
Particle Mesh Ewald for Molecular Dynamics
in OpenCL on an FPGA Cluster

Lawrence C. Stewart
Silicon Therapeutics
451 D St, Suite 205
Boston, MA, USA

larry.stewart@silicontx.com

Carlo Pascoe
Silicon Therapeutics
451 D St, Suite 205
Boston, MA, USA

carlo.pascoe@silicontx.com

Emery Davis
Silicon Therapeutics
451 D St, Suite 205
Boston, MA, USA

emery.davis@silicontx.com

Brian W. Sherman
Silicon Therapeutics
451 D St, Suite 205
Boston, MA, USA

woody@silicontx.com

Martin Herbordt
College of Engineering

Boston University
Boston MA, USA
herbordt@bu.edu

Vipin Sachdeva
Silicon Therapeutics
451 D St, Suite 205

Boston MA, USA
vipin@silicontx.com

Abstract—Molecular Dynamics (MD) simulations play a cen-
tral role in physics-driven drug discovery. MD applications often
use the Particle Mesh Ewald (PME) algorithm to accelerate
electrostatic force computations, but efficient parallelization has
proven difficult due to the high communication requirements
of distributed 3D FFTs. In this paper, we present the design
and implementation of a scalable PME algorithm that runs
on a cluster of Intel Stratix 10 FPGAs and can handle FFT
sizes appropriate to address real-world drug discovery projects
(grids up to 1283). To our knowledge, this is the first work
to fully integrate all aspects of the PME algorithm (charge
spreading, 3D FFT/IFFT, and force interpolation) within a
distributed FPGA framework. The design is fully implemented
with OpenCL for flexibility and ease of development and uses 100
Gbps links for direct FPGA-to-FPGA communications without
the need for host interaction. We present experimental data up
to 4 FPGAs (e.g., 206 microseconds per timestep for a 65536
atom simulation and 643 3D FFT), outperforming GPUs for
smaller FFT sizes. Additionally, we discuss design scalability on
clusters with differing topologies up to 64 FPGAs (with expected
performance far greater than all known GPU implementations)
and integration with other hardware components to form a
complete molecular dynamics application. We predict best-case
performance of 6.6 microseconds per timestep on 64 FPGAs.

Index Terms—FPGA, Molecular Dynamics, HPC, Reconfig-
urable Computing, FFT

I. INTRODUCTION

Molecular dynamics (MD) simulation engines such as
AMBER [1] and OpenMM [2] provide high performance
implementations for CPU and GPU, and provide a flexible
framework in which new computational technologies can be
assessed. FPGA implementations have also been explored for
many years [3]–[6] including a recent study showing promising
single-FPGA performance [7].

MD plays a critical role in computational chemistry in gen-
eral and in drug discovery in particular. There, long timescales

and small problem sizes lead to tremendous challenges in
strong scaling, especially in the electrostatics computation.
This has led to the creation of ASIC-based solutions [8]–[10];
their limitations, however, due to cost and availability, make
COTS alternatives essential. Of these, only FPGA clusters
have shown potential past a small number of nodes [11], [12].
These preliminary studies, however, were based only on the
parallelization of the 3D FFT and not full electrostatics, much
less complete system integration.

The electrostatic force computation often uses Ewald sum-
mation to split the work into short-range and long-range terms.
Methods for the long-range term include k-space summation
[13], µ-series [14], and use of Fourier Transforms to solve
Poisson’s Equation [15]. The FFT methods reduce computation
from O(N2) to O(NlogN), but require global communication
and strong scaling of 3D FFTs in the size range from 323 to
1283 as well as a complex mapping function [16].

In this paper we describe the architecture, implementation,
and evaluation of a distributed 3D FFT-based Smooth Particle
Mesh Ewald electrostatic force computation. Our implementa-
tion outperforms GPUs in the problem size ranges of interest
for drug discovery, and is scalable to multiple pipelines on
multiple boards. It is implemented entirely in OpenCL. There
are a number of contributions.

• This is the first parallel complete FPGA electrostatics.
• This work provides a still-rare case study of a production

HPC application successfully implemented in OpenCL
and distributed across a parallel cluster of tightly coupled
FPGAs.

• To our knowledge, this effort is the first to obtain strong
scaling for MD problems by using off the shelf hardware.
The system is integrated into a complete MD application
and results validated against OpenMM over millions of

ar
X

iv
:2

00
9.

12
61

7v
4

 [c
s.A

R
]

5
A

pr
 2

02
1

timesteps.

The potential impact is as follows. Many desirable drug
targets in cancer, auto-immune, neurodegenerative, and infec-
tious diseases are currently considered undruggable due lack
of binding predictions (binding free energies, conformational
changes) [17] that could be provided with long timescale MD
[18]. The current work will enable these timescales to be
achieved an order of magnitude faster.

The outline of this paper is as follows: Section II discusses
background and related work on MD and FFT targeting
contemporary architectures including CPUs, GPUs, and ASICs.
Section III details the system architecture of our long-range
pipeline and 3D FFT, and Section IV follows up with the
implementation details. Section V summarizes the results of our
work, along with performance comparison to other hardware.
Finally, Section VI concludes the paper and describes our plans
for future work.

II. BACKGROUND AND RELATED WORK

Molecular Dynamics models the behavior of atoms and
molecules by individually calculating the various forces that
act on them. Forces that apply to bonded atoms include bond
torsions and tensions. Forces that apply to non-bonded atoms
include short-range forces that include both van der Waals
and electrostatics, and long-range forces, which are mainly
electrostatic. Short-range forces are managed by pairwise
computations. For long-range forces, applications instead use
multipole approximations [19] or Ewald summations. Our focus
is on an Ewald variation known as Smooth Particle Mesh
Ewald (SPME) [20]. SPME calculates a charge distribution on
a grid, then uses Fourier Transforms and a Green’s function
to calculate a potential field. Potential gradients then are used
to calculate forces.

Molecular dynamics simulations have proven to be a valuable
tool in drug discovery for understanding protein motion. Open-
source GPU accelerated molecular dynamics applications such
as GROMACS [21], NAMD [22], OpenMM [2], and CP2K
[23] allow many practitioners to use MD simulations as a
regular tool. To our knowledge, the only study showing strong
scaling on multiple GPUs for a 100,000 atom system is with
the recently redeveloped GROMACS package [24], [25], which
does not distribute the FFT.

Several efforts to develop, at great expense, custom ASICs for
small molecule simulations have been undertaken. The earliest
initiative is the MDGRAPE [8] series of supercomputers.
Another well known ASIC initiative is the Anton series [9]
developed by D. E. Shaw Research. Anton 1 was released in
2007, with performance for a 23,000 atom system close to 17
microseconds/day. Anton 2, released in 2014, increased this
performance five-fold to 85 microseconds/day [10].

The most challenging part of scaling molecular dynamics
simulations is the electrostatic forces computation, of which
FFT is often a major component. Anton 1 could solve FFT
problems of size 323 in 3.7 microseconds, and 643 in 13.3
microseconds on 512 nodes. Anton 2 did not use FFT in its

Host Program (OpenMM)

Force Accumulator

Bonded
Force
Pipeline

Short
Range
Force
Pipeline

Long Range
Force
Pipeline

Motion Update

OpenCL Runtime
Charge Spreading

3D FFT

Green’s Function
Multiply

3D Inverse FFT

Force Interpolation

FPGAs

Fig. 1. Molecular dynamics application overview.

simulations, instead relying on a different decomposition called
the µ-series [10], [14].

Efforts to get parts of molecular dynamics simulations
running on FPGAs have been explored over the past few
years [26], [27]. More recently, the increase in FPGA resources
such as logic elements, DSPs, BRAM, etc., have allowed full
MD simulations to run on a single FPGA [7].

A great strength of FPGAs is the I/O transceivers, which
are capable of providing a great deal of bandwidth with very
low latency [28]. Some clusters with highly interconnected
FPGAs are the Novo-G# built at the University of Florida
in a 3D torus interconnect [29] and the first version of
the Microsoft Catapult [30]. More recently, University of
Paderborn has developed Noctua [31] and Tsukuba University
has deployed Cygnus, a hybrid GPU-FPGA system [32]. FPGA
communications can also now be programmed using OpenCL,
providing both high-performance and a productive development
environment for distributed applications. Prior work on 3D
FFTs on single FPGAs includes [23], [33]–[36] while work on
multiple FPGAs includes [11], [12]. Design of FFT for MD
simulations is presented in [37]. The earliest 2D floating point
FFT on multiple FPGAs of which we are aware is [38].

III. SYSTEM ARCHITECTURE

Figure 1 shows the OpenCL portions of our modified
OpenMM application and the role played by 3D FFT. Our goal
is to run multiple timesteps of the full MD application on a
network of FPGAs without any additional host communication
beyond initialization and result collection. The focus of this
paper is the long range portion of the system.

A. Long-Range Pipeline

The architecture of the long-range force pipeline is shown in
Figure 2. Each timestep, the LR pipeline accepts atom positions
and charges as input, and delivers long-range electrostatic force
updates per atom back to the force accumulator and motion
update portions of the system.

1) Charge Spreading: Charge Spreading accepts atom
positions and charges and constructs the FFT input volume.
Any particular atom has a fractional position between grid
points. The charge attached to the atom is spread to grid points

BRAM/
HBM

BRAM/
HBM

BRAM/
HBM

Force
Interpolation

Charge
Spreading

X FFT
BRAM/
HBM

Other Pipelines

Force updates

Atom POSQ

Atom POSQ

1.0

1.0

HBM

T

Z FFTT T

T Y FFT T

Z FFTT T

FFT
Pipeline All to All

Network

Z-1 FFT T

X-1 FFT T Transpose Unit

Fig. 2. Logical view of long-range force pipeline.

in the 4x4x4 cell surrounding the atom’s position by using
cardinal B-splines as interpolating functions. We use 64-way
parallel hardware to achieve a single pipeline charge spreading
throughput of one atom per clock cycle. The computation is
further parallelized by multiple pipelines and multiple FPGAs.
Because atom volumes of influence overlap, we use additional
hardware to dynamically reorder atoms to avoid pipeline
hazards. Atoms which affect multiple pipelines are processed
by each affected pipe.

2) FFT: The 3D FFT is described in more detail in
section IV. Our implementation divides the input volume
into slabs in the Z dimension. Each slab runs independently
to compute X and Y transforms, then an all-to-all network
exchanges data – called corner-turning – so that the slabs
subdivide the Y dimension. Parallel pipelines then compute Z
direction transforms, multiply by Green’s function data, and
compute Z−1 transforms. A second corner turn feeds Y −1 and
X−1 transforms.

3) Force Interpolation: The force interpolation unit shares
the 64-way parallel arithmetic and BRAM design of the
charge spreading hardware. It accepts data from the output
of the inverse FFT, and atom position and charge data. 3D
cardinal B-splines and their derivatives are used to calculate
X, Y, and Z forces for each atom based on gradients of the
electrostatic potential field calculated by the FFT. 64-way
combining trees calculate force updates which are fed back to
the force accumulation block of the main MD application. We
plan to share hardware between charge spreading and force
interpolation, but this is not yet done.

B. Scaling 3D FFT

The three dimensional FFT of an XYZ volume can be
computed as a sequence of one dimensional transforms [39],
[40]. There are alternative parallel 3D FFT formulations such
as 2D decomposition [41] and the generalized vector radix
decomposition [42] but for up to 64 nodes and 1283 our initial
focus is on the simple decomposition.

3D FFT can be scaled by using pipelined parallel hardware,
and then by using multiple parallel compute units, provided
that the necessary operands can be routed to the compute units.

In 2013, Garrido et al. showed how to build pipelined
parallel FFT hardware using a feedforward architecture that is
well suited to FPGA implementations [43]. A single precision
complex 8-wide FFT unit uses 4% of a Stratix 10 device
depending on transform size and consumes and delivers about
19 GB/sec of data.

This hardware can complete 1D FFTs in the number of
clock cycles it takes to read the data. Using a nominal 300
MHz design speed, Table I shows the time in microseconds
to complete N2 1D FFTs for various size transforms, given
different numbers of 8-wide vector compute units. To complete
a full forward and inverse 3D FFT will take six times as much
work but can be both pipelined and parallelized.

In order to distribute such a system over a network of FPGAs,
it is necessary to balance communications and computation
performance and it is also necessary to choose points in the
solution spaces for FFT and for All to All in which the
bandwidths match.

The cells in Table I with parenthesized references represent
particular solution choices that match well with potential
communications designs, which are discussed in section III-C.

C. Scaling All to All

In this section we analyze potential network topologies to
evaluate points in the solution space that are compatible with
distributed FFT designs.The all to all network is responsible
for interchange of data among multiple processing pipelines,
both when colocated on a single board and when distributed
across multiple FPGAs.

In any parallelization into N units, (N − 1)/N of the data
must move. Since FFT and all to all are pipelined, the overall
performance will be set by the slower function.

Table II relates numbers of FPGA modules, network topol-
ogy, and the time to complete the All to All. The environment
for this analysis consists of a number of FPGA nodes, each
equipped with either four or six links running at 100 Gbps.
Configurations marked “Switched” use Ethernet packet framing
to route messages via 100 Gbps Ethernet switches to achieve
single hop connections. Each board has physical interfaces
for six links, with four enabled on our test platforms. PtoP
configurations use point to point cables, other topologies require
on-FPGA switches and higher hopcounts. As an example, a 4
dimensional hypercube for 16 nodes has an average hopcount
of 2, because on average a destination node ID differs in only
two bits from the source node ID.

The time to complete figures are given by

D ∗ N − 1

N
∗ H

B ∗N ∗ L
where D is the FFT data volume in bits. (N − 1)/N is the

fraction of data that must be sent to a different board. H is the
average hop count, B is the link bandwidth in bits per second,

TABLE I
TIME FOR FFT SIZES VS NUMBER OF UNITS, AT 300 MHZ (µS)

XYZ Data Points Data Bits 1 2 4 8 16 32 64 128
32x32x32 32,768 2,097,152 13.7 6.8 3.4 1.7 0.9 0.4 0.2 0.1
64x64x64 262,144 16,777,216 109.2 54.6 27.3 13.7 6.8 3.4 1.7 0.9
64x64x128 524,288 33,554,432 218.5 109.2 54.6 27.3 13.7 6.8 3.4 1.7
96x96x96 884,736 56,623,104 368.6 184.3 92.2 46.1 23.0 11.5 5.8 2.9

128x128x128 2,097,152 134,217,728 873.8 436.9 218.5 109.2 (1) 54.6 (2) 27.3 (3) 13.7(4) 6.8 (5)
Data within () reference similar entries in table II

TABLE II
NETWORK TIMING FOR ALL TO ALL (µS)

Nodes Topology Hopcount Links 32x32x32 64x64x64 64x64x128 96x96x96 128x128x128
2 PTOP 1 4 1.7 13.4 26.9 45.4 107.5 (1)
4 PtoP 1 3 1.7 13.4 26.9 45.4 107.5 (1)
8 2D Torus 1.5 4 1.1 8.8 17.6 29.8 70.6
8 Hypercube 1.5 3 1.5 11.8 23.5 39.7 94.1
8 Hypercube++ 1.25 4 0.9 7.4 14.7 24.8 58.8 (2)
8 3D Torus 1.5 3 1.5 11.8 23.5 39.7 47.1
8 Switched 1 4 0.7 5.9 11.8 19.8 47.1
16 2D Torus 2 4 0.8 6.3 12.6 21.3 50.4
16 3D Torus 2 6 0.5 4.2 8.4 14.2 33.6 (3)
16 Hypercube 2 4 0.8 6.3 12.6 21.3 50.4
16 Switched 1 4 0.4 3.2 6.3 10.6 25.2 (3)
32 2D Torus 3 4 0.6 4.9 9.8 16.5 39.1
32 3D Torus 2.5 6 0.3 2.7 5.4 9.2 21.7
32 Hypercube 2.5 5 0.4 3.3 6.5 11.0 26.0
32 Switched 1 4 0.2 1.6 3.3 5.5 13.0 (4)
64 2D Torus 4 4 0.4 3.3 6.6 11.2 26.5
64 3D Torus 3 6 0.2 1.7 3.3 5.6 13.2 (4)
64 Hypercube 3 6 0.2 1.7 3.3 5.6 13.2
64 Switched 1 4 0.1 0.8 1.7 2.8 6.6 (5)

Data within () reference similar entries in table I

L is the number of links per board, and N is the number of
boards that partition the problem.

The scaling behavior of this equation is such that the time to
completion goes as H/N, assuming equal link loading, uniform
traffic, and perfect link scheduling. All to all certainly has
uniform traffic and there is a symmetry argument for uniform
link loading.

For a switched network, perfect scheduling of an all to all
is straightforward. In round i, node n transmits to node (n+ i)
mod N . Point to point networks are also easy to schedule. As
for multihop scheduling, the question is still open but we are
experimenting with static scheduling.

For four boards, direct point to point cables suffice, but
we must use an on-FPGA router for multihop cases. The
prototype router uses a crossbar switch with buffering at
each crosspoint, together with a statically compiled switch
schedule. This permits the network to operate in a streaming
mode without packet headers or frame boundaries. Links from
application logic to the router use Intel’s OpenCL Channel
extension, as do the off-board links themselves.

Because the all to all communication pattern is symmetric,
switch scheduling reduces to a bin packing problem of
packing message fragments into open channel time slots, while
managing the maximum buffer occupancy [44], [45]. There is
no danger of livelock or deadlock and no need for traditional
techniques such as virtual channels, because all messages are
known at compile time. Flow control and error recovery are
provided by the vendor Board Support Package (BSP). We
expect to report results in future work.

D. Balancing Computation vs Communications

Table I and Table II identify consistent points in solution
space for 8 through 128 pipelines where computation perfor-
mance is a good match for communications performance. Our
current configuration is (1), eight pipelines, split among four
FPGAs using point to point links. Configurations (2), (3), (4),
and (5) identify points in solution space for 8, 16, 32, and
64 FPGAs. These solution points permit balanced designs, in
which no unit runs faster than necessary.

This analysis is done for 128x128x128 transforms, but
similar choices exist for other size FFTs. Since the completion
times are entirely bandwidth limited, they scale only with the
total data volume and the same points in solution space apply
to all sizes. However, for the smaller transforms, hardware
unit latencies and communications latencies start to become
important.

For A atoms and 3D FFT size N3, the charge spreading
step operates in O(A) time, the 3D FFT is O(N3logN),
and the force interpolation is again O(A). By choosing an
FFT volume proportional to the number of atoms (reasonably
uniform density), and by using hardware to remove the logN
term, the entire LR pipeline becomes O(A), a dramatic
improvement over O(A2) pairwise methods of computing
electrostatic forces.

IV. SYSTEM IMPLEMENTATION

A. FFT

Intel provides an OpenCL computational kernel example
using the feedforward parallel FFT of Garrido et al, and we

took it as our starting point. [43], [46] (This is also used in
[36]). This design accepts vectors bit-reversed by lane and in
order by vector.

The internal structure of the parallel FFT is shown in Figure
3. This example is 8-wide, compiled for a 64 point FFT. The
design compiles a variable number of stages, corresponding
to the base 2 logarithm of the transform size. As a result, the
logN term in FFT’s O(NlogN) is subsumed by hardware and
the unit runs in O(N) time.

B. Bit Dimension Permutations

In order to assemble 1D FFT units into a pipelined 3D FFT
the sequencing of the data must be modified in order to deliver
to and accept data from the FFT units in the correct order. This
problem is referred to as bit dimension permutations [47].

This structure is able to perform nearly arbitrary bit dimen-
sion permutations of the input sequence. A standalone python
program uses a control file to generate the OpenCL source
code necessary to control the hardware. The limitations that
exist can be removed by using 5-stage Benes networks [48]
at the input and output but we have found the three stage
networks suffice for the permutations encountered in the 3D
FFT.

C. All to All

The All to all network is responsible for interchange of data
among multiple processing pipelines, both when colocated on
a single board and when distributed across multiple FPGAs.

Figure 5 is the design for 8 pipelines distributed across four
FPGAs. Each board has a direct connection to each other board.
Some connections remain on board, but in the 4 board example
they are modelled as a loopback cable that connects a board
to itself. In order to use the same bit file on each of the four
FPGAs, additional logic in the A2A unit routes these “virtual
cables” to the correct external port or internal loopback. This
internal crossbar switch is a prototype of the future hardware
supporting routed networks.

D. Using OpenCL for FPGA programming

We chose OpenCL as the programming language for our
implementation. This is due to several reasons: OpenCL allows
more productive software development, and also allows us
to be vendor-agnostic. Using OpenCL on the host side has
allowed us to reuse OpenMM’s framework for launching
kernels on the FPGA as well. OpenCL compilation for FPGAs

R2

R2

R2

R2

R2

R2

R2

R2

X X

X

X

X

X

X

R2

R2

R2

R2

R2
4

4

R2
4

4

X

X

X

X

X

X

R2
2

2

R2
2

2

R2
2

2

R2
2

2

R2
1

1

R2
1

1

X

R2
4

4 X

R2
4

4 X

R2
1

1 X

R2
1

1 X

XR2 X 4Radix-2 Butterfly Trivial Rotator Complex Rotator Delay

Fig. 3. 8-Wide, single-precision complex FFT compute unit (64 point).

RA 7..0WAInput Block Select Output Block Select

BRAM 7

BRAM 6

BRAM 5

BRAM 4

BRAM 3

BRAM 2

BRAM 1

BRAM 0

Fig. 4. Transpose Unit.

Fig. 5. All to all network. 8 pipelines on four FPGAs, with cables.

transforms high-level source code into a dataflow graph and
instantiates the necessary hardware. We approach FPGA coding
in OpenCL with a hardware engineer’s perspective. It is possible
to visualize the dataflow hardware you want, as in Figure 3 or
Figure 4 and then write fairly straightforward code to realize
it. It can be complex to achieve the same level of control as
with HDL; however, we have largely been able to overcome
challenges.

In the future, we may move some parts of our implementation
into VHDL or Verilog for optimal resource utilization. OpenCL
does permit linking to HDLprovided the HDL modules provide
certain prescribed interfaces.

V. EVALUATION

We report here on two implementations. Both are in OpenCL,
with no Verilog or VHDL components. The first is a FFT only
design, with up to 16 processing pipelines per FPGA. The
second is an implementation of Smooth Particle Mesh Ewald
which implements the full long-range force pipeline.

A. Experimental Setup

Our hardware setup comprises 8 BittWare 520N-MX boards
on a single hardware node. The hardware node has 2 8-core
Intel Xeon Silver CPUs as well as 768 GB of memory (used
mostly for OpenCL compilation jobs). The CPUs also serve as
host processor for the OpenCL programs and OpenMM. Each

LR2

LR3

LR0

LR1

SR2

SR1

SR0

SR3

Fig. 6. Eight FPGA Testbed

TABLE III
BRAM-BASED 3D FFT

FFT No. of fMax Time Ideal BRAM DSP
Size Pipes (MHz) (µs) (µs) (% usage) (% usage)

32x32x32 1 290 59 42 2 3
32x32x32 8 243 8.5 6.3 21 18
32x32x32 16 266 3.87 3.27 28 52
64x64x64 16 275 24.5 22.3 49 58

520N-MX has a single Intel Stratix 10 MX2100 FPGA [28]
and 4 QSFP28 channels, each capable of communicating at a
peak bandwidth of 100 Gb/s. Each FPGA is configured with the
p520 max m210h BSP to allow OpenCL as the programming
model for FPGA computation as well as communication be-
tween the different boards. We are operating with a preliminary
BSP which runs the links at 78 Gbps. Our application source
code is compiled using Quartus release 20.3. The server runs
CentOS 7.6. We use SLURM to manage both compilation and
hardware resources.

The interconnect topology is shown in Figure 6. The four
boards implementing the long-range subsystem, marked LR0
to LR3 are fully connected and implement the full SPME
algorithm. Each board has a link to the corresponding short-
range board. The short-range boards are connected in a ring
and are responsible for short range forces as well as motion
update and force accumulation.

B. FFT Only

We first present results of our BRAM-based FFT. In this
version, the entire dataset fits into the BRAM of the FPGA.
Results from this design are shown in table III. We present
single FPGA results for this design, with up to 16 processing
pipelines, for FFT sizes 323 and 643. A BRAMonly 1283

design will not fit on our current hardware available due
to BRAM limitations. The 323 version occupies 28% of
the BRAMS and 52% of the DSP blocks and runs in 3.87
microseconds at 266 MHz. The 643 version occupies 49% of
the BRAMS and 58% of the DSP blocks and runs in 24.5
microseconds.

This version illustrates similar performance to Anton 1’s
3.7 microseconds for 323 transforms, albeit 10 years later. We
wryly note that collapsing a system of 512 ASICs into a single
FPGA is fully consistent with Moore’s law.

Fig. 7. Long-range pipeline performance (µs).

In Table III, the column labelled “Ideal” is the predicted
runtime if the design were able to deliver results at exactly the
compiled speed. There are two reasons for measured runtimes
that are slower than ideal. First, loop dependencies may prevent
the OpenCL compiler from generating a full dataflow design
that can accept new operands every cycle. In OpenCL this is
known as the initiation interval and the ideal value is 1. All of
our designs achieve this goal. Second, unit pipeline latency and
data dependency latency in the transpose unit impose delays
that occur once per pass through the hardware. These effects
are identifiable because they affect small transforms such as
323 much more than larger ones.

C. Full LR Pipeline

The second design is the complete implementation of
the long range portion of the Smooth Particle Mesh Ewald
algorithm. It includes charge spreading, b-spline calculation,
atom reordering for hazard suppression, forward and backwards
3D FFT, and force interpolation.

This design is nearly all BRAM based. It uses HBM memory
only for storing Green’s function data. We found that any
deviation from sequential memory access causes substantial
degradation in memory bandwidth when using HBM. With
four FPGAs, 1283 problems will not fit. We can use HBM
buffering in these cases, but at a performance cost. 1283 will
fit in BRAM for configurations of 8 FPGAs or above.

Figure 7 shows the performance of the full long-range
pipeline, including charge spreading, 643 forward and inverse
FFT, and force interpolation. The vertical axis is in microsec-
onds and the horizontal access reports the size of the problem
in atoms. The four lines represent 1 board 1 pipeline, 2 boards
1 pipeline each. 4 boards 1 pipeline each, and 4 boards 2
pipelines each. The 4 2 configuration does not scale perfectly
with respect to 4 1 because the clock speed is lower (273 MHz)
and because charge-spreading performance is cable bandwidth
limited when there are two processing pipelines per board. An
additional source of imperfect scaling is that as more pipelines
are added, a greater proportion of atoms overlaps the boundaries
between pipelines. At 16 FPGAs, we plan to reverse this effect
by doubling the number of CS and FI pipelines because at that
scale each one will require fewer resources.

Figure 7 can be used to read out FFT performance by
considering the 0-atom case, but we measure this directly.

TABLE IV
3D FFT PORTION OF LR SUBSYSTEM

Size B P fMax µs Ideal
32x32x32 1 1 313 67 39
32x32x32 2 1 297 36 21
32x32x32 4 1 312 24 10
32x32x32 4 2 289 16 5.3
64x64x64 1 1 311 348 321
64x64x64 2 1 289 193 170
64x64x64 4 1 311 99 79
64x64x64 4 2 276 65 45

We have included extra hardware in the design to obtain
cycle accurate timestamps for events such as last-charge-spread-
atom and first-force-interpolation-atom, that bracket the FFT
computation. These results are shown in Table IV. The ideal
column is the minimum possible at the given fMax, with no
allowance for unit latency or communications. Current ”extra”
time is about 5000 clock cycles but this has not been optimized.
About 40% of the excess is due to slower than necessary
transpose units. When comparing Table III and Table IV bear
in mind that the full LR results of Figure 7 and Table IV include
two 3D FFTs and are distributed across multiple FPGAs.

D. Discussion

The results shown in Table III show close agreement between
the ideal results and actual results, with the gap becoming
smaller for larger problems. This is consistent with the effects
of pipeline latency. As OpenCL compilers improve, we expect
the pipeline delays will shrink. These figures are about 150-
200 cycles for memory fetch, 134 for Transpose units, and 11
for the FFT. Such improvements would be helpful for small
transforms like 323 but become much less important for 1283

since there is 64 times as much data.

E. Performance comparison with other architectures

3D FFT, due to its wide applications in many areas has
been benchmarked extensively on many architectures including
CPUs, GPUs and ASICs. Many of the benchmarks focus
on larger FFTs (2563 and above) but there is some public
information on smaller FFTs applicable to MD. Table V
compares performance of our FPGA FFT with CPUs, GPUs
and Anton. For converting timing to flops we use 15N3lg(N)
for complex FFT.

For GPU measurements, we have depended both on in-
house experiments as well as performance benchmarks from
[25], [49]. Our GPU code uses CUDA cuFFT library [50]
for computing FFT. We test this code on a single V100 GPU
[51] with CUDA 11.1 compilers and libraries. Our in-house
experiments performed on V100 with NVLINK2 as well as [25]
show that using multiple GPUs does not improve performance
of sizes up to 1283.

Anton 1 [9] has details of timings for both 323 and 643 on
512 nodes, which we have also included in the table.

We also include CPU-based benchmarks in this table. [52]
shows the timings using Intel MKL and FFTW on a 56
core Intel Xeon Platinum processor. For sizes 323, 643 and
1283, performance on the processor is approximately 200,

TABLE V
FFT GFLOPS/S FOR MULTIPLE ARCHITECTURES

Size Size Size Size System Citation
323 643 642x128 1283

647 963 - - BRAM 16 pipe Table III
- - 969 810 HBM 8 pipe Inhouse tests

664 1774 - - Anton-1 512 nodes [9]
109 139 - 180 Novo-G 8 FPGA [12]
218 1358 1561 1247 V100 cuFFT Inhouse tests
180 400 500 610 56C Xeon 8280L MKL [52]

- - - 9 BG/P 512 nodes [49]

400 and 600 GFlops respectively. We have not found many
public benchmarks on performance of smaller distributed 3D
FFT. We have included timings on JUGENE, a BlueGene/P
architecture [53]. [49] shows 12 milliseconds for a problem of
size 1283 on 512 BlueGene/P nodes.

We have also included Novo-G’s timings of distributed 3D
FFT on 8 Stratix V FPGAs [12] for comparison. Compared to
other architectures in Table V, we outperform all architectures
for 323 and 643 except 512 nodes of Anton 1, and V100 cuFFT
for larger sizes such as 1283.

There is, as far as we know, no magic to achieving excellent
3D FFT performance. It is a game of balancing computation,
memory bandwidth, and communication. It should not be a
surprise that custom ASICs can do well, nor that modern GPUs
like the V100 can achieve more than a teraflop once the problem
size grows large enough to sustain efficient memory access
(V100 has about 50% more flops than a Stratix 10 FPGA and
almost double the memory bandwidth [28], [51]). The attractive
features of FPGA designs are that they can run efficiently across
a range of sizes and that one can connect compute pipelines
directly to communications resources, which means that one
can relatively easily distribute a parallel implementation across
multiple FPGAs.

Regarding the full implementation of PME we have more
limited comparisons. As reported above, our full LR pipeline
currently completes a 643 64K Atom problem in 206 mi-
croseconds on four FPGAs. Running on a GEForce RTX
2080TI completes the equivalent phases in 523 microseconds.
As discussed above, we note that the FPGA implementation
scales readily with cluster size while the GPU implementation
does not.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate that FPGAs can implement
Particle Mesh Ewald in a scalable way, even for the small
3D FFTs applicable in molecular dynamics. The results show
that our architecture and implementation balances computation,
memory bandwidth, and communications bandwidth to produce
implementations that run efficiently across multiple FPGAs.
Our implementation works for a variety of molecule sizes
and FFT grid sizes, and is completely written in OpenCL for
portability and flexibility. Our results show that we outperform
or are competitive with a wide variety of architectures including
CPUs, GPUs, and ASICs.

The goal of our work is to achieve strong scaling for FFT
and the long range pipeline for molecular dynamics on multiple

FPGAs. We plan to grow our FPGA cluster to 16 FPGAs, and
present results on scalability of both FFT and the long-range
pipeline. A larger cluster will also allow us to use BRAM
only on FPGAs for 1283 transform as well. We also plan to
explore avenues such as reducing precision for communications,
exploring different layouts of the FFT dataset as well as linking
VHDL/Verilog code with OpenCL.

REFERENCES

[1] R. Salomon-Ferrer, D. A. Case, and R. C. Walker, “An overview of
the AMBER biomolecular simulation package,” WIREs Computational
Molecular Science, vol. 3, no. 2, pp. 198–210, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121

[2] P. Eastman et al., “OpenMM 7: Rapid development of high performance
algorithms for molecular dynamics,” PLoS computational biology, vol. 13,
no. 7, p. e1005659, 2017.

[3] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow, “Reconfigurable
molecular dynamics simulator,” in Proceedings of the IEEE Symposium
on Field Programmable Custom Computing Machines, 2004, pp. 197–
206.

[4] V. Kindratenko and D. Pointer, “A case study in porting a production
scientific supercomputing application to a reconfigurable computer,” in
Proceedings of the IEEE Symposium on Field Programmable Custom
Computing Machines, 2006, pp. 13–22.

[5] R. Scrofano, M. Gokhale, F. Trouw, and V. Prasanna, “A hard-
ware/software approach to molecular dynamics on reconfigurable com-
puters,” in Proceedings of the IEEE Symposium on Field Programmable
Custom Computing Machines, 2006, pp. 23–32.

[6] S. Alam, P. Agarwal, M. Smith, J. Vetter, and D. Caliga, “Using FPGA
devices to accelerate biomolecular simulations,” Computer, vol. 40, no. 3,
pp. 66–73, 2007.

[7] C. Yang et al., “Fully integrated FPGA molecular dynamics simulations,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–31.

[8] I. Ohmura, G. Morimoto, Y. Ohno, A. Hasegawa, and M. Taiji,
“MDGRAPE-4: a special-purpose computer system for molecular dy-
namics simulations,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 372, no. 2021, p.
20130387, 2014.

[9] D. E. Shaw, M. M. Deneroff et al., “Anton, a special-purpose machine for
molecular dynamics simulation,” Commun. ACM, vol. 51, no. 7, p. 91–97,
Jul. 2008. [Online]. Available: https://doi.org/10.1145/1364782.1364802

[10] D. E. Shaw, J. Grossman et al., “Anton 2: raising the bar for perfor-
mance and programmability in a special-purpose molecular dynamics
supercomputer,” in SC’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2014, pp. 41–53.

[11] J. Sheng, B. Humphries, H. Zhang, and M. C. Herbordt, “Design of 3D
FFTs with FPGA clusters,” in 2014 IEEE High Performance Extreme
Computing Conference (HPEC), 2014, pp. 1–6.

[12] A. Lawande, “A Reconfigurable Interconnect for Large-Scale FPGA
Applications and Systems,” Ph.D. dissertation, University of Florida,
2016.

[13] R. Halver, J. H. Meinke, and G. Sutmann, “Kokkos implementation of an
ewald coulomb solver and analysis of performance portability,” Journal
of Parallel and Distributed Computing, vol. 138, pp. 48–54, 2020.

[14] C. Predescu, A. K. Lerer, R. A. Lippert, B. Towles, J. Grossman, R. M.
Dirks, and D. E. Shaw, “The µ-series: A separable decomposition
for electrostatics computation with improved accuracy,” arXiv preprint
arXiv:1911.01377, 2019.

[15] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.
Pedersen, “A smooth particle mesh ewald method,” The Journal of
chemical physics, vol. 103, no. 19, pp. 8577–8593, 1995.

[16] A. Sanaullah, A. Khoshparvar, and M. Herbordt, “FPGA-Accelerated
Particle-Grid Mapping,” in IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines, 2016, pp. 192–
195, doi: 10.1109/ FCCM .2016.53.

[17] B. Stockwell, The quest for the cure: The science and stories behind the
next generation of medicines. Columbia University Press, 2011.

[18] J. Klepeis, K. Lindorff-Larsen, R. Dror, and D. Shaw, “Long-timescale
molecular dynamics simulations of protein structure and function,”
Current Opinion in Structural Biology, vol. 19, no. 2, pp. 120–127,
2009.

[19] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
Journal of Computational Physics, vol. 135, no. 2, pp. 280–292, 1997.

[20] U. Essmann et al., “A smooth particle mesh ewald method,” The Journal
of Chemical Physics, vol. 103, no. 19, pp. 8577–8593, 1995. [Online].
Available: https://doi.org/10.1063/1.470117

[21] H. J. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: a
message-passing parallel molecular dynamics implementation,” Computer
physics communications, vol. 91, no. 1-3, pp. 43–56, 1995.

[22] J. C. Phillips et al., “Scalable molecular dynamics with NAMD,” Journal
of computational chemistry, vol. 26, no. 16, pp. 1781–1802, 2005.

[23] T. D. Kühne et al., “Cp2k: An electronic structure and molecular
dynamics software package-quickstep: Efficient and accurate electronic
structure calculations,” The Journal of Chemical Physics, vol. 152, no. 19,
p. 194103, 2020.

[24] A. Gray, “Creating faster molecular dynamics sim-
ulations with gromacs 2020,” devblogs.nvidia.com,
2020. [Online]. Available: https://devblogs.nvidia.com/
creating-faster-molecular-dynamics-simulations-with-gromacs-2020

[25] Multi-GPU FFT Performance on Different Hardware Configurations,
GTC Silicon Valley 2019, 05 2019.

[26] M. A. Khan, M. Chiu, and M. C. Herbordt, “FPGA-Accelerated Molecular
Dynamics,” Springer, 2013.

[27] M. Chiu and M. C. Herbordt, “Molecular Dynamics Simulations on
High-Performance Reconfigurable Computing Systems,” ACM Trans.
Reconfigurable Technol. Syst., vol. 3, no. 4, Nov. 2010. [Online].
Available: https://doi.org/10.1145/1862648.1862653

[28] Intel® Stratix® Device Datasheet, Intel Corporation, March 2020.
[29] A. George et al., “Novo-G#: A Community Resource for Exploring Large-

Scale Reconfigurable Computing Through Direct and Programmable
Interconnects,” in HPExC, 2016.

[30] A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services,” in Proc. International Symposium on Computer
Architecture, 2014, pp. 13–24.

[31] C. Plessl, “Bringing FPGAs to HPC production systems and codes,”
in Fourth International Workshop on Heterogeneous High-performance
Reconfigurable Computing, workshop at Supercomputing, 2018.

[32] R. Kobayashi et al., “OpenCL-ready high speed FPGA network for
reconfigurable high performance computing,” in Proceedings of the
International Conference on High Performance Computing in Asia-Pacific
Region, 2018, pp. 192–201.

[33] T. Sasaki, K. Betsuyaku, T. Higuchi, and U. Nagashima, “Reconfigurable
3D-FFT Processor for the Car-Parrinello Method,” Journal of Computer
Chemistry, Japan, vol. 4, no. 4, pp. 147–154, 2005.

[34] C.-L. Yu, K. Irick, C. Charkrabarti, and V. Narayanan, “Multidimensional
DFT IP Generator for FPGA Platforms,” IEEE Trans. Circuits and System
I, vol. 58, no. 4, 2011.

[35] B. Humphries, H. Zhang, J. Sheng, R. Landaverde, and M. Herbordt,
“3D FFT on a Single FPGA,” in Proc. Field Programmable Custom
Computing Machines, 2014.

[36] A. Ramaswami, FFT3D for FPGA (CP2K), 2019, http://github.com/pc2/
fft3d-fpga.

[37] J. Sheng, C. Yang, A. Caulfield, M. Papamichael, and M. Herbordt, “HPC
on FPGA Clouds: 3D FFTs and Implications for Molecular Dynamics,”
in Proc. Field Programmable Logic and Applications, 2017.

[38] J. Lee, L. Shannon, M. J. Yedlin, and G. F. Margrave, “A multi-fpga
application-specific architecture for accelerating a floating point fourier
integral operator,” in 2008 International Conference on Application-
Specific Systems, Architectures and Processors. IEEE, 2008, pp. 197–
202.

[39] R. T. M. An and C. Lu, Algorithms for Discrete Fourier Transform and
Convolution. New York: Springer-Verlag, 1989.

[40] M. Frigo and S. G. Johnson, “The design and implementation of fftw3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[41] D. Pekurovsky, “P3dfft: A framework for parallel computations of fourier
transforms in three dimensions,” SIAM Journal on Scientific Computing,
vol. 34, no. 4, pp. C192–C209, 2012.

[42] D. Harris, J. McClellan, D. Chan, and H. Schuessler, “Vector radix fast
fourier transform,” in ICASSP’77. IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 2. IEEE, 1977, pp.
548–551.

https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121
https://doi.org/10.1145/1364782.1364802
https://doi.org/10.1063/1.470117
https://devblogs.nvidia.com/creating-faster-molecular-dynamics-simulations-with-gromacs-2020
https://devblogs.nvidia.com/creating-faster-molecular-dynamics-simulations-with-gromacs-2020
https://doi.org/10.1145/1862648.1862653
http://github.com/pc2/fft3d-fpga
http://github.com/pc2/fft3d-fpga

[43] M. Garrido, J. Grajal, M. A. Sanchez, and O. Gustafsson, “Pipelined
radix-2k feedforward fft architectures,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 21, no. 1, pp. 23–32, 2013.

[44] F. Annexstein and M. Baumslag, “A unified approach to off-line
permutation routing on parallel networks,” in Proceedings of the second
annual ACM symposium on Parallel algorithms and architectures, 1990,
pp. 398–406.

[45] H. Subramoni et al., “Designing topology-aware communication sched-
ules for alltoall operations in large infiniband clusters,” 2014 43rd
International Conference on Parallel Processing, pp. 231–240, 2014.

[46] OpenCL 2D Fast Fourier Transform Design Example, Intel Corporation,
April 2019.

[47] M. Garrido, J. Grajal, and O. Gustafsson, “Optimum circuits for bit-
dimension permutations,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 5, pp. 1148–1160, 2019.

[48] Lenfant, “Parallel Permutations of Data: A Benes Network Control
Algorithm for Frequently Used Permutations,” IEEE Transactions on
Computers, vol. C-27, no. 7, pp. 637–647, 1978.

[49] A. Sunderlanda et al., “An analysis of FFT performance in PRACE
application codes,” in PRACE Whitepaper, 2012.

[50] nVidia Corporation, nVidia®cuFFT, January 2021, https://developer.
nvidia.com/cufft.

[51] ——, nVidia®V100, January 2021, https://www.nvidia.com/en-us/
data-center/v100/.

[52] Intel Math Kernel Library Performance Benchmarks, Intel Corporation,
2019.

[53] I. journal of Research and D. staff, “Overview of the ibm blue gene/p
project,” IBM J. Res. Dev., vol. 52, no. 1/2, p. 199–220, Jan. 2008.

https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/

	I Introduction
	II Background and Related Work
	III System Architecture
	III-A Long-Range Pipeline
	III-A1 Charge Spreading
	III-A2 FFT
	III-A3 Force Interpolation

	III-B Scaling 3D FFT
	III-C Scaling All to All
	III-D Balancing Computation vs Communications

	IV System Implementation
	IV-A FFT
	IV-B Bit Dimension Permutations
	IV-C All to All
	IV-D Using OpenCL for FPGA programming

	V Evaluation
	V-A Experimental Setup
	V-B FFT Only
	V-C Full LR Pipeline
	V-D Discussion
	V-E Performance comparison with other architectures

	VI Conclusion and Future Work
	References

