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A B S T R A C T   

A general machine learning (ML) framework of surface wetting is proposed by considering a broad range of 
factors, including solid surface topography, solid surface chemistry, liquid properties, and environmental con
ditions. In particular, an XGBoost-based ML model is demonstrated for learning the surface wetting behaviors 
processed by a laser-based surface functionalization process, namely nanosecond laser-based high-throughput 
surface nanostructuring (nHSN). This is the first known attempt to apply machine learning to surface wetting by 
considering both surface topography and surface chemistry properties. Novel microscale and nanoscale topog
raphy parameters viz., roughness, fractal, entropy, feature periodicity are defined with suitable computer al
gorithms to comprehensively describe the surface topography. A novel set of surface chemistry parameters such 
as polarity, volume, and amount of functional groups are also used as the machine learning model input. Upon 
analyzing the importance of each parameter for the nHSN process, surface chemistry shows the greatest 
importance in determination of surface wettability, while surface morphology also plays a part in influencing the 
wettability.   

1. Introduction 

Wettability of a solid surface is defined by its ability to maintain 
contact with a fluid and is often characterized using contact angle (θ) at 
the meeting point of liquid-gas and solid-liquid interfaces. Depending on 
the wetting condition, solid-liquid interface can have a critical impact in 
ubiquitous engineering applications, and therefore has aroused intense 
interest. Surface wetting is governed by the balance between the inter
molecular interactions at the solid-liquid interface [1] and is influenced 
by many factors, including liquid properties, solid surface properties, 
and environmental conditions. The solid surface wettability can be 
physiochemically engineered by modifying its surface morphology [2,3] 
and/or surface chemistry [4,5]. 

Extensive material research has shown that surface topography, i.e., 
surface roughness and surface texture, of a solid material can be modi
fied to obtain desirable wetting properties regarding a liquid. In the 
presence of increasing roughness, water contact angle increases for 
hydrophobic materials and decreases for hydrophilic materials [6–8]. 
For instance, Busscher et al. [7] measured contact angles for five 
different liquids on twelve commercial polymers after various surface 

roughness procedures and reported that, if the contact angle was above 
86◦, the increase of surface roughness led to increasing contact angle; 
whereas if the contact angle was below 60◦, the surface roughening 
tended to decrease the contact angle. Veeramasuneni et al. [8] reported 
similar results by investigating the influence of surface roughness on the 
wetting behavior of ion-plated poly(tetrafluoroethylene) (PTFE) coat
ings. They found that the nanoscale surface asperities tended to increase 
the water contact angle in superhydrophobic range (150◦ ~ 160◦). 
AlRatrout et al. [9] studied the impact of surface roughness on wetta
bility in the porous region of limestone, and showed that the range of 
distribution of oil contact angle increased with the degree of roughness. 
Belaud et al. [10] investigated the impact of roughness on static contact 
angle measured on polypropylene textured surfaces and proposed a 
model describing the correlation between the contact angle and surface 
roughness parameters. 

Various surface texturing techniques, particularly laser materials 
processing, have been applied to create fine textures or patterns on 
materials in order to achieve desired wetting behavior. Ahuir-Torres 
et al. [11] generated three types of texture patterns on aluminum 
alloy using an infrared picosecond laser. It was found that the un- 
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textured surface and the surface with dimples showed hydrophilic 
behavior, while the surface with crossed grooves and the concentric 
rings exhibited a hydrophobic character. Jiao et al. [12] generated a 
dimple pattern and groove pattern on a Zr-based bulk metallic glass. 
They found that the hydrophilicity of the original surface was enhanced 
by the groove pattern and weakened by the dimple pattern. Granados 
et al. [13] demonstrated that the formation of laser-induced periodic 
surface structures (LIPSS) in boron-doped diamond by irradiation with 
femtosecond laser leads to hydrophilic behavior. Superhydrophilicity 
can also be achieved on stainless steel by LIPSS formation, and θ in
creases with the laser scanning speed [14]. Batal et al. [15] found that 
LIPSS on polished CoCrMo alloy increased θ value from 46.0◦ to 54.7◦, 
and the contact angle growth was also influenced by laser processing 
parameters, including beam incident angle and focal offset distance. 
Orazi et al. [16] reported that LIPSS turned surface behavior from hy
drophilicity to hydrophobicity for stainless steel, copper, and aluminum 
alloy. 

Numerous research efforts have been devoted to modifying the sur
face chemistry to achieve desirable wetting behavior. Surface func
tionalization methods introduce hydrophobic or hydrophilic chemical 
functional groups to a solid surface in order to achieve desired hydro
phobicity or hydrophilicity, respectively. Liang et al. [17] reported that 
the wettability of candle soot varied from superhydrophobicity to hy
drophilicity due to different chemical compositions, yet their research 
did not assess any quantitative relationship between the contact angle 
and the chemical composition. Pan et al. [18] investigated the rapid 
wettability switching of silane-modified TiO2 particles. Upon ultraviolet 
illumination, the TiO2 particles switched from a superhydrophobic state 
(θ ~ 165◦) to a superhydrophilic state (θ ~ 0◦) due to UV-induced 
oxidation. Psarski et al. [19] modified SU-8 surfaces with a homolo
gous series of fluoroalkyl silanes to investigate the influence of surface 
chemistry on surface wettability. They found that the higher the surface 
density of low surface free energy groups (-CF2- and -CF3) the higher the 
advancing contact angle. Surface chemistry modification was also 
combined with surface morphology to alter wettability. Zhang et al. [20] 
made a topography/chemical composition gradient polystyrene (PS) 
surface and established the relationship between wettability and surface 
roughness and chemical composition. In this study, a series of PS with 
various degrees of sulfonation was formed on the surface. It was found 
that θ increases with roughness as well as sulfonation degree. Zhang 
et al. [21] prepared a smart surface on pillar-structured shape memory 
polymer, which can switch between superhydrophobicity to super
hydrophilicity by tuning surface microstructure and surface chemistry. 

Superhydrophobic surfaces have received a growing interest among 
researchers across the world, and the number of technical publications 
on superhydrophobic surfaces continues to increase, demonstrating 
expanding impacts. As shown in Fig. 1, thousands of technical papers 
have been published in the last decade. Although a myriad of work has 
been done to study the effect of different factors affecting wetting 

property of surface, the state-of-the-art research efforts are primarily 
experimental with a focus on materials innovation. Given the complex 
coupling effect among all the factors and their huge parameter space 
contributing to surface wetting, the published research in literature 
often time considered only a narrow set of factors or conditions. On the 
other hand, classic analytical models have been employed in the past 
two centuries to explain the wetting behavior of a solid surface, 
including Young's model, Wenzel's model [22], and Cassie-Baxter model 
[23]. However, these deterministic analytical models theorize the solid 
surface to ideal conditions and consider a limited number of factors such 
as liquid surface tension and solid surface roughness. Recent computa
tional methods, including molecular dynamics [24] and density func
tional theory [25] have been applied to study wettability; nonetheless, 
only ideal wetting conditions were considered. It is therefore critical to 
develop a comprehensive, predictive relationship among surface engi
neering/manufacturing processes, surface phytochemical attributes and 
surface wettability. 

A general machine learning (ML) framework is firstly proposed in 
this study for surface wetting prediction considering a broad range of 
factors affecting surface wetting behavior. As discussed earlier, data 
from the published research works are usually fragmented and only 
cover a narrow set of factors. Therefore, a novel laser-based nano
structuring process was designed in our own case study to acquire 
various surface morphology and chemistry data as the input for ML. A 
series of parameters were developed to describe the surface topography 
as well as surface chemistry and were used as input to feed an XGBoost 
ML model to predict water contact angle (θw). Although the ML model 
for this case study uses a limited dataset, the inner relationship between 
the parameters and the water contact angle is complex and nonlinear. 
Hence it is necessary to apply an ML method to deal with complex non- 
parametric patterns in the data. This study demonstrated the effective
ness of XGBoost in handling such complex nonlinear data. Upon feature 
importance analysis, the importance of surface chemistry on wetting 
was established. To the authors' best knowledge, this is the first effort to 
use machine learning to predict wettability based on surface 
morphology and chemistry. Although the method proposed in this 
research is applied for laser surface processing, it is equally applicable 
for the wettability prediction of other methods. 

2. Machine learning framework for surface wetting 

In this work, a comprehensive ML framework is introduced for pre
dicting the surface wettability of a solid material based on the vast 
knowledge gained from literature. As can be seen in Fig. 2, the input of 
the proposed ML model includes a broad range of factors affecting sur
face wetting, i.e., solid surface topography, solid surface chemistry, 
liquid properties, and environmental conditions. The outputs of the ML 
model are surface wettability properties such as contact angle and solid- 
liquid interaction strength. A key challenge for the development of such 
an ML model is that the input data have various forms and structures: 
qualitative and quantitative data, continuous and discrete data, field 
raw data, and processed data. The proposed ML model is expandable to 
adapt to different types and sizes of a dataset. When one performs ex
periments and collects new data related to surface wettability, the new 
data can be easily incorporated without changing the algorithm. The 
adaptability makes the machine learning method quite promising to 
determine the process-surface-wettability relationship. The objective of 
the proposed ML model is to establish a quantifiable, predictive rela
tionship between wettability and myriad factors that can influence 
wetting. The developed ML model will greatly aid in designing and 
optimizing material processes to achieve a specific desired wettability. 
By analyzing the relationship between the process parameters and 
wettability, the machine learning model is capable of providing guid
ance for the design of processes to achieve specific surface properties. 
Furthermore, the ML model can even be expanded to make predictions 
of other surface properties, e.g., surface adsorption, absorption/ 
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Fig. 1. The number of publications taken from Web of Science on the topic of 
superhydrophobic surface between the years 2010 and 2020. 
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reflection, and corrosion. 
Data-driven ML methods are becoming ubiquitous due to the recent 

advances in computational power and techniques. They have been used 
to explore materials and structures and to extract meaningful informa
tion and patterns from existing data [26]. Among all different types of 
machine learning algorithms, regression is one of the most important 
and widely used machine learning tools to make predictions from data 
by learning the relationship between numeric features of the data and 
the continuous-valued response. In this research, a continuous value, the 
wettability of metal surfaces (contact angle), is proposed to be predicted 
through a regression model. There are several well-developed machine 
learning models to deal with regression models, including Artificial 
Neural Networks (ANNs), Support Vector Machines (SVMs), and 
Regression Trees [27]. ANN models are inspired by biological neural 
networks, which are used to estimate the relationship between the in
puts and outputs [28], and are effective when dealing with complex, 
non-linear problems. SVM models are based on the concept of maxi
mizing the minimum distance from the hyperplane to the nearest sample 
point [29]. They can be used both for classification and regression 
problems. The original SVM for regression (SVR) was developed by 
Vapnik et al. [30] and is capable of dealing with non-linear problems. 
Another machine learning model used to deal with complex and non- 
linear data is Random Forest (RF), developed by Breiman [31], which 
is an ensemble learning method that combines a bunch of Regression 
Trees to construct a forest. Each tree produces a response, while the 
forest averages the predictions from all of the trees contained in the 
forest. In addition, extreme gradient boosting (XGBoost) is a robust 
machine learning algorithm proposed by Chen et al. [32] for both 
regression and classification problems. It has the merit of high effec
tiveness and accuracy over several other machine learning algorithms 
such as SVMs and regression trees [33,34]. All of the machine learning 
models above make it possible to predict the contact angle by learning 
from the surface structure data and the surface chemistry data. 

As can be seen in Fig. 2, the solid surface topography data serves as 
an important input data category for the proposed ML model. The 

topography data are usually obtained by surface microscopy techniques, 
including surface profilometer, digital camera, optical microscopy 
(OM), white-light interferometry (WLI), scanning electron microscope 
(SEM), atomic force microscope (AFM), and confocal microscopy (CM). 
Surface roughness is often a good predictor of the performance of a solid 
surface and is quantified by the deviations in the direction of the normal 
vector of a real surface from its ideal form. Quick measurements can be 
obtained using a surface profilometer and WLI. The images from OM 
mostly provide low magnification surface features, whereas the images 
obtained from SEM can be processed to extract relevant information 
regarding the microscale or nanoscale features. The AFM is a very high- 
resolution microscopy with a typical resolution on the order of fractions 
of a nanometer, more than 1000 times better than the optical diffraction 
limit. CM, WLI, and surface profilometer can all provide the spatial 
distribution of roughness across the surface. 

Surface chemistry data can be obtained from various surface chem
ical analysis techniques. Surface functional groups are commonly 
detected through X-ray photoelectron spectroscopy (XPS). Energy 
dispersive spectroscopy (EDS) analysis can be used to determine the 
elements presented on the surface. Chemical identity, bonding, and 
environment can be verified by the Fourier transfer infrared (FTIR) 
spectra. The characteristic peaks can be used for analysis since they are 
indicators of specific chemical bonds or chemical elements. For 
example, both the peak position and peak height of the XPS spectrum 
can be used as the input of a machine learning model as they represent 
the type of chemical element and the concentration of that element in 
the sample, respectively. Some fundamental physical or chemical 
properties of the surface chemicals, such as the oxidation state of the 
molecules, can also be used as the input since the physical properties 
also play a significant role in the determination of the interaction be
tween the surface and the liquid. 

The physical and chemical properties of liquids are also important 
input, including surface tension, viscosity, Hamaker constants, interac
tion potentials, etc. Environmental parameters, including temperature, 
pressure, and humidity, also impact the surface wettability. They can be 

Fig. 2. General framework of machine learning of surface wetting behaviors.  
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measured by thermometer, hygrometer, barometer, etc. Thus, the 
environmental factors can also be incorporated into the input data to 
teach the machine learning model to predict wettability in any envi
ronmental setting. 

Wettability of a specific surface can be defined using several vari
ables as the ML model output. The most commonly used variable is the 
equilibrium contact angle of a static droplet sitting on a solid surface. 
There are other variables to comprehensively define wettability. For 
non-equilibrium interaction, the dynamic contact angle is usually 
measured. For a hydrophobic surface, other variables are used along 
with static contact angle, including roll-off angle (θRoll-off), advancing 
contact angle (θAdv), receding contact angle (θRec), and contact angle 
hysteresis (θHys). θRoll-off is the angle of inclination of a solid surface at 
which a droplet starts to roll off. θAdv and θRec are the contact angles 
when a water droplet approaches and recedes from a surface, respec
tively. θHys is the difference between θAdv and θRec in a measurement 
cycle. All these angles can be measured by the well-developed contact 
angle goniometers. Since these variables are numerical values, they can 
be easily used as the output of a machine learning regression algorithm. 
By applying machine learning methods, a lot of bench work can be saved 
since it points out what kind of surface to create for a set of material 
properties. 

3. ML model for nHSN superhydrophobic surface processing 

In this section, a case study of the proposed ML framework was 
presented for the prediction of surface wettability of metal alloys to 
water under lab-controlled environments. As shown in Fig. 3, the field 
data of the study was generated, collected, extracted, and processed by 
the authors using a novel nanosecond laser-based high-throughput 
surface nanostructuring (nHSN) process [35–38] that can simulta
neously create random nanostructures and attain desirable surface 
chemistry over large-area metal alloy surfaces. By altering the process
ing conditions, the nHSN treated surfaces manifested different wetting 
behaviors ranging from superhydrophobicity to superhydrophilicity. 
The XGBoost model was used to learn the relationship between the 
surface topography, surface chemistry, and the wettability of these 
nHSN treated surfaces. To the authors' best knowledge, this study con
stitutes the first attempt at predicting surface wettability via a machine 
learning method that considered both surface topography and surface 
chemistry data as the input. 

3.1. Experiments 

The nHSN process comprises two sequential steps: (1) laser surface 
process uses a nanosecond pulse laser raster scanning the target material 
surface under water containment; (2) chemical immersion treatment 
(CIT), during which the laser-treated surface was chemically functional
ized to attach chemical functional group on the textured surface. As 
shown in Fig. 3, two sets of nHSN processing parameters are used to 
manipulate the surface attributes: the laser surface processing parameters, 

namely laser power intensity, scanning speed and overlap ratio, etc. are 
controlled to mainly adjust the surface topography, while the chemical 
immersion treatment parameters are selected to modify the surface 
chemistry. It should be noted that a novel etching effect of the chlor
osilane reagent could generate nanostructures on the laser-treated metal 
surface. Two common metal alloys, namely aluminum alloy 6061 
(AA6061) and steel alloy AISI4130, were used as the substrate materials. 
60 samples of AA6061/AISI4130 were treated using different laser power 
intensities ranging from 0.1 GW/cm2 to 8.4 GW/cm2, while other laser 
parameters, including laser beam diameter and pulse width, were kept as 
the same. For this study, four types of silane solutions were used in the CIT 
step to achieve extreme wettability, including 1H,1H,2H,2H-perfluorooc
tyltrichlorosilane [CF3(CF2)5(CH2)2SiCl3] (FOTS), 1H,1H,2H,2H-perfluor
odecyltrichlorosilane [CF3(CF2)7(CH2)2SiCl3] (FDTS), 1H,1H,2H,2H- 
perfluorododecyltrichlorosilane [CF3(CF2)9(CH2)2SiCl3] (FDDTS), and 3- 
cyanopropyltrichlorosilane [CN(CH2)3SiCl3] (CPTS). The functional 
groups in chlorosilane led to different wettability, that is super
hydrophobicity for FOTS/FDTS/FDDTS and superhydrophilicity for 
CPTS. During the CIT process, the concentration of the solution and the 
chemical treatment time were kept the same (1.5 wt%). Laser processing 
and the following chemical treatment conditions of AA6061 and AISI4130 
samples are listed in Table 1. 

After the fabrication, contact angle measurements were performed 
using a Rame-Hart model 100 contact angle goniometer at ambient 
temperature and relative humidity of 50%. During the contact angle 
measurement, 4 μL water droplet was micro-pipetted on the treated 
surface. For each specimen, six measurements were obtained at different 
locations, and the average value was recorded as the static water contact 
angle (θw), which was then used as the output data for the machine 
learning algorithm. 

3.2. Surface topography data collection and processing 

Surface topological features of nHSN treated samples of AA6061 and 
AISI 4130 alloys were evaluated using a Hitachi S-4800 SEM system. At 
relatively low magnifications, as shown in Fig. 4a1-3a3for AA 6061 and 
Fig. 4 s1-3s3 for AISI 4130, respectively, with a view area from thou
sands of μm2 up to 1 mm2, the nHSN specimen exhibits an isotropic 
texture with numerous tiny pores homogenously distributed in the 

Fig. 3. Case study: machine learning model for nHSN treated surfaces.  

Table 1 
Laser processing and chemical treatment conditions for AA6061 and AISI4130 
samples.  

Substrate 
material 

Power intensity (GW/cm−2) Chemical reagent used in 
following CIT process 

AISI4130 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.9, 1.3, 1.7, 2.4, 5.4, 8.4 

FOTS, CPTS 

AA6061 0.2, 0.3, 0.4, 0.5, 0.6, 0.9, 1.3, 1.7, 
2.4, 5.4, 8.4 

FOTS, CPTS 

AA6061 0.6, 0.9, 1.3, 2.4, 5.4, 8.4 FDTS, FDDTS  
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treated area, but no obvious microscale patterns can be observed. At a 
20,000× magnification, SEM micrographs for both AA 6061 and AISI 
4130 are characterized by nanoscale surface features of ripples, parti
cles, and pores, ranging in size from less than 100 nm to several hundred 
nm, randomly and closely packed in a view area of several μm2. 

Given the randomly nanostructured topography by nHSN, it was a 
challenging task to define a set of topography parameters which would 
adequately serve as scale-specific descriptors of the surface topography 
for the ML model input. For the microscale topography, the nHSN 
treated samples were first quantified by surface roughness measurement 
over an evaluation length of a few millimeters. Arithmetical mean 
roughness Ra was measured using a Taylor Hobson Surtronic 25 profil
ometer. For each specimen, nine measurements were taken at different 
locations to obtain the average value. However, profile or areal rough
ness parameters alone would not be adequate to describe the surface 
topographic features, particularly for laser surface texturing and 
patterning processes. Therefore, besides the surface roughness charac
terization, three other parameters were introduced for the first time, 
which would be obtained by running computational algorithms to the 
microscale SEM micrographs, to describe the topographic complexity 
and randomness of the nHSN surface, viz. fractal dimension (Df), two- 
dimensional entropy (H2D), and periodicity (Pf). The novelty and sig
nificance of introducing these parameters are discussed in the later 
segments of this section. 

In order to extract information of the nanoscale features from the 
nanoscale SEM micrographs, four nanoscale topography parameters 
were introduced to describe the shape and size of the nanostructure, viz. 
average size (Aa), area fraction (Fa), number density (nf), and circularity 
(Cf). The ImageJ software was used to process the nanoscale SEM images 
to extract these attributes. The original SEM image was converted into 
an 8-bit image using ImageJ at first. After the threshold adjustment and 
hole filling process, the aforementioned four parameters were computed 
automatically. These data were then collected as part of the input of the 
machine learning model. The four nanoscale parameters, together with 
the four microscale parameters, provide a comprehensive description of 
the surface morphology. These surface topography parameters are 
summarized in Table 2. 

Fractal dimension is a ratio providing a statistical index of 
complexity related to self-similarity and irregularity of fractals. In recent 
years, fractal dimension has been increasingly applied to establish cor
relations between surface structure and performance, e.g., electrical 

contact resistance [39]. The relationship between fractal dimension and 
surface wettability was occasionally investigated in the literature. Shi
buichi et al. [40] experimentally studied the contact angle of the fractal 
surface and its relation with the contact angle of the flat surface. 
Nevertheless, such a relationship only focused on the impact of fractal 
geometry on surface wettability without taking into account other pa
rameters such as surface chemistry; thus, its application is highly 
limited. In this work, fractal dimension was used as a surface descriptor 
indicating the complexity and self-similarity of the laser-induced surface 
texture, as well as an input feature for the machine learning algorithm. 

The shifting differential box-counting (SDBC) method [47] was 
adopted in this study to compute the fractal dimension of nHSN SEM 
micrographs, which is an improvement of the well-known differential 
box-counting (DBC) method [48]. In the DBC method, a 2D gray-level 

Fig. 4. SEM micrographs of nHSN surfaces at a length scale ranging from hundreds of microns to nanoscale for AA 6061 and AISI 4130 alloys. At microscale areas 
(a1-a3 for AA 6061 and s1-s-3 for AISI 4130), an isotropic texture without any laser processed pattern is observed. At nanoscale areas (a4 for AA 6061 and s4 for AISI 
4130), random nanoscale surface features of ripples, particles, and pores can be seen. 

Table 2 
Parameters of surface topography as ML mode input.  

Length scale Parameter Definition 

Microscale 
(hundreds to tens 
of μm) 

Ra The arithmetic average value of all absolute 
distances of the roughness profile from the 
center line within the measuring length. 

Df Fractal dimension is an intrinsic property of 
the surface that reflects the complexity of the 
surface structure. Df is calculated for the SEM 
images by Shifting Differential Box-Counting 
method. 

H2D Two-dimensional entropy of the SEM images, 
which is a statistical measure of randomness 
that can be used to characterize the surface 
texture. 

Pf The periodicity level of the microstructures in 
terms of spatial distribution. Pf is calculated 
based on autocorrelation and discrete Fourier 
transform. 

Submicron & 
nanoscale 

Aa Average area of each nanoscale feature. 
Fa The percentage of pixels in the image that has 

been selected as nanoscale features. 
nf Number of the features per unit area. 
Cf The average of 4π × [Area]/[Perimeter]2 for 

the nanostructures, with a value of 1.0 
indicating a perfect circle. As the value 
approaches 0.0, it indicates an increasingly 
elongated shape.  
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image of size M × M pixels is scaled down to a size s × s, which means 
the image plane (x, y) is covered by a 3D grid of boxes with a grid size s. 
The number of boxes Nr, containing at least one pixel of the image is 
counted, and the fractal dimension Df is then estimated by measuring the 
slope of the straight line fitting the points [−logr, logNr], i.e., 

Df = −
logNr

logr
(1)  

where the scaling ratio r is estimated by s
M. The major shortcoming of this 

approach is that Nr is not exactly the least number of boxes of side s 
needed to cover the fractal intensity surface. Herein the SDBC method 
solves this problem by shifting the boxes along the z direction. The 
number of boxes counted by SDBC method Nr’ is closer to the exact 
number of boxes than Nr computed by the DBC method. Hence SDBC 
method can not only achieve the estimated values of fractal dimension 
closer to the precise values than the DBC and other box-counting 
methods [47], but also give more consistent results than the tradi
tional DBC algorithm, and therefore is a reliable approach to get fractal 
dimension on textured images [49]. Using this method, the micro-/ 
nano-textured surface is characterized by 2 < Df < 3. A fractal surface 
typically has irregularities that fill the embedding space (Df = 3); thus, it 
must occupy intrinsically more space than a plane space (Df = 2). Fractal 
dimension quantifies the disorder in terms of the space-filling ability of 
the surface [50], which is why it is used in this study to describe the 
surface morphology. 

Hundreds of nHSN surface SEM micrographs of a typical length scale 
of dozens to hundreds of μm were processed via the SDBC method to 

determine the fractal dimension. Typical SEM micrographs of these 
surface topography examples are shown in Fig. 5a (third row for nHSN 
treated AISI 4130 and fourth row for nHSN treated AA 6061). Other 
ultrashort laser-based surface-texturing methods in the literature rely on 
the generation of microscale patterns (first row of Fig. 5a) or LIPSS 
(second row of Fig. 5a). These ultrashort laser-based surface-texturing 
methods scan the surface area using a focused laser spot (often in the 
range of 30–50 μm) and an excellent spatial resolution. Hence, the 
resultant surface topological features are very structured in the local 
area. For the laser microscale patterned surfaces such as cross-hatched 
pattern [44], grating pattern [45], and rose petal structure [51], the 
typical surface roughness and feature size are all around dozens of mi
crons. As long as the image size is about hundreds of microns or greater, 
sufficient features are captured, and a clear pattern is shown. In this 
case, the fractal dimension values of the patterned surfaces are relatively 
low, usually smaller than 2.4. Using ultrashort pulsed lasers such as 
femtosecond [46] and picosecond lasers [52], LIPSS can be generated 
with a typical surface roughness of dozens of microns to a few microns. 
The formation of LIPSS can be attributed to the interference of incident 
and scattered waves [53]. Typically, the incident laser beam has a 
wavelength of hundreds of nanometers. LIPSS with a spatial period 
shorter than half of the incident beam wavelength is referred to as high- 
spatial-frequency LIPSS, whereas LIPSS with a period slightly shorter or 
close to the wavelength is referred to as low-spatial-frequency LIPSS 
[54]. In the case of LIPSS, the image size of dozens of microns is already 
enough to show the features. As Fig. 5b shows, the fractal dimension 
values of LIPSS are higher than the regularly patterned surface, 

Fig. 5. Microscale topography and parameters for various laser-textured superhydrophobic metallic surfaces by nHSN and in literature [41–46]. (a) SEM images of 
laser-textured surface: the first row is micropatterned surface; the second row is LIPSS; the third row is AISI 4130 surface produced by nHSN process; the fourth row is 
AA6061 surface produced by nHSN process; (b) Fractal dimension, 2D entropy, and periodicity results. Df is calculated for the SEM images by Shifting Differential 
Box-Counting method. 2D entropy H2D is a statistical measure of randomness that can be used to characterize the surface texture. Periodicity level Pf of the mi
crostructures in terms of spatial distribution and is calculated based on autocorrelation and discrete Fourier transform. 
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indicating that LIPSS occupies the embedding space more compactly 
[55]. For our nHSN surfaces, however, on a similar scale (from dozens of 
microns to hundreds of microns), the surface structures are all random 
and featureless for both AISI4130 and AA6061 samples. The fractal 
dimension values are higher than the micropatterned surface, which 
indicates that the surface structure generated by the nHSN process is less 
rough (surface roughness less than 1 μm) and has more space-filling 
irregularities [50]. Moreover, the AA6061 surfaces have greater 
fractal dimension values than the AISI4130 surfaces, showing that there 
is a slight difference in the surface structure between the two materials. 

Image entropy was used as another input feature of the machine 
learning algorithm to describe the level of randomness of the surface 
structures. The well-known Shannon entropy has been applied to 
quantitatively measure the randomness of the gray-level distribution of 
images for decades [56,57]. As Shannon entropy accounts only for in
dividual pixels occurrence and no spatial structure is taken into account 
[58], it is not capable of comparing the randomness of the surface 
structure. Herein, a two-dimension entropy [59] was adopted in this 
work to analyze the surface structure, which is an extension to the 
traditional 1D Shannon entropy. In this approach, the spatial correlation 
between the pixels in an image is taken into account. Consider an image 
with N × N pixels, the total number of occurrence, fij, of a pair (i, j) 
divided by the total number of pixels, N2, defines the joint probability 
mass function, pij: viz., pij = fij/N2, where i is the gray value of a pixel (0 
≤ i ≤ 255), and j is the average gray value of the pixels adjacent to that 
pixel (0 ≤ j ≤ 255). Then the 2D entropy is defined as: 

H2D = −
∑255

i=0

∑255

j=0
pijlog2pij (2) 

When all the images are scaled down to the size of 256 × 256 pixels, 
the 2D entropy value is within the range from 0 to 16, while the greater 
entropy value represents higher randomness. Frankly speaking, limita
tions exist as the image with a high entropy value may not be necessarily 
random-like [60]. However, 2D entropy still provides useful information 
to some extent regarding the randomness of the spatial structure. To the 
best knowledge of the authors, 2D entropy so far has not been widely 
applied to materials research. This work will provide insight into the 
engineering application of 2D entropy. 

2D entropy was also computed on SEM images of the micropatterned 
surface, LIPSS, and nHSN surfaces. The results showed that the laser 
micropatterned surfaces have the lowest entropy in the range of 13–14, 
which is related to the relatively low randomness in microscale surface 
texture. The entropy of LIPSS is higher (14–15), as the feature in LIPSS is 
periodic but a little more chaotic than the highly patterned surface in 
terms of spatial distribution. For the nHSN sample, as expected, the 
highest entropy is obtained (>15) since the nHSN structure is highly 
random in microscale. AA6061 surfaces have slightly higher entropy 
than AISI4130, which indicates that the AA6061 surfaces have higher 
randomness in spatial structure. 

For laser-textured surfaces, periodicity is usually defined as the 
average distance between the neighboring structures [61,62], especially 
for LIPSS [63,64]. For nHSN samples, however, the spatial distribution 
of the surface structure is irregular and relatively random. In this case, a 
quantitative method to describe its degree of periodicity was introduced 
to better describe the spatial distribution of the surface structure in a 
microscale. In this study, the periodicity of the surface structure was 
computed based on autocorrelation and Fourier transform. Autocorre
lation function has been widely used as the basis of the texture char
acterization [65] since it has the same cyclic characteristics as the 
original signal. The procedure of extracting the periodicity of the surface 
texture is described as follows. First of all, a template window is selected 
randomly. Then the normalized cross-correlation of the template and the 
whole image is computed to extract the periodic signal obscured by 
noise. After that, the discrete Fourier transform is performed onto the 
normalized correlation coefficient matrix. The maximum peak value of 

the Fourier transform, which represents the magnitude of the main pe
riodic component, is then determined as the periodicity (Pf) of the sur
face texture, viz. 

Pf = max[peaks(DFT(autocorrelation(template, image) ) ) ] (3) 

The periodicity here is a non-dimensional parameter that gives a 
number greater than zero, as the larger values represent higher peri
odicity. Typically, a periodicity value less than three indicates a random 
surface structure, while a periodicity value larger than three indicates 
that periodic structures exist. 

Periodicity extraction was also performed on the SEM images, as 
shown in Fig. 5b. As expected, the micropatterned surfaces and LIPSS 
have the greatest periodicity. The nHSN surfaces, on the contrary, all 
have a low periodicity value (<3), which is in accordance with the high 
randomness of the surface structure generated by the nHSN process. The 
periodicity value of LIPSS lies in between, as there are periodic struc
tures present on LIPSS surfaces, but the structures are not as regular as 
other patterned surfaces. 

3.3. Surface chemistry data collection and processing 

Surface chemical composition of nHSN surfaces was analyzed using a 
Kratos Axis Ultra high-performance XPS system with an Al Kα (1486.6 
eV) line excitation source. Both survey spectrum analysis and core-level 
spectrum analysis were performed. Fig. 6 shows two typical XPS spectra 
of AA6061 samples treated with FOTS and CPTS, respectively. The 
samples treated with FDTS and FDDTS would show similar spectra as the 
samples treated with FOTS since FOTS contains the same functional 
groups as FDTS and FDDTS. According to the XPS spectra shown in 
Fig. 6, the -CF3, -CF2-, and -C ≡ N peaks confirmed the existence of FOTS 
and CPTS, respectively. In literature, binding energies were usually used 
as the input features for the machine learning algorithms [66,67]. In our 
case study, however, the binding energy is not a suitable feature to be 
extracted as there is no clear evidence showing that the binding energy is 
correlated with surface wettability. It would only act as a label indi
cating the type of chemicals, not as a meaningful scalar that has a cor
relation with θw. Peak area under the curve, on the other hand, 
represents the concentration of chemicals. The relative percentage of 
each functional group can be obtained by dividing its peak area by the 
total area formed by the different functional groups of the same element 
[68]. Therefore, the peak area fraction was chosen as the input feature of 
the machine learning algorithm. 

With the surface chemical composition identified via XPS analysis, a 
set of surface chemistry parameters were introduced in this study to 
describe the physicochemical properties of the functional groups as the 
ML model input. According to Dalvi et al. [69], the wetting behavior of 
the fluorocarbon is not only related to the molecular polarity but also 
related to the size of the surface reagent molecules, which will influence 
the van der Waals interactions between the reagent and the liquid. Thus, 
the dipole moment and volume of the most dominant functional group 
present on the surface were introduced as the other two input features. 
In this study, the most dominant functional group was determined as 
-CF2 for samples treated with FOTS, FDTS, or FDDTS, and as -CN for 
samples treated with CPTS. Table 3 summarizes the chemistry param
eters used for the machine learning model. 

3.4. Learning using XGBoost 

The XGBoost model was adopted in this work to learn. The concept of 
XGBoost developed by Chen et al. [32] is often considered one of the 
best off-the-shelf machine learning models in recent years. In general, 
the XGBoost follows the principle of gradient boosting with a more 
regularized model formulation to control overfitting, which leads to 
better performance. Gradient boosting is a sequential technique 
combining a bunch of weak learners to give improved predictions. In 
XGBoost, a similar “additive strategy” is used. An ensemble of regression 
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trees is grown one after another. Each subsequent tree attempts to 
reduce the misprediction error of the previous tree. The results of all the 
trees are added together to deliver the final prediction. XGBoost uses 
additional regularization terms to improve performance in comparison 
with the traditional gradient boosting algorithm. Specifically, XGBoost 
tries to minimize the regularized objective as the following [70]. 

L =
∑

i
l(ŷi , yi) +

∑

k
Ω(fk), where Ω(f ) = γT +

1
2

λ||ω||
2 (4)  

where l is the loss function as a measure of the difference between the 
predicted outputs ŷi and the actual outputs yi, fk is the kth regression tree 
in the ensemble model, and Ω is the regularization term to penalize the 
complexity of the model in terms of T, the number of leaves in a tree, and 

ω, the vector of scores on leaves. This regularization term turned out to 
be very helpful and gave better performance compared with the tradi
tional gradient boosting algorithm. 

In this case study, the input data was standardized first by sub
tracting the mean value for each feature and then dividing the values by 
the standard deviation. The ‘feature’ here does not mean the surface 
texture micro- or nano-features anymore. Instead, it is a statistical 
concept meaning an individual measurable property (in our case, an 
input variable such as Df). After the standardization of the data, 57 trees 
in total were grown following the XGBoost algorithm to learn. Since the 
data size was relatively small in this case study, a hold-out method 
splitting the data set into a test set and a training set is not efficient. 
Hence a 12-fold cross-validation method was used to evaluate the ma
chine learning model. The procedure was described as follows: (1) 
shuffle the dataset randomly; (2) split the dataset into twelve groups, 
each of which contained five samples; (3) took one of the groups as the 
test set, while the remaining groups were taken as the training set; (4) fit 
the model on the training set and evaluated it on the test set; (5) 
recorded the evaluation score (root mean squared error) and then dis
carded the model; (6) repeated steps (1)–(5) for all twelve groups and 
average the evaluation scores. By this method, each sample was given 
the opportunity to be used in the test set for once and used to train the 
model eleven times, which provided the maximum use of the data to 

F1s

O1s

C1s

-CF3

-CF2-

-CH2-

a

O1s

N1s
C1s

-CH2--C≡N

b

-C(=O)-O

Fig. 6. XPS survey spectra and core level analysis of C 1s region for the surface layer of nHSN AA6061 surface. (a) Superhydrophobic specimen; (b) Superhydrophilic 
specimen. The peak area fraction PAF is denoted for the dominant functional group in the XPS C1s spectrum. 

Table 3 
Surface chemistry parameters for ML model input.  

Parameter Definition 

PAF The peak area fraction of the most dominant functional group in the 
XPS C1s spectrum. 

μ The dipole moment of the most dominant functional group in Debye. 
Vg The volume occupied by the most dominant functional group, in Å3.  
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improve efficiency in model performance evaluation. 

4. Results & discussion 

In order to obtain better training data characteristics, the Pearson 
correlation coefficients between different features were calculated and 
expressed as a heatmap, as shown in Fig. 7. The Pearson correlation 
coefficient described the linear correlation between two features. When 
two features have a strong linear correlation with each other, one 
feature can be expressed by the other, and the information contained by 
these two features has no distinct difference. Therefore, for two features 
with strong linear correlation, removing one of them is necessary to 
enhance the model performance. According to the heatmap, some data 
redundancy was revealed, especially for the chemistry features. That is 
due to the small size of the dataset employed in this work. Only four 
different types of chemical reagents were used for the CIT process, three 
of which contained the same functional groups, and therefore, many 
chemistry variables chosen here were highly related to each other. For 
this case study, the redundant features were removed that had a Pearson 
correlation coefficient greater than 0.9 with other features. Eight fea
tures remained were used as the input, viz. Ra, Df, Pf, H2D, nf, Aa, PAF, and 
μ. However, it is noted that the redundant features determined in this 
work may still be useful for future work involving larger datasets. In fact, 
these features would be very useful when more chemicals are considered 
for future research. 

4.1. Role of surface chemistry 

The root mean squared error (RMSE) from the cross-validation was 
used to evaluate the model. The RMSE is defined as RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1

(
ŷi − yi

)2
√

, where ŷi is the predicted value, yi is the observed 
value, and n is the number of samples. RMSE has the same unit as the 
output variable, which makes the evaluation result more intuitive. By 
parameter tuning, the maximum tree depth was set as 5, the boosting 
learning rate was 0.1, and the regularization term was 1. The results 
showed that the RMSE of this model was 18.53 without feature selection 
and was reduced to 17.94 after feature selection. In comparison, the 
RMSE of a linear regression model was 23.22 after feature selection. The 
XGBoost generated a more accurate prediction, with a 23% reduction of 
prediction error. Furthermore, the goodness of fit of a linear regression 

model was checked, showing a non-random zigzag pattern in the re
sidual plot, which indicates that some of the essential complex patterns 
exist in the data and cannot be captured by the linear regression model. 
Therefore, the complexity of the data requires a more sophisticated 
model such as XGBoost. The residuals of XGBoost exhibit mostly a 
random pattern, indicating that the model is much more adequate for 
the surface wettability prediction problem. 

The comparison between the predicted water contact angle by the 
XGBoost model and the true water contact angle (Fig. 8) showed a 
decent match. From the results, we can see that the XGBoost has the 
ability to handle the wettability prediction problem even if the data size 
is small. Fig. 8 also showed a clear classification of contact angle ac
cording to the chemical reagent type. All the samples treated with CPTS 
are located in the lower-left quarter, which is the hydrophilic region, 
and the other samples treated with FOTS/FDTS/FDDTS are located in 
the upper right quarter, which is the hydrophobic region, no matter 
what surface structures they have. Therefore, according to the dataset 
obtained from the experiments, it can be seen that surface chemistry is 
the dominant factor here in the determination of whether the sample is 
hydrophobic or hydrophilic. 

XGBoost is also capable of examining the importance of each feature 
in the dataset. The feature importance analysis was performed, and all 
the features were sorted in the order of ‘Gain,’ which is the average 
information gain across all splits the feature is used. The information 
gain is well used in machine learning and is defined as the amount of 
information provided by the features [71]. A higher value of gain, when 
compared to another feature, indicates it is more important for gener
ating a prediction. 

As Fig. 9 shows, the polarity of the functional group (μ) and its 
relative amount (PAF) are the two most important features in deter
mining the wettability, which is consistent with the knowledge gained 
from the contact angle prediction results. The surface chemistry plays a 
decisive role in the determination of whether the surface is hydrophobic 
or hydrophilic, while the surface morphology only plays a supporting 
role in tuning the contact angle in a relatively small range without 
switching its wetting behavior between hydrophobicity and hydrophi
licity. In addition, the water contact angle showed a strong negative 
correlation with the dipole moment of the functional group (Pearson's r 
value = −0.93). Since Vg is negatively related with μ in this dataset, as 
shown in the heatmap, the water contact angle would have a positive 
correlation with the volume of the functional group. The results provide 
guidance for engineers to fabricate metal surfaces with desired wetta
bility. If a hydrophobic surface is wanted, the most important thing to do 
is to apply functional groups with small dipole moment and large vol
ume onto the surface instead of spending too much effort texturing the 
surface to achieve desired surface structure. On the other hand, it is 
important to point out that the results are highly dependent on the 
dataset. Since the dataset in this case study is small, the results are 
biased towards the importance of chemistry. When more data are 
incorporated into the dataset in the future, the feature importance 
analysis will give a more objective estimation. If the polarity was the 
only input feature used for prediction in this case study, a decent match 
could still be acquired (RMSE = 21.01). However, the results would not 
be expandable to explain the wetting phenomena for other types of 
surfaces. 

4.2. Role of surface topography 

Since the chemistry feature established its dominance for the water 
contact angle prediction in this case study, it shadowed all the other 
features to some extent. In order to investigate the importance of other 
surface morphology and roughness features, only the samples treated 
with superhydrophobic chemicals (FOTS/FDTS/FDDTS) were selected 
as a data subset. The surface chemistry did not show much difference 
within this subset. The feature importance analysis was then performed 
on this subset. 
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Fig. 7. Heatmap of Pearson correlation coefficient matrix.  
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Fig. 10 shows the features adopted by the XGBoost model for the 
prediction of the contact angle and their importance ranking for the 
three data subsets. It can be seen that the nanostructure, roughness, as 
well as the relative amount of functional groups play the most critical 
roles in the determination of the final wettability, while the micro
structure does not influence the θw too much. This indicates that when 
fabricating metal surfaces with different wetting behavior, surface 
patterning is relatively trivial as long as certain roughness and nano
structures are achieved. As shown previously, nHSN surface with 
random microstructure and patterned surface with periodic micro
structure can all achieve superhydrophobicity or superhydrophilicity. 
Again, it needs to be noted that the data size was small in this case study, 
and the feature importance analysis performed by the XGBoost model 
also has uncertainty. In order to extend the results to wider applications, 
more data needs to be incorporated in the future. 

5. Conclusion and recommendation 

In this paper, a general machine learning framework of surface 
wetting was proposed by considering a broad range of factors, including 
solid surface topography, solid surface chemistry, liquid properties, and 
environmental conditions. A specific XGBoost-based ML model was 
presented for learning the wetting behavior of nHSN treated surfaces to 
water under lab-controlled environments. The novelty and significance 
of this research are the following:  

1) It was the first attempt to develop a machine learning model 
considering both surface topography and surface chemistry proper
ties to predict surface wettability.  

2) Novel microscale and nanoscale topography parameters were 
defined with suitable computer algorithms to comprehensively 
describe the surface topography, which includes fractal dimension, 
2D entropy, and periodicity. 

a b
Super-

hydrophobic
Super-

hydrophobic

Fig. 8. The prediction of water contact angle by XGBoost in comparison with the ground truth data (a) before feature selection; (b) after feature selection.  
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Fig. 9. Feature importance in terms of information gain.  
Fig. 10. Feature importance ranking for the hydrophobic surface.  
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3) Novel surface chemistry parameters such as polarity, volume, and 
amount of functional groups were used as the machine learning 
model input.  

4) The feature importance results showed that the surface chemistry is 
the dominant feature affecting the wetting behavior of the nHSN 
processed metal surface. The secondary role of the surface topog
raphy, i.e., nanostructure and surface roughness, was also estab
lished for nHSN surfaces. 

It is noted that the ML modeling results are restricted to the nHSN 
process, during which either superhydrophobic or superhydrophilic 
functionalization is resolutely designed and highly effective. Caution 
should be exercised to apply these findings to other surface modification 
processes to achieve a superhydrophobic surface. Although the current 
dataset has a limited size, it is worth noting that proposing an ML 
approach to predict surface wetting behavior is promising, as the input 
dataset is readily expandable, and a larger dataset with more types of 
variables can be incorporated as the input/output variables, such as 
environmental parameters (e.g., temperature, pressure, and humidity), 
liquid properties (e.g., viscosity and polarity), and other measurements 
of wettability (e.g., roll-off angle and surface energy). Process-specific 
parameters can also be added to the ML approach to help obtain the 
process-surface-wetting relationship. With the same machine learning 
algorithm being used, this approach can be applied to a wider situation 
of wettability prediction and provide design guidance for engineers 
when they are trying to manufacture surfaces with certain wettability. 
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