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Abstract

Pluvial flooding in urban regions is a natural hazard that has been rarely investigated. Here, we
evaluate the utility of three radar (Stage IV, MRMS, and GCMRMS) quantitative precipitation
estimates (QPEs) and the SWMM hydrologic-hydraulic model to simulate pluvial flooding
during the North American Monsoon in Phoenix. We focus on an urban catchment of 2.38 km?
and, for four storms, we simulate a set of flooding metrics using the original QPEs and an
ensemble of 100 QPEs characterizing radar uncertainty through a statistical error model. We find
that Stage IV QPEs are the most accurate, while MRMS QPEs are positively biased and their
utility to simulate flooding increases with the gage correction done for GCMRMS. For all radar
products, simulated flood metrics have lower uncertainty than QPEs as a result of rainfall-runoff
transformation. By relying on extensive precipitation and basin datasets, this work provides

useful insights for urban flood predictions.
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1. Introduction

Flooding is the most common natural hazard, causing large property losses and fatalities
worldwide (Doocy et al., 2013). For example, in the United States (U.S.) major flooding events
have caused an annual average of $9.1 billion in losses and 71 fatalities between 2004-2015 (The
National Academies Press, 2019). The impacts of flooding are particularly significant in urban
regions, due to population growth concentrated in cities (Cohen, 2006; Hossain et al., 2015); land
cover modifications increasing surface imperviousness (W. Zhang et al., 2018); and climate
change potentially causing more severe precipitation extremes (Emanuel, 2005; Prein et al.,
2017; Trenberth et al., 2003). Urban areas may be impacted by pluvial, fluvial, and coastal
flooding. Fluvial flooding results from a river overtopping its banks. Coastal flooding occurs
when storm surge or extreme high tides inundate the shore and/or cause inland flooding through
the drainage network. Pluvial flooding takes place when runoff exceeds the capacity of natural
and built drainage systems to collect water and safely transport it to a receiving water body
(Rosenzweig et al., 2018). Here, we focus on urban pluvial flooding, a process that has been
rarely systematically measured and modeled while being a significant driver of urban flooding
(Rosenzweig et al., 2018; The National Academies Press, 2019). While pluvial flooding is often
considered “nuisance” flooding, it can result in building damage, traffic impacts, power outages,
and weakened infrastructure (ten Veldhuis, 2011).

A key resource to mitigate the impacts of urban flooding is the availability of accurate
hydrometeorological forecasts with sufficient lead times. In the U.S. operational flood and flash
food forecasts are provided by the National Weather Service (NWS), an agency of the National
Oceanic and Atmospheric Administration (NOAA). These forecasts rely on quantitative

precipitation estimates (QPEs) and forecasts (QPFs) generated through the integration of weather



64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

&3

84

85

86

radar data, rain gage observations, and numerical weather prediction models. QPEs and QPFs are
used as forcings for the Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic model
(Z. Zhang et al., 2012), which produces flood forecasts at ~3,600 locations across the nation
(Salas et al., 2018). Flash flood guidance values are also generated in certain regions of the
country (D. Seo et al., 2013). NWS River Forecast Centers (RFCs) and Weather Forecast Offices
(WFOs) use these different sources of hydrometeorological forecasts to issue flood and flash
flood watches and warnings to inform the public on the potential occurrence and danger of these
events (NOAA, 2020). For urban regions where catchments have small response times and no
streams, flood and flash flood watches and warnings are often based solely on QPEs, QPFs, and
expert knowledge of the area.

Despite the low annual precipitation depths, urban pluvial flooding is of significant
concern also in desert cities (Saber et al., 2020; Thakali et al., 2016). These include the Phoenix
metropolitan region in southwestern U.S., which experiences localized convective thunderstorms
with high rain rates during the North American Monsoon (NAM) summer season (Adams &
Comrie, 1997) resulting in floods and flash floods (Yang et al., 2017, 2019). Due to the
combined effect of increasing urbanization and concentration of population, economic activities
and infrastructure, pluvial flooding events in the Phoenix metropolitan area have been
increasingly impacting transportation, electricity delivery, and properties (NOAA, 2021).
Unfortunately, operational forecasts of floods and flash floods driven by NAM convective
storms are challenged by the limited ability to (i) predict the exact location, timing and rain rates
of convective storms with adequate lead time (L1 et al., 2003; Rogers et al., 2017) and (i)
simulate rainfall-runoff processes in urban catchments with highly heterogeneous surface

properties and presence of stormwater infrastructure (Leandro et al., 2016).
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In this study, we contribute towards the improvement of the predictability and modeling
of urban pluvial flooding caused by NAM convective thunderstorms through two main activities.
First, we quantify the uncertainty of three radar-based QPE products in the Phoenix metropolitan
area during the NAM season (July to October of years 2015-2019). This is a necessary
preliminary step to validate and improve both QPEs and QPFs used for hydrologic predictions.
The QPEs include the National Centers for Environmental Prediction (NCEP) Stage IV analysis
(Y. Lin, 2020), the Multi-Radar Multi-Sensor (MRMS) and its gage corrected version
(GCMRMS) system products (J. Zhang et al., 2011, 2016). They all rely on observations of S-
band weather radars of the Next Generation Weather Radar (NEXRAD) network that are merged
with other data sources that depend on the product. Radar-derived rainfall estimates are affected
by errors in (1) reflectivity measurements, (ii) relations converting reflectivity into rainfall rate,
and (iii) geometry of the radar measurement field (Villarini and Krajewski, 2010). Although the
integration of other data sources and gage observations in radar QPEs limits these errors, their
effect can still be significant, especially at hourly and sub-hourly resolutions (Nelson et al.,
2016). Here, we characterize the uncertainty of these errors using the multiplicative error model
proposed by Ciach, Krajewski, and Villarini (2007). While error models of radar-derived QPEs
have been applied in humid (Habib et al., 2008; Villarini & Krajewski, 2009, 2010b) and
mountainous regions (Germann et al., 2009; Kirstetter et al., 2010), their application has been
limited in arid sites and, to our knowledge, they have never been tested in the desert
southwestern U.S. Moreover, to calibrate the error model, we use observations of 168 rain gages
in an area of 5,930 km?2, resulting in one of the largest densities of ground observations used to

apply these statistical models.
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The second main activity of this study is to set up a hydrologic-hydraulic model in an
urban catchment in Phoenix and use it to assess the propagation of uncertainty of the QPE
products into urban flooding predictions. Simulating urban pluvial flooding in detail is a complex
task that requires (i) identifying and collecting data on small-scale spatial heterogeneities of
catchment features (e.g., roads and buildings) and stormwater infrastructure; and (i)
incorporating these features in a numerical model that simulates rainfall-runoff processes,
surface overland flow, and pipe flow. Progress has been made during the last decade to address
some of the major challenges of urban hydrologic modeling (e.g., Chen et al., 2009; Cristiano et
al., 2017; Grimley et al., 2020; Leandro et al., 2016; S. Zhang & Pan, 2014). However, current
operational hydrologic forecasts by the NWS still rely on models that do not explicitly simulate
urban hydrologic and hydraulic processes. Here, we take advantage of the availability of high-
resolution (0.25 m) terrain from Light Detection and Ranging (LiDAR) and a detailed
infrastructure database provided by the City of Phoenix to explore the utility of the EPA Storm
Water Management Model (SWMM) model (Koustas, 2000; Rossman, 2010), which is widely
adopted for engineering design. After setting up both the 1-D and 2-D versions of SWMM in a
basin of 2.38 km?, we select four storm events and conduct rainfall-runoff simulations using (i)
gage rainfall observations; (ii) Stage IV, MRMS, and GCMRMS QPEs; and (iii) an ensemble of
rainfall fields generated with the error model that characterizes the uncertainty of radar-derived
QPEs. In doing so, this study focuses on a source of uncertainty (precipitation) affecting urban
flood modeling that has received less attention compared to other sources, such as topographic
data and parameter specification (e.g., Abily et al., 2016, Deletic et al., 2012). This work
provides valuable support for local flood management and forecasting agencies, as well as to

improve the recently launched NOAA National Water Model (NWM; NOAA, 2016), which
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relies on MRMS QPEs and a distributed hydrologic model to simulate streamflow at ~2.7

million river locations over the continental U.S. at different lead times.
2. Study Area

The metropolitan area of Phoenix, Arizona (Fig. 1a) is one of the fastest growing urban
regions in U.S., with a population that has risen from 1.86 million in 1985 to over 4.75 million in
2018 (Guan et al., 2020). It is located in the southwestern U.S. in a region with a hot desert
climate (BWh, according to the Koppen classification) where the mean annual rainfall and
temperature are 204 mm and 24 °C, respectively (Mascaro, 2017). The rainfall regime is
characterized by marked seasonality, including (1) a summer season from July to September,
when the NAM leads to diurnally-modulated convective thunderstorms with high rainfall
intensities, very short durations (<1 h) and small spatial extents (Balling & Brazel, 1987), and (2)
a dry period from late fall to early summer which is interrupted by occasional cold fronts leading
to widespread storm systems with low-to-moderate rainfall intensity and relatively longer
durations of up to a few days (Sheppard et al., 2002). The spatial variability of annual, seasonal,
and extreme rainfall is moderately to significantly controlled by terrain, which varies from 220 to
2,325 m above mean sea level (Mascaro, 2017, 2018, 2020).

While floods and flash floods occur both in summer and winter in this urban area, pluvial
flooding events caused by monsoonal thunderstorms occur more frequently than other types of
flood events (Yang et al. 2017; their Fig. 4) and are particularly impactful in small urban
catchments with short response times. To investigate the predictability of these events, we
simulate urban flooding with different radar rainfall products in an urban catchment of 2.38 km?
in downtown Phoenix (Fig. 1b). The basin is largely (~80%) impervious and includes the dense

downtown business district, the Phoenix City Hall, and entertainment venues such as the Citi
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Field Baseball stadium. As detailed in Fig. 1b, the drainage infrastructure in the catchment
includes 657 catch basins, 386 manholes and other junctions, and 1,091 pipe segments totaling
24 km, all draining to one outlet that discharges to the Salt River south of downtown Phoenix. In

addition to this surface discharge, there are 26 drywells which capture and infiltrate stormwater.

3. Datasets

3.1. Rainfall Products

We use three radar-derived QPEs, including Stage IV, MRMS and GCMRMS. Stage IV
QPEs are produced by processing and mosaicking reflectivity data from the NEXRAD network;
rainfall rates are further adjusted with gage and satellite observations and manually quality
controlled (Y. Lin, 2020). MRMS products are derived by integrating radar observations from
the NEXRAD and Canadian networks, with atmospheric environmental data, satellite data, and
lightning and rain gage observations (J. Zhang et al., 2016). We acquire Stage IV and MRMS
QPEs for summers (July to October) of 2015-2019. For MRMS, we obtain version 11 of the
radar-only and gage-corrected (GCMRMS) products. Stage [V (MRMS; GCMRMS) QPEs are
available in polar stereographic coordinates at 4-km, 1-h (1-km, 2-min; 1-km, 1-h) resolution.
We project all radar products into Universal Transverse Mercator (UTM) Zone 12N and
aggregate MRMS at 1-hour time resolution. To quantify errors in the QPEs and apply the
multiplicative error model, we use rainfall records of 168 gages of the Automated Local
Evaluation in Real Time (ALERT) network managed by the Flood Control District of the
Maricopa County (FCDMC; Fig. 1a). For these tipping-bucket gages, we convert the tipping
instants into rainfall intensities at 1-hour resolution following the procedure described by

Mascaro et al. (2013).
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3.2. Geospatial Datasets for Hydrologic-Hydraulic Simulations

We set up the EPA SWMM hydrologic-hydraulic model in the study basin using several
geospatial datasets. We use the terrain description from a LiDAR product at an equivalent
resolution of 0.25 m that is publicly available (ASU, 2018); soils data from the Natural
Resources Conservation Service Web Soil Survey (NRCS, 2019); and percent imperviousness
from 30-m map from the National Land Cover Database (MRLC, 2016). We obtain information
on drainage infrastructure components from the City of Phoenix, including location of pipes, dry
wells, and manholes; pipe material, diameter, and slope; and elevations of pipe rim and invert.

4. Methods

In the following sections, we first describe the statistical error model used to characterize
the uncertainty of radar errors and, then, we illustrate the setup of the hydrologic-hydraulic
model. Lastly, we detail the approach used to sample the radar rainfall error model to force the
hydrologic-hydraulic model and describe the metrics adopted to quantify the associated
uncertainty.

4.1. Radar Rainfall Error Model

We use a multiplicative model to characterize the radar rainfall model uncertainty. This
type of model has been shown to outperform additive models in terms of predictive skill and
ability to separate systematic and random errors, and capture the non-linear relationship between
the magnitude of errors and measurement (Tang et al., 2015; Tian et al., 2013). Specifically, we
use the model proposed by Ciach, Krajewski, and Villarini (2007) and recently improved by
Villarini et al. (2014), who suggested the use of a mixture of gamma distributions instead of the
Gaussian distribution to characterize positive multiplicative errors, along with techniques to

account for the spatiotemporal structure of the errors. Since the errors of radar-derived products
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are affected by the distance from the radar, we divide the rain gages into two clusters, as shown
in Fig. 1a, and apply the model separately on each cluster. In the following, we provide a brief
description of the model and refer the reader to Ciach, Krajewski, and Villarini (2007) and
Villarini et al. (2014) for a detailed description. We also point out that a recent study by Ciach
and Gebremichael (2020) has proposed an alternative parametrization of the error model based
on a three-parameter modified Laplace model.

The model assumes that the difference between area-averaged radar rainfall estimates and
point gage measurements is negligible. In a previous model application in Oklahoma by Ciach et
al. (2007), this assumption was supported referring to Ciach and Krajewski (2006), who
calculated the spatial correlogram of 1-h rainfall time series observed at pairs of gages with
distances, d, lower than 4 km. These authors found the Pearson’s correlation coefficient, p, to be
larger than 0.88, thus suggesting the rainfall spatial variability to be small within a radar pixel.
We perform a similar analysis with our dataset by computing the Kendall’s 7 correlation
coefficient to better measure the correspondence between samples that are not well described by

the Gaussian distribution (Serinaldi, 2008; Villarini et al., 2014). We then derive p from 7 using

the formula p = sin (%) (Fang et al., 2002) and fit the power-law relation:

p(d) = poexp (—dio) (D
with parameters po and do, to capture the average behavior. We find p to be larger than 0.88 for d
<1 km (the MRMS grid resolution), which is similar to the value of Ciach and Krajewski
(2006). The minimum p decreases instead to 0.72 for d = 4 km, suggesting that a single rain gage

may not fully capture the rainfall variability within a Stage IV pixel. Dai et al. (2018) showed

that this can introduce uncertainty in the application of a different error model. Since a similar
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study has not been yet conducted for the model adopted here and is out the scope of this paper,
we will still assume that rain gages provide a relatively accurate estimate of the area rainfall.

According to the multiplicative structure of the error model, the true rainfall value in a
radar pixel, Riue, can be expressed as the product of a deterministic, h(R,.), and a random, e(R,.),
component:

Rirue = h(R;) - e(R;). 2)
Both functions in equation (2) depend on R,., which is the radar rainfall value corrected for
unconditional bias (if present), computed as:
R, =B, R;. 3)

By is in turn calculated as:

YiRg,i
By = —ZiRgi, 4)

where Rg, is the rain gage measurement at the i-th gage, and Ry ; is the biased radar rainfall in the
co-located pixel (i.e., the original Stage IV, MRMS and GCMRMS values).

In equation (2), the function h(R,.) provides an estimate of the bias conditioned on R,.,
while e(R,) accounts for residual errors after removing unconditional and conditional biases. We
obtain the two components as follows. We use rain gage observations, Rg, to approximate Ruue;
next, following Ciach, Krajewski, and Villarini (2007), we compute h(R,.) by (i) applying the
Epanechnikov kernel with a minimum of 20 data points, and (ii) fitting the power relation:

h(R,) = aRy, (5)
with parameters a and b, to the line derived from the kernel. Equation (5) allows obtaining the
sample of errors as the ratio of Rg (approximating Riue) and h(R,). We use this sample to find
the best parametric distribution to statistically model the random component e(R,.), testing

different mixtures of gamma distributions, as proposed by Villarini et al. (2014). For each
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distribution, we evaluate the possibility of using parameters that are constant or dependent on R
and choose the most appropriate one through the Akaike Information Criterion (AIC; Akaike,
1974).

We also test whether the random errors in our dataset exhibit significant spatial and
temporal dependencies. For each cluster, we compute the spatial correlogram of the random
errors using the Kendall’s 7 correlation coefficient and the same power model of equation (1),
where o(d) and pv are now replaced by 7(d) and w, respectively (Fig. S2). We find the nugget
parameter 7y to range from 0.23 to 0.37 depending on the radar product, thus indicating that the
correspondence between errors at close pixels is rather low (Fig. S2). To further verify this
assumption, we (i) generate 100 spatially correlated error fields following Villarini et al. (2014),
as well as 100 random error fields; and (i1) compute for each field the basin mean areal rainfall
during four selected storms (see section 4.3). We find the uncertainties of the basin mean areal
rainfall derived from spatially correlated and uncorrelated fields to be very similar (not shown).
To quantify the temporal dependencies, we compute the autocorrelation of the errors for N = 462
storms (detected in 85 individual pixels) with durations larger than 4 hours. We then compare the
resulting median and 90% confidence interval with those of N time series of random white noise
with the same duration of the observed events. We find that, apart from MRMS that exhibits a
certain degree of autocorrelation at lag 1, observed and synthetic autocorrelations are similar
(Fig. S3). Based on these empirical outcomes, we consider the spatiotemporal dependencies
among the random errors to be negligible for the purpose of applying the error model in our

basin.

12



269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

4.2. The Coupled Hydrologic-Hydraulic Model
4.2.1. Brief Model Description

SWMM is a semi-distributed rainfall-runoff model developed by the U.S. EPA (Koustas
2000) for simulating runoff in urban catchments. The model includes a hydrologic component
that transforms rainfall into surface runoff in sub-catchments, and a routing component that
transports this runoff through stormwater infrastructure elements, including pipes, channels, and
storages. As detailed in the user’s guide (W. James et al., 2010), different hydrologic processes
can be simulated that allow applying the model in event-based or continuous fashion. The
routing component includes several hydraulic modeling capabilities largely based on the
application in one dimension (1D) of the momentum and continuity equations. The model
domain is generated by (i) discretizing the catchment into smaller sub-catchments corresponding
to each inlet into the infrastructure drainage system; and (ii) introducing different types of model
elements, such as conduits, junctions (e.g., catch basins and manholes), outfall nodes, and
storage units (see Table 1 for a description of the main elements). Model inputs include rainfall
data, provided through one or more rain gages (or radar pixels; see Table 1), while outputs
include, among others, the flow rate and hydraulic grade lines throughout the drainage system,
and surface flood volumes when surcharge occurs (i.e., water rises above the crown of the
highest conduit) and the hydraulic grade line exceeds surface elevation of the junctions.

In addition to the standard components of SWMM, we also use the proprietary
PCSWMM implementation to model overland routing of flood water and the resulting flood
extent. This is accomplished through an integrated 1D-2D modeling approach where the fully
dynamic 1D approach (i.e. SWMM) is extended to 2D free surface flow using a mesh that

captures topography, geometry and built structures. PCSWMM builds upon the SWMM 1D
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model and discretizes the domain into a square mesh where each 2D cell is represented with a
2D node or a junction, whose invert elevations are assigned as either the ground surface
elevation or the rim elevation of adjacent coupled 1D junctions (Finney et al., 2012; R. James et
al., 2013). In PCSWMM, rainfall-runoff processes and routing in the pipe system are simulated
in 1D, as in SWMM. When flood conditions are simulated, water leaves the drainage system at
catch basin junctions (and manholes, if not bolted) and is then routed on the 2D mesh cells.
Flood water is routed across the land surface and, as the hydraulic grade line drops below the
catch basin rim elevation, water can re-enter the drainage system.
4.2.2. Model Setup

To set up SWMM in our basin, we extensively pre-process and quality control the
LiDAR and infrastructure data through Geographic Information System (GIS) software and field
visits. We use the LiDAR point cloud data with average point spacing of 0.25 m and total point
count of over 37.8 million in the basin to generate a Digital Elevation Model (DEM) at 0.6-m
resolution for the catchment delineation. The elevations of the point cloud data range from 320 m
to 484 m, mainly constituting returns from the road surface and roofs of the buildings. Features
such as buildings are initially retained as they can influence sub-catchment boundaries. Next, we
use the high-resolution DEM to generate 2D computational square grid cells at a lower resolution
of' 4.57 m (15 ft) for overland routing of flood waters needed for PCSWMM. This lower
resolution is selected due to the high computational demands of routing overland flow. We then
exclude buildings through a mask of building footprints available from ASU (2018), as they
would artificially raise the grid cell elevation and impact overland flow routing. Using aerial
imagery, we visually identify DEM and 2D cells with abnormally low or high elevations caused

by the presence of overpasses or sites that were under construction when the LiIDAR was
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obtained. To prevent ponding at these artificial depressions, those sections are excluded from the
2D computational grid by creating bounding layers over them.

As a next step, we check the reliability of the GIS data of stormwater infrastructure
components through field visits. During these, we verify surface structures (e.g., catch basins,
manholes) in frequently flooded areas identified by project partners in the City of Phoenix and
the FCDMC, as well as areas that deviated from standard design practice. In addition, we
identify a few missing or moved surface components, including catch basins and manholes, as
well as missing subsurface components where stormwater could not reach the outlet from a
portion of the system as documented. These missing pipe segments are specified based on design
standards. Additionally, some components have missing attribute data such as rim or invert
elevations, slope, pipe diameter, and pipe material. Rim elevations are estimated from the DEM,
while invert elevations, slope, pipe size, and material are estimated from adjacent components
and design standards. Once data gaps are assessed and filled, the infrastructure shapefiles are
imported into SWMM to create the drainage network in the model. Finally, pipe material (mostly
concrete) is used to specify Manning’s roughness coefficient (on average, 0.011).

We apply the model for event-based simulations using rainfall data from (i) the only gage
of the FCDMC networks installed within the basin; and (ii) the radar grids (see Fig. 1b). For the
hydrologic component, we specify the percent imperviousness of each sub-catchment using the
NRCS dataset and we simulate infiltration with the Green-Ampt’s method, which is
parameterized with soil properties from the Web Soil Survey database. Parameter values are
reported in Tables 2 and 3. The sub-catchments draining to each of the 26 drywells present in the
basin are modeled as disconnected from the rest of the drainage system unless flooding and

overland flow cross sub-catchment boundaries (modeled only in the 2D PCSWMM). We use the
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1D dynamic wave routing method to model routing in the pipes. PCSWMM simulates surface
flooding by coupling the 1D model of the drainage network with a 2D overland flow model.
When surcharge occurs, flow exiting catch basins (all manholes are bolted in our study basin) is
routed on the 4.57-m x 4.57-m mesh surface using the Saint-Venant flow equations.
4.3. Hydrologic-Hydraulic Simulations

We identify four storm events from the 2015-2019 study period with significant areal
coverage in Phoenix, relatively high average precipitation depth, and for which NOAA has
reported impacts on traffic and properties (NOAA, 2021). The storm characteristics are presented
in Table 4. Two storms occurred in the middle of the NAM season and, as such, are of
monsoonal origin; the other two were observed at the end of September and in October during
the transition from NAM to winter weather conditions and, for one of them, the source of
moisture came partially from a tropical storm (personal communication by Dr. Larry Hopper, at
the NWS). Storm durations range from 6 to 30 hours and gage total rainfall varies from 5 to 10
mm. The impacts of one of the storms (September 23, 2019) on street level flooding in the study
basin is presented in the photograph of Fig. 2 that was taken by a camera installed to monitor
flooding during the event. For each storm, we conduct simulations with SWMM using different
rainfall inputs at 1-h resolution, including (1) rain gage observations (Ry); (2) original (i.e., R/")
QPEs from Stage IV, MRMS and GCMRMS; and (3) an ensemble of N = 100 fields generated
through the error model for each radar product. The rainfall inputs derived from the rain gage are
spatially uniform, while those produced by the original radar products and the error model are
spatially variable with a resolution of 4 km (1 km) for Stage IV (MRMS and GCMRMS), as also
shown in Fig. 1b. The procedure used to generate N = 100 fields with the error model is based on

Monte Carlo simulations, consisting of the following steps:
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1. For a given storm with 7 time steps, the unconditional bias is first removed from the
original radar estimates using equation (3) and the deterministic component h(R,.) is
calculated with equation (5) at all pixels and times.

2. Since the spatiotemporal dependencies of the errors are found to be negligible, for each
pixel, a total of 7 random errors, e(R,.), are randomly generated from the corresponding
probability distribution.

3. The errors and the deterministic component h(R,) are then used to estimate the true rainfall
using equation (2), resulting in 7 rainfall grids for each of the pixel. This spatiotemporal
rainfall field represents a possible realization of the true rainfall for the analyzed event,
given the original radar-derived QPEs. The spatiotemporal rainfall field is then used to force
SWMM.

4. Steps 2 and 3 are repeated N times.

Since the 2D simulations with PCSWMM are computationally intensive, running this
model N =100 times is not feasible. Therefore, we select three rainfall sequences generated from
the previous Monte Carlo SWMM simulations for each storm. These sequences correspond to
the 25™, 50, and 75 percentiles of the distribution of the total flood volume, V7 (i.e., volume of
water that exits the drainage system through catch basins when the hydraulic grade line exceeds
the rim elevation of catch basins) across the 100 Monte Carlo runs. We then apply PCSWMM
for these three realizations for each storm to illustrate the influence of precipitation uncertainty
on flood extent in a computationally efficient manner.

4.4. Uncertainty Quantification

Let {x1, ..., xn} be the values of a given variable x (rainfall or discharge at a given time

step) returned by the ensemble runs with the radar rainfall or the hydrologic model. We quantify
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the uncertainty of these ensemble simulations of x through two simple metrics, including: (i)
skewness of the distribution of {xi, ..., xn}; and (i1) interquartile range relative to the median:
RIQR = (qo.75 — qo.25)/qo.50 x 100, where g, is the quantile of the empirical distribution of {xi, ...,

xn} associated with the non-exceedance probability p.
S. Results

5.1. Characterization of Radar QPE Uncertainty

The first step to apply the error model is to calculate the unconditional bias, Bo, which is
needed to compute R, via equation (3). We find Bo to be 1.26, 0.66, 0.76 for Stage IV, MRMS,
and GCMRMS, respectively, indicating that original Stage IV (MRMS and GCMRMS) QPEs
underestimate (overestimate) the gage observations. Fig. 3 presents the scatterplots between R
and Rg (estimating the true rainfall, Ruu.) along with the lines obtained through the Epanechnikov
kernel and the power law of equation (5) for cluster 2 (results for cluster 1 are reported in Fig.
S4). All radar products exhibit a positive systematic bias that becomes larger as R, increases, as
found in previous work (e.g., Ciach et al., 2007; Villarini et al., 2014; Villarini & Krajewski,
2009, 2010b). The conditional bias for Stage IV QPEs is much smaller than that found for the
MRMS and GCMRMS products. The errors for GCMRMS are slightly smaller (larger) than
those of MRMS for R < 15 mm/h (R, > 15 mm/h), where most (less) data points lie.

As a next step, we use equation (2) to compute the errors, e(R;), quantifying the
variability of radar rainfall estimates around the 4(R;) lines. Fig. 4 shows the errors along with
the empirical quantiles (dotted lines) derived with the Epanechnikov kernel for cluster 2 (results
for cluster 1 are reported in Fig. S5). For all products, the distribution of the errors is positively
skewed and, importantly, does not vary with R,. Based on this empirical outcome, we adopt a

parametric distribution with constant parameters (i.e., a distribution that does not change with
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Ry), as in Villarini et al. (2014). We find the mixture of three gamma distributions to be the most
appropriate parametric distribution, as suggested by the lowest AIC values (Table S1). The
quantiles derived from the mixed gamma distribution are shown in Fig. 4 with solid lines, while
the comparison between empirical and parametric distributions is reported in Fig. 5 (Fig. S6 for
cluster 1) and parameters of the gamma distribution for each radar product are summarized in
Table 5. Fig. 5 reveals that, for all products, the distribution of the errors is very well reproduced
up to about e(Rr) = 5; larger values of e are underestimated, but they only account for less than
0.5% of the sample.
5.2 Propagation of Uncertainty from Rainfall to Runoff
5.2.1. Rainfall Uncertainty

Fig. 6 presents, for each storm, the time series of rainfall recorded at the gage (Rg; red
dots) along with the basin mean areal rainfall estimated by the three radar QPEs (R,"; blue dots)
and simulated by the corresponding error model (boxplots displaying 50% and 90% confidence
intervals of N = 100 values produced by the Monte Carlo runs). For all events, the radar products
estimate nonzero rainfall in a larger number of time steps as compared to the gage. For the gage-
corrected Stage IV, Rg is very close to both R, and median of the Monte Carlo simulations. As
previously discussed, MRMS QPEs are positively biased, so that R,” is in most cases larger than
R¢ and median of the error model simulations. This bias is reduced when the gage correction is
applied in GCMRMS (see, e.g., event on July 10, 2018). For all three products, higher rainfall
measurements yield a higher magnitude of uncertainty for the error model. Finally, Table 6
presents the mean skewness and RIQOR of the ensemble hourly rainfall across each storm
duration. Due to the positive skewness of the distribution of the residual error in the radar error

model (see Fig. 4), the mean skewness of the simulated rainfall is also positive and included

19



430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

between 1.0 and 3.2, with higher values for Stage IV, followed by MRMS and GCMRMS. The
relative variability across the ensemble members is quantified via the RIQR, whose average
ranges from 56.1% to 74.6%, with the highest (lowest) values found again for Stage [V
(GCMRMYS).
5.2.2. Uncertainty of Basin-Integrated Runoff

We start evaluating the propagation of rainfall uncertainty into runoff by first assessing
the variations in the outlet hydrograph (i.e., outflow at the pipe that discharges to the Salt River)
across radar products and storms. The hydrographs simulated by the SWMM model under the
rainfall forcings of Fig. 6 are displayed in Fig. 7. The use of Stage IV QPEs and rain gage
observations as inputs for SWMM leads to closely aligned hydrographs, which are also very
similar to the median hydrograph of the corresponding ensemble simulations. In contrast, the
outflow generated by the original MRMS QPEs is consistently biased high compared to the
simulation under the gage rainfall observations, with the median of ensemble runs falling
between the two. As found in Fig. 6 for the rainfall values, the gage correction of MRMS QPEs
reduces the bias in the resulting flow, as shown in the hydrographs with GCMRMS forcings. The
uncertainty of the ensemble hydrologic simulations is quantified in Table 6 via the time-averaged
skewness and RIQR of the discharge at the outlet. The mean skewness is still positive with
values in the range 0.4-2.5, which are lower compared to those found for rainfall. This is also
true for the mean R/QR that varies from 22.4% to 66.9%. Metric values are, again, the largest
(smallest) for Stage IV (GCMRMS).

To complement the information provided by the hydrographs at the catchment outlet and
better assess flood impacts and differences across precipitation inputs, we examine additional

metrics simulated by SWMM. These include Omax: peak flow of the hydrograph at the outlet; and
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V1. stormwater volume that ponds on the surface of the catchment when the hydraulic grade line
reaches the catch basin rim elevation at one or more locations. In addition, we consider two
metrics that characterize the hydraulic response of the stormwater pipe system under surcharge
conditions, including #ma: maximum total duration of node surcharging across all nodes; and
hmax: maximum height of the hydraulic grade line above pipe invert level. Note that nonzero
values for tmax and hmax do not necessarily imply surface flooding, as mentioned in section 4.2.1.
Fig. 8 presents the simulated metric values for each storm and radar product. Simulations under
gage rainfall, R, could be used as reference to compare across storms. The lowest (highest) Qmax
and Vrare obtained for the storm on September 23, 2019 (October 7, 2018), which are
characterized by the lowest (highest) rainfall intensity (see Table 4). smax exhibits a certain
relation with Owmax and Vythat quantify actual surface flooding, while #max 1s largely controlled by
storm duration (reported in Table 4). Turning now our attention to the radar products, all metrics
modeled with Rg are close to those simulated under Stage IV R, and in most cases (all cases
except tmax for event 1) within the 50% (90%) confidence interval of the ensemble runs. When
compared to the metrics simulated under Rg, simulations with MRMS rainfall products lead to
longer tmax in two events and larger Aimax, Omax, Vy1n most storms. The use of GCMRMS
improves MRMS performance, apart from some metrics in individual storms (e.g., /max On
September 23, 2019; Vron July 24, 2017). Finally, when considering the spread of the ensemble
distributions, there is not a specific radar product that leads to wider or narrower distributions for
a given metric across all events. These metrics are further discussed in Section 6.
5.2.3. Uncertainty of Spatial Flooding

The metrics presented in Fig. 8 aid in comparing model output across simulations.

However, information on location and extent of flooding over time is needed to alert residents to
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dangerous conditions, provide timely emergency response, and identify critical locations for
infrastructure investment. Such information is obtained through the 2D simulations of flood
routing with PCSWMM. Figs. 9 and 10 illustrate the uncertainty in maximum flood extent (i.e.,
areas that are flooded for at least one time step) simulated under each radar product for the
storms on July 31, 2018 and October 7, 2018, respectively (Figs. S7 and S8 show results for the
other two storms). Uncertainty is captured through the simulations under the rainfall fields of the
error model associated with the 25™ percentile (blue), median (green), and 75™ percentile (red) of
the distribution of V7 from the 1D SWMM simulations. Thus, if a pixel is blue, flooding has been
simulated for all higher percentiles; when it is green, it has been simulated for the median and
75™ percentile; and when the pixel color is red, flooding only occurred for the 75™ percentile.

For the monsoonal storm on July 31, 2018, the use of rainfall fields generated by the error
model with Stage IV QPEs (Figs. 9a-c) leads to simulation of street flooding in two distinct basin
locations (Figs. 9b,c), with a total of 0.001, 0.03, and 0.05 km? of flooded areas for the 25"
percentile, median and 75™ percentile, respectively. If rainfall forcings are provided by MRMS
(Figs. 9d-f), street flooding is also predicted in a location in the upper part of the basin (Figs.
9d,f). Given the positive bias of these QPEs, the simulated flooding extent is larger and equal to
0.07 (0.23) km? for the 25" (75™) percentile. Interestingly, the uncertainty across the percentiles
is low in a relatively large region in the lower part of the catchment (blue area in Fig. 9¢). The
gage correction of MRMS QPEs performed for GCMRMS leads to results that are substantially
similar to Stage IV (Figs. 9g-1). Maps of flooded areas for the transition storm on October 7,
2018 are reported in Fig. 10. Flooding is predicted in two of the same basin regions displayed in
Fig. 9. Flooded areas under Stage IV (Figs. 10a,b) are very similar for the median (0.16 km?) and

75™ percentile (0.19 km?), while they decrease substantially for the 25" percentile (0.006 km?).
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As found for the monsoonal storm of Fig. 9, using MRMS QPEs (Figs. 10c,d) as model inputs
increases the extent of street level flooding as compared to Stage IV, which reaches 0.04 (0.4
km?) for the 25t (75™) percentiles. The adoption of GCMRMS (Figs. 10e,f) leads instead to
lower flooded areas compared to Stage IV, ranging from no flooded areas for the 25™ percentiles

to 0.09 km? for the 75 percentile.
6. Discussion

While focused on an urban catchment in the Phoenix metropolitan area, results of our
modeling effort are based on extensive precipitation, land surface, and infrastructure datasets,
and, as such, they provide general insights on the utility of radar QPEs and hydrologic-hydraulic
models for urban flood predictions in the NAM region and other areas, as discussed in the next
subsections.

6.1. Comparison of Radar Products and their Utility for Urban Flood Modeling

When applying the error model using the network of 168 gages, we find that, on average,
Stage IV QPEs underestimate gage rainfall by ~20%, while MRMRS and GCMRMS
overestimate it by about 51% and 31%, respectively (see values of By reported in section 5.1).
Qualitatively, this result is also confirmed for the four simulated storm events. Our finding is
consistent with the extensive comparison of six radar products, including Stage IV and earlier
versions of MRMS and GCMRMS, performed by Seo et al. (2018) in Iowa, but opposite to two
separate analyses by Lin et al. (2018) and Gao et al. (2021) in Texas during a set of flood events.
The existence of regional differences in performance of Stage IV and MRMRS have been also
recently highlighted in another comparison study in Louisiana by Sharif et al. (2020). Overall,
results of our and other studies suggest that radar-only QPEs are critically improved through

gage-based bias corrections, as done in Stage IV and GCMRMS.
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Fig. 6 shows that nonzero rainfall is observed by the radar QPEs in more time steps
compared to the single point measurement of the gage, indicating that, even in a very small
basin, a single gage may be unable to monitor localized monsoonal convective storms. Despite
this, Figs. 6 and 7 show that flood simulations under the more accurate Stage I'V-derived rainfall
products lead to very similar outcomes to those obtained with gage rainfall, Re. This suggests
two considerations. First, while the basin area is small, the presence of stormwater infrastructure
acts as an integrator of the rainfall spatiotemporal variability, so that, despite differences between
R¢ and Stage IV QPEs, the resulting flood simulations are substantially quite similar. Second, an
important consequence of the first consideration is that, when gage observations are not
available, hydrologic simulations with Stage IV QPEs (available throughout the country) can
provide a reliable reference for evaluating the impacts of urban flooding. On the other hand, in
our study basin, the use of MRMS QPEs consistently results in the largest flood volumes and
extent, while the flooding impacts simulated with GCMRMS QPEs are similar to those obtained
with Stage IV (see Figs. 8-10). Thus, our effort demonstrates that the gage correction applied to
MRMS greatly improves the utility of this radar-only product for flood modeling.

6.2. Uncertainty of Radar Rainfall and Corresponding Urban Flood Simulations

Radar QPEs can provide key support for urban flood forecasting and management,
complementing gage observations that may only be available at sparse location and not in real
time. However, radar products are affected by different sources of errors, thus requiring models
to characterize the associated uncertainty. Here, we use an error model with a multiplicative
structure that leads to largest uncertainties for the highest rainfall values (see Fig. 6), as also
found in previous applications (Villarini et al. 2014). As a consequence, the uncertainty of urban

flood predictions is expected to be also relatively high, as these higher precipitation observations
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are more likely to result in flooding. This is in general confirmed by our results because the
largest spread of the basin outflow confidence intervals occurs right after the highest rainfall
events (see Figs. 6 and Fig. 7). However, a closer look at the uncertainty metrics for rainfall and
discharge reported in Table 6 suggests that the hydrologic processes governing the rainfall-runoff
transformation have two effects: (i) they smooth the impact of the highest rainfall values
simulated by the error model, so that the distribution of the ensemble outflows is more
symmetric (i.e., less positively skewed) than the distribution of the rainfall inputs, as also found
by Grimley et al. (2020); and (i1) they reduce the relative spread of the ensemble rainfall
distribution, as shown by the mean RIQR decreasing from an average of 64.7% to 48.2% when
considering all events and radar products. These conclusions should be refined in future work
quantifying the effect of other sources of uncertainty for the hydrologic-hydraulic model.

We also highlight that the uncertainty of the basin outflow is greater in the rising than the
falling limb of the hydrographs (Fig. 7). Specifically, across all storms and radar products, the
50% (90%) confidence interval range in the falling limb is, on average, just 8.8% (6.3%) of the
range in the rising limb. This behavior can be explained considering that, in highly impervious
areas and small watersheds, the rising limb and its associated uncertainty are strongly shaped by
the rainfall rate. In contrast, during the falling limb of the hydrograph, catchment and drainage
network properties exert a larger control that results in an uncertainty reduction. When
considering the other flood metrics characterizing surface flooding and surcharge conditions in
the stormwater infrastructure, we find that their uncertainty varies substantially (Fig. 8). As
expected, the variability of Omax is related to the QPE uncertainty, although the ensemble
distributions for Omax are more symmetric for the same reasons mentioned above. The

distribution of Vris highly skewed with several zero values, despite #mar and smax are never zero.
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This implies that a fraction of QPEs with lower values leads to surcharge conditions but not to
surface flooding. The uncertainty of #nax 1s practically negligible, indicating that all precipitation
inputs lead to surcharge conditions over very similar maximum durations. In contrast, Zmax,
which quantifies the severity of surcharge conditions, exhibits a variability (mainly in the range
of 5 m) due to the different QPE values simulated by the error model.
6.3. Utility for Urban Flood Management

Urban pluvial flooding is characterized by localized damage to property and impacts to
pedestrian and vehicle travel. Timely information on the location and severity of these hazards
can enable response and limit travel delays and risks (NWS, 2021). Our simulations with
PCSWMM show that, despite uncertainties and biases across radar products, all of them robustly
identify the same basin regions experiencing flooding conditions (Figs. 9, 10, S7 and S8). This is
a promising result supporting the operational use of QPFs derived from radar QPEs combined
with hydrologic-hydraulic models, as also highlighted by Grimley et al. (2020) when discussing
their simulation of pluvial flooding in an urban area in lowa. However, the extent of flooding
areas exhibits differences both for the same radar product and across radar products. The latter
ones can be significant when the QPE bias is high, as found for MRMS. Therefore, flood
response can confidently target the correct areas within a few blocks, though the precise flood
extent remains uncertain. Improvements in QPEs accuracy are then expected to greatly benefit
prioritization and response measures during floods. These findings are driven by both catchment
topography and the design of the drainage network; therefore, the flood management
implications of the residual uncertainty may vary by location.

It must also be noted that the SWMM model has its own structural and parametric

uncertainties (Abily et al., 2016; Deletic et al., 2012). While fully assessing these is out the scope
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of the current analysis, it is important to consider that the uncertainty in flood estimates
simulated in our study for an ensemble of QPEs incorporate other uncertainty sources in the
SWMM model. The flood metrics and maps (Figs. 8-10) also point to the need for flood extent
and depth data in urban areas to properly validate the accuracy of these hydrologic and hydraulic
simulations. New hydrological sensing approaches such as citizen science (Assumpgao et al.,
2018; Fava et al., 2019) and image-based sensing (Hostache et al., 2018; Tauro et al., 2017) offer
opportunities to sense flooding as it occurs at the urban scale. These emerging approaches could
enable error assessment of the urban hydrological model, providing further context to interpret

the propagation of precipitation uncertainty into urban flooding.
7 Conclusions

The small size and heterogeneity of urban catchments, combined with the short, high-
intensity precipitation events that drive pluvial flooding, make accurate and efficient urban
pluvial flood modeling an ongoing research challenge (Bermudez et al., 2018; Blanc et al., 2012;
van Dijk et al., 2014). This is especially true in the NAM region, which is dominated by high-
intensity convective thunderstorms. In this work, we provide insights on pluvial flooding by
assessing the propagation of radar precipitation uncertainty into flood modeling in a 2.38-km?
urban catchment in Phoenix, AZ. Our results, based on simulations for four events during the
NAM, can be summarized as follows:

(1) While Stage IV QPEs slightly underestimate gage rainfall (on average, by 20%), the resulting
flood predictions are similar to those obtained with rain gage records, suggesting that Stage
IV QPEs are reliable products for modeling urban flooding. MRMS QPEs are positively
biased (+51%) and so are the flood peaks and extent of flooded areas simulated with these

products. The gage correction performed in GCMRMS leads to results similar to Stage I'V.
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(2) The QPE uncertainty simulated by the error model increases with rainfall rate and is rather
alike across the three radar products. This is also true for the resulting flood metrics.

(3) As a result of the rainfall-runoff transformation processes and the presence of stormwater
infrastructure, uncertainty of flood metrics is reduced and less positively skewed when
compared with the QPE uncertainty. The uncertainty may vary significantly depending on
the metrics that capture different flooding features (e.g., pipe flow, surface flooding, and pipe
surcharge conditions).

(4) All radar products lead to the identification of the same flooded areas within an extent of a
few blocks in the basin. This is a promising result for the use of radar-derived QPEs and
hydrologic-hydraulic models for urban pluvial flood modeling. However, the exact location
and extent of flooded areas may vary significantly across products, suggesting that increasing

QPE accuracy can greatly benefit flood management and forecasting agencies.
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Table Captions

Table 1. Description of the main components of the SWMM hydrologic-hydraulic model.
Table 2. Parameter values of the Green-Ampt infiltration scheme adopted in SWMM.

Table 3. Imperviousness and ground slope values assigned to the subcatchments, summarized as

range of values for percentages of the basin area.

Table 4. Summary of storm characteristics, including: start and end date and time in UTC,
identified as the times when (i) any of the gage and radar products started measuring nonzero
rainfall in the basin and (ii) all measured zero rainfall, respectively; type as defined by Dr. Larry
Hopper from NWS (2020; personal communication); duration; rainfall totals observed by gages
(Rg); and original (R,") and bias corrected (in parentheses; R/) mean areal rainfall totals of the

radar derived estimates.

Table S. Parameters of the mixture of three gamma distributions used to characterize the
distribution of errors: f(e; wy, &y, By, Wy, @y, By, W3, a3, B3) = Z?ﬂ w; - g(e aj,ﬁj), where
g(e ;B j) is the probability density function of the j-th gamma distribution of the errors, e (for

simplicity, we dropped the dependence on R;). Parameters values are reported for cluster 1 (C1)

and 2 (C2).

Table 6. Quantification of uncertainty of simulated rainfall and runoff via skewness and RIQR of
the ensemble rainfall and discharge at the basin outlet (in parentheses) averaged across each
event duration (i.e., skewness and RIQR are computed for each time step and then averaged in

time). Values are reported for each radar product.

40



Component

Description

Rain gages

Sub-catchments
Conduits

Junctions

Outfall nodes
Storage units

Point measurements of rainfall over the duration of the modeling period
from an actual rain gage or a radar pixel. Each sub-catchment is assigned
rainfall from the closest gage or radar pixel center.

Hydrologic units of land delineated based on the local topography.

Pipes or channels through which water is transported. This includes
culverts and underground storm pipes.

Drainage nodes that connect conduits to each other. Culvert inlets and

outlets, pipe inlets and outlets, and manholes are all modeled as junctions.

Junction properties include rim (surface) and invert (conduit base)
elevations.

Drainage nodes at the downstream boundary of the catchment.
Drainage nodes with an associated storage volume available.

897  Table 1. Description of the main components of the SWMM hydrologic-hydraulic model.
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Soil tvpes Percent of  Suction head Conductivity Initial
yp basin area (cm) (cm/hr) Deficit
Avondale clay 1.2 38.53 0.15 0.21
loam
Estrella loam 0.3 38.02 043 0.14
Gilman loam 1
to 3 percent 15.2 43.03 0.30 0.15
slope
Glenbar clay 40.2 53.87 0.15 0.19
loam
Laveen loam, 0
to 1 percent 344 36.50 0.61 0.11
slope
Mohall clay 8.7 42.24 0.18 0.19
loam

899  Table 2. Parameter values of the Green-Ampt infiltration scheme adopted in SWMM.
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901

902

903

Imperviousness Percent of
(%) basin area
0-50 7.8
51-60 10.0
61-70 19.6
71-80 35.1
81-100 27.5
Ground slope (%) [l:::iclfl;tr::
0-5 16.5
6-10 75.2
11-65 8.3

Table 3. Imperviousness and ground slope values assigned to the subcatchments, summarized as

range of values for percentages of the basin area.
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904

905

906

907

908

909

910

Start End Duration Gage StagelV MRMS GCMRMS

date date Type (h) (mm) (mm) (mm) (mm)
7/24/17  7/24/17 Monsoon 18 70 7.0 13.1 15.7
2:00 20:00 ' (8.9) (8.6) (11.4)
7/31/18  7/31/18 Monsoon 6 50 5.8 20.0 11.0
3:00 9:00 ' (7.4) (13.1) (8.3)
10/7/18  10/7/18 Transition 1 10.0 10.0 17.1 7.1
8:00 19:00 ’ (12.6) (11.2) (5.3)
9/23/19  9/24/19 Tropical/ 33 6.0 6.8 15.8 8.6
10:00 19:00 Transition ' (8.7) (10.4) (6.5)

Table 4. Summary of storm characteristics, including: start and end date and time in UTC,
identified as the times when (i) any of the gage and radar products started measuring nonzero
rainfall in the basin and (ii) all measured zero rainfall, respectively; type as defined by Dr. Larry
Hopper from NWS (2020; personal communication); duration; rainfall totals observed by gages
(Rg); and original (R,") and bias corrected (in parentheses; R;) mean areal rainfall totals of the

radar derived estimates.
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Parameter Stage IV MRMS GCMRMS

Cl C2 Cl C2 Cl C2
al 1.34 6.50 2.89 5.16 1.55 1.76
a2 55.34 1.26 13.58 1.09 11.75 19.93
a3 19.97 357.00 6.50 9.18 35.85 38.16
B 0.95 0.14 0.29 0.14 0.72 0.60
B2 0.01 1.08 0.17 1.10 0.07 0.04
B3 0.05 0.002 0.55 0.21 0.04 0.04
wi 0.47 0.46 0.92 0.64 0.47 0.61
w2 0.37 0.33 0.05 0.23 0.43 0.31
w3 0.16 0.21 0.03 0.13 0.10 0.08

911  Table 5. Parameters of the mixture of three gamma distributions used to characterize the
912  distribution of errors: f(e; wy, &y, By, Wy, @3, B2, W3, a3, B3) = 2]3~=1Wj . g(e; aj,ﬂj), where
913 g(e a5, P j) is the probability density function of the j-th gamma distribution of the errors, e (for

914  simplicity, we dropped the dependence on Ry). Parameters values are reported for cluster 1 (C1)

915  and 2 (C2).

916
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Storm Stage MRMS GCMRMS Stage MRMS GCMRMS

start date 1V v
Skewness (-) RIQOR (%)
Rainfall (Discharge at the outlet)

32 17 1.4 710 684 595
TRAT a0y (0.4) 669)  (51.6)  (22.4)

2.9 1.5 1.5 70.1 68.2 69.2
B8y (1.0) (0.9) 45.0)  (43.7)  (4L1)

2.1 1.7 1.0 59.7 67.9 415
W78 09y (13) 0.5) (55.8)  (49.0)  (27.4)

2.6 1.7 13 74.6 702 56.1
02319 a5 (09 0.5) 47.0)  (780)  (50.3)

917  Table 6. Quantification of uncertainty of simulated rainfall and runoff via skewness and RIQR of
918  the ensemble rainfall and discharge at the basin outlet (in parentheses) averaged across each
919  event duration (i.e., skewness and RIQR are computed for each time step and then averaged in

920  time). Values are reported for each radar product.
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Figure Captions

Figure 1. (a) Metropolitan area of Phoenix, AZ along with location of KIWA WSR-88D weather
radar, study basin, and rain gages of the Flood Control District of the Maricopa County
(FCDMC) network in Maricopa and Pinal Counties, displayed with two different colors
depending on the distance from the radar (labelled as cluster 1 and 2). (b) Boundaries of the
study catchment and subcatchments in downtown Phoenix (near the corner of W Roosevelt St
and S 7™ Ave), along with outlet, underground conduits of the stormwater infrastructure system,
grids of Stage IV and MRMS (same as GCMRMYS) radar products, and rain gage of the FCDMC

network.

Figure 2. Flooding in the study catchment at Central Ave and Washington Street in Phoenix, AZ

during the storm on September 23, 2019.

Figure 3. Scatterplots of radar rainfall estimates, R, and true rainfall approximated by the gage
estimates, Rg, for cluster 2. A total of 8,645, 8,859, and 8,605 non-zero pairs for (a) Stage 1V, (b)
MRMS, and (¢) GCMRMS are shown using different colors based of their relative frequency. In
each panel, the dashed red line is the systematic component estimated with the Epanechnikov
kernel, and the solid black line is the power law of equation (5). Parameters of the power law are
a=1.12, 5 =0.90 for Stage IV; a =1.37, b =0.77 for MRMS; and a = 1.86, b = 0.66 for

GCMRMS.

Figure 4. Relations between e(R;) and R, for the different radar products, along with quantiles of

the empirical (dotted lines) and mixed gamma (solid lines) distributions for cluster 2.

Figure 5. Comparison of survival functions of the empirical distribution and mixture of three

gamma distributions for cluster 2.
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Figure 6. Time series of rainfall recorded at the gage (Rg), basin mean areal rainfall estimated by
the three radar products (R."), and boxplots of the N = 100 Monte Carlo simulations of the radar
rainfall error model for the four events of Table 2. Boxes and whiskers of the boxplots show the
50% and 90% confidence intervals, respectively, while the horizontal line is the median. Times

are in UTC.

Figure 7. Hydrographs simulated by the SWMM model at the pipe located at the catchment
outlet under rainfall recorded at the gage (Rg), original radar QPEs (R,”"), and an ensemble of
rainfall fields generated with the error model. The corresponding N = 100 outflow simulations
are plotted with shaded areas showing the 50% (light gray) and 90% (dark gray) confidence

intervals, while the black line is the median.

Figure 8. Flood metrics simulated by 1D SWMM for the selected storms with rainfall recorded
at the gage (R,), original radar QPEs (R,"), and ensemble of rainfall fields generated with the
error model plotted through boxplots (boxes and whiskers show the 50% and 90% confidence
intervals, respectively). See text for definition of the flood metrics. #max is measured in hours

since the simulations starts.

Figure 9. Uncertainty of flood extent maps for the storm on July 31, 2018 simulated by

PCSWMM under (a)-(c) Stage IV, (d)-(f) MRMS, and (g)-(i) GCMRMS products.

Figure 10. As Fig. 9 but for the storm on October 7, 2018.
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965  Figure 1. (a) Metropolitan area of Phoenix, AZ along with location of KIWA WSR-88D weather
966  radar, study basin, and rain gages of the Flood Control District of the Maricopa County

967 (FCDMC) network in Maricopa and Pinal Counties, displayed with two different colors

968  depending on the distance from the radar (labelled as cluster 1 and 2). (b) Boundaries of the

969  study catchment and subcatchments in downtown Phoenix (near the corner of W Roosevelt St
970  and S 7™ Ave), along with outlet, underground conduits of the stormwater infrastructure system,
971  grids of Stage IV and MRMS (same as GCMRMS) radar products, and rain gage of the FCDMC
972  network.
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Figure 2. Flooding in the study catchment at Central Ave and Washington Street in Phoenix, AZ

during the storm on September 23, 2019.
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Figure 3. Scatterplots of radar rainfall estimates, R, and true rainfall approximated by the gage
estimates, Rg, for cluster 2. A total of 8,645, 8,859, and 8,605 non-zero pairs for (a) Stage IV, (b)
MRMS, and (c) GCMRMS are shown using different colors based of their relative frequency. In
each panel, the dashed red line is the systematic component estimated with the Epanechnikov
kernel, and the solid black line is the power law of equation (5). Parameters of the power law are
a=1.12, 5= 0.90 for Stage IV; a =1.37, b =0.77 for MRMS; and a = 1.86, b = 0.66 for

GCMRMS.
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Figure 4. Relations between e(Ry) and R, for the different radar products, along with quantiles of

the empirical (dotted lines) and mixed gamma (solid lines) distributions for cluster 2.
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Figure 5. Comparison of survival functions of the empirical distribution and mixture of three

gamma distributions for cluster 2.
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Figure 6. Time series of rainfall recorded at the gage (Rg), basin mean areal rainfall estimated by

the three radar products (R."), and boxplots of the N = 100 Monte Carlo simulations of the radar

rainfall error model for the four events of Table 2. Boxes and whiskers of the boxplots show the

50% and 90% confidence intervals, respectively, while the horizontal line is the median. Times

are in UTC.
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Figure 7. Hydrographs simulated by the SWMM model at the pipe located at the catchment
outlet under rainfall recorded at the gage (Rg), original radar QPEs (R"), and an ensemble of
rainfall fields generated with the error model. The corresponding N = 100 outflow simulations
are plotted with shaded areas showing the 50% (light gray) and 90% (dark gray) confidence

intervals, while the black line is the median.
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Figure 8. Flood metrics simulated by 1D SWMM for the selected storms with rainfall recorded
at the gage (R,), original radar QPEs (R,"), and ensemble of rainfall fields generated with the
error model plotted through boxplots (boxes and whiskers show the 50% and 90% confidence
intervals, respectively). See text for definition of the flood metrics. #max is measured in hours

since the simulations starts.
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