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Abstract—With the current pandemic, the central role that
Molecular Dynamics simulation (MD) plays in drug discovery
makes advances in MD performance urgent. Recent work has
demonstrated that among COTS devices only FPGA-centric
clusters can scale beyond a few processors for relevant targets;
other work has shown that single FPGA performance compares
favorably to that of a GPU. In this study we demonstrate that
an additional factor of 4x performance can be achieved which
results in a factor of 5x speed up over a GPU. The problem
addressed is that the designs of the last decade no longer scale
when the number of processing pipelines grows from around ten
to the hundreds. We begin by systematically evaluating existing
work, exposing its flaws, and proposing a series of new design
solutions. There are four major contributions. First, we address
the massive routing problem by augmenting the design with three
minimal networks in logic and latency. Second, we have developed
a novel asynchronous out-of-order communication mechanism
that removes nearly all bubbles from the routing networks. Third,
we find that inverting the standard particle access algorithm
results in improved locality and performance. Finally, we have
created a custom numerical format that increases precision while
saving space and logic.

I. INTRODUCTION

Simulating Molecular Dynamics (MD) is one of the fun-
damental approaches to modeling molecular systems and is
used across the fields of pharmacology, biology, and chemistry.
Of particular importance are running simulations of long
timescales [1], [2]. Such simulations of small sets of particles
(~50K) are crucial in pharmaceutical industries for drug
discovery. For example, the main protease (drug target protein)
of COVID-19 consists of 2367 atoms, and it can take tens of
nanoseconds for the protein and a drug candidate (typically
small molecules, based on Lipinski’s rule of five) to reach
structural stability [3]. However, orders of magnitude longer
are often required to achieve convergence, e.g., in computing
relative binding free energies between congeneric molecules.

Numerous MD software packages [4]-[8] have been de-
veloped, with or without GPU acceleration. While GPUs are
immensely beneficial for batch processing and for simulating
large systems, they face scalability problems: the efficiency
of GPUs is likely to drop greatly as the number of particles
decreases [9]. One solution is ASIC-based supercomputer
specifically for MD [10], [11]. FPGAs, however, have the
advantage of both being COTS and supporting flexible, direct
(and low-latency) communication.

In classical MD, the main computation (the non-bonded
forces) is usually partitioned into range-limited (RL) and long-

range (LR) components. RL consists of 95% of the FLOPs
and was the subject of much study in the first generation of
FPGA MD implementations [12]-[19]. More recently FPGA
MD work has concentrated on demonstrating scalability of LR
[20]-[25]. But without being competitive device to device,
which means primarily with respect to RL, this scalability
will only be useful for large clusters and therefore of limited
potential value. Recent work, however, has shown just that:
FPGAs can be competitive with GPUs [26], [27].

In the work here we note that despite these successes, much
work remains. The problem is that, as FPGA technology has
advanced from 2009 to 2021, the computational logic per
FPGA has increased from 8-10 force processors to 200-250.
Since each of these processors is fed by 6-10 filter pipelines,
MD designs now need to be able to read and write around
2000 data records per cycle. Since the pipelines operate on
heavily overlapped data structures, MD designers are faced
with the problem common to complex FPGA designs: balanc-
ing efficiency (e.g. stall frequency), routing complexity, and
operating frequency.

The current state of the art is a modified version of the
design found in [28]-[31]. But without specifying a network
(not needed in 2011), we are now faced with designs that take
immense effort to simply P&R. And, when they do, either only
use a fraction of chip resources or operate at a low frequency.

We begin by appending an explicit network that accounts
for 3D to 2D mapping. The PEs and data caches are logically
distributed in 3D space, but physically on a 2D chip. In the
previous FPGA/MD system, they are directly connected. As a
result, the interconnect among PEs and data caches becomes
over-complex, and the number of PEs is difficult to scale
up without significantly harming the frequency. In the 512-
node (8x8x8) Anton 2 machine, the nodes are structured and
connected as a 3D torus, and the longest connection is almost
2 meters long [32]. On the other hand, for a single FPGA,
neither the space nor the wiring resources are practical for
such topology. In fact, this mapping problem is a typical NP-
hard graph embedding problem. Such embedding problem has
been studied [33]-[35], but not completely solved. In this case,
we propose and explore a ring routing method.

We find that solving one problem begets another: low
utilization due to bubbles in the network. To solve this problem
we develop an out-of-order particle broadcast mechanism
which compensates for the high latency caused by the ring.
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Fig. 1. The simulation space is divided into cells (only 3x3x3 cells are shown)
whose edge length is the same as the cutoff radius R.. (a) A home cell and
its surrounding neighbor cells. (b) 2-D view of the 3x3x3 cells. Intuitively, the
particles in green cells are sent to the home cell at the center and form pairs
with home cell particles. The grey cells can be ignored because of Newton’s
3rd law. The orange aura shows the interaction range of particle A.

Next, the lack of data locality leads to a heavily con-
gested force transfer network. Figure 1 depicts the half-shell
method [36] that exploits Newton’s third law. In the previous
FPGA/MD system, the neighbor particles are traversed and
broadcast from green cells to the orange home cell (and other
related home cells) once per cycle. Computed partial force
fragments are returned to the source cells for accumulation.
However, the distribution of the destinations of the partial
forces lead to low concurrency and congestion at the desti-
nations. In the worst case, 14 force fragments request writes
to the same destination in a single cycle, while plenty of other
destinations have empty inputs.

Finally, bulk synchronization is applied so that the input data
can easily be shared among multiple PEs. The drawback is that
all PEs must now wait for the slowest PE to finish evaluating a
batch of particles. Algorithm 1 sketches the baseline procedure
of a single PE. N filters in each PE are equipped to select
the particle pairs that satisfy the cutoff radius. The inner loop
workload tends to be imbalanced for different PEs, as the filter
pass rate may differ drastically based on the particle positions.
In order to eliminate the bubbles (that the synchronization
causes) without giving up the particle broadcast mechanism,
we propose a novel design that makes the outer loops of
different PEs overlap, so that the filters and force evaluation
units can be executed without stalls. For those reasons, we

Algorithm 1 High-level single PE baseline procedure

1: for particle (p1) in home cell do

2 for particles (p2[0 : N — 1]) in neighbor cells do
3 pairs = Filter(py, p2(0 : N —1])

4; forces = ForceEvaluation(pairs)

5: Return(forces)

6 end for

7 Synchronize AllPEs()

8: end for

propose a fully pipelined range-limited molecular dynamics
(FPMD-RL) system, an FPGA-based accelerator for MD-RL
simulation with all data paths efficiently pipelined. The major
contributions are listed below.

o To support hundreds of PEs, the ring router is studied.
This efficiently maps the 3-D interconnect onto the 2-D
FPGA fabric; the high latency is completely hidden by
an out-of-order broadcast mechanism;

o To avoid the lack of concurrency during force return,
and to reduce the congestion in the network, a home cell
particle traversal method is proposed.

o A PE-overlapping force evaluation scheme is proposed to
eliminate the load imbalance problem introduced by bulk
synchronization.

« Some other optimizations are made to reduce hardware
cost and increase efficiency, among which the most
important is the use of a custom numerical format.

These contributions collectively lead to a factor of four in-
crease in performance.

II. MD RANGE-LIMITED BACKGROUND

MD Context. MD alternates between force calculation and
motion update. The forces computed may include bonded and
non-bonded terms [37]. Non-bonded is often partitioned into
long-range (LR) and range-limited (RL) components. These
computations are generally optimized separately; this work
can therefore be viewed in the context of a comprehensive
implementation [27], [38] with other components (LR [39],
[40] and bonded [41]) remaining fixed.

RL Force Properties. The RL force originates from
Lennard-Jones potential (Equation 1, the potential between
particle ¢ and j), which is widely used to describe the inter-
actions between electronically neutral particles. The resultant
force on particle ¢ is shown in Equation 2, where ¢ and o are
constants determined by particle types, and r;; is the distance
between particle ¢ and j.
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It is obvious that the RL force decays rapidly with the
increasing r, therefore a cutoff radius R, is introduced to set
the interaction range and to avoid trivial computations of dis-
tanced particles. As a result, the o( N?) pair-wise computation
complexity is reduced to o(N).

Periodic Boundary Conditions (PBCs). PBCs are fre-
quently used in computational physics: a particle that moves
out from the simulation space re-enters from the opposite side.
Particle interactions also wrap around the boundaries.

Operation. An iteration (~2 fs of reality) is separated into
two phases: Force evaluation and motion update. The resultant
forces on all particles are obtained after force evaluation, and
the particle position and velocity data are updated based on,
e.g., Verlet’s algorithm [42] during motion update.

Particle Data Structure. Cell lists [43], [44] are used for
particle indexing, as Figure 1 shows. All the particles in neigh-
bor cells are potential neighbor particles with respect to the
particles in home cells. Filters are deployed to select the pairs
within the cutoff range from home cells and neighbor cells [28]
and replace the neighbor lists used in CPU implementations.
FPGA implementations generally have a cell size = R,.

Particle Migration. A particle may change cells after an
iteration. The lists need to be updated every a few iterations
to handle the migration, with the cutoff radius extended by
the particle drift distance [45]. We use double buffering (e.g.
[26]) to reduce computation at the expense of BRAM:s.
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Particles per Cell. A value that affects computational
efficiency is the number of particles per cell [46]. This is
related to the cut-off radius and the material being studied
with typical values from ~40 to several hundred.

III. BASELINE DESIGN

In this Section, the data mapping scheme and data flow of
the baseline design are introduced, followed by details about
force evaluation and motion update.

A. Data-PE Mapping

As illustrated in Figure 1, particles in a simulation space
are spatially grouped by cubic cells. The position, force, and
velocity data of the particles in the same cell are stored in three
separate caches. All data are represented with single precision
floating point numbers.

The work for PEs is also spatially distributed. Each PE
evaluates the pairwise forces between particles in a specific
home cell and particles in 13 neighbor cells. Figure 2(a) shows
that in the baseline scheme, a PE is connected to 14 position
data caches based on cell locations.

As the force evaluation proceeds, the evaluated forces are
returned to the force caches in their corresponding cells.
Therefore, through the arbiters, the output of a PE is connected
to 14 force caches from the same cell as the 14 position data
caches as just mentioned (Figure 2(a)).

B. PE Functions

Figure 2(b) shows a single PE. The major functions are
particle filtering and force evaluation.

Filters. To guarantee throughput and match the number of
neighbor cells (14 cells), 7 filters are deployed. The ideal pass

rate of a filter is 4 3
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where the numerator is the volume of a cutoff sphere, and the
denominator is the volume of 3x3x3 cells. Although each PE
receives data from 14 position caches (PCs), only 7 position
data can be used simultaneously (number of filters).
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Fig. 3. Schematic of the table-lookup interpolation method. The lengths of
sections vary in log-scale, and each section is uniformly divided into 256
intervals (only 8 are shown). Particles within another particle’s exclusion
radius are evaluated separately.
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For each cycle during force evaluation, a filter receives
a new neighbor particle’s position data and the reference
particle’s position data stored locally in a register (not shown).
The reference position data is shared among the 7 filters and is
discarded after all neighbor position data have been evaluated
with it. A new reference particle is then fetched.

A planar filtering technique is used to avoid overwhelming
DSP usage for floating point operations. The floating point
position data are converted to 28-bit fixed point data at this
point such that the position difference can be obtained without
DSP. For the position difference x, y, and z between two
particles, the particle pair passes the filter if

|| <7e, |yl <re, |2] <7e,
] + |y < V2re, |yl + 2] < V2r¢, |2+ x| < V2re, (@)
|| + [y] + |2] < V3re

are satisfied. The position data and IDs of neighbor particles
that pass the filters are then stored in filter buffers and ready
for (round-robin) arbitration.

Force evaluation. Instead of directly computing the forces
based on Equation 2, we use an interpolation method with
table-lookup [47]. As Figure 3 shows, for a given 72, its
corresponding section and interval can be located. The curve
segment within the interval is linearly approximated, such that
parameter a and b are obtained from the look-up table based
on 72, and 7% (k=8 or 14) is interpolated as

rF=ar? +0b 5)

Force return is initiated for an evaluated force fragment.

Based on Newton’s 3rd law, the force is accumulated with the

force of the reference particle, and also sent to one of the force

output buffers as a neighbor force (Figure 2(b)). The output
buffers are designed to resolve conflicts upon force return.

C. Synchronization

Synchronization is applied at 3 points: New reference par-
ticle fetch, force evaluation completion, and motion update
completion. A new reference particle is not fetched until all
filter buffers of all PEs are empty. This is because, first,
the position broadcast mechanism demands all PEs receive
particles with the same ID — it’s convenient for all PEs to start
with the same particle ID, thus the global synchronization. And
second, the reference position is not stored in filter buffers, but
in a register (shared by the force computation unit and all the
filters) to save BRAMs. As a result, the reference position
cannot be discarded until all related operations are done. A
read-after-write (RAW) hazard can occur if the motion update
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Fig. 4. The optimized design.

is run during force evaluation. A simple way to avoid these
is for global synchronizations to occur separately after force
evaluation and motion update.

D. Motion Update

A particle may end up in another cell after motion update.
Because of the time interval and particle energy, a particle
can move no further than to a cell next to its original cell.
A motion update unit is therefore connected to (at least) 27
position caches and 27 velocity caches. Double buffering is
used to resolve the discontinuity in data caches caused by
particle migration. After a particle is updated, the updated
position and velocity are written into a new set of caches,
this way no packing is needed.

IV. FPMD-RL ARCHITECTURE

The FPMD-RL design is described in this Section. By
combining the five key points, the system is able to scale
with the increasing number of PEs. The index-offset position
format and the daisy chain based routing topology provide
a simplified and cost-effective memory-PE data path. The
data caching method solves the ring’s throughput problem
by drastically increasing the locality of data, with the out-
of-order particle position broadcast mechanism appropriately
modified. Finally, the PE overlapping method solves the the
severe workload imbalance problem from the data caching.

A. Position Data Format

Compared with the 32-bit floating point position data in
the baseline design, we find that a fixed-point data format has
greater potential.

The Index-Offset Format. For scalability and data accu-
racy, the cutoff radius is normalized to 1, such that the position
data can be conveniently divided into two parts: The cell index
(integer part) and the offset (fraction part) (Figure 5). The cell
index gives the cell id along X, y, or z axis, while the offset
is the distance between a particle and the lower cell boundary
of x, y, or z direction.

Since all data in a position cache share the same cell index,
only the offset is stored. As a result, the position data path
can be narrowed considerably (from 96 bits, 3x floating point

Cell Index
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Fig. 5. The data format and precision analysis. Top: The fixed-point position
format. (a) and (b): Two methods of computing the displacements of particles.
(c) and (d): Error analysis of the two methods with different numbers of bits.

numbers to even fewer than 70 bits). One significant benefit
is that 33% of the BRAM resources used for position data
storage can possibly be saved.

Displacement Computation Methods. Two displacement
computing methods during force evaluation are sketched. In
Figure 5(a), the fixed-point positions are subtracted before
being converted to 32-bit floating point format. The computed
forces are compared with 64-bit floating point forces, and
the error results are displayed in Figure 5(c). The absolute
relative error (typically 10~6~107?) varies with interpolation
parameters and system parameters like o; it is therefore
normalized.

The second method is shown in Figure 5(b), where the six
positions are converted to floating point before the subtraction.
Although the number of converters is doubled, the hardware
cost of a converter is negligible. This is because if the cell
index starts from 1 instead of O, then the leading-one of the
position can be easily justified, so that the conversion is easily
done with modest loss of precision (shown in Figure 5(d)).

Comparison. In method 2, a converter costs only ~15
ALMs, compared with ~170 ALMs of method 1. The Method
2 converter also improves latency (1 cycle vs ~5 cycles).
However, three more DSPs are required in method 2, and the
precision does not change much for >22 offset bits.

B. Data Routing Mechanism

It is shown in Figure 4(a) that the PC-PE, PE-FC, and MU-
PC/VC interconnects are replaced by daisy chain based rings
to avoid frequency degradation. We choose the 1D topology
over 2D based on the facts that the ring is more cost-effective
and that the latency, in any case, can be hidden.

Ring Functions. The ring interconnect is shown in Figure 6,
where two data paths are possible. If the data source and the
data destination match in space. For example, the ¢’th PE can
directly send force data to the i’th force cache. If the source
and the destination do not match, the data enters the one-way
ring path when the data slot in the network node is empty. The
data in a network node is forwarded to the node next to it for
every cycle, unless the data has reached its final destination.

The three rings have different functionality. A position
datum has multiple destinations during position broadcast;
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therefore the data is kept in the position input ring until it
arrives at the final PE. In contrast, the data in the force output
and the motion update ring have only a single destination.
Cell-Ring Mapping. The main goal of the cell-ring map-
ping is to minimize the average data lifetime in a ring. We
manage to obtain a reasonable mapping method which follows:

I, = N2 Niy(x — 1) ety —1) +2 (6)

cell
I, is the index shown in Figure 6 which starts from 1, NY,

is the number of cells along y axis, and x is the coordinate of
cells on x direction, ranging from 1 to N7,

The equation represents an approximate solution: finding
the best solution is an NP hard problem (/V! possibilities). The
spatial distribution of the 14 neighbor cells and the periodic
boundary conditions also complicate the problem because the
neighbor cells can be far away from the home cell on the ring.
The average particle lifetime is evaluated for more than 100M
randomly generated mapping approaches. The result shown
leads to a solution better than any of these and twice the
performance of the average.

Ring Concurrency Although the position input and the
force output processes’ latency can overlap with the force
evaluation flow, it is possible that the latency may not be
completely hidden when the number of cells is too large or the
number of particles per cell too few, especially for the force
output ring because the force data cannot be reused. In order
to hide the latency introduced by the rings, the concurrency of
the rings is adaptive to the dataset so that multiple data slots
can be deployed on a single network node.

The motion update ring is only used when particle migration
happens, and particle migration is relatively rare because of
the particles’ limited kinetic energy. Therefore congestion in
the motion update ring is not a concern.

C. Data Caching

Neighbor Data Caching. The rings solve the path routing
problem (P&R) and enable a high operating frequency. The
increase in latency, however, means that, without modification,
the desired throughput of neighbor position broadcast and
force return cannot be met. To solve this problem, a neighbor
particle data caching technique is used.

As Figure 4(b) shows, neighbor position data, including the
home cell particle as a neighbor particle, are temporarily stored
in registers through the dispatcher (the dispatcher is described

in PE Overlapping). Instead of iterating through all neighbor
positions for a single reference particle, the home cell positions
are now traversed for those neighbor positions in registers.

The most straightforward benefit is that a PE requests data
from neighbor cells much less frequently. Another is that the
neighbor partial forces can be accumulated before being sent to
the force caches. This way the congestion of the force output
ring is greatly alleviated. Only one packet need to be sent
through the ring interconnect after the evaluation of a particle
from a neighbor cell. The expensive force output buffers in
figure 2(b) are no longer needed, either.

Home Cell Data Caching. As the particle broadcast pro-
ceeds, the position data from the home cell are duplicated
into the Home Pos Cache shown in Figure 4(b) (red arrow).
The duplication can be done during the first round of position
broadcast. The duplication aims to double the concurrency of
the position cache and eventually saves a considerable amount
of BRAM resources. Different position cache entries may be
needed in both the filters and the force computation unit, thus
the need for doubling the concurrency. In the baseline model,
the position data are stored in filter buffers. Now that the
neighbor particles are cached in registers, the filter buffers are
only used to hold home cell particle IDs so that the desired
position data can be fetched from the duplicated Home Pos
Cache. With the home cell data caching method, 12 BRAMs
per PE are saved.

D. Out-of-Order Particle Position Broadcast

The position broadcast mechanism also evolves with the
data caching. Now that a neighbor particle position can be
reused for an entire home particle traversing process, the
broadcast doesn’t need to be performed every cycle, except
for under two conditions.

First, a slot is available in the position input ring (see
Figure 7). In the 1st cycle, all input ring slots are empty; thus
all position caches send the current value to the ring along the
blue arrows. Afterwards, the position cache entries are marked
as used with dirty bits.

Second, the pointed entry is not marked used. An address
pointer is deployed to iterate through all position cache entries,
and the position data are sent to the local PEs directly as shown
by the red arrows. In the 5th cycle, the pointed entry of the
N'th position cache is not used, and the corresponding slot in
the ring is empty. Therefore data is broadcast along the blue
arrow.

In the 8th cycle, the red arrow is from entries with different
addresses, since the particle numbers are different for those
caches. The asynchronous home particle traversal also makes
the back pressure in filter buffers much cheaper: Only the
related position cache traversal needs to be paused, rather than
all of the caches, Therefore the filter buffers can be small and
implemented with relatively cheap memory logic array blocks
(MLABS) instead of M20Ks.

In the 9th cycle, all three slots in the ring are empty. Now
that the entries pointed to in cache 1 and cache 2 are clean,
the data within them are sent to the ring for broadcast, despite
the difference in addresses.
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E. PE Overlapping

The PEs are synchronized before the next reference particle
positions are received. However, a workload imbalance prob-
lem escalates severely if the synchronization is inherited under
the neighbor particle caching scheme, as Figures 8(a) and (b)
show. The filter pass rate can vary drastically, depending on
the neighbor particle positions.

The imbalance in filtering rate leads directly to imbalanced
workload of the PEs. Figure 8(c) shows the distribution of
workload among PEs of an example dataset. Within a single
iteration, the number of evaluated pairs with respect to a single
neighbor particle can vary as much as a factor of 5. Since it
is no longer affordable to perform a bulk synchronization, a
PE overlapping method is proposed.

Position Data Dispatch. Although not all neighbor particles
can arrive at the same time with the position input ring, we
manage to take advantage of it by designing the data loading
hardware shown in Figure 9(a). The active register (AR) and
backup register (BR) are used as neighbor position holders.
ARs can be used in both a filter and the force computation
unit, while a BR can only be used in a filter.

The input position data are stored in the position input buffer
upon arrival. The arbiter first checks whether there is an AR
slot empty, and if so fills it. If all AR slots are filled, then the
arbiter sends the position data into an empty BR slot. When
an AR’s content has finished with all the filtering, but is still
needed for force computation (in other words, particle pairs
that related to this particle still exist in the filter buffer), its
bundled BR can bypass the filter input and form pairs with
home cell particles to keep the filter busy. A BR’s content is
moved to AR after the previous data in AR has been discarded.

Data Lifetime. The position data lifetime for filtering is
determined by address stamps. Since the home particle posi-
tion is traversed in loops and is independent of the neighbor
particles, the address of the home particle is remembered as
an address stamp when a new particle is dispatched. When the

Position Input Buffer (Force Output Ring)

From Position
Input Ring

To Force Computation Motion Update
(a) (b)

Fig. 9. (a) Position data dispatching. AR: Active register. BR: Backup register.
The gray dashed arrows show that the neighbor data entering the filters can
be bypassed. (b) Force accumulation. Red arrow: Data from slot 1 of a node.
Blue arrow: Data from other slots of the same node.

address reaches the stamp again the dispatcher knows that the
particle is finished with filtering. The position data lifetime
for force computation is also well-defined. Neighbor position
data stored in an AR can be discarded after all the related
filtering is done and it does not appear in the corresponding
filter buffer. Force data is stored in neighbor force registers
and is sent to the force output ring as soon as it is completed.

F. Yin-Yang Force Caches

The force accumulation also suffers from a concurrency
problem. The partial forces from the force output ring, together
with the forces from the PE demand more than 1 write
operation per cycle. The solution is shown in Figure 9(b).
This force accumulation layout trades memory blocks for
performance by using two force caches instead of one. The
home cell forces are sent directly from the local PE to the
local force cache A (Yang cache), and force cache B (Yin
cache) is shared by all the data from the output ring. In case
multiple slots exist in a ring node, we give priority to those
slots to guarantee that the force from one of the slots can
always participate in the accumulation whenever the data are
ready, such that no data buffering is required for this slot (see
the red arrow).

The force data are only used in motion update units. There-
fore the half forces in Yin-Yang caches are then combined as
a whole in motion update units.

V. EVALUATION
A. Experimental Configuration

The design is implemented in Verilog HDL on an Intel
D5005 board equipped with a Stratix 10 SX FPGA, which has
933120 ALMs, 5760 DSPs, and 11721 M20K BRAMs. The
performance and hardware consumption are evaluated based
on the board’s specification.

For performance comparison, we run Amber [48] on an
Intel Xeon 24-core CPU and an Nvidia GTX 1080Ti GPU.
The time step is set to 2fs for all evaluations.

As for system configuration, six, rather than seven filters
per PE are used because the average filter rate becomes ~17%
with the planar filtering method, and the number of filters no
longer needs to match the 14 neighbor cells. Each motion
update unit is assigned eight cells with the number of motion
update units scaling with the number of cells.
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Fig. 11. PE utilization

B. The Position Input Ring Evaluation

In this Section, we demonstrate that a small number of
position input rings is sufficient for likely numbers of particles
per cell. The force input ring is evaluated for five typical
cell layouts as Figure 10 illustrates. The bar plots show the
average number of cycles needed for each PE to wait before a
consecutive position datum arrives through the position input
ring. The line plots show the average number of filters that can
operate without waiting for input data. The ring is evaluated
with up to 100 particles per cell, and up to 4 input rings; this
is sufficient because the trend is the same for more particles
and more rings. The colored numbers represent the leftmost
line plot data points and are given for reference.

It can be observed that the number of supported filters scales
with the number of particles per cell. This implies that the
ring latency can be completely hidden by filter operations.This
feature also allows us to have two or more PEs working on one
home cell (i.e. more filters for more PEs). Another observation
is that the average PE waiting time only increases slowly with
the number of cells, meaning that a certain number of rings
can handle a wide range of cell counts. The benefit of extra
rings is clear: >3.02x throughput for 4 rings, >2.45x for 3
rings, >1.83x for 2 rings. This also implies that only a small
number of rings are needed in practice.

C. PE Utilization

Figure 11 compares the overall baseline and FPMD-RL PE
utilization for different datasets. The error bars represent the

20K Liquid Argon Energy Validation
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Fig. 12. Energy convergence validation

standard deviation of individual PE utilization. In order to
evaluate how many bubbles are caused by workload imbalance,
the PE utilization is measured for all PEs during the time
interval between the first and last force evaluations.

For all cases, the PE utilization of the new design reaches
77% for more than 100 particles per cell with small deviation
among all PEs. The utilization also converges for more par-
ticles per cell. This shows the system is robust with respect
to data set choices. The baseline utilization starts higher for a
small number of particles per cell, but converges below 57%.
Despite the baseline PE imbalance problem is not as bad as
Figure 8 shows, the baseline utilization is lower. This means
the PE efficiency is effectively improved with the out-of-order

position broadcast mechanism and PE overlapping techniques.
TABLE I
PERFORMANCE COMPARISON.

Platform Speedup Platform Speedup
CPU I-core 959.5 CPU 24-core 158.6
CPU 2-core 546.4 GPU 5.40
CPU 4-core 298.5 baseline 4.32
CPU 8-core 270.0

D. Energy Validation

Energy convergence validation is performed on an example
20K liquid argon dataset. Figure 12 compares the reference
double-precision floating point OpenMM [49] result with the
implementation described in this paper (23-bit offset precision
scheme in Figure 5(c) and the linear interpolation described
in III-B). Over 100k iterations (2 fs per iteration) the relative
difference is typically on the order of magnitude of 10™% ~
1073,

E. Ring-Related Performance

The performance with respect to four cell spaces is exam-
ined (see Figure 13). We use the same number of PEs as the
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TABLE I
CASE STUDY: CONFIGURATION, HARDWARE COSTS, AND PERFORMANCE. MU = MOTION UPDATE UNIT

Substance | Particles | Cell Space | Particles/Cell | PE# | MU # | Force Rings | ALM DSP BRAM | ns/day
Ar 5000 4x5x5 50 200 25 4 59.7% | 62.5% | 54.6% 10803

Ar 20160 7x6x6 80 252 32 2 81.6% | 80.0% | 73.1% 2322

Ar 50000 5x5x5 400 250 16 2 68.8% | 78.1% | 70.4% 196.5
NaCl 5040 3x3x7 80 189 8 6 53.7% | 65.6% | 50.5% 6131
NaCl 20480 4x4x4 320 192 8 3 472% | 66.7% | 50.8% 466.7
NaCl 51200 4x8x8 200 128 32 2 51.2% | 44.4% | 45.9% 200.8

number of cells to simplify the comparison. Each cell space
has various numbers of randomly generated particles per cell
(50, 100, 200, or 400), and up to four force output rings. These
configurations cover the cases that the system will operate on.
The red dashed lines show the ideal cycles computed using
Equation 7, disregarding the latency and data transfer, and
assuming perfect workload balance.
NZ.+ 8 x Npe (7)

27
Cideal = ? X

Cidear stands for the ideal number of cycles and N, is the
number of particles per cell. The Ist term is the workload of
force evaluation, the 2nd is for motion update. For the 4x4x4
cell set with 50 particles per cell, the time per iteration is only
1.33x ideal. For the scenarios of more particles per cell, 1.40x
ideal time per iteration can be achieved.

The shadowed regions indicate the number of cycles re-
quired for particle broadcast with a single position input ring if
no back-pressure is applied. Back-pressure indicates position
data consumption is slower than data transfer; therefore the
performance is not affected by particle broadcast. This further
demonstrates that only one position input ring is sufficient for
common cases.

Force output rings with more than two slots may be needed
for peak performance, especially when a cell has a limited
number of particles or the number of cells is large. The ring
is not congested with 200 particles per cell except for the
4x8x8 case, and with 400 particles for all cases.

We also observe that the 6x6x6 cell set is evaluated with
fewer cycles than the 4x6x8 cell set. This phenomenon is
related to cell-ring mapping discussed in Section IV-B. The
average force traveling distance of 6x6x6 on a ring is shorter
than 4x6x8.

FE. Overall Performance

Performance of FPMD-RL is compared with CPU, GPU,
and the baseline design. The reference model is typical with
7x6x6 cells and 80 particles per cell. The index-offset position
data format is also applied to the baseline. Together with minor

optimizations, the baseline design is able to fit ~200 PEs. The
baseline design only runs at 100 MHz because of the routing
problem discussed in Section IV-B. The new design operates
at 297 MHz and has 252 PEs for this dataset. The results are
given in Table L.

Hardware costs and performance for six datasets are listed
in Table II, including the dataset (the 2nd) used for comparison
in Table I. The substances Ar and NaCl are similar in RL force
computation, but NaCl requires 2 additional DSP units per PE
for coefficient multiplication. For all the test cases, only one
position input ring is used.

We observe that our performance achieves 5.40x speedup
compared to GPU, 158.6x speedup compared to 24-core
server-level CPU, and 4.32x compared to the prior-art FPGA
implementation.

VI. CONCLUSION

In this paper, we present a series of technologies to solve
the problems that originate from the severe frequency drop as
PE populates with hardware resource optimizations. Although
the ring method efficiently raises the frequency, the concur-
rency problem of the ring is brought in. Therefore, the data
caching technique is utilized for higher data locality. However,
neighbor particle caching is followed by the PE workload
imbalance problem. As a counter measure, the previously
used bulk synchronization is replaced by out-of-order position
broadcast mechanism and position data dispatching. At last,
we implement the yin-yang force caches to solve the con-
currency problem in force accumulation. All the efforts above
collectively contribute to the performance thus 5x speedup and
4x speedup are achieved over GPU and prior-art FPGA/MD,
respectively.
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