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Abstract—Assessment of individuals’ job performance, per-
sonalized health and psychometric measures are domains where
data-driven ubiquitous computing will have a profound impact
in the near future. Existing work in these domains focus on
techniques that use data extracted from questionnaires, sensors
(wearable, computer, etc.), or other traits to assess well-being and
cognitive attributes of individuals. However, these techniques can
neither predict individuals’ well-being and psychological traits
in a global manner nor consider the challenges associated with
processing the often incomplete and noisy data available. In
this paper, we create a benchmark for the predictive analysis
of individuals from a perspective that integrates physical and
physiological behavior, psychological states and traits, and job
performance. We develop a novel data mining framework that
can extract meaningful predictors from noisy and incomplete
data derived from wearable, mobile and social media sensors
to predict nineteen constructs based on twelve standardized
and well-validated tests. The framework can be used to build
a predictive model of outcomes of interest. We validate the
framework using data from 757 knowledge workers in orga-
nizations across the United States with varied work roles. Our
framework and resulting model provides the first benchmark
that combines these various instrument-derived variables in a
single framework to understand people’s behavior. The results
show that our framework is reliable and capable of predicting
our chosen variables better than the baselines when prediction
includes the noisy and incomplete data.

Index Terms—Personality, wellness, job performance, psycho-
metric, prediction

I. INTRODUCTION

WEARABLE devices are opening new avenues to im-
prove our understanding of our health and well-being

by tracking individual in-situ patterns of activity and affect.
These patterns can be extended into precise and objective
measures of health and well-being, which can not only benefit
an individual’s health goals, but also aid organizational efforts
to promote well-being [1]–[3]. Detailed and continuous data
collection can yield valuable insights into health and well-
being, e.g., stress, sleep, work performance, and physical
activity [4]–[7].

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works

§Corresponding Author: nchawla@nd.edu

In recent years, literature that assesses well-being and its
effect on productivity has expanded. Well-being, personality,
and cognitive ability can affect job performance [8]–[15].
Personalized well-being assessment [1], [16] is also receiving
more attention due to the ubiquity of wearable devices.

Despite advances in computational methods that use wear-
able data to assess well-being, e.g., [1], [16]–[18], substantial
challenges still exist. Previous work has been limited by data
characteristics such as small samples, homogeneity (specific
demographics and work roles), or controlled environments
(within specific scenarios and locations). Additionally, pre-
dicting well-being, where productivity or performance is con-
sidered [19], becomes difficult due to scarcity of situational
(contextual) information [20], [21], privacy, or other concerns
[8]–[15]. Assessing both well-being and workplace perfor-
mance requires machine learning strategies that overcome
these issues. In our work, we identify three main challenges:
1) unobtrusive data collection using large samples of hetero-
geneous individuals in a wide range of work settings and
geographic locations; 2) need for multi-modal sources for
holistic representations of physical and behavioral patterns;
and 3) missing and noisy values that stem from the nature of
the data and sensors and idiosyncrasies of individuals (e.g.,
gaps in measurements, variable compliance in wearing the
devices, failure of sensors) [22], [23].

In this paper, we report our approach in addressing these
challenges and building a machine learning pipeline for the
Tesserae Project [24]. In Tesserae, we implemented a system
comprised of a broad suite of sensing modalities for automated
modeling of individual physical, psychological, and job perfor-
mance differences. Figure 1 shows a diagram of the specialized
sensors that were used to gather data in an unobtrusive manner.
The goal of these sensors was to collect information that was
representative of an individual’s behavior, health, and mental
states. These sensors also collected data related to job and
daily activities (offline and online interactions, phone and
computer usage) both at home and at work. We enrolled a
diverse cohort of 757 knowledge workers performing varied
roles at several organizations across the United States.

Research Questions. We consider the following questions:
RQ1) How do we integrate data from different sensors and
modalities? RQ2) How do we develop machine learning meth-
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ods that can deal with the challenges of varying levels of miss-
ingness and noise, and inter-individual, intra-individual, and
inter-sensor variance? RQ3) Are individual job performance,
well-being, and personality predictable from these sensors?

Critically, real-world wearable data can also be affected
by (ir)regularities, temporal variations, and differences in an
individual in addition to missing values, noise and other issues
mentioned before. Thus, generalizability issues arise in models
trained on samples from this data because the training sample
distribution may be different than the test sample distribution
used in the final applications. While sensor data has been used
to predict and assess human behavior and well-being [25]–
[28], these predictions are done on highly curated and often
homogeneous data. Such models may be overly-optimistic
about what can be achieved in real-world, messier scenarios.

We address these data issues and create a machine learning
solution to our joint prediction problem. Specifically, we
model nineteen survey-based variables [29]–[40]. The 927 pre-
dictors (features) were obtained from sensors assigned to each
participant in Tesserae: a wearable (Garmin Vivosmart 3), a
phone agent (an app for iPhone and Android), four Bluetooth
beacons (office, home, and two portable), and social media
(Facebook). As part of our work, we identified the most rele-
vant subset of these features for each of the nineteen variables.

While sensor data has been used to create models of human
behavior, including: daily activities, mobility, [25]–[27], well-
being [28], and academic performance [17], to our knowledge
there is no study that harnesses multi-modal data sources
into a unified comprehensive framework that addresses data
messiness and algorithmic challenges to create a generalizable
machine learning pipeline predicting person-level behavior,
physical and psychological well-being, and job performance.

To create a generalizable joint model of the nineteen con-
structs, we implement several strategies. First, we consider
various imputation approaches as well as co-dependencies
among the variables for both feature selection and prediction
(RQ1). Unlike other approaches that deal with missing data for
longitudinal scenarios (e.g., [22], [23]), our approach does not
require complex likelihood-based techniques. Second, we use
a fusion technique to synthesize multi-modal sensor-derived
features (RQ1). Third, we consider an ensemble learning
technique to incorporate various machine learning models
(RQ2). Fourth, in addition to our data policy and machine
learning design, we use higher order networks (HON) [41] to
obtain descriptions of each individual (RQ3). Finally, to ensure
generality we perform 5-fold cross-validations at all stages of
the model creation: feature selection, dimensionality reduction,
hyper-parameter tuning, training, prediction, and tests.

In summary, our contributions are as follows: 1) We create
a framework whereby noisy, heterogeneous, multi-modal data
can be fused without the need for highly specialized curation;
2) We provide a benchmark that leverages data fused from the
modalities to produce more integrated predictions of human
behavior than existing techniques; and 3) We verified experi-
mentally the predictive capability of our approach using data
from our longitudinal study. The results show that our model
perform favorably with respect to theory-driven baselines. We
verify the results using various reliability tests.

II. BACKGROUND

In order to acquire a comprehensive view of an individual’s
physical attributes, psychological properties, personality, and
job performance, we used the battery of psychometric surveys
to construct our ground truth variables listed in Table I.
Surveys were administered at the beginning of the study, and
shorter versions periodically over the first 60 days of this year-
long study. We present the analysis for the initial battery of
surveys (results for the shorter versions are presented in [42]).

A. Job Performance

We considered five variables that assess job performance
from three perspectives: task performance, organizational cit-
izenship behavior, and counterproductive work behavior [21],
[43]–[46]. The surveys are designed to capture behaviors
associated with achieving organizational goals [47]–[49].

1) Task Performance: We measure task performance using
two variables: In-Role Behavior (IRB) [29] and Individual
Task Proficiency (ITP) [30] using instruments validated with
significant samples [29], [30]. The former measures an individ-
ual’s perception of her job performance based on completion
of tasks associated with that individual’s position. The latter
measures the individual’s perception of how frequently she
completed her core job tasks, completed these tasks well, and
verified that these tasks were completed well.

2) Organization Citizenship Behavior: Organizational citi-
zenship behavior was assessed using the Organizational Citi-
zenship Behavior Checklist (OCB-C; [31]). OCBs are optional
actions that are not rewarded by a worker’s organization. OCB-
C is a validated instrument as described in [31].

3) Counterproductive Work Behavior: (CWBs) are actions
taken by employees that intentionally harm either the organi-
zation or individuals within the organization [50]. To measure
CWB, we use the Interpersonal and Organizational Deviance
(IOD) scale [32]. The 19-item instrument is broken into two
major categories of items: (1) Interpersonal Deviance (7 items)
and (2) Organizational Deviance (12 items). Each item has a
seven-point frequency score: 1 (never) to 7 (daily). In our
predictions, we consider each major category as a separate
variable. IOD was validated as described in [32].

B. Psychological Constructs

We focus on four psychological constructs: cognitive ability,
personality, affect, and anxiety.

1) Cognitive Ability: We use the Shipley Institute of Living
Scales 2 (Abstraction and Vocabulary sub-tests) [33] to mea-
sure fluid and crystallized intelligence respectively [51], [52].
See [53] for a study on the relation of cognitive ability and
job performance. Shipley 2 has high reliability and internal
consistency [33].

2) Personality: Personality was measured in the initial
ground truth battery via the Big Five Inventory-2 (BFI-2; [34]).
The BRI-2 traits are: Extraversion, Agreeableness, Conscien-
tiousness, Neuroticism, and Open-Mindedness. Each of the
Big Five Personality Traits has varying levels of association to
job performance [11], [12], [14], [15], [54]–[56]. BFI-2 was
validated with four datasets [34].
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3) Affect: We use the Positive and Negative Affect
Schedule-Expanded Form (PANAS-X; [35]). Affect variation
is a key indicator of a person’s mental health and is critical for
job performance and other job behaviors [57]–[60]. PANAS-X
is shown to be a reliable instrument [61].

4) Anxiety: We use the State-Trait Anxiety Inventory
(STAI; [36]). Anxiety is another key indicator of a person’s
mental health. STAI was validated by [36].

C. Health and Physical Variables

1) Alcohol Consumption: We use the Alcohol Use Disor-
ders Identification Test (AUDIT), which was developed by
the World Health Organization (WHO; [37]). The effects of
alcohol consumption on job performance and other areas of
people’s lives are well documented [62]–[67]. AUDIT validity
has been widely confirmed, e.g., [68]–[70].

2) Physical Activity: We use the International Physical
Activity Questionnaire (IPAQ; [39]). Physical activity affects
not only physical health but also mental well-being and job
performance [71]–[74]. The test-retest reliability for the IPAQ
questionnaires is reported in [39].

3) Sleep: We use the Pittsburgh Sleep Quality Index (PSQI;
[40]). Sleep is critical to incorporate because poor sleep
directly impacts job performance [75], cognitive ability, and
mental health [76], [77]. PSQI has both good internal reliabil-
ity and good test-retest reliability [40].

4) Tobacco Use: We used IARPA’s modified version of
the Global Adult Tobacco Survey (GATS) from the World
Health Organization (WHO, [38]), which focuses only on the
individual’s consumption by considering three items: whether
the participant is a current smoker, if they use tobacco daily,
and the quantity used in the past week. We predict the last
item only. Tobacco use is associated with stress, negative
emotionality, lower agreeableness, [67], [78]–[82], and work
performance [83]. GATS was reviewed and approved by the
GATS Questionnaire Review Committee of the WHO.

III. RELATED WORK

We discuss related work for each of the categories of
dependent variables in our study.

Psychological Variables. Empirical evidence shows that
cognitive ability is related to personality traits. For example,
personality (introversion) and abstraction are shown to be
associated with intellectual curiosity, which along with other
traits can partially explain crystallized intelligence [86].

Personality has been predicted by an individual’s behavior,
ranging from, e.g., a person’s interactions with computers
[91]–[93] to social pressures [102]. The field of automated
personality modeling has focused on predicting the Big 5
personality traits from sensing and system adaptability. For
a recent review of the most popular computational approaches
for automated personality detection (including datasets, appli-
cations, and machine learning methods), see [95] and most re-
cently [126]–[128] that improved the results on the Facebook,
Essays, and Kaggle and Essays datasets, respectively. Some of
these techniques combine various types of complex features
using Deep Residual Networks and sophisticated techniques
requiring large amounts of data.

TABLE I: List of Dependent Variables
Type Subtype Variable

Jo
b

Pe
rf

or
m

an
ce Task IRB [29]

ITP [30]
Org. Cit. Behavior OCB [31]

Deviance [32] Interpersonal
Organizational

Ps
yc

ho
lo

gi
ca

l

Cognitive [33] Vocabulary
Abstraction

Personality [34]

Extraversion
Agreeableness
Conscientiousness
Neuroticism
Openness

Affect [35] Positive
Negative

Trait Anxiety [36] Anxiety

H
ea

lth

Consumption Alcohol [37]
Tobacco [38]

Activity Physical [39]
Sleep [40]

TABLE II: Literature per Variable Group and Predictor Types
Variable Group Sensor/Social Attributes & Traits
Job Performance [17] [18] [42] [9]–[15], [84]–[87]
Cognitive Ability [88], [89] [90]
Personality [18], [91]–[101] [86], [102]
Affect [103]–[109] [106]
Anxiety [104], [110], [111] [36], [112], [113]
Alcohol [114], [115] [116]
Tobacco [117] [118]
Physical Activity [119], [120] [121]
Sleep [122]–[125] [125]

Affect detection has been an active area of research in the
field of affective computing [94], [103]–[105], [129]. Positive
and negative affect, as well as perception and satisfaction
with health and life, have been predicted using wearable
sensors [106]. Affective modeling also involves sentiment
analysis, including predicting sentiment intensity [108] using
a stacked ensemble that contains neural networks as part of
the architecture. In the case of sentiment analysis, however,
the number of instances used for training in [108] is in the
order of thousands, while in our case we collected posts from
social media for 392 participants. The interested reader is
referred to the survey in [107], [129], which uses common
tasks in affective computing and sentiment analysis (emotion
recognition, polarity detection, multimodal fusion) to present a
taxonomy of platforms: knowledge based, statistical methods,
and hybrid. Notice that sentiment analysis is often done in
the context of specific scenarios, e.g., with respect to social
media posts and news. In contrast, our paper is devoted more
to sensor-based modeling for understanding individual traits.
Emotion categorization involves psychological models, e.g.,
[130]–[134] and sensing algorithms [91], [107], [135], [136]
at the intersection of psychology linguistics, computer science,
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engineering, and other fields. Most emotion categorization
models differ on the number and the list of emotions. However,
emotions can be roughly grouped into three types: positive,
neutral, and negative, as discussed in [109]. In our paper,
we model generalized affect (positive and negative) [35] as
a fairly stable trait that describes the experience of emotions
because affect is associated with well-being and productivity.

Beyond positive and negative affective states we consider
anxiety. Previous work has focused on predicting anxiety from
sensors, e.g., [104], [110]. Methods that predict stress and
anxiety based on ECG monitoring have been proposed [111].

Physical and health variables have been predicted by a
variety of methods. Alcohol consumption is found to be related
to both a trait (self-control) and cognitive ability (working
memory capacity) [116] and has been predicted by EEG
signals and trans-dermal devices [114], [115]. Physical activity
(IPAQ) is commonly predicted by using mobile sensing, e.g.,
[119], or specialized devices such as accelerometers [120].
Physical activity patterns appear to be stable, as patterns earlier
in life can predict some activity patterns later in life [121].

Sleep quality has been estimated using wearables by [122],
[123]. More invasive techniques can use chest sensors and
polysomnography (to measure body acceleration and position)
[124]. Specialized work to estimate sleep for patients with
schizophrenia also exists (see a comparative analysis in [125]).

Tobacco consumption has been monitored using air sensors
as in [117]. Also, smoker group membership (never, estab-
lished, former, non-daily, and daily) has been predicted using
family history, depression, consumption of other substances,
and demographics [118]. To our knowledge, tobacco consump-
tion has not been monitored using wearable sensors.

Job performance is usually measured through either sub-
jective rating scales [48], [137] or objective performance
outcomes, such as sales amounts and production numbers.
[48]. Using wearable sensor data to estimate job performance
has been explored by [17], who demonstrate that wearables
can be used to detect when a person is focused on their
work via physiological features. Another approach estimates
job performance based on personality and individual traits
[11], [13]–[15] with varying degrees of success. This includes
conscientiousness [12], [15], [84], and extraversion [13]. Links
have been found between personality, cognitive ability, and
other traits with job performance [86]. However, as mentioned,
estimation of job performance more commonly relies on
various types of questionnaires including self-reports, and
supervisory and peer evaluations [11], [48], [137]. Job per-
formance varies depending on demographic information (e.g.,
age, gender) [85] and individual traits (personality, emotional
intelligence) [9], [10]. Cognitive ability, personality, affect, and
anxiety are all not only related to each other as discussed,
but can both affect and be affected by job performance, and
physical and health variables. The mutual effects of personality
traits and job activities are well documented [87].

Mobile and wearable sensor data are powerful sources
of information about human behavior which could help us
identify patterns of activities, human mobility, [25]–[27], well-
being [28], and job and academic performance [17]. Machine
learning models have been demonstrated to achieve high

TABLE III: Participants per Cohort Used for Modeling
Cohort # Participants
1. Multinational Consultancy Company 217
2. Multinational Technology Company 138
3. Small Software Company 21
4. Various Smaller Companies 147
5. Local University 31

accuracy on very specific tasks on very small samples, e.g.,
estimating work load category using wearables on a cohort of
twenty academic participants [17]. Subjective perceptions of
job performance are, however, harder to predict using wearable
data even in small samples and specific work locations and
environments [18], as opposed to various work locations and
occupations as in the present case. To our knowledge, ours is
the first model that jointly predicts health, job-performance,
and psychometric variables of individuals in a global manner.

The present work is a broad and personalized analysis using
instruments from the longitudinal Tesserae Project [24]. An
initial analysis based solely on job performance was presented
in [42], which reported a model to differentiate low from
high job performance but did not estimate the specific job
performance score directly. [42] reported predictions of the
daily battery. In contrast, our analysis is done on the single
initial battery of twelve standardized tests not only of job
performance, but of all other measures as well.

IV. DATA COLLECTION AND DESCRIPTION

From Fall 2017 to Summer 2018 we recruited 757 individ-
uals working in knowledge fields in the US as part of a large-
scale longitudinal research study. We collected data from these
participants for a period of one year starting from January
2018. Individuals’ participation in the study was voluntary and
those who participated received a monetary incentive to stay
in the study and comply with the data-collection protocols.
This monetary compensation varied according to levels of
compliance and was allocated throughout the year of study.
The monetary compensation for participants was also specific
for one of the companies, per the rules of the company.

Our project was conducted in accordance with the Institu-
tional Review Board of the University of Notre Dame (under
protocol number 17-05-3870) and similar authorities of all
the institutions involved. All participants provided written
informed consent prior to taking part in the study. No Personal
Identifiable Information (PII) was shared.

To handle the heterogeneity of our dataset, a subset of
participants was selected from each cohort in Table III for
external validation and was not considered during development
of our models in order to prevent bias and data leakage. The
remaining 554 participants came from various organizations
in the USA and can be grouped into five cohorts, as shown
in Table III. Another source of heterogeneity, particularly at
the job-performance level, comes from the participants’ roles.
A total of 254 participants self-reported holding a supervisory
whereas 297 reported a non-supervisory role; 3 participants
declined to mention their role within their companies.

The data collection protocols could be classified into two
stages: 1) an initial set of surveys used to collect the initial
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battery of ground truth variables and social media data; and
2) daily data-gathering of data streams from various sensors
(daily varying predictors). We analyzed the initial ground truth
battery using the daily sensor data streams and social media.

A. Data Sources — Sensing Streams

In order to model individuals’ behaviors and physical at-
tributes, we selected multiple modalities that unobtrusively
collect physiological, psychological, behavioral, and physical
states of individuals; their offline and online interactions; their
phone, social media activity, and workplace routines; and
health and well-being both at work and at home. Specifically,
we used a wearable to capture an individual’s physical and
physiological state. In order to capture the context of an
individual’s actions we used a phone agent (app) and proximity
beacons that allowed us to identify the individuals’ relative
locations (home/work) during the day. Finally, we capture
higher level information using social media, together with
the wearable and phone agent data, provided insights about
a person’s psychological states. All data was de-identified to
protect the participants privacy. In addition to raw features, we
considered features derived from the sensors.

Wearable: Garmin Vivosmart 3. This wristband is a com-
mercial smart wristband (a wearable device) that is widely
used as a fitness, activity, and well-being monitoring de-
vice. The device collects physical/physiological data, (e.g.,
heartrate, step count, number of floors climbed, calories
burned, physical activity such as running, and walking), sleep
quality data (e.g., sleep staging, duration), and psychological
data (e.g., stress—which is based on physical signals such
as heart rate). The wearable was paired via Bluetooth with
Connect, a Garmin App that participants installed on their
phones. The wearable was also paired with an app we de-
veloped for our study (see PhoneAgent below). Both apps
collected data from the wearable which was transferred to
our collecting servers and into databases that anonymized the
data. We computed daily summaries from each of the signals
collected.

App: PhoneAgent. We created an app (the PhoneAgent) for
both iOS and Android devices. The app ran in the background
and periodically collected data, saving it temporarily as JSON
files that were later transmitted to servers when the phone was
connected to Wi-Fi. The data collected by our app included
location, physical activity (walking, bicycling, driving, etc.),
phone usage (e.g., screen lock/unlock) and ambient light
levels. Our app also connected to the wearable and the beacons
(described below) via Bluetooth. The PhoneAgent streamed
data directly from the wearable, which allowed for more fine-
grained and real-time data collection compared to Garmin’s
Connect app (e.g., beat-to-beat interval in the PhoneAgent
compared to average heart rate every minute from Connect).
Our app collected the following wearable generated time-
series: heart rate (HR), steps, floors climbed, calories burned,
and stress levels. From the beacons (see below), our app
collected information about the proximity of an individual
(through a key-chain beacon and backpack beacon) to either
of the fixed beacons (home, office). This provided details of
interactions using the strength of the signal as described next.

Beacons: Gimbals. Beacons are low energy devices that
transmit and receive Bluetooth signals to and from other
devices. We used four Gimbal beacons per participant in our
study. Two beacons were the static Gimbal Series 21, with
one placed at the participant’s home and the other placed at
the participant’s workplace. The other two Series 10 beacons
are small, coin-size, mobile beacons that participants carried,
one in their key-chain or wallet, and one in their backpacks
or purses. Beacon signals were detected by the phone through
our PhoneAgent app which uses the Gimbal API library to
detect proximity. When a PhoneAgent enabled smartphone
approaches a beacon, the phone will detect a Bluetooth signal
and will record the signal strength which is inversely pro-
portional to the distance between the phone and the beacon.
The beacons provided information about the location of an
individual relative to their home, work, or to other participants.
This allowed us to derive features that describe the mobility
of individuals and other daily location-based routines while
hiding actual physical locations. These features were stored
by the PhoneAgent into a local server and on Gimbal servers.

Social Media: During the recruiting process, we requested
read access to the participant’s accounts on Facebook and
LinkedIn. As with all of the other data sources, we anonymized
their data but, in the case of social media, we also modified
the data so as to avoid storing raw information that may affect
privacy. After data collection from social media, we applied
feature extraction techniques and stored only the anonymized
features. For the present analysis, we considered 5,075 raw
features computed from participants Facebook data; most
of these were n-grams (words/phases) of posts. However, a
feature selection step was applied to select only the relevant
features, as detailed in Section V-C. These raw features
corresponded to a variety of categories—1) psycholinguistic
attributes [138] (that captured language usage across keywords
related to affect, cognitive attributes, perception, interpersonal
focus, temporal references, biological concerns, and social and
personal concerns), 2) open vocabulary n-grams (the 5,000
most frequent uni-, bi-, and tri-grams used by the participants),
3) sentiment in posts, and 4) social capital (e.g., by measuring
check-ins to places, posting/sharing updates, uploading media,
changing relationship status, and hanging out with friends).

B. Predictors

We used a total of 927 candidate features (filtered out
later with dimensionality reduction and feature selection tech-
niques, as detailed below) based on the sensor data from
the PhoneAgent, Garmin wearable, Gimbal beacons, and so-
cial media. We extracted additional information from two
wearable generated time-series per participant: heart rate and
stress measurements. We used these time series as separate
components to extract features that facilitate discriminatory
prediction based on signatures extracted using a higher order
network (HON) approach with one HON per time series. We
also used the heart rate to build an additional component for
the ensemble using a special representation for the time series.
Table IV details the number of features used per data source.
For features collected as time series we computed the daily
mean, median, mode, minimum, and maximum.
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TABLE IV: Low-level Sensor-Derived Features.
Source Sub-Modality #

Wearable

Higher Order Network—Heart Rate 5∗

Higher Order Network—Stress 5∗

Heart Rate 28
Other Physical 26

Phone App

Physical Activity 19
Context 8
User State 47
Phone Usage 56
Regularity 580

Beacon
Work Activities 16
Other 7
Home Activities 5

Social Media 200∗
∗ =post PCA

Examples of features collected from Garmin (through the
Connect API) include sleep staging (duration in light, deep,
and REM sleep) and bed time, daily step counts, daily floors
climbed, physical activity (duration of light, medium, heavy
activity), calories burned, and stress level (in range 0–100).

Examples of features collected by the PhoneAgent include
phone usage (number of screen locks and unlocks, duration
of locks and unlocks, etc.) and daily aggregations of physical
activity such as mobility features (e.g., places visited, distance
traveled, duration of sedentary state, driving and biking time).
The PhoneAgent also collected fine-grained data from the
wearable, e.g., heart rate, sleep, stress and steps. We computed
time series features at a daily level (which we call epoch-0) but
also in epochs within the day: early morning (12AM – 9AM),
day (9AM – 6PM) and evening (6PM – 12AM). We used the
epochs to identify differences of behavior for the times that
are associated with sleep, work, and nightly activities.

Examples of features collected through the beacons include
various measurements of closeness of the static and mobile
beacons. These features in their raw form do not provide direct
insights about the participants’ activities, but in combination
with the type of beacon and the duration of the interactions
we can capture information such as the time spent at work
(total duration a participant spends at work from the first to
the last sighting of the work-beacon), the time spent at desk
(percentage of the time a participant spends at their desk), and
the number of breaks taken away from the desk that exceed
5, 15 and 30 minutes (captured by gaps in beacon sightings).

We experimented with various time resolutions to derive
the summary statistics, as the distributions may have non-
linear relations that may not fully capture the individual’s
behavior. We report predictions for individuals with at least
two weeks of data. We constructed HON representations of
people’s behaviors through the heart rate and stress time series
as we describe in Section V.

The predictors are highly heterogeneous due to the multi-
modal nature of our dataset. This made it prudent to apply
ensemble-learning strategies. Another source of heterogeneity
and noise in the features was due to the compliance of the
participants, the quality of the data transfer, and missing data.

C. Missing Data and Data Difficulties

In addition to the heterogeneity of the data sources, the main
challenge of building predictive models with our data set was
caused by missing values. The data sources most affected by
feature missingness, i.e., missing values of specific predictors,
were the wearable and the PhoneAgent. In particular, missing-
ness in the latter was critical as the PhoneAgent was used to
collect data from the wearable and the beacons.

PhoneAgent. Missing data from the PhoneAgent was mostly
due to technical issues. In particular, participants had a vari-
ety of phone models with different operating systems (and
versions) and capabilities. This variability in devices made it
difficult to provide user support. Also, some adjustments were
needed because both the Garmin platform and the beacons did
not record data properly in some iOS versions.

Wearable. Missingness was due to loss, failure (e.g., did not
hold charge, did not charge at all, data did not sync, unusual
report of floors climbed, inability to connect to the phone,
inadequate sleep tracking on public transport.), or damage
to the device (e.g., strap, screen) or charger. One participant
reported an allergic reaction to the nickel in the buckle.

Social Media. This stream presented two challenges: not all
individuals had Facebook accounts and the level of engage-
ment of individuals in their online profiles varied greatly.

Beacons. Some participants placed home beacons at the
work place and vice versa. This made extracting meaningful
features related to location challenging. Additionally, noisy
data also presents some challenges. Bluetooth signal strength
can be affected by certain objects and their properties (e.g.,
number of walls and the materials used in construction).
Beacons (and the wearable) can also be affected by noise
because sleep during the day may not be reliably detected.

Finally, in addition to feature missingness, a major challenge
is full-modality missingness, i.e., participants with information
missing for the entire modality, as in the case of social media,
where no data was available for several participants. In such
cases we used group imputation methods as detailed next.

V. JOINT PREDICTION MODEL

We developed an ensemble learning method for joint pre-
diction of the physical, psychological, and job-performance
variables. As we detailed in Section IV-A, the data sources
included social media, Garmin wearable, phone agent, and
beacon data. Additionally, we computed heart-rate variability
and used it as a separate stream. Furthermore, we constructed a
HON based on heart rate and wearable/sensor stress measures
as detailed below. Within each model, a set of candidate
models are trained per ground truth variable as outlined in our
model’s schema in Figure 1. The components of the ensemble
are supervised techniques (regression and classification) as
detailed next. In order to deal with the complexity of the
data as well as the missingness, we considered the following:
a) the ensemble components that identify both linear and
non-linear partitions and regressions, b) the pre- and post-
processing that ensure generality and avoid outliers, c) the fea-
ture selection that eliminates redundant dimensions and selects
relevant features, d) a higher-order representation of temporal
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data that extracts non-Markovian patterns (long-term temporal
dependencies), e) imputations, both at the feature and modality
level, f) a fusion strategy for the various modalities, and g) an
algorithm to coordinate the model selection framework.

A. Design of Components
Our design goal was to automate the discovery of vari-

able relations and data separability for linear, multicollinear,
and nonlinear relations. In each case we consider low and
high dimensional cases. Thus, we considered the following
regression methods as candidates for the components: linear
regression (low-dimensional cases), linear regression with L2-
norm (multicollinearities cases), linear regression with built-
in cross-validation with L2-norm (high dimensional multi-
collinear relations), lasso model with least angle regression
(high-dimensional linear cases), Bayesian ridge regression
(high dimensional cases), support vector regressor (SVR) with
either linear, radial basis function, or polynomial kernel (for
linear and non-linear high-dimensional relations). Finally, de-
cision trees (CART), and random forest regression were used
for non-linear relations. The selection of the optimal technique
and corresponding features was done using cross-validation,
as detailed below, which allows us to pick the best performer
per ground truth variable. The best performers were then used
for training and prediction. Likewise, we used classification
counter-parts for linear and non-linear separability and high
vs. low-dimensional problems. Specifically, we considered:
k nearest-neighbors, linear support vector machine, support
vector machine with radial-basis function, decision trees, and
random forest. At a lower level, various intermediate steps
were performed: transformation, mapping, dimensionality re-
duction, fusion of sub-datasets, and feature selection.

B. Pre- and Post-Processing
1) Cross-Validation: To insure generality of our models

we used 5-fold cross-validation for both model design and
for final predictions. We considered both static and dynamic
partitioning of the data. In order to maintain a homogeneous
experimental setting, we considered a fixed partitioning so
that the models created across the experiments in the various
experimental stages could be comparable. Thus, this static
partition was applied across all the variables. However, we also
considered dynamic partitioning when evaluating new models,
feature selection algorithms, and techniques before the final
comparison of performance, which was done on the statically
partitioned sets. Imputations were also done using the static
5-fold partitioning by imputing data in a per-fold approach to
avoid overfitting due to data-leakage at all levels.

2) Outliers: We performed an outlier analysis where out of
range errors for sensing streams were analyzed for extraction
issues (the most common case), resulting in integrity checks
and script validation from the raw sensing streams. We verified
the measurements of sleep time in wrong ranges (fixed via
computations of sleep and awake times), negative commute
times (due to beacons wrongly placed), and various other as-
pects. Error sources included typos in the enrollment process,
re-assigning of devices from dropped participants to newly
enrolled participants, and several edge conditions with respect
to the enrollment/ingestion process.

Fig. 1. Model Diagram: We use a set of weak modality-based learners
to produce a strong prediction for each variable. Database icons represent
repositories of data that is fully anonymized and ready to be processed.

3) Data Range Transformation: We applied systematic
verification to ensure the predicted values are not outside of the
prescribed ground truth ranges. Code corrections were applied
to properly bound prediction results.

C. Feature Selection

A sequential exploration of various combinations of features
to identify a set of predictive features per construct was
conducted. The result was a curated subset of features. First,
we introduced the social media feature selection process. It
is worth noting that raw social media data is neither shared
nor processed for privacy purposes. We only used reformatted
features to remove personally identifiable information (PII).

The relevant social media features were selected using
principal component analysis (PCA) to identify the top 200
latent features for predicting the ground-truth variables—we
aimed to capture complex behaviors latent in the data which
are not directly observable in the raw signals. As detailed
in Section IV, we used psycholinguistic features, n-grams,
sentiment, social engagement that lead to 5075 features per
individual and applied PCA to reduce dimensionality to 100
features that account for multicollinearities.
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The features from other sources were treated under the same
selection policy to define the set of models (components). This
involved five stages of selection, in addition to the feature
pre-selection and social media selection. First, features were
selected based on correlations per fold during cross-validation
(the features selected are the ones that overlapped across folds,
but for each fold only the training folds are used to compute
correlations, to avoid leakage across folds). Second, features
were selected by the individual candidate models. Third, a
selection was done on the overall final training by the best
model. Fourth, a subset of latent features was mapped using
PCA for specific feature sets. Lastly, we ranked the models
on predictive performance and chose the best model.

D. Higher Order Networks (HON) of Temporal Data

Most real sequential data does not fulfill the Markov prop-
erty [41]. HON are powerful tools that allow us to overcome
this challenge by representing high order dependencies. Non-
Markovian patterns provide unique information about the
problem under study. For this reason, we use a HON algorithm
to provide a multi-scale representation of sequential data on a
per-feature basis (e.g., heart rate and sensor-measured stress).
When extracting features in sequential data, conventional
methods (e.g., Markov model) might lead to information loss
on the state transition with the assumption that the next status
only depends on the current status. To address this limitation,
we utilized a HON method to make a sufficient representation
by exploring higher order dependencies in sequential data.
Building the HON model consists of the following steps.

We applied discretization to the time series as shown in
Figure 2. The discretization step works as a pattern recognition
technique that identifies regularities in the time series that
are grouped to remove high frequency components. Since the
network representation of the time series (e.g., heart rate) is
not directly available, the discretization of the raw data can be
used to construct a network. We divided time into equal-size
(half hour) time slots. xi is the state in i-th time slot, i.e., the
mean value for the heart rate during the corresponding slot.

Given the discretized heart rate data, the output is the
conditional probabilities of each individual

P (xt|xt−n, . . . , xt−1) =
I(xt−n, . . . , xt−1, xt)

I(xt−n, . . . , xt−1)

where n denotes the network order, I(x) indicates the number
of occurrences of x.

HON applies a low-pass filter to ternary relations among
the selected patterns derived from the discretization step in
Figure 2. For instance, consider the heart rate time-series
illustrated in Figure 3. An algorithm that only identifies first
order relations could describe the probabilities of going from
a heart rate of 90 bpm to 100 or to 120. HONs, which can
identify more than first order relations, can describe different
probabilities for heart rate transitions that go from 80 to 90
to 100 (or to 120) compared to heart rate transitions that go
from only 100 to 90 to 100 (or to 120 bpm). PCA was used to
reduce feature dimensions to a target n component = 5 from
727 original features (transition probabilities). HON captures
transition probabilities across individuals, while heart-rate and

Fig. 2. Discretization, Stabilization, Regularization. Blue continuous lines =
the time series; red continuous lines = mean value of the series; the dashed
curve arrow = example of a sequential long-term dependency that could be lost
without the use of HONs; blue thick arrows = set of higher order dependencies
considered by HON.

Fig. 3. HON—Heart rate case example. The node HR90 is broken down
with HONs by including information about the path. Thus, HR90 originated
from HR80 will have different probabilities to link to HR110 (or HR120) than
HR90 originated from HR100. The arrows have different width to represent
the relative difference in probability.

heart-rate variability are within subject features. Thus, we
capture both general and individual heart patterns.

We investigated different small orders (1-5) of HONs and
chose order 2. The number of transition probabilities ex-
ponentially increases as the order of the network increases,
which lead to a sparsity problem. In particular, most transition
probabilities of each individual might be zero as the order
increases. As the number of elements in a possible transition
increase, the transition may not be associated to a participant.

E. Imputation

Two approaches were used: (1) a theoretically-driven ap-
proach that attempted to fuse data across multiple sensing
streams using the knowledge of subject-matter experts (e.g.,
sleep can be fused between the wearable, and smartphone
[139]) and (2) a data-driven approach that can vary across
the various features (impute via the mean, impute via zeros,
etc.). For the joint prediction of the physical, psychological,
and job-performance variables, we also performed sensor-wide
imputation. For this purpose, we considered the data from
one stream and performed clustering on it. This allowed us to
impute missing data in one stream from data in another based
on the relationships between sensor streams. Other techniques
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applied include mean and median value imputation. We also
performed data imputation using individual rolling means, i.e.,
individual mean value up to the specific moment. If there was
no record at all, we used the global mean.

The level of sparsity was a critical challenge for the phone
agent data at the raw data level. However, this was over-
come by carefully selecting regularity-based features. Reg-
ularity features can capture rhythms and routines within a
participant, namely the patterns within hourly phone usage,
physical activity and mobility across the participant’s time
series. Additionally, we had to deal with sparsity for heart
rate variability (HRV) when the size of the window used
to compute the HRV was not adequate over the 5-minute
windows [140]. Some sparsity was also due to data quality
issues. Since HRV windows are calculated using Beat-to-
Beat-Interval (BBI), many windows did not have a minimal
number of BBI readings. This was due to inconsistencies
in the data updates from the wearable. HON selection also
had sparsity constraints, as higher order networks provided
no further information than lower order ones. Namely, we
combined the features from each stream/data source and then
we applied our regression models for prediction purposes.

F. Fusion

For the joint prediction of the physical, psychological,
and job-performance variables, we also used a feature fusion
method to combine the various modalities. The features from
each stream/data source are combined and fed into our regres-
sion and classification candidates for the automated selection
of the model at the model selection step. Thus, we capture
moments from the distribution of features that provide a
summary of each of the modalities. For numerical features,
we use summary statistics: mean, median, standard deviation,
minimum, and maximum of the distributions. For time series
data, we use the features extracted from HON and from
other summary statistics. For the PhoneAgent we considered
regularity based high-level representations, as well as the im-
puted values that help model building at the component-of-the-
ensemble level. The specific prediction models as well as the
relevant features were selected by the cross-validation process.
For the final ensemble, we considered a model selection.

G. Model Selection

Using the elements described so far, we built the compo-
nents of the ensemble learning model by combining the HON
features (heart and stress), heart rate, social media, beacons,
phone agent, and wearable. We did so with the following steps:

1) Feature pre-selection. We use both the sequential explo-
ration of various combinations of features to identify a
set of predictive features per construct and the social
media anonymization of features described before.

2) Relevance-based feature selection. Each specific tech-
nique uses an a priori relevance (measured by correla-
tion) on the training set (linear or non-linear correlation).

3) Model selection. Automated machine learning methods
are applied to decide the best set of features along with
the best classifier/regressor per construct.

4) Proxy ground truth. We considered the predicted values
for AUDIT and OCB, due to higher predictability, in
order to perform prediction of other values. We then use
these predictions and loop back to the previous step.

Dimensionality reduction through principal component
analysis was applied on HON construction (both stress
and heart rate) and on social media data. The candidate-
components were described in Section V-A, where a compo-
nent is selected as a member of the final predictor ensemble.
The main training and predictions are shown in Algorithm 1.

Algorithm 1 Joint Model
Input: Multimodal Data D
Output: Predictions

1: Divide D in training and validation sets T, V
2: Use T to apply feature selection (top 20 features per

modality with highest correlation to the nineteen con-
structs) to select candidate features

3: for each ground truth variable do
4: for each parameter-set do
5: for fold = 1 to 5 of T do
6: for each candidate-component do
7: Predict on current fold using candidate-

component trained on the remaining folds
8: end for
9: end for

10: SelectedComponent ← candidate with highest score
across the folds

11: Add SelectedComponent to Ensemble
12: Add the fold-wise SelectedComponent predictions F
13: end for
14: end for
15: model ← train the ensemble on T
16: Set predictions P ← Predict(V ,model)
17: return F, P

The data and code are in the process of being released
through the supervision of IARPA. In order to protect human
subjects, only non-identifiable information will be released.
We will make the data available through the Open Science
Foundation and a corresponding Data Use Agreement (DUA).
Information can be found at https://tesserae.nd.edu.

VI. EXPERIMENTS

We evaluate our approach using four sets of experiments.
First, we investigate the performance of our model when
compared to a baseline constructed with estimators derived
from the ground truth values as detailed below. Second, we
verify the bivariate and discriminant criterion validity. Third,
we verify the model reliability under 5-fold cross-validation to
ensure generalizability. Finally, an external team validated our
model on a sub-cohort of participants whose data was withheld
from our team during model development.

A. Data Setup

We consider the twelve standardized tests administered in
our initial ground-truth battery that contained all 19 dependent

https://tesserae.nd.edu
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variables used for prediction. The independent variables came
from various data sources (a wearable, a phone app, four
beacons, and social media data) as described in Section IV-A.

1) Data Selection and Feature Set: We perform prepro-
cessing of all the streams previous to fusion of the features as
described in Section V-B.

2) Metrics: We use the Kendall’s τ correlation coefficient
which is a non-parametric measure of correlation based on
rank statistics and, thus, assumes no specific structure of the
data. Specifically, to compute τ scores, we apply the General
Monotone Model (GeMM) [141].

B. Results

We test our framework using 4 sets of evaluations:
1) Validation vs. Theory-Driven Baseline: In this set of

experiments, we verify that the performance of our model
is comparable to theory-driven (survey-based) predictions. To
create a baseline theoretical model, we use the distributions of
each variable and take the expected value of the training folds
to estimate the values for the test fold. Table V shows the
symmetric mean absolute percentage error (SMAPE) for each
of the variables and the two models. This table demonstrates
that using only sensor-based estimates (our framework) leads
to estimations with smaller errors compared to a baseline that
is based on surveys. The sensor-based predictions are entirely
based on wearable sensor and social media data; no survey or
demographic data that could otherwise facilitate identification
of patterns based on personal traits were used. Our method
shows improved performance over the baseline.

TABLE V: Performance SMAPE (%)—sensors vs. baseline
Variable Sensor-Based Baseline
IRB 3.8 7.9
ITP 4.6 9.4
OCB 6.8 14.2
Interpersonal Deviance 18.7 32.9
Organizational Deviance 14.8 28.5
Abstraction 6.4 13.4
Vocabulary 4.2 8.8
Extraversion 8.3 17.5
Agreeableness 5.7 11.6
Conscientiousness 6.8 14.2
Neuroticism 12.6 26.0
Openness 6.4 13.2
Positive Affect 6.6 13.5
Negative Affect 11.4 22.2
Anxiety 10.1 19.9
Alcohol 30.6 70.4
Tobacco 92.2 195.6
Physical Activity 30.8 68.9
Sleep 13.4 27.3

2) Job Performance—Improvement Assessment Over
Participant-Oriented Baseline: We evaluate the interplay
of psychological and job-performance variables. Thus,
we compare the τ score accounted for by sensor-derived
estimates, beyond what is accounted for by two known

Fig. 4. Model Reliability—cross validation: Kendall’s τ confidence interval
of the socio-psycho-physiological variable predictions. Distribution 5-fold cv.

predictors of job performance, personality ( [11], [12],
[14], [15], [30], [54]) and cognitive ability [53], [142].
This baseline is then compared with the estimation of job
performance using our sensor-based framework. To assess
the relevance of our estimations, we considered the τ -score
of each job performance variable when predicted with the
baseline and with the sensor-derived estimates. Table VIII
shows the expected τ -score for both the theoretical baseline
and our framework. This table shows our sensor-based model
has a higher expected performance for all the variables.
However, in order to fully validate this result, we also
performed a comparative analysis of the full set of predictions
using a 5-fold cross-validation approach. Then, we built the
distribution of differences of estimations based on our model
minus the estimations based on theory. The mode of the
distributions of all the job performance variables lie in the
region ∆τ > 0 where ∆τ is the difference of τ scores. Thus,
our model performs better than the theory-based estimation
in the majority of cases.

3) Discriminant Validity: We examined correlations be-
tween constructs and their predictions. The discriminant valid-
ity is shown in Table VII. The objective was to verify whether
our model sufficiently discriminated the constructs which is
signaled by low inter-correlations among constructs and the
predictions of other constructs (main diagonal = -). As shown
in Table VII, the model has good discriminant validity with
correlations in the range [−0.21, 0.2].

4) Model Reliability: Figure 4 shows the distribution of τ
scores for each of the variables estimated. We build this dis-
tribution by running a 5-fold cross-validation and thus, all the
values obtained are created from independently built models.
Our assessment goes beyond single-dimensional summaries
of performance to include measures of variation, confidence,
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TABLE VI: Model Reliability—External Validation
Variable Min Max Mean
Vocabulary 0.00 0.26 0.10
Abstraction 0.00 0.27 0.11
Extraversion 0.02 0.36 0.19
Agreeableness -0.09 0.22 0.07
Conscientiousness 0.05 0.31 0.15
Neuroticism -0.19 0.18 0.00
Openness -0.11 0.305 0.14
Positive Affect -0.07 0.32 0.16
Negative Affect -0.16 0.18 0.01
Anxiety 0.00 0.31 0.14
Alcohol 0.22 0.49 0.37
Tobacco -0.13 0.00 -0.04
Physical Activity 0.20 0.52 0.37
Sleep 0.03 0.35 0.20

and distributional information. As we can see in the figure,
the variables for which our framework performs the best are
physical variables, followed by job performance and psycho-
logical constructs. Tobacco use and job performance are the
most challenging constructs to predict.

5) External Validation—Totally Unknown Cohort: We pro-
vided an external evaluation team with a pipeline and data to
corroborate our results on a sub-cohort of participants whose
data was totally unavailable to us during model development.
This validation was administered by the Testing and Evalua-
tion Team of the Project Sponsor. The independent evaluation
was performed on variables other than job performance and
can be seen in Table VI. These results are consistent with
what we report in Figure 4. The evaluation shows τ scores in
similar ranges as those obtained in our experiments Figure 4. It
also shows that variables such as agreeableness, neuroticism,
openness, affect (negative affect in particular), and tobacco
consumption are the hardest variables to predict, and some
variables have less stability than others. However, despite this
challenge, some of these variables (e.g., openness, positive
affect), have a mean τ performance greater than 0.14. A few
variables show better performance in our 5-fold validation
(Figure 4) and a few show better performance in the external
evaluation. When assessing these results the most conservative
values should be considered as reference.

VII. DISCUSSION

The experiments suggest our model is stable with non-
trivial predictive performance that is better than construct-
based alternative baselines. The performance of our technique
is usually better for physical variables of well-being such
as alcohol consumption, sleep, and physical activity. The
performance is also competitive for psychological and job
performance variables. We verified the significance of our
sensor-based predictions compared to a participant-oriented
baseline to predict job performance variables. The linear-
mixed model predictions based on our estimates produced
better τ -scores than predictions based on survey estimates.
Thus, our framework has better bivariate criterion validity.

The discriminant validity analysis show that our frame-
work sufficiently identifies the various constructs with small
absolute values [143] for the correlations [-0.21,0.2]. The
reliability analysis shows that the model is reliable as a
reflection of the prediction performance. Roughly speaking,
physical variables are the most reliably sensed and estimated,
followed by psychological and job performance constructs.
The most challenging variables in terms of reliability are
anxiety, tobacco consumption, interpersonal deviance, and
agreeableness. The lower limit for the performance ranges can
be explained from the difficulty of modeling social constructs
in general and human performance in particular [19]. These
reliability results were verified externally.

Our work provides a realistic assessment of the performance
of prediction algorithms. This was done by respecting the
nature of the data. We did not curate nor select data objects
for optimal performance. Instead, we worked with the full
original dataset which included individuals with both full and
partial sets of features and modalities. While we experimented
with neural networks techniques as candidate components (not
included in this article to simplify exposition), the models with
highest weight in the final ensemble were always parsimonious
models. This is consistent with previous observations [144]
that simple models perform as well as more complex models,
in an empirical realization of the Occam Razor in the social
sciences. The first week or two add noise (low/irregular
compliance) yet our model’s performance is stable despite
the missingness. Our model provides a simpler alternative
for dealing with missingness without the use of complex
likelihood-based or similar techniques (e.g., [22], [23]).

Our work focuses on individual traits assessed through
psychological constructs. Specific context about emotionality
may be an area for future work. Sentiment analysis [107],
[145], [146] could be applied for feature extraction. Another
area of possible work is adding features detailing context, e.g.,
by combining text features with commonsense knowledge.

VIII. CONCLUSIONS

Assessing workplace performance, psychological, and phys-
ical characteristics of individuals usually relies on existing full
traditional questionnaires, on subjective evaluations. Further-
more, current predictive techniques are effective in limited
situations including small subsets of variables, subsets of
highly curated data, or with a focus on a few variables
without a global overview of an individual. In this paper,
we presented the first modeling framework and benchmark
that leverages sensor data from multimodal sources to jointly
predict psychological, physical and physiological, and job-
performance constructs. We used traditional social and psy-
chological questionnaires to create the ground truth variables.
We used objective mobile and personal sensing data from
social media, phones, wearable and beacons as predictors and
offer new insights into behavioral patterns that distinguish our
various constructs. We presented results from our study of
757 information workers collected over a period ranging from
15 days to 60 days. We created a global ensemble learning
algorithm that takes advantage of various data mining tech-
niques and feature extraction approaches to achieve our joint
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prediction problem on messy data. Our results indicated that
our modeling framework allows for a prediction performance
above baselines. Despite the wealth of sources and features we
used, predicting job performance and psychological constructs
is a harder task than predicting physical well-being (alcohol
consumption, sleep, etc.). While predicting job performance is
a difficult task, most physical variables were predicted well.
The predictions in our 5-fold validations and in the externally
validated sample were comparable.

Our contribution is three-fold. First, we identified strategies
for integrating highly heterogeneous data without curation,
and thus, maintained the data integrity. Second, we analyzed
the different challenges presented by non-curated data with
a systematic feature mining approach. Third, we created a
benchmark for predictive tasks by leveraging the identified
challenges of the real noisy or incomplete multi-modal high-
dimensional data to create a comprehensive prediction and
assessment of well-being: physical, psychological, and work-
place well-being characteristics of individuals. Development of
effective affect-computing systems must include the century-
long research on emotion created by psychology. Thus, we
contributed in this area as well. Our work’s realistic assessment
of machine learning applied to performance prediction could
also provide benefits for mitigating bias [147]. Our work can
be used towards the creation of more objective measures of job
performance, and as a realistic and sound baseline for analysis.
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