90%) confidence interval range in the falling limb is, on average, just 8.8% (6.3%) of the 558 

range in the rising limb. This behavior can be explained considering that, in highly impervious 559 

areas and small watersheds, the rising limb and its associated uncertainty are strongly shaped by 560 

the rainfall rate. In contrast, during the falling limb of the hydrograph, catchment and drainage 561 

network properties exert a larger control that results in an uncertainty reduction. When 562 

considering the other flood metrics characterizing surface flooding and surcharge conditions in 563 

the stormwater infrastructure, we find that their uncertainty varies substantially (Fig. 8). As 564 

expected, the variability of Qmax is related to the QPE uncertainty, although the ensemble 565 

distributions for Qmax are more symmetric for the same reasons mentioned above. The 566 

distribution of Vf is highly skewed with several zero values, despite tmax and hmax are never zero. 567 
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This implies that a fraction of QPEs with lower values leads to surcharge conditions but not to 568 

surface flooding. The uncertainty of tmax is practically negligible, indicating that all precipitation 569 

inputs lead to surcharge conditions over very similar maximum durations. In contrast, hmax, 570 

which quantifies the severity of surcharge conditions, exhibits a variability (mainly in the range 571 

of 5 m) due to the different QPE values simulated by the error model.  572 

6.3. Utility for Urban Flood Management 573 

Urban pluvial flooding is characterized by localized damage to property and impacts to 574 

pedestrian and vehicle travel. Timely information on the location and severity of these hazards 575 

can enable response and limit travel delays and risks (NWS, 2021). Our simulations with 576 

PCSWMM show that, despite uncertainties and biases across radar products, all of them robustly 577 

identify the same basin regions experiencing flooding conditions (Figs. 9, 10, S7 and S8). This is 578 

a promising result supporting the operational use of QPFs derived from radar QPEs combined 579 

with hydrologic-hydraulic models, as also highlighted by Grimley et al. (2020) when discussing 580 

their simulation of pluvial flooding in an urban area in Iowa. However, the extent of flooding 581 

areas exhibits differences both for the same radar product and across radar products. The latter 582 

ones can be significant when the QPE bias is high, as found for MRMS. Therefore, flood 583 

response can confidently target the correct areas within a few blocks, though the precise flood 584 

extent remains uncertain. Improvements in QPEs accuracy are then expected to greatly benefit 585 

prioritization and response measures during floods. These findings are driven by both catchment 586 

topography and the design of the drainage network; therefore, the flood management 587 

implications of the residual uncertainty may vary by location.  588 

It must also be noted that the SWMM model has its own structural and parametric 589 

uncertainties (Abily et al., 2016; Deletic et al., 2012). While fully assessing these is out the scope 590 
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of the current analysis, it is important to consider that the uncertainty in flood estimates 591 

simulated in our study for an ensemble of QPEs incorporate other uncertainty sources in the 592 

SWMM model. The flood metrics and maps (Figs. 8-10) also point to the need for flood extent 593 

and depth data in urban areas to properly validate the accuracy of these hydrologic and hydraulic 594 

simulations. New hydrological sensing approaches such as citizen science (Assumpção et al., 595 

2018; Fava et al., 2019) and image-based sensing (Hostache et al., 2018; Tauro et al., 2017) offer 596 

opportunities to sense flooding as it occurs at the urban scale. These emerging approaches could 597 

enable error assessment of the urban hydrological model, providing further context to interpret 598 

the propagation of precipitation uncertainty into urban flooding.  599 

7 Conclusions 600 

The small size and heterogeneity of urban catchments, combined with the short, high-601 

intensity precipitation events that drive pluvial flooding, make accurate and efficient urban 602 

pluvial flood modeling an ongoing research challenge (Bermúdez et al., 2018; Blanc et al., 2012; 603 

van Dijk et al., 2014). This is especially true in the NAM region, which is dominated by high-604 

intensity convective thunderstorms. In this work, we provide insights on pluvial flooding by 605 

assessing the propagation of radar precipitation uncertainty into flood modeling in a 2.38-km2 606 

urban catchment in Phoenix, AZ. Our results, based on simulations for four events during the 607 

NAM, can be summarized as follows: 608 

(1) While Stage IV QPEs slightly underestimate gage rainfall (on average, by 20%), the resulting 609 

flood predictions are similar to those obtained with rain gage records, suggesting that Stage 610 

IV QPEs are reliable products for modeling urban flooding. MRMS QPEs are positively 611 

biased (+51%) and so are the flood peaks and extent of flooded areas simulated with these 612 

products. The gage correction performed in GCMRMS leads to results similar to Stage IV. 613 



 28 

(2) The QPE uncertainty simulated by the error model increases with rainfall rate and is rather 614 

alike across the three radar products. This is also true for the resulting flood metrics. 615 

(3) As a result of the rainfall-runoff transformation processes and the presence of stormwater 616 

infrastructure, uncertainty of flood metrics is reduced and less positively skewed when 617 

compared with the QPE uncertainty. The uncertainty may vary significantly depending on 618 

the metrics that capture different flooding features (e.g., pipe flow, surface flooding, and pipe 619 

surcharge conditions). 620 

(4) All radar products lead to the identification of the same flooded areas within an extent of a 621 

few blocks in the basin. This is a promising result for the use of radar-derived QPEs and 622 

hydrologic-hydraulic models for urban pluvial flood modeling. However, the exact location 623 

and extent of flooded areas may vary significantly across products, suggesting that increasing 624 

QPE accuracy can greatly benefit flood management and forecasting agencies.  625 
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Table Captions 877 

Table 1. Description of the main components of the SWMM hydrologic-hydraulic model. 878 

Table 2. Parameter values of the Green-Ampt infiltration scheme adopted in SWMM.  879 

Table 3. Imperviousness and ground slope values assigned to the subcatchments, summarized as 880 

range of values for percentages of the basin area. 881 

Table 4. Summary of storm characteristics, including: start and end date and time in UTC, 882 

identified as the times when (i) any of the gage and radar products started measuring nonzero 883 

rainfall in the basin and (ii) all measured zero rainfall, respectively; type as defined by Dr. Larry 884 

Hopper from NWS (2020; personal communication); duration; rainfall totals observed by gages 885 

(Rg); and original (Rr*) and bias corrected (in parentheses; Rr) mean areal rainfall totals of the 886 

radar derived estimates.  887 

Table 5. Parameters of the mixture of three gamma distributions used to characterize the 888 

distribution of errors: 𝑓(𝑒; 𝑤1, 𝛼1, 𝛽1, 𝑤2, 𝛼2, 𝛽2, 𝑤3 , 𝛼3, 𝛽3) = ∑ 𝑤𝑗 ∙ 𝑔(𝑒; 𝛼𝑗 , 𝛽𝑗)3
𝑗=1 , where 889 

𝑔(𝑒; 𝛼𝑗 , 𝛽𝑗) is the probability density function of the j-th gamma distribution of the errors, e (for 890 

simplicity, we dropped the dependence on Rr). Parameters values are reported for cluster 1 (C1) 891 

and 2 (C2). 892 

Table 6. Quantification of uncertainty of simulated rainfall and runoff via skewness and RIQR of 893 

the ensemble rainfall and discharge at the basin outlet (in parentheses) averaged across each 894 

event duration (i.e., skewness and RIQR are computed for each time step and then averaged in 895 

time). Values are reported for each radar product.  896 
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Component Description 
Rain gages Point measurements of rainfall over the duration of the modeling period 

from an actual rain gage or a radar pixel. Each sub-catchment is assigned 
rainfall from the closest gage or radar pixel center. 

Sub-catchments Hydrologic units of land delineated based on the local topography. 
Conduits Pipes or channels through which water is transported. This includes 

culverts and underground storm pipes. 
Junctions Drainage nodes that connect conduits to each other. Culvert inlets and 

outlets, pipe inlets and outlets, and manholes are all modeled as junctions. 
Junction properties include rim (surface) and invert (conduit base) 
elevations. 

Outfall nodes Drainage nodes at the downstream boundary of the catchment. 
Storage units Drainage nodes with an associated storage volume available. 

Table 1. Description of the main components of the SWMM hydrologic-hydraulic model. 897 
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Soil types Percent of 
basin area 

Suction head 
(cm) 

Conductivity 
(cm/hr) 

Initial 
Deficit 

Avondale clay 
loam 1.2 38.53 0.15 0.21 

Estrella loam 0.3 38.02 0.43 0.14 

Gilman loam 1 
to 3 percent 

slope 
15.2 43.03 0.30 0.15 

Glenbar clay 
loam 40.2 53.87 0.15 0.19 

Laveen loam, 0 
to 1 percent 

slope 
34.4 36.50 0.61 0.11 

Mohall clay 
loam 8.7 42.24 0.18 0.19 

Table 2. Parameter values of the Green-Ampt infiltration scheme adopted in SWMM.  899 
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Imperviousness 
(%) 

Percent of 
basin area 

0–50 7.8 

51–60 10.0 

61–70 19.6 

71–80 35.1 

81–100 27.5 
  

Ground slope (%) Percent of 
basin area 

0–5 16.5 

6–10 75.2 

11-65 8.3 

Table 3. Imperviousness and ground slope values assigned to the subcatchments, summarized as 901 

range of values for percentages of the basin area. 902 
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Start 
date 

End 
date Type Duration 

(h) 
Gage 
(mm) 

Stage IV 
(mm) 

MRMS 
(mm) 

GCMRMS 
(mm) 

7/24/17 
2:00 

7/24/17 
20:00 

Monsoon 18 7.0 7.0 
(8.9) 

13.1 
(8.6) 

15.7 
(11.4) 

7/31/18 
3:00 

7/31/18 
9:00 

Monsoon 6 5.0 5.8 
(7.4) 

20.0 
(13.1) 

11.0 
(8.3) 

10/7/18 
8:00 

10/7/18 
19:00 

Transition 11 10.0 10.0 
(12.6) 

17.1 
(11.2) 

7.1 
(5.3) 

9/23/19 
10:00 

9/24/19 
19:00 

Tropical/ 
Transition 33 6.0 6.8 

(8.7) 
15.8 

(10.4) 
8.6 

(6.5) 

Table 4. Summary of storm characteristics, including: start and end date and time in UTC, 904 

identified as the times when (i) any of the gage and radar products started measuring nonzero 905 

rainfall in the basin and (ii) all measured zero rainfall, respectively; type as defined by Dr. Larry 906 

Hopper from NWS (2020; personal communication); duration; rainfall totals observed by gages 907 

(Rg); and original (Rr*) and bias corrected (in parentheses; Rr) mean areal rainfall totals of the 908 

radar derived estimates.  909 
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Parameter Stage IV MRMS GCMRMS 
 C1 C2 C1 C2 C1 C2 

α1 1.34 6.50 2.89 5.16 1.55 1.76 
α2 55.34 1.26 13.58 1.09 11.75 19.93 
α3 19.97 357.00 6.50 9.18 35.85 38.16 
β1 0.95 0.14 0.29 0.14 0.72 0.60 
β2 0.01 1.08 0.17 1.10 0.07 0.04 
β3 0.05 0.002 0.55 0.21 0.04 0.04 
w1 0.47 0.46 0.92 0.64 0.47 0.61 
w2 0.37 0.33 0.05 0.23 0.43 0.31 
w3 0.16 0.21 0.03 0.13 0.10 0.08 

Table 5. Parameters of the mixture of three gamma distributions used to characterize the 911 

distribution of errors: 𝑓(𝑒; 𝑤1, 𝛼1, 𝛽1, 𝑤2, 𝛼2, 𝛽2, 𝑤3 , 𝛼3, 𝛽3) = ∑ 𝑤𝑗 ∙ 𝑔(𝑒; 𝛼𝑗 , 𝛽𝑗)3
𝑗=1 , where 912 

𝑔(𝑒; 𝛼𝑗 , 𝛽𝑗) is the probability density function of the j-th gamma distribution of the errors, e (for 913 

simplicity, we dropped the dependence on Rr). Parameters values are reported for cluster 1 (C1) 914 

and 2 (C2). 915 
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Storm 
start date 

Stage 
IV 

MRMS GCMRMS  Stage 
IV 

MRMS GCMRMS 

 Skewness (-)  RIQR (%) 
 Rainfall (Discharge at the outlet) 

7/24/17 3.2  
(2.0) 

1.7  
(1.1) 

1.4  
(0.4) 

 71.0  
(66.9) 

68.4  
(51.6) 

59.5  
(22.4) 

7/31/18 2.9  
(0.8) 

1.5  
(1.0) 

1.5  
(0.9) 

 70.1  
(45.0) 

68.2 
(43.7) 

69.2 
(41.1) 

10/7/18 2.1  
(0.9) 

1.7  
(1.3) 

1.0 
(0.5) 

 59.7  
(55.8) 

67.9  
(49.0) 

41.5 
(27.4) 

9/23/19 2.6  
(2.5) 

1.7 
(0.9) 

1.3 
(0.5) 

 74.6 
(47.0) 

70.2 
(78.0) 

56.1 
(50.3) 

        

Table 6. Quantification of uncertainty of simulated rainfall and runoff via skewness and RIQR of 917 

the ensemble rainfall and discharge at the basin outlet (in parentheses) averaged across each 918 

event duration (i.e., skewness and RIQR are computed for each time step and then averaged in 919 

time). Values are reported for each radar product. 920 
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Figure Captions 922 
 923 

Figure 1. (a) Metropolitan area of Phoenix, AZ along with location of KIWA WSR-88D weather 924 

radar, study basin, and rain gages of the Flood Control District of the Maricopa County 925 

(FCDMC) network in Maricopa and Pinal Counties, displayed with two different colors 926 

depending on the distance from the radar (labelled as cluster 1 and 2). (b) Boundaries of the 927 

study catchment and subcatchments in downtown Phoenix (near the corner of W Roosevelt St 928 

and S 7th Ave), along with outlet, underground conduits of the stormwater infrastructure system, 929 

grids of Stage IV and MRMS (same as GCMRMS) radar products, and rain gage of the FCDMC 930 

network. 931 

Figure 2. Flooding in the study catchment at Central Ave and Washington Street in Phoenix, AZ 932 

during the storm on September 23, 2019. 933 

Figure 3. Scatterplots of radar rainfall estimates, Rr, and true rainfall approximated by the gage 934 

estimates, Rg, for cluster 2. A total of 8,645, 8,859, and 8,605 non-zero pairs for (a) Stage IV, (b) 935 

MRMS, and (c) GCMRMS are shown using different colors based of their relative frequency. In 936 

each panel, the dashed red line is the systematic component estimated with the Epanechnikov 937 

kernel, and the solid black line is the power law of equation (5). Parameters of the power law are 938 

a = 1.12, b = 0.90 for Stage IV; a = 1.37, b = 0.77 for MRMS; and a = 1.86, b = 0.66 for 939 

GCMRMS. 940 

Figure 4. Relations between e(Rr) and Rr for the different radar products, along with quantiles of 941 

the empirical (dotted lines) and mixed gamma (solid lines) distributions for cluster 2. 942 

Figure 5. Comparison of survival functions of the empirical distribution and mixture of three 943 

gamma distributions for cluster 2. 944 



 48 

Figure 6. Time series of rainfall recorded at the gage (Rg), basin mean areal rainfall estimated by 945 

the three radar products (Rr*), and boxplots of the N = 100 Monte Carlo simulations of the radar 946 

rainfall error model for the four events of Table 2. Boxes and whiskers of the boxplots show the 947 

50% and 90% confidence intervals, respectively, while the horizontal line is the median. Times 948 

are in UTC. 949 

Figure 7. Hydrographs simulated by the SWMM model at the pipe located at the catchment 950 

outlet under rainfall recorded at the gage (Rg), original radar QPEs (Rr*), and an ensemble of 951 

rainfall fields generated with the error model. The corresponding N = 100 outflow simulations 952 

are plotted with shaded areas showing the 50% (light gray) and 90% (dark gray) confidence 953 

intervals, while the black line is the median. 954 

Figure 8. Flood metrics simulated by 1D SWMM for the selected storms with rainfall recorded 955 

at the gage (Rg), original radar QPEs (Rr*), and ensemble of rainfall fields generated with the 956 

error model plotted through boxplots (boxes and whiskers show the 50% and 90% confidence 957 

intervals, respectively). See text for definition of the flood metrics. tmax is measured in hours 958 

since the simulations starts. 959 

Figure 9. Uncertainty of flood extent maps for the storm on July 31, 2018 simulated by 960 

PCSWMM under (a)-(c) Stage IV, (d)-(f) MRMS, and (g)-(i) GCMRMS products. 961 

Figure 10. As Fig. 9 but for the storm on October 7, 2018. 962 

  963 
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 964 

Figure 1. (a) Metropolitan area of Phoenix, AZ along with location of KIWA WSR-88D weather 965 

radar, study basin, and rain gages of the Flood Control District of the Maricopa County 966 

(FCDMC) network in Maricopa and Pinal Counties, displayed with two different colors 967 

depending on the distance from the radar (labelled as cluster 1 and 2). (b) Boundaries of the 968 

study catchment and subcatchments in downtown Phoenix (near the corner of W Roosevelt St 969 

and S 7th Ave), along with outlet, underground conduits of the stormwater infrastructure system, 970 

grids of Stage IV and MRMS (same as GCMRMS) radar products, and rain gage of the FCDMC 971 

network. 972 

  973 
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 974 

Figure 2. Flooding in the study catchment at Central Ave and Washington Street in Phoenix, AZ 975 

during the storm on September 23, 2019. 976 

  977 
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 978 

Figure 3. Scatterplots of radar rainfall estimates, Rr, and true rainfall approximated by the gage 979 

estimates, Rg, for cluster 2. A total of 8,645, 8,859, and 8,605 non-zero pairs for (a) Stage IV, (b) 980 

MRMS, and (c) GCMRMS are shown using different colors based of their relative frequency. In 981 

each panel, the dashed red line is the systematic component estimated with the Epanechnikov 982 

kernel, and the solid black line is the power law of equation (5). Parameters of the power law are 983 

a = 1.12, b = 0.90 for Stage IV; a = 1.37, b = 0.77 for MRMS; and a = 1.86, b = 0.66 for 984 

GCMRMS.  985 
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 987 
Figure 4. Relations between e(Rr) and Rr for the different radar products, along with quantiles of 988 

the empirical (dotted lines) and mixed gamma (solid lines) distributions for cluster 2.  989 

  990 
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 991 
Figure 5. Comparison of survival functions of the empirical distribution and mixture of three 992 

gamma distributions for cluster 2.  993 

  994 
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 995 
Figure 6. Time series of rainfall recorded at the gage (Rg), basin mean areal rainfall estimated by 996 

the three radar products (Rr*), and boxplots of the N = 100 Monte Carlo simulations of the radar 997 

rainfall error model for the four events of Table 2. Boxes and whiskers of the boxplots show the 998 

50% and 90% confidence intervals, respectively, while the horizontal line is the median. Times 999 

are in UTC.   1000 
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 1001 
Figure 7. Hydrographs simulated by the SWMM model at the pipe located at the catchment 1002 

outlet under rainfall recorded at the gage (Rg), original radar QPEs (Rr*), and an ensemble of 1003 

rainfall fields generated with the error model. The corresponding N = 100 outflow simulations 1004 

are plotted with shaded areas showing the 50% (light gray) and 90% (dark gray) confidence 1005 

intervals, while the black line is the median.   1006 
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 1007 
Figure 8. Flood metrics simulated by 1D SWMM for the selected storms with rainfall recorded 1008 

at the gage (Rg), original radar QPEs (Rr*), and ensemble of rainfall fields generated with the 1009 

error model plotted through boxplots (boxes and whiskers show the 50% and 90% confidence 1010 

intervals, respectively). See text for definition of the flood metrics. tmax is measured in hours 1011 

since the simulations starts. 1012 
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 1014 
Figure 9. Uncertainty of flood extent maps for the storm on July 31, 2018 simulated by 1015 

PCSWMM under (a)-(c) Stage IV, (d)-(f) MRMS, and (g)-(i) GCMRMS products.  1016 
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 1017 
Figure 10. As Fig. 9 but for the storm on October 7, 2018.  1018 
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