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A general machine learning (ML) framework of surface wetting is proposed by considering a broad range of
factors, including solid surface topography, solid surface chemistry, liquid properties, and environmental con-
ditions. In particular, an XGBoost-based ML model is demonstrated for learning the surface wetting behaviors
processed by a laser-based surface functionalization process, namely nanosecond laser-based high-throughput
surface nanostructuring (nHSN). This is the first known attempt to apply machine learning to surface wetting by
considering both surface topography and surface chemistry properties. Novel microscale and nanoscale topog-
raphy parameters viz., roughness, fractal, entropy, feature periodicity are defined with suitable computer al-
gorithms to comprehensively describe the surface topography. A novel set of surface chemistry parameters such
as polarity, volume, and amount of functional groups are also used as the machine learning model input. Upon
analyzing the importance of each parameter for the nHSN process, surface chemistry shows the greatest
importance in determination of surface wettability, while surface morphology also plays a part in influencing the

wettability.

1. Introduction

Wettability of a solid surface is defined by its ability to maintain
contact with a fluid and is often characterized using contact angle (¢) at
the meeting point of liquid-gas and solid-liquid interfaces. Depending on
the wetting condition, solid-liquid interface can have a critical impact in
ubiquitous engineering applications, and therefore has aroused intense
interest. Surface wetting is governed by the balance between the inter-
molecular interactions at the solid-liquid interface [1] and is influenced
by many factors, including liquid properties, solid surface properties,
and environmental conditions. The solid surface wettability can be
physiochemically engineered by modifying its surface morphology [2,3]
and/or surface chemistry [4,5].

Extensive material research has shown that surface topography, i.e.,
surface roughness and surface texture, of a solid material can be modi-
fied to obtain desirable wetting properties regarding a liquid. In the
presence of increasing roughness, water contact angle increases for
hydrophobic materials and decreases for hydrophilic materials [6-8].
For instance, Busscher et al. [7] measured contact angles for five
different liquids on twelve commercial polymers after various surface
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roughness procedures and reported that, if the contact angle was above
86°, the increase of surface roughness led to increasing contact angle;
whereas if the contact angle was below 60°, the surface roughening
tended to decrease the contact angle. Veeramasuneni et al. [8] reported
similar results by investigating the influence of surface roughness on the
wetting behavior of ion-plated poly(tetrafluoroethylene) (PTFE) coat-
ings. They found that the nanoscale surface asperities tended to increase
the water contact angle in superhydrophobic range (150° ~ 160°).
AlRatrout et al. [9] studied the impact of surface roughness on wetta-
bility in the porous region of limestone, and showed that the range of
distribution of oil contact angle increased with the degree of roughness.
Belaud et al. [10] investigated the impact of roughness on static contact
angle measured on polypropylene textured surfaces and proposed a
model describing the correlation between the contact angle and surface
roughness parameters.

Various surface texturing techniques, particularly laser materials
processing, have been applied to create fine textures or patterns on
materials in order to achieve desired wetting behavior. Ahuir-Torres
et al. [11] generated three types of texture patterns on aluminum
alloy using an infrared picosecond laser. It was found that the un-
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textured surface and the surface with dimples showed hydrophilic
behavior, while the surface with crossed grooves and the concentric
rings exhibited a hydrophobic character. Jiao et al. [12] generated a
dimple pattern and groove pattern on a Zr-based bulk metallic glass.
They found that the hydrophilicity of the original surface was enhanced
by the groove pattern and weakened by the dimple pattern. Granados
et al. [13] demonstrated that the formation of laser-induced periodic
surface structures (LIPSS) in boron-doped diamond by irradiation with
femtosecond laser leads to hydrophilic behavior. Superhydrophilicity
can also be achieved on stainless steel by LIPSS formation, and 6 in-
creases with the laser scanning speed [14]. Batal et al. [15] found that
LIPSS on polished CoCrMo alloy increased ¢ value from 46.0° to 54.7°,
and the contact angle growth was also influenced by laser processing
parameters, including beam incident angle and focal offset distance.
Orazi et al. [16] reported that LIPSS turned surface behavior from hy-
drophilicity to hydrophobicity for stainless steel, copper, and aluminum
alloy.

Numerous research efforts have been devoted to modifying the sur-
face chemistry to achieve desirable wetting behavior. Surface func-
tionalization methods introduce hydrophobic or hydrophilic chemical
functional groups to a solid surface in order to achieve desired hydro-
phobicity or hydrophilicity, respectively. Liang et al. [17] reported that
the wettability of candle soot varied from superhydrophobicity to hy-
drophilicity due to different chemical compositions, yet their research
did not assess any quantitative relationship between the contact angle
and the chemical composition. Pan et al. [18] investigated the rapid
wettability switching of silane-modified TiO5 particles. Upon ultraviolet
illumination, the TiO, particles switched from a superhydrophobic state
(0 ~ 165°) to a superhydrophilic state (¢ ~ 0°) due to UV-induced
oxidation. Psarski et al. [19] modified SU-8 surfaces with a homolo-
gous series of fluoroalkyl silanes to investigate the influence of surface
chemistry on surface wettability. They found that the higher the surface
density of low surface free energy groups (-CFq- and -CF3) the higher the
advancing contact angle. Surface chemistry modification was also
combined with surface morphology to alter wettability. Zhang et al. [20]
made a topography/chemical composition gradient polystyrene (PS)
surface and established the relationship between wettability and surface
roughness and chemical composition. In this study, a series of PS with
various degrees of sulfonation was formed on the surface. It was found
that 6 increases with roughness as well as sulfonation degree. Zhang
et al. [21] prepared a smart surface on pillar-structured shape memory
polymer, which can switch between superhydrophobicity to super-
hydrophilicity by tuning surface microstructure and surface chemistry.

Superhydrophobic surfaces have received a growing interest among
researchers across the world, and the number of technical publications
on superhydrophobic surfaces continues to increase, demonstrating
expanding impacts. As shown in Fig. 1, thousands of technical papers
have been published in the last decade. Although a myriad of work has
been done to study the effect of different factors affecting wetting
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Fig. 1. The number of publications taken from Web of Science on the topic of
superhydrophobic surface between the years 2010 and 2020.
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property of surface, the state-of-the-art research efforts are primarily
experimental with a focus on materials innovation. Given the complex
coupling effect among all the factors and their huge parameter space
contributing to surface wetting, the published research in literature
often time considered only a narrow set of factors or conditions. On the
other hand, classic analytical models have been employed in the past
two centuries to explain the wetting behavior of a solid surface,
including Young's model, Wenzel's model [22], and Cassie-Baxter model
[23]. However, these deterministic analytical models theorize the solid
surface to ideal conditions and consider a limited number of factors such
as liquid surface tension and solid surface roughness. Recent computa-
tional methods, including molecular dynamics [24] and density func-
tional theory [25] have been applied to study wettability; nonetheless,
only ideal wetting conditions were considered. It is therefore critical to
develop a comprehensive, predictive relationship among surface engi-
neering/manufacturing processes, surface phytochemical attributes and
surface wettability.

A general machine learning (ML) framework is firstly proposed in
this study for surface wetting prediction considering a broad range of
factors affecting surface wetting behavior. As discussed earlier, data
from the published research works are usually fragmented and only
cover a narrow set of factors. Therefore, a novel laser-based nano-
structuring process was designed in our own case study to acquire
various surface morphology and chemistry data as the input for ML. A
series of parameters were developed to describe the surface topography
as well as surface chemistry and were used as input to feed an XGBoost
ML model to predict water contact angle (6)). Although the ML model
for this case study uses a limited dataset, the inner relationship between
the parameters and the water contact angle is complex and nonlinear.
Hence it is necessary to apply an ML method to deal with complex non-
parametric patterns in the data. This study demonstrated the effective-
ness of XGBoost in handling such complex nonlinear data. Upon feature
importance analysis, the importance of surface chemistry on wetting
was established. To the authors' best knowledge, this is the first effort to
use machine learning to predict wettability based on surface
morphology and chemistry. Although the method proposed in this
research is applied for laser surface processing, it is equally applicable
for the wettability prediction of other methods.

2. Machine learning framework for surface wetting

In this work, a comprehensive ML framework is introduced for pre-
dicting the surface wettability of a solid material based on the vast
knowledge gained from literature. As can be seen in Fig. 2, the input of
the proposed ML model includes a broad range of factors affecting sur-
face wetting, i.e., solid surface topography, solid surface chemistry,
liquid properties, and environmental conditions. The outputs of the ML
model are surface wettability properties such as contact angle and solid-
liquid interaction strength. A key challenge for the development of such
an ML model is that the input data have various forms and structures:
qualitative and quantitative data, continuous and discrete data, field
raw data, and processed data. The proposed ML model is expandable to
adapt to different types and sizes of a dataset. When one performs ex-
periments and collects new data related to surface wettability, the new
data can be easily incorporated without changing the algorithm. The
adaptability makes the machine learning method quite promising to
determine the process-surface-wettability relationship. The objective of
the proposed ML model is to establish a quantifiable, predictive rela-
tionship between wettability and myriad factors that can influence
wetting. The developed ML model will greatly aid in designing and
optimizing material processes to achieve a specific desired wettability.
By analyzing the relationship between the process parameters and
wettability, the machine learning model is capable of providing guid-
ance for the design of processes to achieve specific surface properties.
Furthermore, the ML model can even be expanded to make predictions
of other surface properties, e.g., surface adsorption, absorption/
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Fig. 2. General framework of machine learning of surface wetting behaviors.

reflection, and corrosion.

Data-driven ML methods are becoming ubiquitous due to the recent
advances in computational power and techniques. They have been used
to explore materials and structures and to extract meaningful informa-
tion and patterns from existing data [26]. Among all different types of
machine learning algorithms, regression is one of the most important
and widely used machine learning tools to make predictions from data
by learning the relationship between numeric features of the data and
the continuous-valued response. In this research, a continuous value, the
wettability of metal surfaces (contact angle), is proposed to be predicted
through a regression model. There are several well-developed machine
learning models to deal with regression models, including Artificial
Neural Networks (ANNs), Support Vector Machines (SVMs), and
Regression Trees [27]. ANN models are inspired by biological neural
networks, which are used to estimate the relationship between the in-
puts and outputs [28], and are effective when dealing with complex,
non-linear problems. SVM models are based on the concept of maxi-
mizing the minimum distance from the hyperplane to the nearest sample
point [29]. They can be used both for classification and regression
problems. The original SVM for regression (SVR) was developed by
Vapnik et al. [30] and is capable of dealing with non-linear problems.
Another machine learning model used to deal with complex and non-
linear data is Random Forest (RF), developed by Breiman [31], which
is an ensemble learning method that combines a bunch of Regression
Trees to construct a forest. Each tree produces a response, while the
forest averages the predictions from all of the trees contained in the
forest. In addition, extreme gradient boosting (XGBoost) is a robust
machine learning algorithm proposed by Chen et al. [32] for both
regression and classification problems. It has the merit of high effec-
tiveness and accuracy over several other machine learning algorithms
such as SVMs and regression trees [33,34]. All of the machine learning
models above make it possible to predict the contact angle by learning
from the surface structure data and the surface chemistry data.

As can be seen in Fig. 2, the solid surface topography data serves as
an important input data category for the proposed ML model. The

topography data are usually obtained by surface microscopy techniques,
including surface profilometer, digital camera, optical microscopy
(OM), white-light interferometry (WLI), scanning electron microscope
(SEM), atomic force microscope (AFM), and confocal microscopy (CM).
Surface roughness is often a good predictor of the performance of a solid
surface and is quantified by the deviations in the direction of the normal
vector of a real surface from its ideal form. Quick measurements can be
obtained using a surface profilometer and WLIL. The images from OM
mostly provide low magnification surface features, whereas the images
obtained from SEM can be processed to extract relevant information
regarding the microscale or nanoscale features. The AFM is a very high-
resolution microscopy with a typical resolution on the order of fractions
of a nanometer, more than 1000 times better than the optical diffraction
limit. CM, WLI, and surface profilometer can all provide the spatial
distribution of roughness across the surface.

Surface chemistry data can be obtained from various surface chem-
ical analysis techniques. Surface functional groups are commonly
detected through X-ray photoelectron spectroscopy (XPS). Energy
dispersive spectroscopy (EDS) analysis can be used to determine the
elements presented on the surface. Chemical identity, bonding, and
environment can be verified by the Fourier transfer infrared (FTIR)
spectra. The characteristic peaks can be used for analysis since they are
indicators of specific chemical bonds or chemical elements. For
example, both the peak position and peak height of the XPS spectrum
can be used as the input of a machine learning model as they represent
the type of chemical element and the concentration of that element in
the sample, respectively. Some fundamental physical or chemical
properties of the surface chemicals, such as the oxidation state of the
molecules, can also be used as the input since the physical properties
also play a significant role in the determination of the interaction be-
tween the surface and the liquid.

The physical and chemical properties of liquids are also important
input, including surface tension, viscosity, Hamaker constants, interac-
tion potentials, etc. Environmental parameters, including temperature,
pressure, and humidity, also impact the surface wettability. They can be
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measured by thermometer, hygrometer, barometer, etc. Thus, the
environmental factors can also be incorporated into the input data to
teach the machine learning model to predict wettability in any envi-
ronmental setting.

Wettability of a specific surface can be defined using several vari-
ables as the ML model output. The most commonly used variable is the
equilibrium contact angle of a static droplet sitting on a solid surface.
There are other variables to comprehensively define wettability. For
non-equilibrium interaction, the dynamic contact angle is usually
measured. For a hydrophobic surface, other variables are used along
with static contact angle, including roll-off angle (Ogoj-off), advancing
contact angle (6aqy), receding contact angle (6gec), and contact angle
hysteresis (Bnys). Oroll-off is the angle of inclination of a solid surface at
which a droplet starts to roll off. 6pgy and Ore. are the contact angles
when a water droplet approaches and recedes from a surface, respec-
tively. Onys is the difference between 6a4y and Ogec in a measurement
cycle. All these angles can be measured by the well-developed contact
angle goniometers. Since these variables are numerical values, they can
be easily used as the output of a machine learning regression algorithm.
By applying machine learning methods, a lot of bench work can be saved
since it points out what kind of surface to create for a set of material
properties.

3. ML model for nHSN superhydrophobic surface processing

In this section, a case study of the proposed ML framework was
presented for the prediction of surface wettability of metal alloys to
water under lab-controlled environments. As shown in Fig. 3, the field
data of the study was generated, collected, extracted, and processed by
the authors using a novel nanosecond laser-based high-throughput
surface nanostructuring (nHSN) process [35-38] that can simulta-
neously create random nanostructures and attain desirable surface
chemistry over large-area metal alloy surfaces. By altering the process-
ing conditions, the nHSN treated surfaces manifested different wetting
behaviors ranging from superhydrophobicity to superhydrophilicity.
The XGBoost model was used to learn the relationship between the
surface topography, surface chemistry, and the wettability of these
nHSN treated surfaces. To the authors' best knowledge, this study con-
stitutes the first attempt at predicting surface wettability via a machine
learning method that considered both surface topography and surface
chemistry data as the input.

3.1. Experiments

The nHSN process comprises two sequential steps: (1) laser surface
process uses a nanosecond pulse laser raster scanning the target material
surface under water containment; (2) chemical immersion treatment
(CIT), during which the laser-treated surface was chemically functional-
ized to attach chemical functional group on the textured surface. As
shown in Fig. 3, two sets of nHSN processing parameters are used to
manipulate the surface attributes: the laser surface processing parameters,
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namely laser power intensity, scanning speed and overlap ratio, etc. are
controlled to mainly adjust the surface topography, while the chemical
immersion treatment parameters are selected to modify the surface
chemistry. It should be noted that a novel etching effect of the chlor-
osilane reagent could generate nanostructures on the laser-treated metal
surface. Two common metal alloys, namely aluminum alloy 6061
(AA6061) and steel alloy AISI4130, were used as the substrate materials.
60 samples of AA6061/AISI4130 were treated using different laser power
intensities ranging from 0.1 GW/cm? to 8.4 GW/cm?, while other laser
parameters, including laser beam diameter and pulse width, were kept as
the same. For this study, four types of silane solutions were used in the CIT
step to achieve extreme wettability, including 1H,1H,2H,2H-perfluorooc-
tyltrichlorosilane [CF3(CF2)s(CHz2)2SiCls] (FOTS), 1H,1H,2H,2H-perfluor-
odecyltrichlorosilane [CF3(CF2)7(CH3)2SiCls] (FDTS), 1H,1H,2H,2H-
perfluorododecyltrichlorosilane [CF3(CF2)9(CH3)2SiCls] (FDDTS), and 3-
cyanopropyltrichlorosilane [CN(CH3)3SiCls] (CPTS). The functional
groups in chlorosilane led to different wettability, that is super-
hydrophobicity for FOTS/FDTS/FDDTS and superhydrophilicity for
CPTS. During the CIT process, the concentration of the solution and the
chemical treatment time were kept the same (1.5 wt%). Laser processing
and the following chemical treatment conditions of AA6061 and AISI4130
samples are listed in Table 1.

After the fabrication, contact angle measurements were performed
using a Rame-Hart model 100 contact angle goniometer at ambient
temperature and relative humidity of 50%. During the contact angle
measurement, 4 pL water droplet was micro-pipetted on the treated
surface. For each specimen, six measurements were obtained at different
locations, and the average value was recorded as the static water contact
angle (0y), which was then used as the output data for the machine
learning algorithm.

3.2. Surface topography data collection and processing

Surface topological features of nHSN treated samples of AA6061 and
AISI 4130 alloys were evaluated using a Hitachi S-4800 SEM system. At
relatively low magnifications, as shown in Fig. 4al-3a3for AA 6061 and
Fig. 4 s1-3s3 for AISI 4130, respectively, with a view area from thou-
sands of pm? up to 1 mm?, the nHSN specimen exhibits an isotropic
texture with numerous tiny pores homogenously distributed in the

Table 1
Laser processing and chemical treatment conditions for AA6061 and AISI4130
samples.

Substrate Power intensity (GW/cm ™ 3?) Chemical reagent used in
material following CIT process
AISI4130 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, FOTS, CPTS
09,1.3,1.7,24,5.4,8.4
AA6061 0.2,0.3,0.4,0.5,0.6,0.9,1.3,1.7, FOTS, CPTS
2.4,5.4,84
AA6061 0.6,0.9,1.3,2.4,5.4, 8.4 FDTS, FDDTS
Data Fusion
Surface Topography Properties
Microscale Nanoscale
e Roughness e Feature size
e Fractal dimension e Area fraction
e Entropy e Shape .
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Fig. 3. Case study: machine learning model for nHSN treated surfaces.
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Fig. 4. SEM micrographs of nHSN surfaces at a length scale ranging from hundreds of microns to nanoscale for AA 6061 and AISI 4130 alloys. At microscale areas
(al-a3 for AA 6061 and s1-s-3 for AISI 4130), an isotropic texture without any laser processed pattern is observed. At nanoscale areas (a4 for AA 6061 and s4 for AISI
4130), random nanoscale surface features of ripples, particles, and pores can be seen.

treated area, but no obvious microscale patterns can be observed. At a
20,000x magnification, SEM micrographs for both AA 6061 and AISI
4130 are characterized by nanoscale surface features of ripples, parti-
cles, and pores, ranging in size from less than 100 nm to several hundred
nm, randomly and closely packed in a view area of several pm?.

Given the randomly nanostructured topography by nHSN, it was a
challenging task to define a set of topography parameters which would
adequately serve as scale-specific descriptors of the surface topography
for the ML model input. For the microscale topography, the nHSN
treated samples were first quantified by surface roughness measurement
over an evaluation length of a few millimeters. Arithmetical mean
roughness R, was measured using a Taylor Hobson Surtronic 25 profil-
ometer. For each specimen, nine measurements were taken at different
locations to obtain the average value. However, profile or areal rough-
ness parameters alone would not be adequate to describe the surface
topographic features, particularly for laser surface texturing and
patterning processes. Therefore, besides the surface roughness charac-
terization, three other parameters were introduced for the first time,
which would be obtained by running computational algorithms to the
microscale SEM micrographs, to describe the topographic complexity
and randomness of the nHSN surface, viz. fractal dimension (Dy), two-
dimensional entropy (Hzp), and periodicity (Py). The novelty and sig-
nificance of introducing these parameters are discussed in the later
segments of this section.

In order to extract information of the nanoscale features from the
nanoscale SEM micrographs, four nanoscale topography parameters
were introduced to describe the shape and size of the nanostructure, viz.
average size (A,), area fraction (F,), number density (ny), and circularity
(Cp). The ImageJ software was used to process the nanoscale SEM images
to extract these attributes. The original SEM image was converted into
an 8-bit image using ImagelJ at first. After the threshold adjustment and
hole filling process, the aforementioned four parameters were computed
automatically. These data were then collected as part of the input of the
machine learning model. The four nanoscale parameters, together with
the four microscale parameters, provide a comprehensive description of
the surface morphology. These surface topography parameters are
summarized in Table 2.

Fractal dimension is a ratio providing a statistical index of
complexity related to self-similarity and irregularity of fractals. In recent
years, fractal dimension has been increasingly applied to establish cor-
relations between surface structure and performance, e.g., electrical
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Table 2
Parameters of surface topography as ML mode input.

Length scale Parameter  Definition

Microscale
(hundreds to tens
of pm)

R, The arithmetic average value of all absolute
distances of the roughness profile from the
center line within the measuring length.
Fractal dimension is an intrinsic property of
the surface that reflects the complexity of the
surface structure. Dy is calculated for the SEM
images by Shifting Differential Box-Counting
method.

Two-dimensional entropy of the SEM images,
which is a statistical measure of randomness
that can be used to characterize the surface
texture.

The periodicity level of the microstructures in
terms of spatial distribution. Py is calculated
based on autocorrelation and discrete Fourier
transform.

Average area of each nanoscale feature.

The percentage of pixels in the image that has
been selected as nanoscale features.

Number of the features per unit area.

The average of 41 x [Area]/[Perimeter]? for
the nanostructures, with a value of 1.0
indicating a perfect circle. As the value
approaches 0.0, it indicates an increasingly
elongated shape.

Dy

Hap

Py

Submicron &
nanoscale

ny
Ce

contact resistance [39]. The relationship between fractal dimension and
surface wettability was occasionally investigated in the literature. Shi-
buichi et al. [40] experimentally studied the contact angle of the fractal
surface and its relation with the contact angle of the flat surface.
Nevertheless, such a relationship only focused on the impact of fractal
geometry on surface wettability without taking into account other pa-
rameters such as surface chemistry; thus, its application is highly
limited. In this work, fractal dimension was used as a surface descriptor
indicating the complexity and self-similarity of the laser-induced surface
texture, as well as an input feature for the machine learning algorithm.

The shifting differential box-counting (SDBC) method [47] was
adopted in this study to compute the fractal dimension of nHSN SEM
micrographs, which is an improvement of the well-known differential
box-counting (DBC) method [48]. In the DBC method, a 2D gray-level
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image of size M x M pixels is scaled down to a size s x s, which means
the image plane (x, y) is covered by a 3D grid of boxes with a grid size s.
The number of boxes N,, containing at least one pixel of the image is
counted, and the fractal dimension Dyis then estimated by measuring the
slope of the straight line fitting the points [—logr, logN,], i.e.,

logN,
logr

) — &

where the scaling ratio r is estimated by 3. The major shortcoming of this
approach is that N, is not exactly the least number of boxes of side s
needed to cover the fractal intensity surface. Herein the SDBC method
solves this problem by shifting the boxes along the z direction. The
number of boxes counted by SDBC method N’ is closer to the exact
number of boxes than N, computed by the DBC method. Hence SDBC
method can not only achieve the estimated values of fractal dimension
closer to the precise values than the DBC and other box-counting
methods [47], but also give more consistent results than the tradi-
tional DBC algorithm, and therefore is a reliable approach to get fractal
dimension on textured images [49]. Using this method, the micro-/
nano-textured surface is characterized by 2 < Dy < 3. A fractal surface
typically has irregularities that fill the embedding space (Dy = 3); thus, it
must occupy intrinsically more space than a plane space (Dy = 2). Fractal
dimension quantifies the disorder in terms of the space-filling ability of
the surface [50], which is why it is used in this study to describe the
surface morphology.

Hundreds of nHSN surface SEM micrographs of a typical length scale
of dozens to hundreds of pm were processed via the SDBC method to

Y]
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Pan et al. 2019

Zhang et al. 2019
oy Lo g

Micropattern

100pm WP g 100 um

Lietal. 2016
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determine the fractal dimension. Typical SEM micrographs of these
surface topography examples are shown in Fig. 5a (third row for nHSN
treated AISI 4130 and fourth row for nHSN treated AA 6061). Other
ultrashort laser-based surface-texturing methods in the literature rely on
the generation of microscale patterns (first row of Fig. 5a) or LIPSS
(second row of Fig. 5a). These ultrashort laser-based surface-texturing
methods scan the surface area using a focused laser spot (often in the
range of 30-50 pm) and an excellent spatial resolution. Hence, the
resultant surface topological features are very structured in the local
area. For the laser microscale patterned surfaces such as cross-hatched
pattern [44], grating pattern [45], and rose petal structure [51], the
typical surface roughness and feature size are all around dozens of mi-
crons. As long as the image size is about hundreds of microns or greater,
sufficient features are captured, and a clear pattern is shown. In this
case, the fractal dimension values of the patterned surfaces are relatively
low, usually smaller than 2.4. Using ultrashort pulsed lasers such as
femtosecond [46] and picosecond lasers [52], LIPSS can be generated
with a typical surface roughness of dozens of microns to a few microns.
The formation of LIPSS can be attributed to the interference of incident
and scattered waves [53]. Typically, the incident laser beam has a
wavelength of hundreds of nanometers. LIPSS with a spatial period
shorter than half of the incident beam wavelength is referred to as high-
spatial-frequency LIPSS, whereas LIPSS with a period slightly shorter or
close to the wavelength is referred to as low-spatial-frequency LIPSS
[54]. In the case of LIPSS, the image size of dozens of microns is already
enough to show the features. As Fig. 5b shows, the fractal dimension
values of LIPSS are higher than the regularly patterned surface,
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Fig. 5. Microscale topography and parameters for various laser-textured superhydrophobic metallic surfaces by nHSN and in literature [41-46]. (a) SEM images of
laser-textured surface: the first row is micropatterned surface; the second row is LIPSS; the third row is AISI 4130 surface produced by nHSN process; the fourth row is
AA6061 surface produced by nHSN process; (b) Fractal dimension, 2D entropy, and periodicity results. Dy is calculated for the SEM images by Shifting Differential
Box-Counting method. 2D entropy Hyp is a statistical measure of randomness that can be used to characterize the surface texture. Periodicity level Pf of the mi-
crostructures in terms of spatial distribution and is calculated based on autocorrelation and discrete Fourier transform.
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indicating that LIPSS occupies the embedding space more compactly
[55]. For our nHSN surfaces, however, on a similar scale (from dozens of
microns to hundreds of microns), the surface structures are all random
and featureless for both AISI4130 and AA6061 samples. The fractal
dimension values are higher than the micropatterned surface, which
indicates that the surface structure generated by the nHSN process is less
rough (surface roughness less than 1 pm) and has more space-filling
irregularities [50]. Moreover, the AA6061 surfaces have greater
fractal dimension values than the AISI4130 surfaces, showing that there
is a slight difference in the surface structure between the two materials.

Image entropy was used as another input feature of the machine
learning algorithm to describe the level of randomness of the surface
structures. The well-known Shannon entropy has been applied to
quantitatively measure the randomness of the gray-level distribution of
images for decades [56,57]. As Shannon entropy accounts only for in-
dividual pixels occurrence and no spatial structure is taken into account
[58], it is not capable of comparing the randomness of the surface
structure. Herein, a two-dimension entropy [59] was adopted in this
work to analyze the surface structure, which is an extension to the
traditional 1D Shannon entropy. In this approach, the spatial correlation
between the pixels in an image is taken into account. Consider an image
with N x N pixels, the total number of occurrence, fj;, of a pair (i, j)
divided by the total number of pixels, N?, defines the joint probability
mass function, p: viz., pj = fij/Nz, where i is the gray value of a pixel (0
< i< 255), and j is the average gray value of the pixels adjacent to that
pixel (0 < j < 255). Then the 2D entropy is defined as:

255 255

Hyp = — Z Zpijll’gzl’i]‘

=0 j=0

(2)

When all the images are scaled down to the size of 256 x 256 pixels,
the 2D entropy value is within the range from 0 to 16, while the greater
entropy value represents higher randomness. Frankly speaking, limita-
tions exist as the image with a high entropy value may not be necessarily
random-like [60]. However, 2D entropy still provides useful information
to some extent regarding the randomness of the spatial structure. To the
best knowledge of the authors, 2D entropy so far has not been widely
applied to materials research. This work will provide insight into the
engineering application of 2D entropy.

2D entropy was also computed on SEM images of the micropatterned
surface, LIPSS, and nHSN surfaces. The results showed that the laser
micropatterned surfaces have the lowest entropy in the range of 13-14,
which is related to the relatively low randomness in microscale surface
texture. The entropy of LIPSS is higher (14-15), as the feature in LIPSS is
periodic but a little more chaotic than the highly patterned surface in
terms of spatial distribution. For the nHSN sample, as expected, the
highest entropy is obtained (>15) since the nHSN structure is highly
random in microscale. AA6061 surfaces have slightly higher entropy
than AISI4130, which indicates that the AA6061 surfaces have higher
randomness in spatial structure.

For laser-textured surfaces, periodicity is usually defined as the
average distance between the neighboring structures [61,62], especially
for LIPSS [63,64]. For nHSN samples, however, the spatial distribution
of the surface structure is irregular and relatively random. In this case, a
quantitative method to describe its degree of periodicity was introduced
to better describe the spatial distribution of the surface structure in a
microscale. In this study, the periodicity of the surface structure was
computed based on autocorrelation and Fourier transform. Autocorre-
lation function has been widely used as the basis of the texture char-
acterization [65] since it has the same cyclic characteristics as the
original signal. The procedure of extracting the periodicity of the surface
texture is described as follows. First of all, a template window is selected
randomly. Then the normalized cross-correlation of the template and the
whole image is computed to extract the periodic signal obscured by
noise. After that, the discrete Fourier transform is performed onto the
normalized correlation coefficient matrix. The maximum peak value of
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the Fourier transform, which represents the magnitude of the main pe-
riodic component, is then determined as the periodicity (Py) of the sur-
face texture, viz.

3

The periodicity here is a non-dimensional parameter that gives a
number greater than zero, as the larger values represent higher peri-
odicity. Typically, a periodicity value less than three indicates a random
surface structure, while a periodicity value larger than three indicates
that periodic structures exist.

Periodicity extraction was also performed on the SEM images, as
shown in Fig. 5b. As expected, the micropatterned surfaces and LIPSS
have the greatest periodicity. The nHSN surfaces, on the contrary, all
have a low periodicity value (<3), which is in accordance with the high
randomness of the surface structure generated by the nHSN process. The
periodicity value of LIPSS lies in between, as there are periodic struc-
tures present on LIPSS surfaces, but the structures are not as regular as
other patterned surfaces.

Py = max|peaks(DFT (autocorrelation(template, image) ) ) ]

3.3. Surface chemistry data collection and processing

Surface chemical composition of nHSN surfaces was analyzed using a
Kratos Axis Ultra high-performance XPS system with an Al Ka (1486.6
eV) line excitation source. Both survey spectrum analysis and core-level
spectrum analysis were performed. Fig. 6 shows two typical XPS spectra
of AA6061 samples treated with FOTS and CPTS, respectively. The
samples treated with FDTS and FDDTS would show similar spectra as the
samples treated with FOTS since FOTS contains the same functional
groups as FDTS and FDDTS. According to the XPS spectra shown in
Fig. 6, the -CF3, -CFo-, and -C = N peaks confirmed the existence of FOTS
and CPTS, respectively. In literature, binding energies were usually used
as the input features for the machine learning algorithms [66,67]. In our
case study, however, the binding energy is not a suitable feature to be
extracted as there is no clear evidence showing that the binding energy is
correlated with surface wettability. It would only act as a label indi-
cating the type of chemicals, not as a meaningful scalar that has a cor-
relation with 6,,. Peak area under the curve, on the other hand,
represents the concentration of chemicals. The relative percentage of
each functional group can be obtained by dividing its peak area by the
total area formed by the different functional groups of the same element
[68]. Therefore, the peak area fraction was chosen as the input feature of
the machine learning algorithm.

With the surface chemical composition identified via XPS analysis, a
set of surface chemistry parameters were introduced in this study to
describe the physicochemical properties of the functional groups as the
ML model input. According to Dalvi et al. [69], the wetting behavior of
the fluorocarbon is not only related to the molecular polarity but also
related to the size of the surface reagent molecules, which will influence
the van der Waals interactions between the reagent and the liquid. Thus,
the dipole moment and volume of the most dominant functional group
present on the surface were introduced as the other two input features.
In this study, the most dominant functional group was determined as
-CF; for samples treated with FOTS, FDTS, or FDDTS, and as -CN for
samples treated with CPTS. Table 3 summarizes the chemistry param-
eters used for the machine learning model.

3.4. Learning using XGBoost

The XGBoost model was adopted in this work to learn. The concept of
XGBoost developed by Chen et al. [32] is often considered one of the
best off-the-shelf machine learning models in recent years. In general,
the XGBoost follows the principle of gradient boosting with a more
regularized model formulation to control overfitting, which leads to
better performance. Gradient boosting is a sequential technique
combining a bunch of weak learners to give improved predictions. In
XGBoost, a similar “additive strategy” is used. An ensemble of regression
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Fig. 6. XPS survey spectra and core level analysis of C 1s region for the surface layer of nHSN AA6061 surface. (a) Superhydrophobic specimen; (b) Superhydrophilic
specimen. The peak area fraction P,r is denoted for the dominant functional group in the XPS Cls spectrum.

Table 3
Surface chemistry parameters for ML model input.
Parameter  Definition
Par The peak area fraction of the most dominant functional group in the
XPS Cls spectrum.
u The dipole moment of the most dominant functional group in Debye.
Vg The volume occupied by the most dominant functional group, in A%,

trees is grown one after another. Each subsequent tree attempts to
reduce the misprediction error of the previous tree. The results of all the
trees are added together to deliver the final prediction. XGBoost uses
additional regularization terms to improve performance in comparison
with the traditional gradient boosting algorithm. Specifically, XGBoost
tries to minimize the regularized objective as the following [70].

1
L= Zl(ﬁm)-i-;ﬂ(ﬁ),whereg(f) :7T+§'1HCUH2 @

where [ is the loss function as a measure of the difference between the
predicted outputs y; and the actual outputs y;, fy is the kth regression tree
in the ensemble model, and 2 is the regularization term to penalize the
complexity of the model in terms of T, the number of leaves in a tree, and
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w, the vector of scores on leaves. This regularization term turned out to
be very helpful and gave better performance compared with the tradi-
tional gradient boosting algorithm.

In this case study, the input data was standardized first by sub-
tracting the mean value for each feature and then dividing the values by
the standard deviation. The ‘feature’ here does not mean the surface
texture micro- or nano-features anymore. Instead, it is a statistical
concept meaning an individual measurable property (in our case, an
input variable such as Dy). After the standardization of the data, 57 trees
in total were grown following the XGBoost algorithm to learn. Since the
data size was relatively small in this case study, a hold-out method
splitting the data set into a test set and a training set is not efficient.
Hence a 12-fold cross-validation method was used to evaluate the ma-
chine learning model. The procedure was described as follows: (1)
shuffle the dataset randomly; (2) split the dataset into twelve groups,
each of which contained five samples; (3) took one of the groups as the
test set, while the remaining groups were taken as the training set; (4) fit
the model on the training set and evaluated it on the test set; (5)
recorded the evaluation score (root mean squared error) and then dis-
carded the model; (6) repeated steps (1)-(5) for all twelve groups and
average the evaluation scores. By this method, each sample was given
the opportunity to be used in the test set for once and used to train the
model eleven times, which provided the maximum use of the data to



W. Huang et al.
improve efficiency in model performance evaluation.
4. Results & discussion

In order to obtain better training data characteristics, the Pearson
correlation coefficients between different features were calculated and
expressed as a heatmap, as shown in Fig. 7. The Pearson correlation
coefficient described the linear correlation between two features. When
two features have a strong linear correlation with each other, one
feature can be expressed by the other, and the information contained by
these two features has no distinct difference. Therefore, for two features
with strong linear correlation, removing one of them is necessary to
enhance the model performance. According to the heatmap, some data
redundancy was revealed, especially for the chemistry features. That is
due to the small size of the dataset employed in this work. Only four
different types of chemical reagents were used for the CIT process, three
of which contained the same functional groups, and therefore, many
chemistry variables chosen here were highly related to each other. For
this case study, the redundant features were removed that had a Pearson
correlation coefficient greater than 0.9 with other features. Eight fea-
tures remained were used as the input, viz. Rq, Dy, Py, Hap, nf, Aq, Par, and
u. However, it is noted that the redundant features determined in this
work may still be useful for future work involving larger datasets. In fact,
these features would be very useful when more chemicals are considered
for future research.

4.1. Role of surface chemistry

The root mean squared error (RMSE) from the cross-validation was
used to evaluate the model. The RMSE is defined as RMSE =

VIS (- yl-)z, where y; is the predicted value, y; is the observed

value, and n is the number of samples. RMSE has the same unit as the
output variable, which makes the evaluation result more intuitive. By
parameter tuning, the maximum tree depth was set as 5, the boosting
learning rate was 0.1, and the regularization term was 1. The results
showed that the RMSE of this model was 18.53 without feature selection
and was reduced to 17.94 after feature selection. In comparison, the
RMSE of a linear regression model was 23.22 after feature selection. The
XGBoost generated a more accurate prediction, with a 23% reduction of
prediction error. Furthermore, the goodness of fit of a linear regression
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Fig. 7. Heatmap of Pearson correlation coefficient matrix.
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model was checked, showing a non-random zigzag pattern in the re-
sidual plot, which indicates that some of the essential complex patterns
exist in the data and cannot be captured by the linear regression model.
Therefore, the complexity of the data requires a more sophisticated
model such as XGBoost. The residuals of XGBoost exhibit mostly a
random pattern, indicating that the model is much more adequate for
the surface wettability prediction problem.

The comparison between the predicted water contact angle by the
XGBoost model and the true water contact angle (Fig. 8) showed a
decent match. From the results, we can see that the XGBoost has the
ability to handle the wettability prediction problem even if the data size
is small. Fig. 8 also showed a clear classification of contact angle ac-
cording to the chemical reagent type. All the samples treated with CPTS
are located in the lower-left quarter, which is the hydrophilic region,
and the other samples treated with FOTS/FDTS/FDDTS are located in
the upper right quarter, which is the hydrophobic region, no matter
what surface structures they have. Therefore, according to the dataset
obtained from the experiments, it can be seen that surface chemistry is
the dominant factor here in the determination of whether the sample is
hydrophobic or hydrophilic.

XGBoost is also capable of examining the importance of each feature
in the dataset. The feature importance analysis was performed, and all
the features were sorted in the order of ‘Gain,” which is the average
information gain across all splits the feature is used. The information
gain is well used in machine learning and is defined as the amount of
information provided by the features [71]. A higher value of gain, when
compared to another feature, indicates it is more important for gener-
ating a prediction.

As Fig. 9 shows, the polarity of the functional group () and its
relative amount (Pap) are the two most important features in deter-
mining the wettability, which is consistent with the knowledge gained
from the contact angle prediction results. The surface chemistry plays a
decisive role in the determination of whether the surface is hydrophobic
or hydrophilic, while the surface morphology only plays a supporting
role in tuning the contact angle in a relatively small range without
switching its wetting behavior between hydrophobicity and hydrophi-
licity. In addition, the water contact angle showed a strong negative
correlation with the dipole moment of the functional group (Pearson's r
value = —0.93). Since V; is negatively related with y in this dataset, as
shown in the heatmap, the water contact angle would have a positive
correlation with the volume of the functional group. The results provide
guidance for engineers to fabricate metal surfaces with desired wetta-
bility. If a hydrophobic surface is wanted, the most important thing to do
is to apply functional groups with small dipole moment and large vol-
ume onto the surface instead of spending too much effort texturing the
surface to achieve desired surface structure. On the other hand, it is
important to point out that the results are highly dependent on the
dataset. Since the dataset in this case study is small, the results are
biased towards the importance of chemistry. When more data are
incorporated into the dataset in the future, the feature importance
analysis will give a more objective estimation. If the polarity was the
only input feature used for prediction in this case study, a decent match
could still be acquired (RMSE = 21.01). However, the results would not
be expandable to explain the wetting phenomena for other types of
surfaces.

4.2. Role of surface topography

Since the chemistry feature established its dominance for the water
contact angle prediction in this case study, it shadowed all the other
features to some extent. In order to investigate the importance of other
surface morphology and roughness features, only the samples treated
with superhydrophobic chemicals (FOTS/FDTS/FDDTS) were selected
as a data subset. The surface chemistry did not show much difference
within this subset. The feature importance analysis was then performed
on this subset.
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Fig. 10 shows the features adopted by the XGBoost model for the
prediction of the contact angle and their importance ranking for the
three data subsets. It can be seen that the nanostructure, roughness, as
well as the relative amount of functional groups play the most critical
roles in the determination of the final wettability, while the micro-
structure does not influence the 6, too much. This indicates that when
fabricating metal surfaces with different wetting behavior, surface
patterning is relatively trivial as long as certain roughness and nano-
structures are achieved. As shown previously, nHSN surface with
random microstructure and patterned surface with periodic micro-
structure can all achieve superhydrophobicity or superhydrophilicity.
Again, it needs to be noted that the data size was small in this case study,
and the feature importance analysis performed by the XGBoost model
also has uncertainty. In order to extend the results to wider applications,
more data needs to be incorporated in the future.
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Fig. 10. Feature importance ranking for the hydrophobic surface.

5. Conclusion and recommendation

In this paper, a general machine learning framework of surface
wetting was proposed by considering a broad range of factors, including
solid surface topography, solid surface chemistry, liquid properties, and
environmental conditions. A specific XGBoost-based ML model was
presented for learning the wetting behavior of nHSN treated surfaces to
water under lab-controlled environments. The novelty and significance
of this research are the following:

1) It was the first attempt to develop a machine learning model
considering both surface topography and surface chemistry proper-
ties to predict surface wettability.

2) Novel microscale and nanoscale topography parameters were
defined with suitable computer algorithms to comprehensively
describe the surface topography, which includes fractal dimension,
2D entropy, and periodicity.



W. Huang et al.

3) Novel surface chemistry parameters such as polarity, volume, and
amount of functional groups were used as the machine learning
model input.

The feature importance results showed that the surface chemistry is
the dominant feature affecting the wetting behavior of the nHSN
processed metal surface. The secondary role of the surface topog-
raphy, i.e., nanostructure and surface roughness, was also estab-
lished for nHSN surfaces.

4

—

It is noted that the ML modeling results are restricted to the nHSN
process, during which either superhydrophobic or superhydrophilic
functionalization is resolutely designed and highly effective. Caution
should be exercised to apply these findings to other surface modification
processes to achieve a superhydrophobic surface. Although the current
dataset has a limited size, it is worth noting that proposing an ML
approach to predict surface wetting behavior is promising, as the input
dataset is readily expandable, and a larger dataset with more types of
variables can be incorporated as the input/output variables, such as
environmental parameters (e.g., temperature, pressure, and humidity),
liquid properties (e.g., viscosity and polarity), and other measurements
of wettability (e.g., roll-off angle and surface energy). Process-specific
parameters can also be added to the ML approach to help obtain the
process-surface-wetting relationship. With the same machine learning
algorithm being used, this approach can be applied to a wider situation
of wettability prediction and provide design guidance for engineers
when they are trying to manufacture surfaces with certain wettability.
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